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We study non-Newtonian effects associated with power-law rheology of behaviour index
n on the propagation of horizontal gravity currents. Two different set-ups are examined:
(i) converging flow toward the origin in a channel of gap thickness b(x) ∝ xk and k < 1
and (ii) converging flow along r toward the centre in a cylinder. The front of the current
propagates in the negative x or r direction reaching the origin in a finite touch-down
time tc during the pre-closure phase; in the post-closure phase, the current flows back in
the positive direction and progressively levels out. Under the classical viscous-buoyancy
balance, the current propagation is described by a differential problem amenable to a
self-similar solution of the second-kind coupling space and reduced time tr = tc − t. The
problem formulation in the phase plane leads to an autonomous system of differential
equations which requires numerical integration and yields the shape of the current and
its front as ξf ∝ tδc

r , ξf being the self-similar variable value at the front and δc being the
critical eigenvalue. The latter is a function of fluid rheology n and of channel geometry
k for the first set-up; it is a function only of n for the second set-up. The dependency
on n is modest. The theoretical formulation is validated through experiments conducted
during both pre- and post-closure phases and aimed at measuring the front position and
the profile of the current. Experimental results are in fairly good agreement with theory
and allow quantitative determination of the time interval of validity of the intermediate
asymptotics regime, when self-similarity is achieved and when it is lost.

Key words: gravity currents, Hele-Shaw flows

1. Introduction

Gravity-driven flows under a viscous regime are recurrent in the industry (outflow from
plants, process engineering applications) and environment (both in surface and subsurface
domains) (Simpson 1982; Huppert 2006). These phenomena are described by nonlinear
diffusion equations with counterparts in several fields of physics, such as heat conduction
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by electrons and by radiation, or flow in porous media under the Dupuit–Forchheimer
approximation (Diez, Gratton & Minotti 1992a). In many applications having a simple
geometry, the spreading is adequately described by self-similar solutions of the first
kind, representing intermediate asymptotics according to the definition by Barenblatt
(Barenblatt & Zel’Dovich 1972). In this case the variables that entangle space and time
(these are the two independent variables in most problems) can be found on the basis
of concepts of simple dimensional analysis. The seminal publications by Huppert (1982)
and Didden & Maxworthy (1982), later extended to porous media flow in plane (Huppert
& Woods 1995) and axisymmetric geometry (Lyle et al. 2005), are relevant examples of
the application of first-kind self-similarity to modelling the free-surface advancement of
Newtonian fluids into air or another fluid.

Extensions of this kind of modelling to non-Newtonian rheology, mainly of power-law
(PL) nature, were first due to Aronsson & Janfalk (1992), Kondic, Palffy-Muhoray &
Shelley (1996) and Kondic, Shelley & Palffy-Muhoray (1998): these works dealt with
the analysis of fingering in Hele-Shaw cells. A contribution devoted to bubble contraction
analysis in a Hele-Shaw cell for the case in which the surrounding fluid is of PL type
is due to McCue & King (2011). Further contributions of interest are Gratton, Minotti
& Mahajan (1999), Perazzo & Gratton (2003), Di Federico, Archetti & Longo (2012) and
Perazzo & Gratton (2005); Longo, Di Federico & Chiapponi (2015b). The combined effect
of rheology and confining boundaries was analysed in Longo et al. (2015a).

More variegate are the theoretical and experimental studies of gravity currents in
fractures (Di Federico 1998) and in porous media, possibly with variable permeability
and analysing the coupled effect of non-Newtonian rheology and spatial heterogeneity
(see Lauriola et al. (2018) and references therein).

Pressurized flows of PL fluids in porous media with variable conductivity are also
amenable to self-similar solutions of the first kind (Ciriello, Longo & Di Federico
2013); the same holds for unsteady flows of shear-thinning fluids in infinite domains
with pressure-dependent properties and different geometries, owing to a generalized
formulation incorporating the three main cases: plane, radial and spherical (Longo & Di
Federico 2015).

A key step in the process of looking for a self-similar solution to a propagation problem
is the individuation of the transformation (a group) that combines two independent
variables, space and time, into a single one, thus reducing a set of partial differential
equations (PDEs) into an ordinary differential equation (ODE), provided the initial and
boundary conditions coalesce as well. The fundamental element is the principle of
general covariance in physics: whenever we individuate a transformation that leaves a
mathematical problem invariant, the best and minimum number of variables completely
describing that problem are invariant within the same transformation. A power function
structure of the terms involved in the differential problem is propitious for self-similar
solutions, and this justifies the choice, as a trial set-up, of a variation of the channel
gap ∝ xk. Managing an ODE is by far simpler than solving a PDE, and allows in
some cases analytical solutions. The transformation is mostly of the form ξ = x/tβ
(a well-known exception is the transformation ξ = ct − x, c being velocity, adopted in
solving wave propagation problems on the surface of heavy fluids, see Stokes (1880),
although this case too can be reduced to the standard power form, see Gratton & Minotti
1990) where the exponent β is obtained by balancing the dimensions of all terms of the
equations, including initial and boundary conditions. The solution to the resulting ordinary
(nonlinear) differential problem represents the system behaviour in an intermediate time
interval: not too early, as initial and boundary conditions at an early stage still control the
details of the flow; not too late because, in general, the solutions do not describe properly
918 A5-2
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the ultimate equilibrium state of the system (Barenblatt 1996), mainly due to the instability
of the solution under small perturbations or to inconsistencies in balances when time tends
to infinity.

Another class of propagation problems is again self-similar, as shown by numerical
integration or by experiments, but the evaluation of the exponent β is impossible
simply via dimensional analysis; the solution of the whole problem is required, with a
procedure similar to the determination of eigenvalues in linear problems. This type of
self-similarity is quoted as ‘second-kind’ or ‘incomplete similarity’; an indicator of a
possible self-similarity of second kind is the presence of scales of the problem in excess,
with fewer dimensional equations than variables (Barenblatt 2003).

Early analyses of these kind of solutions for gravity currents are due to Gratton
& Minotti (1990), Diez et al. (1992a); Diez, Gratton & Gratton (1992b), Aronson &
Graveleau (1993), Angenent & Aronson (1995a,b) and Aronson, Van Den Berg & Hulshof
(2003). The work by Zheng, Christov & Stone (2014) accounts for second-kind self-similar
solutions arising in converging flows in heterogeneous porous media. A subsequent
contribution adopted a similar set-up and developed a theoretical and experimental
analysis in the presence of a permeable substrate (Zheng, Shin & Stone 2015).

A general approach containing the tools for selecting first-kind and second-kind
self-similar solution is the phase-plane formalism, described in the context of viscous
gravity currents by Gratton & Minotti (1990), and applied also to inviscid gravity currents
by Slim & Huppert (2004). A general description of singularities and their role in
second-kind self-similar solution, in the context of phase-plane formalism, is contained
in Eggers & Fontelos (2015). The phase-plane formalism was adopted also in Daly
& Porporato (2004), where different classes of problems connected to mathematical
hydraulics and non-Newtonian fluids are discussed. In many cases, numerical methods
are used for integration, although an asymptotic approach has also been developed, based
on the idea that some second-kind similarity solutions can be viewed as a perturbation of
problems with known similarity solution (Cole & Wagner 1996; Wagner 2005).

The present work focuses on the theoretical and experimental analysis of gravity
currents of PL fluids in a context where a second kind of self-similarity is expected. The PL
rheology is the simplest model that approximates the behaviour of a non-Newtonian fluid
in which the strain rate is scaled nonlinearly with applied stress, a category of fluids that
is widespread not only in environmental flows on the surface (Coussot & Meunier 1996)
but also in the food industry (Lareo, Fryer & Barigou 1997), sewage treatment (Eshtiaghi
et al. 2013), biomechanics (Carpenter et al. 2020), oil and gas drilling systems (Epelle
& Gerogiorgis 2020) and pipeline flow (Livescu 2012). Its limitation is valid over only
a limited range of shear rates, hence its properties depend on the range of shear rates
taken into account. Yet, it constitutes the most frequently adopted model in engineering
applications.

The possibility to have reliable solutions to adopt as benchmarks for the asymptotic
behaviour of numerical solutions, and to extract relevant scalings for the front speed
and depth of gravity currents, justifies the extension of the analyses already available
in literature for a Newtonian fluid to the PL model. The two specific settings examined
both involve converging gravity currents and are: (i) a horizontal channel or fracture of
variable width; and (ii) an axisymmetric geometry. Analytical solutions and numerical
results based on second-kind self-similarity adopting the phase-plane formalism are
derived for both the pre-closure phase (before the current nose reaches the origin)
and the post-closure phase (after the nose reaches the origin and the current flows
back). The first theoretical results in axisymmetric geometry are due to Gratton & Perazzo
(2010), results confirmed in the present work and extended to experimental verification.
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Figure 1. Horizontal channel with varying gap thickness b1xk: a converging gravity current in
viscous-buoyancy balance propagates toward the origin. Here xf is the instantaneous front position and x0
is the front position at time t = 0.

This article is structured as follows. Section 2 presents the problem formulation for
the horizontal channel and its solution, whereas § 3 contains the same analysis for
radial geometry. Section 4 provides details on the experimental set-ups and on three
sets of experiments, comparing the theoretical and experimental positions of the front
of the current and its profiles for both pre- and post-closure phase. Section 5 contains
the conclusion. Two appendices complete the paper: Appendix A reports the numerical
values of the critical eigenvalue δc governing self-similar propagation for the two set-ups;
Appendix B describes plane flow of a PL fluid converging toward the origin in a porous
medium with porosity and permeability varying in the horizontal direction. Under the
conditions of validity of the Hele-Shaw analogy for PL fluids, the solution to the problem
is analogous to that of converging flow in a channel of varying gap thickness.

2. Converging flow in a channel of variable cross-section

A viscous gravity current of a Ostwald–de Waele fluid (PL) (Ostwald 1929; Morrell &
De Waele 1920) propagates in the negative x direction within a channel (or fracture or
Hele-Shaw cell) of variable cross-section (see figure 1), starting at x0 and reaching the
origin x = 0 at a finite touch-down time tc.

The PL model for a shear-thinning/thickening fluid reads in one dimension

τ = μ0|γ̇ |n−1γ̇ (2.1)

in terms of the tangential stress τ and of the strain rate γ̇ . The consistency index
μ0 represents a viscosity-like parameter, and the fluid behaviour index n controls the
extent of shear-thinning (n < 1) or shear-thickening (n > 1); n = 1 corresponds to the
Newtonian case. A slightly more complicated description using tensors is required for
three-dimensional flows; this general formulation is not reported here as a one-dimensional
problem is considered. The fluid advances in a horizontal channel with a gap thickness
varying as b(x) = b1xk ([b1] = L1−k, where L is a length scale and 0 < k < 1), see
figure 1, under the hypotheses of (i) hydrostatic pressure distribution; (ii) τxy � τxz and
negligible τyz, i.e. tangential stress acting on the plane of normal x along the cross direction
y, is dominant with respect to tangential stress acting on the same plane in vertical
direction z; (iii) no slip at the side wall at y = ±b/2 and symmetry at y = 0; (iv) negligible
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surface tension and no fingering at the interface with the ambient fluid; and (v) inviscid
ambient fluid. The lubrication approximation holds and the flow is one-dimensional along
the x axis except near the origin, where also the capillary length is comparable to the gap
thickness and τxz is comparable to τxy. The streamwise horizontal velocity of the current
averaged over the cross-section is

u(x, t) = −sgn
(

∂h
∂x

)(
b1xk

2

)(n+1)/n n
2n + 1

(
�ρg
μ0

)1/n ∣∣∣∣∂h
∂x

∣∣∣∣
1/n

, (2.2)

where h(x, t) is the current depth, �ρ ≡ ρc − ρa is the density difference between the
intruding current and the ambient fluid and g is gravity. The mass conservation reads

∂h
∂t

+ 1
xk

∂(xkhu)

∂x
= 0. (2.3)

The boundary conditions are motivated by the singular points in the phase plane
described later. We anticipate that the boundary conditions allowing a solution are as
follows: for t < tc are h = 0 for x = xf and u = 0 for x → ∞, where tc is the touch-down
time required by the front of the current to reach the origin of the channel; for t > tc are
u = 0 and ∂h/∂x = 0 for x = 0; for t = tc a singularity is reached, which is then removed
upon a proper reformulation of the dependent variables. The integral mass conservation,
although not specifically involved in the sought self-similar solution of the second kind, are
important in numerical integration schemes; the most common representation corresponds
to V ∝ tσ , where σ = 0 is the lock release of a finite and constant volume of fluid, σ = 1
is the constant inflow rate, 0 < σ < 1 is a waning and σ > 1 is a waxing inflow rate,
respectively.

A first-kind self-similar solution cannot be obtained and a second-kind self-similar
approach is pursued introducing the phase formalism with the adoption of the independent
variables, x and t, as length and time scales, respectively, to render the governing equations
dimensionless. We let

u(x, t) = x
tr

U(x, tr), (2.4a)

h(x, t) =
(

2
b1

)n+1 (2n + 1
n

)n (
μ0

�ρg

)
x(n+1)(1−k)

tr|tr|n−1 H(x, tr), (2.4b)

where H and U are dimensionless and tr = tc − t. Here tr > 0 represents the pre-closure
phase, with the fluid advancing towards the origin of the channel; tr < 0 identifies the
post-closure phase, with the fluid occupying the entire channel length, the fluid surface
undergoing a progressive levelling and the front position being xf = 0. In the pre-closure
phase U is negative and H is positive, and change sign during the post-closure phase
because tr becomes negative.

Substituting (2.4a) and (2.4b) into (2.2) and (2.3) yields

U |U|n−1 + (n + 1)(1 − k)H + x
∂H
∂x

= 0, (2.5a)

tr
∂H
∂tr

− nH − HU(n + 2 − nk) − x
∂HU
∂x

= 0. (2.5b)

We assume a similarity variable ξ = xt−1
r |tr|1−δ , where the exponent δ cannot be

determined by using dimensional arguments and must be determined in a different way.
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Inserting the similarity variable into (2.5a) and (2.5b) gives

U |U|n−1 + ξH′ + (n + 1)(1 − k)H = 0, (2.6a)

δξH′ + nH + ξ(HU)′ + (n + 2 − nk)HU = 0, (2.6b)

where the prime indicates the derivative with respect to ξ and where the variable tr does
not appear. Eliminating ξ from the two equations results in

dH
dU

= H[(n + 1)(1 − k)H + U |U|n−1]

H[(k + 1)U − (n + 1)(1 − k)δ + n] − (U + δ)U |U|n−1 , (2.7a)

d ln ξ

dH
= − 1

U |U|n−1 + (n + 1)(1 − k)H
. (2.7b)

These two equations are a set of autonomous planar ODEs, with boundary conditions
represented by points in the phase space. We note that the similarity variable has
been embedded in its logarithm, with dξ/ξ ≡ d(ln ξ). We define as singular points the
simultaneous zeros of numerator and denominator of (2.7a), with a further singular point
obtained by setting the denominator to infinity. Hence, there are four singular points,
namely

O : (H, U) ≡ (0, 0),

A : (H, U) ≡ (0, −δ),

B : (H, U) ≡
([

n
2 + n(1 − k)

]n 1
(n + 1)(1 − k)

, − n
2 + n(1 − k)

)
,

C : (H, U) ≡
(

−∞,
(n + 1)(1 − k)δ − n

k + 1

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)

In the phase plane a solution connects two points representing the boundary conditions.
In this sense, the singular points are crucial because they are the candidates for the role
of representatives of the boundary conditions, and the behaviour of the solution must be
sought in the neighbourhood of these singularities.

Point O corresponds to null velocity and height at tr = 0 (and to ξ → ∞); point A
corresponds to the moving front where h(xf (t), t) = 0, with xf the front position and xf (t =
0) = x0 (and to ξ = ξf ); point B has no specific clear meaning, and from an analytic point
of view corresponds to the condition d2H/dU2 ≡ dH/dU = 0; point C is active during
the post-closure levelling of the current, and represents the asymptotic flow condition (it
also corresponds to ξ = 0). For n = 1 point B corresponds to the value given in Zheng
et al. (2014) (where n in Zheng et al. (2014) corresponds to our k).

The expansion about point O, computed by assuming H = �Uν , substituting in (2.7a)
and balancing the smaller-order terms to calculate � and ν, gives

U ≈ −
[
δ(1 − k)(n + 1) − n

δ

]1/n

H1/n; (2.9)

the expansion about point A, the front of the current, computed by assuming H = �(U +
δ)ν , substituting in (2.7a) and balancing the smaller-order terms, yields

U ≈
[
(2 + n − kn)δ − n

2δn

]1/n

H − δ; (2.10)
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the asymptotic expression for H → −∞ (point C) is computed by assuming 1/H =
�(1 − U/UC)ν , substituting in (2.7a) and balancing the smaller-order terms, and gives

U ≈ UC + Un+1
C (UC + δ)

UC(k + 1) + (n + 1)(1 − k)
1
H

, (2.11)

where UC is the coordinate of the singular point C.
Given these properties of the singular points, we expect that the pre-closure phase is

described by an integral curve joining A and O, the post-closure phase by a curve joining
O and C.

Numerical integration with Mathematica (Wolfram Research, Inc. 2017) has been
performed in the pre-closure time interval (t < tc) by adopting (2.7a), starting nearby the
origin O and assuming that U = −ε with the local expansion for H given by (2.9) in the
form

H|−ε ≈ δ

δ(1 − k)(n + 1) − n
εn, (2.12)

with ε = 10−5, and computing H(U) in the interval U ∈ [−δ, −ε]. An initial value of δ

was chosen, with iterative modifications of this value and stop criterion when H(−δ) <

10−3. The computed eigenvalues, named critical eigenvalues δc, are listed in table 2 of
Appendix A.

Numerical integration in the post-closure interval (t > tc) has been performed with the
same equation (2.7a) used for the pre-closure interval, but starting near point C where
U = UC − ε, with the expansion for H given by (2.11) in the form

H|(UC−ε) ≈ − Un+1
C (UC + δc)

UC(k + 1) + (n + 1)(1 − k)
ε−1, (2.13)

again with ε = 10−5, and computing H(U) in the interval U ∈ [ε, UC − ε]. No iteration
was required because the value of δc was already known.

Figure 2 shows the phase portrait of (2.7a) with the trajectories for the critical eigenvalue
δc = 1.5836 for n = 0.5 (a typical value for a shear-thinning fluid) and k = 0.5 (a fracture
enlarging with the square root of the abscissa). Continuous and dashed curves describe
the pre-closure and post-closure phases, respectively. Figure 3(a) shows the heteroclinic
trajectories connecting: (i) point A and point O (continuous curves, pre-closure) and (ii)
point O and point C (dashed curves, post-closure or levelling) for fixed n = 0.5 and
increasing k values. For k → 1 the variation of the current depth with U tends to zero
near the front and to −∞ near the origin, and UC → 0. Figure 3(b) shows the same
curves but for fixed k = 0.5 and increasing values of the flow-behaviour index n. Figure 4
shows the eigenvalues as a function of k for different n. The asymptotic value for k → 1 is
δc ≈ n/[(n + 1)(1 − k)] and corresponds to UC → 0. The Newtonian fluid (n = 1) shows
the minimum eigenvalues for a given value of the width coefficient k. Relative differences
between eigenvalues corresponding to different values of n are modest while k � 0.7, then
increase rapidly, especially for very shear-thinning fluids. We observe that the eigenvalues
are not monotonic with n, and are decreasing with n if n < 1, increasing if n > 1, see
also the numerical values of δc in table 2. An increase in the eigenvalue results in a
higher front velocity (Uf = −δc). This seems to be the result of an interplay between
rheology and channel geometry. Observing figure 5(a), it appears that the slope of the free
surface current (i.e. the gradient pressure) for ξ → ξf increases with n. The front speed
results from a balance between gradient pressure and flow resistance. For shear thinning
fluids the reduction of resistance with n is more than the reduction of gradient pressure,
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H

U
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B

n = 0.5
k = 0.5

C

Figure 2. Converging gravity current in a fracture of gap thickness b = b1xk. Phase portrait of (2.7a) for n =
0.5 (shear-thinning fluid) and k = 0.5, with δc = 1.5836. The singular points are O : (0, 0), A : (0, −1.5836),
B : (0.6285, −0.2222) and C : (−∞, 0.4585). The continuous curve refers to the pre-closure phase, the dashed
curve refers to the post-closure (levelling) phase, the thin red vertical line indicates the asymptote in the
levelling phase, the dash-dot blue curves are the approximate solutions about points O and A.

U/δc

H/δc

n = 0.5 k = 0.5

k = 0.5, 0.6, 0.7, 0.8,

0.9, 0.95, 0.98

Post-closure

Pre-closure

A O

C

n = 1.5, 1.0, 0.7, 0.5, 0.3

Post-closure

Pre-closure

A O

–0.2–0.4–0.6–0.8–1.0

–0.5

0.5

0

–1.0
0 0.2

U/δc

–0.2–0.4–0.6–0.8–1.0 0 0.2

(b)(a)

Figure 3. Converging gravity current in a channel of gap thickness b = b1xk. Shape of the heteroclinic
trajectories in rescaled coordinates for (a) n = 0.5 (shear-thinning fluid) as k → 1; (b) k = 0.5 (a fracture
enlarging with the square root of the abscissa) as n varies from 0.5 (shear-thinning) to 1 (Newtonian) and to 1.5
(shear-thickening). Continuous curves refer to pre-closure, dashed curves to post-closure (levelling) phase.

and the nose of the current is faster for decreasing n; for shear-thickening fluids the increase
of resistance is less than the increase of the gradient pressure, and again the nose of the
current is faster for increasing n.
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k

n = 0.3, 0.5, 1.5,
0.7, 1.0

δc

0
0

2

4

6

8

10

0.2 0.4 0.6 0.8 1.0

Figure 4. Converging gravity current in a channel of gap thickness b = b1xk. Eigenvalues representing the
exponent of the similarity variable ξ = x/(tc − t)δc for fluids with different flow behaviour index n. The dashed
pink curve refers to a shear-thickening fluid with n = 1.5, the hatched area is limited by the upper boundary,
1/(1 − k), and by the lower boundary, n/[(n + 1)(1 − k)], for n = 0.3, of the critical eigenvalues.

H

U

H

U
k = 0.5 k = 0.5

n = 1.5, 1.0, 0.7, 0.5, 0.3 
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Figure 5. Converging gravity current in a channel of gap thickness b = b1xk. Self-similar current shape
profiles and velocity profiles for k = 0.5 (a fracture enlarging with the square root of the abscissa) and for
n = 0.3, 0.5, 0.7, 1.0, 1.5 (a) in the pre-closure phase and (b) in the post-closure phase.

Once the function H(U) has been computed, in order to evaluate the independent
similarity variable ξ it is convenient to rewrite the left-hand side of (2.7b) as d ln(ξ)/dU
via the chain rule and the inverse function theorem using (2.7a), and also to map
the domain of varying size ξ ∈ [ξf , ∞] into ξ/ξf ∈ [1, ∞]. The resulting differential
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equation

d ln ξ/ξf

dU
= − H

H[(k + 1)U − (n + 1)(1 − k)δc + n] − (U + δc)U |U|n−1 (2.14)

can be integrated in the range U ∈ [−δc, −ε] starting from point A, the front of the current,
with the boundary condition ξ/ξf

∣∣
U=−δc

= 1, equivalent to d ln(ξ/ξf )
∣∣
U=−δc

= 0. The
origin O is reached for U → 0 at ξ/ξf → ∞.

Figure 5(a) shows the self-similar current shape profiles and the velocity profiles in the
pre-closure phase, for k = 0.5 and different values of n. We note that velocity profiles are
almost coincident, whereas the shape of the current is markedly influenced by the flow
behaviour index n, with a crest near the front more evident the more shear-thickening is
the fluid.

A similar approach is adopted for the post-closure phase, when the front of the current
has reached the origin and a progressive levelling occurs. In this phase it is convenient
to integrate (2.7b) from point O, with ln ξ |H=−ε = −(δc/n) ln(ε). For increasing H (in
absolute value), the similarity variable ξ → 0, the neighbourhood of point C where
U → UC. Figure 5(b) shows the current depth and velocity for different values of the
fluid behaviour index n and for k = 0.5. The results for other values of the width exponent
k are similar (not shown).

Inserting the expansion (2.9) near the origin O into (2.7b) and solving the resulting
differential equation, yields

H ≈ Kξ−n/δc, (2.15)

U ≈ −
[
δc(1 − k)(n + 1) − n

δc

]1/n

K1/nξ−1/δc . (2.16)

Switching to dimensional variables gives

h(x) =
(

2
b1

)n+1 (2n + 1
n

)n (
μ0

�ρg

)
Kx(n+1)(1−k)−n/δc, (2.17)

u(x) ≈ −
[
δc(1 − k)(n + 1) − n

δc

]1/n

K1/nx1−1/δc, (2.18)

where K is a constant. Notably, (2.17) and (2.18) are time independent.
For x → ∞ the depth of the current grows in the positive direction, hence dh/dx > 0

that, in turn, implies

δc >
n

(n + 1)(1 − k)
, (2.19)

which also satisfies the condition of a negative velocity. The minimum value of δc grows
with n and k, and tends to infinity for k → 1 (a linearly expanding fracture).

In a similar manner, inserting the expansion (2.11) near point C into (2.7b) and solving
the differential equation, yields

H ∝ ξ |ξ |−(n+1)(1−k)−1, (2.20)

or
h ∝ tr|tr|δc(n+1)(1−k)−n−1, (2.21)

in dimensional variables. Equation (2.21) is independent on x and represents the levelling
process near x = 0.
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Figure 6. Converging gravity current in a channel of gap thickness b = b1xk. Time exponent of the growth rate
of the depth of the current at the origin during levelling (see (2.21)) as a function of k for fluids with different
flow behaviour index n ranging from shear-thinning to shear-thickening. The dashed thin curve indicates the
minimum for each n value.

The condition of a time increasing h during levelling, dh/dt > 0, equivalent to
dh/dtr < 0, requires that

dh
dtr

∝ [δc(n + 1)(1 − k) − n]tr|tr|δc(n+1)(1−k)−n−2 < 0 → δc >
n

(n + 1)(1 − k)
, (2.22)

coincident with the condition (2.19). Imposing that the levelling process vanishes in time,
i.e.

lim
tr→−∞

dh
dtr

= 0, (2.23)

requires that

δc <
1

1 − k
. (2.24)

In conclusion, the critical eigenvalue is bounded above and below, i.e.

n
(n + 1)(1 − k)

< δc <
1

1 − k
, (2.25)

with the two bounds collapsing to 1/(1 − k) = δc for an infinitely shear-thickening fluid
or n → ∞. Note that the upper bound is independent on the fluid nature. The lower bound
for n = 1 coincides with the result by Zheng et al. (2014) (their n is our k). For k → 0
(constant gap thickness) and n → ∞, it results δc = 1.

Owing to these constraints on the eigenvalues, the time exponent of the depth growth
rate at the origin during levelling, defined in (2.21), varies in the range [0, 1], see figure 6
where its value is depicted versus k for different values of the flow behaviour index
n. As the parameter k describing the growth rate of the fracture gap increases, the
same exponent decreases up to a minimum value depending on the fluid rheology, then

918 A5-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

30
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.305


S. Longo and others

Top view
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rf rf r

r0

0
Cross section

θ

Figure 7. Radial converging flow: a gravity current in viscous-buoyancy balance propagates towards the
origin. Here rf is the instantaneous front position and r0 is the front position at time t = 0.

modestly increases; this is so only for shear-thinning fluids, whereas the exponent for
shear-thickening and Newtonian fluids reaches a minimum and remains approximately
constant. The minimum value of the exponent in (2.21) is reached for k = 0.75–1. Finally,
the exponent increases as the flow behaviour index decreases from shear-thickening to
shear-thinning rheology.

In Appendix B we consider a related problem: the propagation of a plane gravity current
of profile h(x, t) toward the origin of the coordinate system in an heterogeneous porous
medium with spatially variable permeability and porosity. If both quantities exhibit a
PL variation in the streamwise direction x, a formal analogy can be established between
two domains, the porous medium and the Hele-Shaw cell or channel of variable gap
thickness. The analogy is subject to constraints in the values of parameters describing
the heterogeneity as detailed in Appendix B.

3. Converging axisymmetric flow

We consider the converging flow of a cylindrical gravity current as shown in figure 7: the
current propagates towards the origin of a cylindrical coordinate system. We assume again:
(i) the current to be thin, allowing a hydrostatic pressure distribution; (ii) τrz to be the
dominant shear, with negligible contributions by τrθ and τθz; and (iii) no surface tension
effects and no fingering at the interface with the ambient fluid; (iv) inviscid ambient fluid.
Gravity is the driving force balanced by viscous forces. In the limits of lubrication model,
the vertically averaged horizontal velocity in the radial direction, calculated by imposing
the no slip condition u = 0 for z = 0 and a zero tangential stress at the interface with the
ambient fluid, corresponding to ∂u/∂x = 0 for z = h, is

u(r, t) = −sgn
(

∂h
∂r

)
h(n+1)/n n

2n + 1

(
�ρg
μ0

)1/n ∣∣∣∣∂h
∂r

∣∣∣∣
1/n

, (3.1)

and mass conservation reads
∂h
∂t

+ 1
r

∂(ruh)

∂r
= 0. (3.2)
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Converging gravity currents of power-law fluid

Again, in a general approach we should specify the initial and boundary conditions, but as
already discussed in § 2, the boundary conditions are motivated by the singular points in
the phase plane.

The dependent variables u and h are rendered non-dimensional as follows:

u(r, t) = r
tr

U(r, tr), (3.3a)

h(r, t) =
(

2n + 1
n

)n/(n+2) (
μ0

�ρg

)1/(n+2) r(n+1)/(n+2)

tr|tr|−2/(n+2)
H(r, tr). (3.3b)

Then the similarity independent variable ξ = rt−1
r |tr|1−δ is introduced, where δ is the

yet unknown eigenvalue. With the same approach described for converging flow in a
horizontal fracture, equations (3.1) and (3.2) are rearranged to obtain

dU
dH

= H|H|n+1[2(n + 2)U − (n + 1)δ + n] − (U + δ)(n + 2)U |U|n−1

H[(n + 1)H|H|n+1 + (n + 2)U |U|n−1]
, (3.4a)

d ln ξ

dH
= − n + 2

(n + 2)H−1|H|−nU |U|n−1 + (n + 1)H
. (3.4b)

The singular points are

O : (H, U) ≡ (0, 0),

A : (H, U) ≡ (0, −δ),

B : (H, U) ≡
([

n + 2
n + 1

]1/(n+2) [ n
5 + 3n

]n/(n+2)

, − n
5 + 3n

)
,

C : (H, U) ≡
(

−∞,
(n + 1)δ − n

2(n + 2)

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)

and have the same meaning of the points described for converging fracture flow.
The case n = 1 refers to a Newtonian fluid, and (3.4a)–(3.4b) become

dU
dH

= H3[6U − 2δ + 1] − 3U(U + δ)

H[2H3 + 3U]
, (3.6a)

d ln ξ

dH
= − 3H2

3U + 2H3 , (3.6b)

and the singular points are

O : (H, U) ≡ (0, 0),

A : (H, U) ≡ (0, −δ),

B : (H, U) ≡
([

3
16

]1/3

, −1
8

)
,

C : (H, U) ≡
(

−∞,
2δ − 1

6

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

corresponding to the differential problem in Diez et al. (1992b) with a different definition
of the variables. The results are equivalent to those reported in McCue et al. (2019),
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where a slightly different approach and a broader perspective is adopted, with an improved
clarity of the various steps. See also Gratton & Perazzo (2010).

Numerical integration of the pre-closure phase starts with a first tentative value of δ and
moving from the origin O (ξ → ∞), where H → 0 and the solution for U is approximated
by

U ≈ −H|H|2/n
[
(n + 1)δ − n

(n + 2)δ

]1/n

. (3.8)

Upon successive iterations with changes of the δ value, the integral curve reaches exactly
point A (ξ = ξf ), the front of the gravity current, where H → 0 and the approximate
solution for U is

U ≈ −δ + 2
(n + 3)δn−1 H|H|n+1. (3.9)

The value of δ that allows the integral curve to reach point A from O is the critical
eigenvalue δc.

Numerical integration of the post-closure phase starts about point C, where H → −∞
(and ξ → 0) and where the approximate solution for U is

U ≈ UC + (3 + n)(n + 2)

Un
C [UC + (n + 2)δc]

1
H|H|n+1 , (3.10)

and the integral curve reaches point O (ξ → ∞), where the approximate solution is (3.8).
In this second integration, iterations are not necessary because δc is already known. The
expansion about the singular points O, A and C has been obtained in the same way as
that reported for the differential problem describing the gravity current in a converging
channels, see § 2.

Figure 8 shows the phase portrait for a shear-thinning fluid with n = 0.5, with the
integral curves for the pre- and post-closure phases, corresponding to an eigenvalue
δc = 0.78261. The eigenvalues for different values of n are listed in table 3 of Appendix A
and are shown in figure 9, where a shear-thinning behaviour is accompanied by higher δc,
although the variability is quite modest; the corresponding integral curves are depicted
in figure 10(a), followed by the shape profiles and velocity profiles in the pre-closure
phase in figure 10(b). No specific trend is observed, although the thickness of the current
immediately behind the front is larger for more shear-thinning fluids. The horizontal
velocity is almost indistinguishable for currents with different value of the fluid behaviour
index. The results for the eigenvalues coincide with those shown in Figure 1 in Gratton &
Perazzo (2010), after converting the horizontal axis and with their λ equal to 1/n in the
present notation.

The behaviour of the integral curves approaching O can be obtained by expanding H =
a0ξ

b + a1ξ
b+1 + . . . . Then introducing the approximation (3.8) in (3.4b) and balancing

yields

H = Kξ−n/[δc(n+2)], (3.11)

U = −K(2+n)/n
[
(n + 1)δc − n

(n + 2)δc

]1/n

ξ−1/δc, (3.12)
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Figure 8. Converging radial gravity current. Phase portrait of (3.4a) for n = 0.5 (shear-thinning fluid), δc =
0.78261. The continuous curve refers to the pre-closure phase, the dashed curve refers to the post-closure
(levelling) phase, the thin red vertical line indicates the asymptote in the levelling phase and the dash-dot blue
curves are the approximate solutions about points O and A.

n
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0.92
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0.80

0.76

0.72
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δc

Figure 9. Converging radial gravity current. Eigenvalues representing the exponent of the similarity variable
ξ = x/(tc − t)δ for axisymmetric flow towards the origin for fluids with different flow behaviour index n.

where K is a constant. Switching to dimensional variables, one obtains for the current
depth and velocity

h(r) =
(

2n + 1
n

)n/(n+2) (
μ0

δcρg

)1/(n+2)

Kr((n+1)δc−n)/((n+2)δc), (3.13)

u(r) = −K(2+n)/n
[
(n + 1)δc − n

(n + 2)δc

]1/n

r(δc−1)/δc, (3.14)

that are time-independent. For r → ∞, the depth of the current grows in the positive
direction, hence dh/dr > 0 that in turn implies δc > n/(n + 1), which also ensures a
negative velocity.
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Pre-closure
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Figure 10. Converging radial gravity current: (a) shape of the heteroclinic trajectories in the pre-closure
(continuous curves) and post-closure (dashed curves) phase; and (b) shape profiles and velocity profiles in
the pre-closure phase as n varies from 0.5 (shear-thinning) to 1 (Newtonian) and to 1.5 (shear-thickening).

A similar analysis can be conducted to describe the post-closure phase, with results
similar to those obtained for converging flow in a horizontal fracture.

4. Experimental validation

4.1. Experimental set-up
Three different experimental set-ups were developed in the Laboratory of Hydraulics of
the University of Parma in order to validate the theoretical models.

The first set-up consists of a tank to reproduce the propagation of gravity currents in
converging channel flow. The channel consists of two rectangular plates, 150 cm long and
20 cm high, with a front wall made of transparent plastic for an easy visualization, while
the back wall is made of yellow polyvinyl chloride (PVC) machined with a computerized
numerical control machine; the gap thickness is b(x) = b1 x0.6, where x is the abscissa
with origin at the corner, as shown in figure 11; b1 = 0.01176 m0.4 and the width of the
channel at x = 150 cm equals 1.5 cm. Lock release gravity currents were generated with
different lengths of the lock, equal to 12, 14, 20, 30 cm. One experiment was performed
with a different boundary condition of given flux, in order to check the sensitivity of the
solution to the inflow mode. A similar set-up was adopted in Zheng et al. (2014) and also
documented in Ghodgaonkar (2019), with a length of 75 cm. With this set-up, the heavy
fluid was Newtonian or non-Newtonian PL shear-thinning, whereas the ambient fluid was
always air.

A second series of experiments reproduced radial converging gravity currents and was
carried out in a transparent plastic cell shaped as a circular sector (a wedge) with an angle
at the centre β = 12◦, a radius R = 75 cm and a height of h = 18 cm. The front, side
and top view are shown in figure 12(a–c), respectively. The front vertical wall is rigidly
attached to the bottom, while the back wall is removable. At a distance r0 = 60 cm a
vertical gate is inserted in order to separate the heavy fluid in the upstream lock from the
light ambient fluid in the downstream chamber. Three clamps are applied on top of the
tank in order to push the walls against the bottom and prevent any leakage. Figure 12(d) is
a photograph of the experimental apparatus.

918 A5-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

30
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.305


Converging gravity currents of power-law fluid

150 cm

2
0
 c

m

x

Lock
Front view

Top view

1
.5

 c
m

0

x00

(a)
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Figure 11. Experimental set-up #1, a tank with a gap thickness of b1 x0.6: (a) front view; (b) top view; (c) a
photo during one of the tests; the lock is almost empty but a thin layer of fluid still adheres to the transparent
wall, marking the volume occupied by the fluid in the lock before lifting the gate.

Clamp

Levelling

support

Side viewFront view

R = 75 cm

1
8
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VideocameraLock

Gate

β = 12°
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(c) (d)
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Figure 12. Experimental set-up #2, a circular sector cell with an angle at the centre β = 12◦: (a) front view;
(b) lateral view; (c) top view; and (d) snapshot of the tank.

A third set of experiments for radial converging gravity currents was conducted in a
fully metallic cylinder with an inner radius of R2 = 30 cm (figure 13). A smaller cylinder
with an external radius R1 = 19.5 cm is positioned concentrically to the prior one and
pushed against the glass bottom (a soft rubber sealing gasket is present) in order to create
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Top view

Ground
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1
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Figure 13. Experimental set-up #3, a radial symmetric cell: (a) front view; (b) top view at t = 0, before the
lift of the inner cylinder (sketch), and for t > 0, after the lift of the inner cylinder (photo).

an annular lock with a gap �R = R2 − R1 = 10.5 cm. Particular attention was paid to the
levelling of the base of the apparatus, so as to prevent asymmetries due to the gravitational
force. An electronic level is used for this purpose, with an accuracy of 0.1◦. The annulus is
filled with dense fluid up to a depth of h0 = 3.3–4.5 cm. The inner cylinder is filled with
light ambient fluid. At the beginning of the experiments, the inner cylinder is lifted up to a
known height h < h0. A similar set-up was used in Diez et al. (1992b), with radius of the
external/internal cylinder of 20 and 5 cm, respectively.

For the currents in converging channel flow (set-up #1), the Newtonian fluids were
prepared with glycerol, while the non-Newtonian fluids were prepared with (i) a mixture of
water (95 % vol.), glycerol (5 % vol.) and carboxymethyl cellulose (CMC, 2 % by weight),
or a (ii) a mixture of water (40 % vol.), glycerol (60 % vol.) and E415 (0.1 % by weight).
All the non-Newtonian fluids have PL shear-thinning rheology.

For the radial converging currents (set-ups #2 and #3), the Newtonian fluids were
prepared with either glycerol or a mixture of glycerol, salt and water, and non-Newtonian
fluids with a mixture of water (60 % vol.), glycerol (40 % vol.) and xanthan gum (E415,
0.25 % by weight). The light ambient fluid is water or a mixture of water, salt and glycerol
with a density slightly less than the current fluid. The combination of different ambient
fluids and intruding fluids was required in order to guarantee the viscous regime, with
negligible inertial effects, and to increase the duration of the experiments for an accurate
estimation of tc. Aniline water color was finally added to the denser fluid for an easy
visualization of the propagating current.

The rheology was measured by the parallel plate twin-driver MCR702 rheometer by
Anton Paar, at a temperature of Θ = 25–27◦, equal to the ambient temperature during the
experiments. Several different tests were performed in order to evaluate the fluid behaviour
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Figure 14. Experimental rheometry of two shear-thinning fluids: (a) mixture of water, NaCl and xanthan
gum, Θ = 27 ◦C; (b) mixture of water, NaCl and xanthan gum, with two series of measurements to check
repeatability, Θ = 25 ◦C. The solid curves are the PL interpolation and the dashed curves are the 95 %
confidence limits.

index and consistency index for non-Newtonian fluids, and the dynamic viscosity of
Newtonian fluids. Figure 14 shows the experimental shear-stress/shear-rate curves for two
different shear-thinning fluids. The limited range of shear rate is dictated by the evidence
that, except at the early stage of the current propagation, after the gate lift, the average
shear rate is quite modest. The estimated accuracy is �n/n � 4 % and �μ0/μ0 ≤ 6 %.
The mass density of the fluids was measured by a hydrometer (STV350023 Salmoraghi),
and by the DMA 5000 by Anton Paar, with an accuracy of �ρ/ρ0 � 0.1 %.

The profiles of the advancing current after the lift of the gate, are recorded by either a
high-resolution video camera (Canon Legria 1920 × 1080 pixels) operating at 25 frames
per second (fps), or an iPhone 4k video camera working at 30 fps. For some experiments
both videos were used in order to capture the whole profile of the current with an adequate
resolution, see figure 11(c) where the panoramic image results from two frames extracted
from two synoptic videos. The frames extracted from the video are post-processed using
a Matlab code that converts pixels into metric coordinates. This conversion is possible
thanks to a square grid attached onto the inner side of the front vertical wall, which allows
compensation of the optical distortion. The overall accuracy in detecting the position of
the nose and the profile of the current is approximately 0.1 cm, while the accuracy in
measuring time is negligible (1/50–1/60 s).

Figure 15 shows a sequence of snapshots for one of the experiments in lock-release,
experiment 11, with both pre- and post-closure instants. After closure, the effect of
capillarity near the origin is evident, with an increase in the level compared with the
average value observed far from the origin. Local level for post-closure analysis was
obtained correcting data for capillarity uprise.

4.2. Experiments
The parameters of the experiments are listed in table 1; 10 experiments were performed in
the converging channel and 11 experiments in radial geometry, either in the 12◦ sector
or in the full circle configuration. The theory assumes the dominance of viscous and
buoyancy forces over inertia. The Reynolds number for channel flow can be expressed
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t = 10 s t = 84 s 

t = 49 s 

t = 27 s 

t = 14 s 

t = 12 s 

t = 19 s levelling 

t = 8 s 

t = 6 s 

t = 2 s 

t = 1 s 

t = 0.6 s 

150 cm

(b)(a)

Figure 15. Time lapse of the current profile for experiment 11 in a channel of varying gap thickness. Closure
is at tc = 16.4 s, then levelling starts.

as ratio between the inertial and viscous forces per unit volume,

Fi ∼ �ρ
u2

L
, Fv ∼ μ0

un

Ln+1 , → Re = �ρu2−nLn

μ0
, (4.1a–c)

where L is taken to be equal to the channel maximum width L = b1xk
0. The velocity scale

can be assumed equal to x0/tc, hence

Re = �ρx2−n+k
0 b1

μ0t2−n
c

. (4.2)

For radial gravity currents a similar analysis brings to a Reynolds number defined as

Re = �ρu2−nhn+1

μoR
, with u ∼

(
�ρg
μ0

)1/n h(n+2)/n

R1/n , (4.3)

hence

Re =
(

�ρ

μ0

)2/n

g(2−n)/n h(n+4)/n

R2/n . (4.4)

The values of Reynolds number listed in the last column of table 1 refer to the initial
stage of the current propagation; for channel flow Re < 1 and for radial flow Re 
 1,
with only one test initially characterized by Re ≈ 0.8. In the other tests, inertial effects are
negligible from the very beginning, and the viscous balance dominates the advancement
of the currents at all stages.

Figure 16 shows the time series of the front position for the experiments in converging
channel flow. The experiments are separated in two groups, namely Newtonian and
shear-thinning gravity currents. For the former tests the theoretical eigenvalue is δc =
1.787 and the corresponding trajectory is fairly well followed by the experiments. Similar
experiments were conducted in Zheng et al. (2014) in channels with different width
exponent k, although only in lock-release mode. In the present Newtonian subset, four
tests are in lock-release mode, whereas experiment 1 is a constant influx experiment. The
results indicate that in lock-release mode the current requires a much longer time to forget
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Experiment Geom. Inflow h, h0 a Lock length r0, x0 n μ0 ρc ρa tc Re
condition (cm) (cm) (cm) (cm) (Pa sn) (kg m−3) (kg m−3) (s) (×10−3)

1 c c-Q — — — 150 1 1.10 1250 1.2 298 85
2 c l-r 16.0 — 14 136 1 0.84 1250 1.2 350 81
3 c l-r 16.0 — 20 130 1 1.10 1250 1.2 206 98
4 c l-r 16.0 — 30 120 1 1.10 1250 1.2 126 141
5 c l-r 16.0 — 20 130 1 1.10 1250 1.2 229 89
6 c l-r 16.0 — 20 130 0.87 2.63 1022 1.2 670 4.6
7 c l-r 16.0 — 30 120 0.87 2.63 1022 1.2 406 7.1
8 c l-r 16.0 — 12 138 0.54 0.42 1070 1.2 80 94
9 c l-r 16.0 — 14 136 0.90 1.74 1022 1.2 635 9.6
10 c l-r 16.0 — 20 130 0.54 0.42 1070 1.2 28 387
11 c l-r 16.0 — 20 130 0.54 0.42 1070 1.2 16.4 848
12 r12 c-h 9.2 1.4 15 60 1 0.11 1240 1210 237 6.0
13 r12 c-h 9.2 2.0 15 60 1 0.08 1241 1210 31 10
14 r12 c-h 9.2 2.0 15 60 1 0.13 1247 1220 56 3.4
15 r360 l-r 4.5 1.0 10.5 19.5 1 1.10 1260 1200 492 2.5
16 r360 l-r 4.5 2.0 10.5 19.5 1 1.10 1250 1190 22 2.5
17 r12 c-h 9.2 3.0 15 60 0.29 0.58 1031 1000 5233 0.0008
18 r12 c-h 9.2 2.2 15 60 0.40 0.24 1045 1000 58 4.2
19 r12 c-h 9.2 2.0 15 60 0.27 1.07 1024 1000 826 0.0001
20 r12 c-h 9.2 2.0 15 60 0.28 1.05 1036 1000 204 0.0001
21 r360 l-r 3.5 1.5 10.5 19.5 0.63 0.15 1032 1000 600 226

Table 1. Parameters for the experiments on converging flow in a channel of variable thickness and in radial
geometry. The second column indicates the geometry of the flow field, where ‘c’ denotes channel and ‘r12’ and
‘r360’ denote radial geometry with an angle at the centre of 12◦ and 360◦, respectively. We use ‘c-Q’, ‘l-r’ and
‘c-h’ to denote constant inflow rate, lock-release and constant head; h and h0 are the constant head or the initial
depth in the lock; a is the height of the slot at the bottom of the gate; r0, x0 is the initial position of the front of
the current in radial geometry and in the channel; n and μ0 are the fluid behaviour index and the consistency
index (the viscosity for Newtonian fluids) of the current fluid, respectively; ρc, ρa are the current/ambient fluid
density; tc is the touch-down time; and Re is the Reynolds number according to the expressions (4.2)–(4.4),
where an average value h = 2 cm is assumed for radial gravity currents.

the initial condition and to reach self-similarity, whereas with a constant influx the current
evolves rather quickly to reach the intermediate asymptotic regime of self-similarity. The
different lengths of the locks do not have a significant effect on the current propagation in
the far field. The grey symbols are considered outliers attributed to several disturbances
and interferences, such as capillarity and three dimensionality of the flow field not
modelled in the theory. Experiments 3 and 5 are a repetition with the same fluid and
under the same conditions, to obtain an estimate of the repeatability and uncertainty.

For the non-Newtonian fluid experiments the fluid behaviour index ranges from 0.54 to
0.90, and the consistency index ranges from 0.42 to 2.63 Pa sn. The two straight lines in
figure 16 correspond to extreme values of δc ≈ 1.79 and ≈ 1.85. Again the experimental
results, all in lock-release mode, adequately follow the theory, reaching the self-similar
regime although the differences with the value of n cannot be appreciated. Essentially,
the long tank favours the evolution of the current with enough space to forget the inlet and
initial conditions and before reaching the proximity of the origin, where capillarity renders
the theoretical model invalid.

A comparison of the shape of the current with the experiments is reported for two
experiments, with Newtonian and PL fluids, respectively. A main variable in checking
the validity of the model is the time position of the front of the current. We expect that
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Figure 16. Front position of gravity currents in converging channel flow with k = 0.6. Experiments 1–5
refer to Newtonian fluid (left vertical axis) and experiments 6–11 refer to shear-thinning fluids (right vertical
axis). The straight lines correspond to the theoretical curves for n = 1 and n = 0.54–0.90, respectively, with
eigenvalues δc = 1.787 and δc = 1.852–1.794. The parameters of the experiments are listed in table 1.

xf (t) ∝ tδc
r , hence

xf (t)
x0

= α

(
tr
tc

)δc

, (4.5)

where the dimensionless coefficient α is the intercept of the straight interpolating line in a
diagram xf /x0 − tr/tc drawn in logarithmic scale. We also have the result

ξf = αx0

tδc
c

, (4.6)

which is a constant for each experiment. The value of α is obtained by interpolating the
experimental front position of the advancing current in pre-closure phase.

Figure 17(a,b) refers to the pre-closure phase for experiments 5 and 11, with
experimental profiles sampled in several sections at different times and the continuous
curve representing the theoretical model. For the Newtonian fluid case, the early time
profiles show a significant discrepancy with theory, which however decreases after
approximately 190 s. That means that at least for approximately 35 s the current is
in self-similar regime, ended by the insurgence of capillarity effects near the origin.
For the PL fluid, experiment 11, the profile at t = 6 s differs from the rest of the
time snapshots which collapse onto one curve, so they are self-similar; all profiles
differ from theory at the peak around ξ/ξf ≈ 2.5 and are in excess to the same degree
that the profile at t = 6 s differs around ξ/ξf ≈ 10, and is in defect. We observe that
experiment 11 has the highest initial Reynolds number and shows an initial stage when
inertial effects are comparable to viscous effects. However, the current forgets its original
regime and evolves towards self-similarity. This is another validation of the memoryless
behaviour of the gravity currents, which not only forget the type of influx (lock-release
or constant influx), but also their initial regime (inertial or in transition). The analysis of
the time requested by self-similar solutions to approximate within a given accuracy the
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Figure 17. Experimental profiles of the current in converging channel flow with k = 0.6 during pre-closure
(symbols) compared with the theoretical self-similar solution (bold line): (a) experiment 5, Newtonian fluid,
tc = 229 s, δc = 1.7874, α = 0.30; (b) experiment 11, PL fluid, tc = 16.4 s, δc = 1.8534, α = 0.19.

(numerical) solutions was discussed by Ball et al. (2017) and Ball & Huppert (2019) in
the context of gravity currents, also considering different shapes of the lock or inflow
rate variations. The results obtained for first-kind self-similar solutions can be extended
to experiments and to second-kind self-similar processes: the approximation improves
with time, unless disturbances effects (such as capillarity) render the model invalid. It
explains the different agreement in times between experiments and theory, which improves
for t > 6 s although the peak value of H is underestimated by approximately 15 %.
The numerous approximations of the model are responsible for this discrepancy, but the
self-similar nature of the profiles is adequately confirmed.

A comparison between experiments and theory has been conducted also for the
post-closure stage, with the current levelling near the origin. In this case the pre-factor
refers to the time evolution of the current depth in the origin, where, in the self-similar
stage, we have the result

h(0, t)
h∞

= α′
(−tr

tc

)δc(n+1)(1−k)−n

. (4.7)

Figure 18 shows the comparison between theory and experiments for experiments 5 and
11. During post-closure, the pre-factor α′ is computed by considering the experimental
time evolution of the depth h(0, t), which is initially varying according to (4.7), see the
insets. The theoretical exponent of the current depth growth in the origin is δc(n + 1)(1 −
k) − n, equal to 0.429 and to 0.602 for experiments 5 and 11, respectively; the experimental
values are 0.42 and 0.51, with a fairly good agreement for the first, an acceptable agreement
for the second. The overall adherence between experiments and theory is striking, with a
better collapse of the experimental data and of the theoretical curve for increasing time
after closure.
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Figure 18. Experimental profiles of the current in converging channel flow with k = 0.6 during levelling
(symbols) compared with the theoretical self-similar solution (bold line): (a) experiment 5, Newtonian fluid
n = 1, tc = 229 s, δc = 1.7874, α′ = 1.29; (b) experiment 11, PL fluid n = 0.54, tc = 16.4 s, δc = 1.8534,
α′ = 0.41. The insets are the time level series at the origin adopted to estimate the pre-factor α′.

The theoretical formulation for converging radial currents was also experimentally
validated. Figure 19 shows the time position of the front of the current in radial
geometry: experiments are divided in two groups with Newtonian and shear-thinning
fluids, respectively. The Newtonian fluid case was already validated by Diez et al. (1992b).
Experiments 19 and 20 have very different closure times and different time evolution of
the front position, although the characteristics of the fluid are practically similar, the only
difference being the density, for both fluids a few per cent higher than water, the ambient
fluid. As an explanation of this anomaly, we remind that the difference in density is
small, but the reduced gravity appearing in buoyancy is significantly different. In addition,
both tests are partially influenced by diffusive processes which further reduce the density
difference between the current and the ambient fluid, to a greater extent for experiment
19 (less-dense current fluid of the two) than for experiment 20 (denser fluid of the current
between the two). Ultimately, under such experimental conditions small variations in the
parameters can amplify differences.

In radial geometry the eigenvalue has an almost constant value for n > 0.8 although a
significant deviation from the average value of approximately 0.78 can be observed only
for very shear-thinning fluids. Observing the time series of the front position, there are no
significant differences for experiments in full circle and partial circle configuration, and
also the different mode of inflow does not apparently affect the results. However, we expect
that the two different geometries, the circular sector and the full circle, can guarantee
the experimental reproduction of self-similarity for different time intervals. In the case
of the circular sector, when the current is approaching closure the flow field becomes
three-dimensional, with comparable tangential stresses in the vertical planes; moreover,
capillarity introduces, for the circular sector, disturbances that are not present in full-circle
geometry. In summary, the full circle provides the conditions for the establishment of
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Figure 19. Front position of gravity currents in radial converging flow. Experiments 12–16 refer to Newtonian
fluid (left vertical axis), experiments 17–21 refer to shear-thinning fluids (right vertical axis). The straight lines
correspond to the theoretical curves for n = 1 and n = 0.29–0.63, respectively, with eigenvalues δc = 0.762
and δc = 0.822–0.772. The parameters of the experiments are listed in table 1.

self-similarity more than the circular sector. This happens to a greater extent the smaller
the angle at the centre of the circular sector.

The agreement between theory and experiments is generally good, with some dispersion
of the data when the current is near the closure, owing to the dominance of interferences.
The early stage adaptation to the self-similar solution has a different duration for different
tests, but the duration of the intermediate self-similar regime is always quite long.

5. Conclusion

We have conducted an analysis of gravity currents advancing toward the origin in
a channel, or fracture, of variable gap thickness and in radial geometry. Previous
studies had discovered a second-kind self-similarity solution for Newtonian fluids and
provided its experimental validation. Here, we have extended the analysis to PL fluids,
a useful approximation of some real complex fluids frequently adopted in industrial
and environmental applications. The theoretical analysis was focused on the behaviour
of the solution about the singular points in the phase plane, computing the limiting
eigenvalues consistent with the physical behaviour of the current, and was followed by
numerical integration for the pre-closure and post-closure phase, respectively. A quite long
converging channel was built to favour the experimental onset of the self-similarity regime,
and two other tanks where also constructed, with two different radial geometries, a full
radial and a sector 12◦ wide. The experiments were conducted with dam-break, constant
head and constant inflow rate; in all cases the self-similarity was achieved as detected
by measuring the front position in time, giving evidence that the initial conditions do
not influence the propagation of the current after a certain time lag. The achievement
of the self-similar condition is faster for constant inflow rate than for lock release or
constant head. This is a major difference with respect to gravity currents propagating with
a self-similar regime of the first kind, which, for example, experimentally do not depend
on the precise geometry of the injector (Lyle et al. 2005), but still have a different shape
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depending on whether the overall volume of the current is constant or varies with time.
We recall that the behaviour of the second-kind self-similar currents is predicted by the
singular points joined by the integral curve. From the experimental point of view this
dependence is not so strong, and any case the injection mode influences the time required
to reach self-similarity. The existence of an experimental self-similarity confirms that the
theoretical solution is also stable.

Specific findings are as follows.

(i) The eigenvalue for converging channel flow is influenced more by the fracture
geometry (width parameter k) than by the fluid nature (flow behaviour index n);
it approaches unity for k → 0 and infinity for k → 1 (a wedge-like channel); its
minimum value increases with n and k.

(ii) Relative differences between eigenvalues corresponding to different values of n
are modest until k � 0.7, then increase rapidly, especially for low n values (very
shear-thinning fluids).

(iii) The critical eigenvalue has bounds n/[(n + 1)(1 − k)] < δc < 1/(1 − k), with the
upper bound independent of the fluid nature.

(iv) Levelling near the origin implies a time exponent less than unity for the growth of
the current depth; levelling is faster for very shear-thinning fluids and lower values
of width parameter k.

(v) In the case of radial converging flow, results for eigenvalues are qualitatively similar
to those for channel flow; in particular, the critical eigenvalue has an average value
of approximately 0.78, an almost constant value for n > 0.8 and shows a significant
increase from the average value only for very shear-thinning fluids (low n).

Perspectives for future extension include the adoption of more realistic rheological
models of widespread use in technical applications, such as Herschel–Bulkley
(three-parameter) or truncated PL (four-parameter) models. For example, a preliminary
analysis shows that for a Herschel–Bulkley fluid the present approach brings to a spatial
(three-dimensional) ODE system, with three dependent variables; this is in variance with
the present work on converging motion of PL fluids in channelized or radial flow, where a
planar system of equations arises. Thus far, such problems have not arisen in this sub-field
of fluid mechanics.

Other classical effects often included in gravity current modelling, such as fluid
infiltration or ex-filtration due, e.g., to a porous substrate, need attention: these phenomena
imply source/sink terms representing mass addition or subtraction and complicating the
differential problem. Similar issues arise with chemical reactions. In addition, surface
tension effects can be dominant in very thin fractures, almost ubiquitous in many natural
formations, and require a proper analysis in order to be included in the model.

As a last point, possible extensions include the analysis of converging currents with
non-axisymmetric geometry of the holes, following the analysis performed for Newtonian
fluids in Angenent et al. (2001) and Diez et al. (1998).
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Appendix A. Numerical values of δc

Tables 2 and 3 list the eigenvalues computed for converging gravity flow of a PL fluid in a
channel of varying gap thickness and in radial geometry, respectively.

Appendix B. Flow in a porous medium of varying permeability and porosity and
Hele-Shaw analogy

Consider a plane gravity current of a PL fluid propagating on a horizontal impermeable
bottom toward the origin of a porous domain saturated by a lighter fluid at rest; motion
is driven by the density difference �ρ between the two fluids. The current is released
at a distance x0 from the origin and reaches it at time tc. Under the assumptions of (i)
sharp interface, (ii) thin intruding current, (iii) negligible capillarity effects, the spreading
is described by the current height h(x, t), vertical velocities are neglected, and pressure
is hydrostatic with ∂p/∂x = �ρg(∂h/∂x). The porous domain is heterogeneous with
deterministic variations in permeability k and porosity φ along the horizontal direction
x given by

φ(x) = φ1xγ , k(x) = k1xβ, (B1a,b)

where φ1, k1 are constants of dimensions [L−γ ] and [L2−β], respectively, and γ , β are
dimensionless non-negative constants; for a homogeneous medium γ = β = 0.

The filtration law for the PL fluid described by (2.1) is given by (Di Federico et al. 2014)

∇p − ρg = − 1
Λk(n+1)/2 |v|n−1 v; Λ = Λ(φ, μ0, n) = 8(n+1)/2

2

(
n

3n + 1

)n
φ(n−1)/2

μ0
(B2a,b)

with p the pressure, g gravity and v ≡ (u, v, w) the Darcy velocity. The mass balance for
1-D flow reads

∂

∂x

(∫ h

0
u dz

)
= − ∂

∂t

(∫ h

0
φ dz

)
. (B3)

Substituting the horizontal velocity from (B2) into (B3) and using (B1) yields

u1

xγ

∂

∂x

[
hxF1

∂h
∂x

∣∣∣∣∂h
∂x

∣∣∣∣
1/n−1

]
= ∂h

∂t
, (B4)

with

u1 = (�ρg/μ0)
1/n k(n+1)/(2n)

1

φ
(n+1)/(2n)

1

; F1 = γ (n − 1) + β(n + 1)

2n
. (B5a,b)

The problem thus stated is amenable to a self-similar solution of the second kind
analogous to that described in § 2 for converging flow in a channel of variable gap
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k = 0.5 0.6 0.7 0.8 0.9 0.95 0.98

n = 0.3 1.6505436 1.9860302 2.5629732 3.77226735 7.595576765 15.30827880 38.39318184
0.5 1.5836860 1.8674737 2.3408605 3.30194250 6.333355500 12.87070894 33.03107487
0.7 1.5555845 1.8153570 2.2396420 3.07693480 5.590929700 10.74155645 27.17726191
1.0 1.5422697 1.7874093 2.1826545 2.95561600 5.279916050 10.08649685 25.03621420
1.5 1.5479785 1.7901284 2.1841454 3.01639213 6.000000576 12.00000031 30.0

Table 2. Eigenvalues evaluated for converging flow in a channel of gap thickness b = b1xk for different
values of k and of fluid behaviour index n.

n δc n δc n δc

0.1 0.880292 0.6 0.775568 1.1 0.760562
0.2 0.833010 0.7 0.770503 1.2 0.759517
0.3 0.808010 0.8 0.766795 1.3 0.758815
0.4 0.792737 0.9 0.764035 1.4 0.758394
0.5 0.782610 1.0 0.762035 1.5 0.758206

Table 3. Eigenvalues evaluated for converging radial gravity flow for different fluid behaviour index n.

thickness. The dimensional counterpart of (B4) for channel flow is easily derived from
(2.2) and (2.3) as

u0

xk
∂

∂x

[
xk(2n+1)/nh

∂h
∂x

∣∣∣∣∂h
∂x

∣∣∣∣
1/n−1

]
= ∂h

∂t
, (B6)

where

u0 =
(

Δρg
μ0

)1/n n
2n + 1

(
b1

2

)(n+1)/n

. (B7)

Comparing exponents in (B4) and (B6) it is seen that the Hele-Shaw analogy for PL fluids
(Ciriello et al. 2016) requires {

γ = k
β = 3k.

(B8)

Under the validity of equations (B8) the analogy is established and one can proceed
as in § 2, the critical eigenvalues will be the same. The above conditions are, however,
quite restrictive; a wider choice of parameter combinations is available using a mapping
parameter, see appendix A.2 in Ciriello et al. (2016).

Non-standard Hele-Shaw cells with tapered plates have been widely applied in thin-film
flows and slow viscous flows with a moving boundary, see, e.g., Al-Housseiny, Tsai &
Stone (2012), Dias & Miranda (2013), Al-Housseiny & Stone (2013) and Bongrand & Tsai
(2018). See also Morrow, Moroney & McCue (2019) where a non-standard Hele-Shaw
cell configuration (tapered of rotating) was investigated aiming to improve the efficiency
in controlling interfacial instabilities.

REFERENCES

AL-HOUSSEINY, T.T. & STONE, H.A. 2013 Controlling viscous fingering in tapered hele-shaw cells. Phys.
Fluids 25 (9), 092102.

AL-HOUSSEINY, T.T., TSAI, P.A. & STONE, H.A. 2012 Control of interfacial instabilities using flow
geometry. Nat. Phys. 8 (10), 747–750.

918 A5-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

30
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.305


Converging gravity currents of power-law fluid

ANGENENT, S.B. & ARONSON, D.G. 1995a The focusing problem for the radially symmetric porous medium
equation. Commun. Part. Diff. Eq. 20 (7–8), 1217–1240.

ANGENENT, S.B. & ARONSON, D.G. 1995b Intermediate asymptotics for convergent viscous gravity currents.
Phys. Fluids 7 (1), 223–225.

ANGENENT, S.B., ARONSON, D.G., BETELU, S.I. & LOWENGRUB, J.S. 2001 Focusing of an elongated hole
in porous medium flow. Physica D 151 (2), 228–252.

ARONSON, D.G. & GRAVELEAU, J. 1993 A selfsimilar solution to the focusing problem for the porous
medium equation. Eur. J. Appl. Maths 4 (1), 65–81.

ARONSON, D.G., VAN DEN BERG, J.B. & HULSHOF, J. 2003 Parametric dependence of exponents and
eigenvalues in focusing porous media flows. Eur. J. Appl. Maths 14 (4), 485–512.

ARONSSON, G. & JANFALK, U. 1992 On Hele-Shaw flow of power-law fluids. Eur. J. Appl. Maths 3 (4),
343–366.

BALL, T.V. & HUPPERT, H.E. 2019 Similarity solutions and viscous gravity current adjustment times. J. Fluid
Mech. 874, 285–298.

BALL, T.V., HUPPERT, H.E., LISTER, J. & NEUFELD, J. 2017 The relaxation time for viscous and porous
gravity currents following a change in flux. J. Fluid Mech. 821, 330–342.

BARENBLATT, G.I. 1996 Scaling, Self-Similarity, and Intermediate Asymptotics. Cambridge University Press.
BARENBLATT, G.I. 2003 Scaling, vol. 14. Cambridge University Press.
BARENBLATT, G.I. & ZEL’DOVICH, Y.B. 1972 Self-similar solutions as intermediate asymptotics. Annu.

Rev. Fluid Mech. 4 (1), 285–312.
BONGRAND, G. & TSAI, P.A. 2018 Manipulation of viscous fingering in a radially tapered cell geometry.

Phys. Rev. E 97 (6), 061101.
CARPENTER, H.J., GHOLIPOUR, A., GHAYESH, M.H., ZANDER, A.C. & PSALTIS, P.J. 2020 A review on

the biomechanics of coronary arteries. Intl J. Engng Sci. 147, 103201.
CIRIELLO, V., LONGO, S., CHIAPPONI, L. & DI FEDERICO, V. 2016 Porous gravity currents: a survey to

determine the joint influence of fluid rheology and variations of medium properties. Adv. Water Resour. 92,
105–115.

CIRIELLO, V., LONGO, S. & DI FEDERICO, V. 2013 On shear thinning fluid flow induced by continuous mass
injection in porous media with variable conductivity. Mech. Res. Commun. 52, 101–107.

COLE, J.D. & WAGNER, B.A. 1996 On self-similar solutions of Barenblatt’s nonlinear filtration equation.
Eur. J. Appl. Maths 7 (2), 151–167.

COUSSOT, P. & MEUNIER, M. 1996 Recognition, classification and mechanical description of debris flows.
Earth-Sci. Rev. 40 (3), 209–227.

DALY, E. & PORPORATO, A. 2004 Similarity solutions of nonlinear diffusion problems related to
mathematical hydraulics and the Fokker–Planck equation. Phys. Rev. E 70 (5), 056303.

DI FEDERICO, V. 1998 Non-Newtonian flow in a variable aperture fracture. Transp. Porous Media 30 (1),
75–86.

DI FEDERICO, V., ARCHETTI, R. & LONGO, S. 2012 Similarity solutions for spreading of a two-dimensional
non-Newtonian gravity current. J. Non-Newtonian Fluid Mech. 177–178, 46–53.

DI FEDERICO, V., LONGO, S., CHIAPPONI, L., ARCHETTI, R. & CIRIELLO, V. 2014 Radial gravity currents
in vertically graded porous media: theory and experiments for Newtonian and power-law fluids. Adv. Water
Resour. 70, 65–76.

DIAS, E.O. & MIRANDA, J.A. 2013 Taper-induced control of viscous fingering in variable-gap Hele-Shaw
flows. Phys. Rev. E 87 (5), 053015.

DIDDEN, N. & MAXWORTHY, T. 1982 The viscous spreading of plane and axisymmetric gravity currents.
J. Fluid Mech. 121, 27–42.

DIEZ, J.A., GRATTON, J. & MINOTTI, F. 1992a Self-similar solutions of the second kind of nonlinear
diffusion-type equations. Q. Appl. Maths 50 (3), 401–414.

DIEZ, J.A., GRATTON, R. & GRATTON, J. 1992b Self-similar solution of the second kind for a convergent
viscous gravity current. Phys. Fluids A 4 (6), 1148–1155.

DIEZ, J.A., THOMAS, L.P., BETELÚ, S., GRATTON, R., MARINO, B., GRATTON, J., ARONSON, D.G. &
ANGENENT, S.B. 1998 Noncircular converging flows in viscous gravity currents. Phys. Rev. E 58 (5), 6182.

EGGERS, J. & FONTELOS, M.A. 2015 Singularities: Formation, Structure, and Propagation, vol. 53.
Cambridge University Press.

EPELLE, E.I. & GEROGIORGIS, D.I. 2020 A review of technological advances and open challenges for oil
and gas drilling systems engineering. AIChE J. 66 (4), e16842.

ESHTIAGHI, N., MARKIS, F., YAP, S.D., BAUDEZ, J.-C. & SLATTER, P. 2013 Rheological characterisation
of municipal sludge: a review. Water Res. 47 (15), 5493–5510.

918 A5-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

30
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.305


S. Longo and others

GHODGAONKAR, A.A. 2019 Numerical methods for studying self-similar propagation ov viscous gravity
currents. Master’s thesis, Purdue University, West Lafayette, Indiana.

GRATTON, J. & MINOTTI, F. 1990 Self-similar viscous gravity currents: phase-plane formalism. J. Fluid
Mech. 210, 155–182.

GRATTON, J., MINOTTI, F. & MAHAJAN, S.M. 1999 Theory of creeping gravity currents of a non-Newtonian
liquid. Phys. Rev. E 60 (6), 6960–6967.

GRATTON, J. & PERAZZO, C.A. 2010 Self-similar collapse of a circular cavity of a power-law liquid.
J. non-Newtonian Fluid Mech. 165 (3–4), 158–162.

HUPPERT, H.E. 1982 The propagation of two-dimensional and axisymmetric viscous gravity currents over a
rigid horizontal surface. J. Fluid Mech. 121, 43–58.

HUPPERT, H.E. 2006 Gravity currents: a personal perspective. J. Fluid Mech. 554, 299–322.
HUPPERT, H.E. & WOODS, A.W. 1995 Gravity-driven flows in porous layers. J. Fluid Mech. 292, 55–69.
KONDIC, L., PALFFY-MUHORAY, P. & SHELLEY, M.J. 1996 Models of non-Newtonian Hele-Shaw flow.

Phys. Rev. E 54 (5), R4536.
KONDIC, L., SHELLEY, M.J. & PALFFY-MUHORAY, P. 1998 Non-Newtonian Hele-Shaw flow and the

Saffman–Taylor instability. Phys. Rev. Lett. 80 (7), 1433.
LAREO, C., FRYER, P.J. & BARIGOU, M. 1997 The fluid mechanics of two-phase solid-liquid food flows: a

review. Food Bioprod. Process. 75 (C2), 73–105.
LAURIOLA, I., FELISA, G., PETROLO, D., DI FEDERICO, V. & LONGO, S. 2018 Porous gravity currents:

axisymmetric propagation in horizontally graded medium and a review of similarity solutions. Adv. Water
Resour. 115, 136–150.

LIVESCU, S. 2012 Mathematical modeling of thixotropic drilling mud and crude oil flow in wells and pipelines
– a review. J. Petrol. Sci. Engng 98–99, 174–184.

LONGO, S., CIRIELLO, V., CHIAPPONI, L. & DI FEDERICO, V. 2015a Combined effect of rheology and
confining boundaries on spreading of porous gravity currents. Adv. Water Resour. 79, 140–152.

LONGO, S. & DI FEDERICO, V. 2015 Unsteady flow of shear-thinning fluids in porous media with
pressure-dependent properties. Transp. Porous Media 110 (3), 429–447.

LONGO, S., DI FEDERICO, V. & CHIAPPONI, L. 2015b Non-Newtonian power-law gravity currents
propagating in confining boundaries. Environ. Fluid Mech. 15 (3), 515–535.

LYLE, S., HUPPERT, H.E., HALLWORTH, M., BICKLE, M. & CHADWICK, A. 2005 Axisymmetric gravity
currents in a porous medium. J. Fluid Mech. 543, 293–302.

MCCUE, S.W., JIN, W., MORONEY, T.J., LO, K.-Y., CHOU, S.-E. & SIMPSON, M.J. 2019 Hole-closing
model reveals exponents for nonlinear degenerate diffusivity functions in cell biology. Physica D 398,
130–140.

MCCUE, S.W. & KING, J.R. 2011 Contracting bubbles in Hele-Shaw cells with a power-law fluid.
Nonlinearity 24 (2), 613.

MORRELL, R.S. & DE WAELE, A. 1920 Rubber, Resins, Paints and Varnishes. Nostrand.
MORROW, L.C., MORONEY, T.J. & MCCUE, S.W. 2019 Numerical investigation of controlling interfacial

instabilities in non-standard Hele-Shaw configurations. arXiv:1901.00288.
OSTWALD, W. 1929 Ueber die rechnerische darstellung des strukturgebietes der viskosität. Colloid Polym. Sci.

47 (2), 176–187.
PERAZZO, C.A. & GRATTON, J. 2003 Thin film of non-Newtonian fluid on an incline. Phys. Rev. E 67 (1),

016307.
PERAZZO, C.A. & GRATTON, J. 2005 Exact solutions for two-dimensional steady flows of a power-law liquid

on an incline. Phys. Fluids 17 (1), 013102.
SIMPSON, J.E. 1982 Gravity currents in the laboratory, atmosphere, and ocean. Annu. Rev. Fluid Mech. 14,

213–234.
SLIM, A.C. & HUPPERT, H.E. 2004 Self-similar solutions of the axisymmetric shallow-water equations

governing converging inviscid gravity currents. J. Fluid Mech. 506, 331–355.
STOKES, G.G. 1880 On the Theory of Oscillatory Waves. Transactions of the Cambridge Philosophical

Society.
WAGNER, B. 2005 An asymptotic approach to second-kind similarity solutions of the modified porous-medium

equation. J. Engng Maths 53 (3–4), 201–220.
WOLFRAM RESEARCH, INC. 2017 Mathematica, Version 11.1. Champaign, IL.
ZHENG, Z., CHRISTOV, I.C. & STONE, H.A. 2014 Influence of heterogeneity on second-kind self-similar

solutions for viscous gravity currents. J. Fluid Mech. 747, 218–246.
ZHENG, Z., SHIN, S. & STONE, H.A. 2015 Converging gravity currents over a permeable substrate. J. Fluid

Mech. 778, 669–690.

918 A5-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

30
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/1901.00288
https://doi.org/10.1017/jfm.2021.305

	1 Introduction
	2 Converging flow in a channel of variable cross-section
	3 Converging axisymmetric flow
	4 Experimental validation
	4.1 Experimental set-up
	4.2 Experiments

	5 Conclusion
	A Appendix A. Numerical values of c
	B Appendix B. Flow in a porous medium of varying permeability and porosity and Hele-Shaw analogy
	References

