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Velocity gradient statistics in turbulent shear
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This paper presents an extension of Kolmogorov’s local similarity hypotheses of
turbulence to include the influence of mean shear on the statistics of the fluctuating
velocity in the dissipation range of turbulent shear flow. According to the extension,
the moments of the fluctuating velocity gradients are determined by the local mean
rate of the turbulent energy dissipation 〈ε〉 per unit mass, kinematic viscosity ν and
parameter γ ≡ S(ν/ 〈ε〉)1/2, provided that γ is small in an appropriate sense, where S is
an appropriate norm of the local gradients of the mean flow. The statistics of the moments
are nearly isotropic for sufficiently small γ , and the anisotropy of moments decreases
approximately in proportion to γ . This paper also presents a report on the second-order
moments of the fluctuating velocity gradients in direct numerical simulations (DNSs) of
turbulent channel flow (TCF) with the friction Reynolds number Reτ up to ≈ 8000. In the
TCF, there is a range y where γ scales approximately ∝ y−1/2, and the anisotropy of the
moments of the gradients decreases with y nearly in proportion to y−1/2, where y is the
distance from the wall. The theoretical conjectures proposed in the first part are in good
agreement with the DNS results.
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1. Introduction

Kolmogorov introduced the idea of the local isotropy and similarity hypotheses in his
celebrated work (Kolmogorov 1941), called K41. He wrote

‘. . .we think it rather likely that in an arbitrary turbulent flow with a sufficiently large
Reynolds number∗ R = LU/ν the hypothesis of local isotropy is realised with good
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approximation in sufficiently small domains G of the four-dimensional space (x1, x2, x3, t)
not lying near the boundary of the flow or its other singularities.’,

‘∗Here L and U denote the typical length and velocity for the flow in the whole’, and
ν is the kinematic viscosity, where the sentences in ‘. . .’ are from Kolmogorov (1941,
p. 302).

Although all is not well in the hypotheses, which ignore intermittency effects, K41 still
provides reasonable approximations for low-order statistics. However, it is to be recalled
that K41 assumes the influence of certain features to be negligible under the condition ‘not
lying near the boundary of the flow or its other singularities’, while it is not a priori clear
whether we may safely assume them to be negligible in real flows.

Among the features is the existence of mean flow gradients, which are generally neither
homogeneous nor isotropic due to, for example, the existence of boundary walls and/or
external forcing. In cases of wall-bounded turbulence (WBT), the mean flow gradients
generally depend on the distance from the wall. One may ask how strong or weak is the
influence of the mean flow gradients on the turbulence statistics? How do the statistics
depend on distance from the wall in WBT? And how can one extend the idea of K41 to
take into account the mean flow gradients, and so on?

K41 gives a theory for the local equilibrium statistics in the range of the scale r such
that r � L. The range includes the inertial subrange (ISR) such that η � r � L, where
η is the so-called Kolmogorov microscale, i.e. the characteristic length scale of small
eddies where most of the kinetic energy dissipates. Regarding the ISR, studies have been
made on the influence of the mean shear on the statistics such as the energy spectra and
two-point moments in the range (e.g. Lumley 1967; Leslie 1973; Saddoughi & Veeravalli
1994; Yoshizawa 1998; Ishihara, Yoshida & Kaneda 2002; Yoshida, Ishihara & Kaneda
2003; Cambon & Rubinstein 2006; Tsuji & Kaneda 2012; Kaneda 2020 and references
cited therein).

K41 is concerned with not only the statistics in the ISR, but also those in the dissipation
range (DR) at scales r ∼ η. The moments of the fluctuating velocity gradients are among
the representative statistics dominated by the eddies in the DR, and have been widely
studied experimentally and computationally, particularly from the energy dissipation
process perspective, (e.g. Browne, Antonia & Shah 1987; Mansour, Kim & Moin 1988;
Antonia, Kim & Browne 1991; George & Hussein 1991; Tsinober, Kit & Dracos 1992;
Honkan & Andreopoulos 1997; Schumacher, Sreenivasan & Yeung 2003; Livescu &
Madnia 2004; Bolotnov et al. 2010; Folz & Wallace 2010; Meneveau 2011; Loucks &
Wallace 2012; Vreman & Kuerten 2014; Pumir, Xu & Siggia 2016; Pumir 2017; Tardu
2017; Lee & Moser 2019, among many others).

Studies so far made suggest that, unless the mean shear is too strong or in case of WBT
the domain is too close to wall, the anisotropy of the statistics of the fluctuating velocity
gradients is not very strong. However, the quantitative understanding of the influence of the
mean shear on the statistics or in the cases of WBT, the understanding of the dependence
of the statistics on the distance from the wall, is still challenging.

(Note: we cited here references only from the view point of the mean shear effects on
the ISR spectra (correlations) and on the velocity gradient statistics. This does not imply
that research on mean shear effects has been limited to those from this view point. In fact,
there is a large domain of homogeneous anisotropic shear flow studies, as seen for example
in the textbook by Sagaut & Cambon (2018) on anisotropic homogeneous turbulence, and
references cited therein.)

The primary objective of this study is to promote our understanding of the statistics in
the DR of turbulent shear flow of incompressible fluid. We pay a particular attention to
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the moments of fluctuating velocity gradients. In § 2, we propose an extension of the K41
theory to take into account the influence of the mean shear on the statistics in the DR. The
extension is based on the idea of the linear response theory (LRT) of turbulence (Kaneda
2020). As seen in § 2.2, the extended theory is applicable to the moments of fluctuating
velocity gradients. When applied to the inertial sublayer of WBT, it gives quantitative
predictions of the dependence of the moments on the distance from the wall. In § 2.3, we
analyse the second-order moments Cijkj that make up the so-called energy dissipation rate
tensor (εij), where Cijmn ≡ 〈

gijgmn
〉
, gij are the fluctuating velocity gradients (see (2.21)),

εij/(2ν) ≡ 〈gi1gj1〉 + 〈gi2gj2〉 + 〈gi3gj3〉, and ν is the kinematic viscosity. The brackets
〈. . .〉 denote an appropriate average.

In § 3, we present a report on the statistics of Cijkj by a series of high-resolution direct
numerical simulations (DNSs) of turbulent channel flow (TCF) of incompressible fluid
with the friction Reynolds number Reτ up to approximately 8000. The present study is the
first use of the data of this high-resolution DNS series. The data supporting the findings
of this study are available at http://www.me.yamanashi.ac.jp/lab/yamamoto/DNS2.html.
To our knowledge, the present study is the first to present the y-dependence of the entire
set of the moments Cijkj for any i, j, k with i, j, k = 1, 2, 3 (except those that must be zero
under a certain geometrical symmetry) in TCF with Reτ as high as approximately 8000.
The set allows us to know the relative magnitude of moments for different i, j, k and is
expected to help develop models of the turbulent energy dissipation process in turbulent
shear flows (TSFs). Moreover, the set can be used to assess theories. In fact, theoretical
conjectures proposed in § 2 are compared with the DNS statistics in § 3.

2. An extension of K41 to TSF

In this study, we consider the statistics at small scales in statistically stationary TSF of
incompressible fluid obeying the Navier–Stokes equation

∂

∂t
ũ = −(ũ · ∇)ũ − 1

ρ
∇p̃ + ν∇2ũ, (2.1)

where ũ = ũ(x, t) and p̃ = p̃(x, t) are the fluid velocity and pressure, respectively, at
position x and time t, and ρ is the fluid density that is constant in space and time. Particular
attention is paid to the second-order moments of the fluctuating velocity gradients.

In the formulation of the K41 theory, Kolmogorov (1941) used a coordinate frame, F ,
whose origin moves with the velocity at time t0 of a fluid particle. Let ũ0 ≡ ũ(x0, t0) be
the corresponding velocity of the fluid particle, and r and ṽ be the position and velocity
vectors in the frame F such that

r ≡ x − r0, r0 ≡ x0 + sũ0, s ≡ t − t0, (2.2a–c)

ṽ ≡ ṽ(r, s) ≡ ũ(r + r0, s + t0) − ũ0. (2.3)

Kolmogorov considered a 3n-dimensional distribution law of probabilities Fn for the
quantities ṽ(k) ≡ ṽ(r(k), s(k)) (k = 1, 2, . . . , n), where (r(k) + r0, s(k) + t0) are points in
the four-dimensional space (x, t) in the domain G under consideration. After setting up
the idea of local homogeneity and isotropy in the domain G, he introduced two hypotheses
of similarity, the first of which is the following:

‘The first hypothesis of similarity.
For the locally isotropic turbulence the distributions Fn are uniquely determined by the

quantities ν and 〈ε〉.’ (Kolmogorov 1941, p. 304)
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Here, 〈ε〉 is the mean rate of the energy dissipation ε per unit mass. (The symbol ε̄

instead of 〈ε〉 was used in K41.)

2.1. An extension of K41 by the idea of LRT
In the study of TSF, it is common practice to decompose the filed ũ into a mean U and
fluctuating part u such that ũ = U + u. Corresponding to this decomposition, ṽ defined
by (2.3) can be decomposed as

ṽ = ṽ(r, s) = V (r, s) + v(r, s), (2.4)

where

V = V (r, s) = U(r + r0, s + t0) − U(x0, t0), (2.5)

v = v(r, s) = u(r + r0, s + t0) − u(x0, t0). (2.6)

In the frame F , we have

∂

∂s
v = −(V · ∇)v − (v · ∇)V − (v · ∇)v + 〈(v · ∇)v〉 − 1

ρ
∇p + ν∇2v − R, (2.7)

for the fluctuating field (v, p), where p ≡ p̃ − 〈p〉, R ≡ (u(x0, t0) · ∇)V , ∇ = (∂/∂x1,
∂/∂x2, ∂/∂x3) = (∂/∂r1, ∂/∂r2, ∂/∂r3), and ai is the ith Cartesian component of vector
a.

In this subsection, we propose an extension of K41 on the basis of the application of the
idea of the LRT. The application is based on rough estimates of terms in (2.7) for eddies of
scales ∼ η. As seen below, the estimates can be obtained in a simple way similar to those
presented in studies including e.g. Kaneda & Yoshida (2004), Kaneda (2020), which give
estimates for eddies of scales � LU , in the context of the applications of the idea of LRT
to turbulent flows, where LU is the characteristic length scale of U .

Since at time t = t0, i.e. s = 0, V can be expanded for r ≡ |r| � LU as

V = U(r + x0, t0) − U(x0, t0) = ∂U
∂xα

rα + · · · , (2.8)

we have at the time instant s = 0,

(V · ∇)v + (v · ∇)V =
(

∂Uα

∂xβ

rβ

)
∂v

∂rα

+ vα

∂U
∂xα

+ · · · , (2.9)

for r � LU , where the summation convention is used for repeated Greek indices, ∂Ui/∂xj
are the mean flow gradients at x = x0, i.e. they are ∂Ui/∂xj|x=x0 and we omit the
symbol ‘|x=x0’ for ease of writing, and we have used ∂ui/∂xj = ∂vi/∂rj. We assume time
dependence of U to be negligible in the following. We also assume that LU is so large that
the gradients of R in (2.7) are sufficiently small, i.e. R is almost constant in the domain
r � LU , and therefore R is negligible in considering the small-scale statistics, such as
those of velocity differences between two points, in the domain.

Rough order estimates of the first three terms on the right-hand side of (2.7) and the
terms in (2.9) for r ∼ η can be obtained by putting v ∼ vη, ∇v ∼ vη/η and ∇2v ∼ vη/η

2,
where η is the Kolmogorov length scale given by η = (ν3/ 〈ε〉)1/4, vη is the characteristic
velocity scale of eddies of scales ∼ η and given by vη ∼ (〈ε〉 ν)1/4, ε is the local rate
of the energy dissipation per unit mass that is due to solely the fluctuating part u and
defined independently of the mean flow U (ε is simply called the energy dissipation rate
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in the following) and the symbol ‘∼’ denotes equality in the order of magnitude. Then, we
obtain (

∂Uα

∂xβ

rβ

)
∂v

∂rα

+ vα

∂U
∂xα

∼ Svη = S(〈ε〉 ν)1/4, (2.10)

(v · ∇)v ∼ v2
η

η
=
(

〈ε〉3

ν

)1/4

, (2.11)

and

ν∇2v ∼ νvη

η2 =
(

〈ε〉3

ν

)1/4

, (2.12)

where S is an appropriate norm of the tensor (∂Ui/∂xj) such as [(∂Uα/∂xβ)(∂Uα/∂xβ)]1/2,
and it is assumed that η � LU and L.

Equations (2.10)–(2.12) give

(V · ∇)v + (v · ∇)V ∼ γ [(v · ∇)v] ∼ γ [ν∇2v], (2.13)

where γ is the ratio of the time scale τη ≡ η/vη of small eddies of size ∼ η to the time
scale τS ≡ 1/S associated with the mean shear,

γ ≡ η/vη

1/S
= S

η

vη

= S(〈ε〉 ν)1/4

(〈ε〉3 /ν)1/4
= S

(
ν

〈ε〉
)1/2

. (2.14)

Equation (2.13) implies that γ may be interpreted not only as the time ratio τη/τS, but also
as the time ratio τN/τS for eddies of scales ∼ η, where τN is the characteristic time scale
associated with the convection term (v · ∇)v.

Equation (2.13) also implies that if

γ ≡ S
(

ν

〈ε〉
)1/2

� 1, (2.15)

then the magnitude of the first two terms on the right-hand side of (2.7), i.e. the terms
representing the direct coupling between v and the mean flow V , is negligibly small
compared with that of the nonlinear coupling term (v · ∇)v and the viscous term ν∇2v.
This suggests that, if γ � 1, then the influence of the two terms on the distribution law of
probabilities Fn for r ∼ η, is negligibly small compared with those of (v · ∇)v and ν∇2v.
If the two terms and R can be ignored, then the equation of motion (2.7) is compatible
with isotropy, i.e. invariant to arbitrary rotation of the coordinate system.

(Note: by comparing the characteristic inertial transfer time scale and the time scale
(∼ 1/S) associated with the mean shear in the wavenumber range ∼ k, and by using the
ISR energy spectrum given by K41, Corrsin (1958) argued that

k2/3 � 〈ε〉−1/3 S (2.16)

need be satisfied for the local isotropy of the statistics in the wavenumber range ∼ k in the
ISR of TSF. Here, we are ignoring constants of order unity. If we put k ∼ 1/η, then (2.16)
gives (2.15). In terms of length scales, the inequalities (2.15) and (2.16) are respectively
equivalent to η/LC � 1 and �/LC � 1 with � ∼ 1/k, where LC is Corrsin’s length scale
given by LC = (〈ε〉 /S3)1/2.)
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These observations suggest to us to exploit the idea of LRT of turbulence. LRT is based
on the assumption of the existence of a certain kind of equilibrium state under certain
conditions. Suppose that a disturbance, say X, is added to a system that is in an equilibrium
state in the absence of X. Then, in response to this disturbance, the statistical average 〈B〉
of observable B changes from 〈B〉e to

〈B〉 = 〈B〉e + � 〈B〉 , (2.17)

where 〈B〉e is the average in the equilibrium state in the absence of X, and � 〈B〉 denotes
the change owing to X. In LRT, it is assumed that if X is appropriately small, then � 〈B〉
can be approximated to be the first order in X, i.e.

� 〈B〉 = �1 〈B〉 + · · · , (2.18)

where �1 〈B〉 denotes a first-order term in X and ‘· · · ’ denotes higher-order terms in X;
�1 〈B〉 can be written as

�1 〈B〉 = cX, (2.19)

in which X is to be understood as a measure representing the disturbance in an
appropriate sense, and c is a coefficient determined by the nature of the equilibrium
state, independently of X. If the disturbance consists of more than one type of disturbance,
X1, X2, . . ., (2.19) is to be understood as

�1 〈B〉 = c1X1 + c2X2 + · · · , (2.20)

where c1 and c2 are constants. Readers may refer to Kaneda (2020) for some details on the
idea of LRT applied to turbulent flows.

In accordance with K41, we assume here that, in the limit of small γ , the turbulence
domain G under consideration is in a locally isotropic equilibrium state satisfying the
first hypothesis of similarity, and we apply the idea of LRT to estimate the influence of
small but finite γ on the statistics at small scales ∼ η in TSF. Let B be an observable
whose average is dominated by the statistics at scales r ∼ η. We assume the following
three hypotheses.

(i) The first hypothesis of similarity for TSF.
In the limit γ → 0, the statistics of B are locally isotropic, and the average 〈B〉 is
uniquely determined by ν and the local quantity 〈ε〉 independently of the mean flow
gradients ∂Ui/∂xj.

Regarding the effect of small but finite γ :

(ii) The second hypothesis of similarity for TSF.
For sufficiently small but finite γ , the change � 〈B〉 of 〈B〉 owing to the mean shear
can be approximated to be linear in γ , i.e. � 〈B〉 ≈ �1 〈B〉, where �1 〈B〉 = cγ , in
which the coefficient c is independent of γ .

(iii) The third hypothesis of similarity for TSF.
The coefficient c is uniquely determined by the locally isotropic equilibrium state
in the absence of mean shear, so that it is uniquely determined by ν and the local
quantity 〈ε〉.

In the context considering the dependence of statistics on γ at small γ , the symbol ‘≈’
denotes equality in the sense of neglecting terms of order higher in γ than that (those) of
the retained term(s).
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The local equilibrium state assumed in K41 and the first hypothesis of similarity
for TSF can in general be disturbed not only by the mean shear, but also by other
effects such as the anisotropy in energy-containing eddies and inhomogeneity of the
pressure field due to the existence of the boundary wall. Regarding the influence
of anisotropy in energy-containing eddies, see the discussions in § 4.1. The main interest
of this study is the influence of the mean shear, and it is assumed that the other effects,
if there are any, on the statistics at scales ∼ η are insignificant or at most of an order of
magnitude similar to that of the effect of the mean shear. LRT suggests that if such other
effects are not negligible, then one may add their influence as in (2.20), provided that they
are small in an appropriate sense.

2.2. Application to the statistics of velocity gradients
Let gij be the gradient of the fluctuating velocity field given by

gij ≡ gij(x, t) ≡ ∂ui

∂xj
= ∂vi

∂rj
. (2.21)

It is natural to assume that the pth-order moments
〈
gijgmn · · · 〉 are dominated by the

statistics of small eddies in the energy dissipation scale range. The application of the first
hypothesis of similarity for TSF to B = gijgmn · · · then gives the following for pth-order
moments 〈

gijgmn · · · 〉 → 〈
gijgmn · · · 〉e = f ( p)

ijmn...(ν, 〈ε〉), (2.22)

in the limit of sufficiently small γ , where f ( p)
ijmn... is an appropriate isotropic tensor

depending only on ν and local average 〈ε〉 at position x. A dimensional consideration
gives 〈

gijgmn · · · 〉e =
( 〈ε〉

ν

)p/2

C( p)
e,ijmn···, (2.23)

where C( p)
e,ijmn··· are dimensionless 2pth-order isotropic tensors. If γ is small but finite, then〈

gijgmn · · · 〉 generally change from
〈
gijgmn · · · 〉e to〈

gijgmn · · · 〉 = 〈
gijgmn · · · 〉e + �

〈
gijgmn · · · 〉 , (2.24)

where �
〈
gijgmn · · · 〉 are the changes due to the disturbance by the small but finite

mean shear, represented by γ . The second hypothesis of similarity for TSF implies that
�
〈
gijgmn · · · 〉 can be approximated to be linear in γ , so that

�
〈
gijgmn · · · 〉 ≈ �1

〈
gijgmn · · · 〉 = c( p)

1,ijmn...γ , (2.25)

in which the coefficients c( p)

1,ijmn... are independent of γ . The third hypothesis of similarity
for TSF implies that the coefficients c1,ijmn··· depend only on 〈ε〉 and ν. A dimensional
consideration then gives

�1
〈
gijgmn · · · 〉 = γ

( 〈ε〉
ν

)p/2

C( p)

1,ijmn···, (2.26)

where C( p)

1,ijmn··· are dimensionless constants.
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From (2.23)–(2.26), we have for p = 2,

〈
gijgmn

〉 ≈ 〈
gijgmn

〉
e + �1

〈
gijgmn

〉 = 〈ε〉
ν

(
Ce,ijmn + γ C1,ijmn

)
, (2.27)

where Ce,ijmn and C1,ijmn are dimensionless constants independent of ν, 〈ε〉 and S, and
superscript ‘(2)’ is omitted for simplicity. The second hypothesis of similarity for TSF
implies that C( p)

1,ijmn... are dimensionless constant tensors that are independent of the norm
S, but it does not exclude the possibility of the dependence of C1,ijmn on components
(∂Ui/∂xj)/S. (See discussions in § 4.2.)

Since Ce,ijmn is a fourth-order isotropic tensor, it may be written without loss of
generality as

Ce,ijmn = aδijδmn + bδimδjn + cδinδjm, (2.28)

where a, b and c are dimensionless constants that are independent of 〈ε〉 and ν. (This c is
to be not confused with c in the other contexts such as in (2.19).) Since gαα = 0 due to the
incompressibility condition, we have Ce,ααmn = 0 for any m, n, so that

Ce,ααmn = 3aδmn + bδmn + cδmn = 0, (2.29)

i.e.

3a + b + c = 0. (2.30)

If the flow statistics are homogeneous in two Cartesian directions, say in the x1- and
x3-directions, then

〈g13g31〉 − 〈g11g33〉 =
〈
∂u1

∂x3

∂u3

∂x1

〉
−
〈
∂u1

∂x1

∂u3

∂x3

〉

= ∂

∂x3

〈
u1

∂u3

∂x1

〉
− ∂

∂x1

〈
u1

∂u3

∂x3

〉
= 0. (2.31)

Equation (2.31) implies Ce,1331 = Ce,1133, so that we have c = a from (2.28) (cf. Kida &
Orszag (1990)). Then, (2.30) gives b = −4a, so that (2.28) can be reduced to

Ce,ijmn = a
(
δijδmn − 4δimδjn + δinδjm

)
. (2.32)

Because

ε = 2νsαβsαβ, (2.33)

in which sij = (gij + gji)/2, we have 〈ε〉 /ν = 〈
(gαβ + gβα)gαβ

〉
. Therefore, (2.27) yields

Ce,αβαβ = 1. Thus (2.32) gives

a = − 1
30 (2.34)

(see § 3.1). Note that statistical homogeneity in the x2-direction is not assumed in the
derivation of (2.32), but (2.32) is still the same as the well-known expression for

〈
gijgmn

〉
in homogeneous and isotropic turbulence (cf. e.g. Hinze 1975; Kida & Orszag 1990; Pumir
2017).
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Velocity gradient statistics in turbulent shear flow

Equations (2.27), (2.32) and (2.34) give among others

ν

〈ε〉

〈(
∂ui

∂xi

)2
〉

= ν

〈ε〉 〈giigii〉 ≈ 1
15

+ γ C1,iiii, (2.35)

ν

〈ε〉

〈(
∂ui

∂xj

)2
〉

= ν

〈ε〉
〈
gijgij

〉 ≈ 2
15

+ γ C1,ijij, (2.36)

ν

〈ε〉
〈
∂ui

∂xj

∂uk

∂xj

〉
= ν

〈ε〉
〈
gijgkj

〉 ≈ γ C1,ijkj, (2.37)

and 〈(
∂ui/∂xj

)2〉
〈
(∂ui/∂xi)

2〉 =
〈
gijgij

〉
〈giigii〉 ≈ 2 + γ (15C1,ijij − 30C1,iiii), (2.38)

where i /= j, i /= k, no summation is taken over repeated italic indices and in (2.37) we have
used Ce,ijkj = 0 because of (2.32).

Equations (2.27), (2.32) and (2.34) also give

ν

〈ε〉
〈
∂ui

∂xα

∂uj

∂xα

〉
= ν

〈ε〉
〈
giαgjα

〉 = εij

2 〈ε〉 ≈ 1
3
δij + γ C1,iαjα, (2.39)

where εij is defined by εij ≡ 2ν
〈
giαgjα

〉
, and we used Ce,iαjα = (1/3)δij.

Constants 1/15, 2/15, 2 and 1/3 on the right-hand side of (2.35), (2.36), (2.38) and
(2.39) are derived from the isotropic tensor Ce,ijmn given by (2.32) with (2.34), i.e. they
agree with the results obtained by ignoring the anisotropy of statistics.

2.3. Statistics in the inertial sublayer of the turbulent boundary layer
It is known that in a turbulent boundary layer with mean flow U = (U1, U2, U3) ≡ 〈ũ〉 =
(U( y), 0, 0) at sufficiently large Reτ and y+, there is flow region called the inertial sublayer
in which the mean flow U( y) is approximately given by(

dU
dy

)+
≈ 1

κy+ , (2.40)

where the coefficient κ is a dimensionless constant known as the constant of von Kármán,
y is the distance from the wall, symbol + denotes the normalisation by the wall-friction
velocity given by u2

τ = ν(dU/dy)|y=0 and the wall-friction length is defined by �τ = ν/uτ .
The friction Reynolds number Reτ is given by Reτ ≡ uτ δ/ν, where δ is the channel
half-width. In this study, we use x = (x1, x2, x3) = (x, y, z), and we assume (dU/dy) > 0
unless otherwise stated.

It is also known that the mean energy dissipation rate 〈ε〉 in the inertial sublayer is
approximately given by

〈ε〉+ ≈ 1
κεy+ , (2.41)

where κε is a dimensionless constant (see the discussion in § 3.2). If −〈u1u2〉 ≈ (uτ )
2

and if the turbulence production rate −〈u1u2〉 dU/dy is mainly balanced by the mean
energy dissipation rate 〈ε〉 in the inertial sublayer, then we have (2.41) with κε = κ (see
e.g. Tennekes & Lumley 1972).
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In such a layer, we have

γ = S
(

ν

〈ε〉
)1/2

≈ K( y+)−1/2,

(
K ≡ κ

1/2
ε

κ

)
, (2.42)

and

η+≡
[(

ν3

〈ε〉
)1/4]+

≈(κεy+)1/4, (2.43)

where dU/dy is used as the norm S of the gradient tensor (dUi/dxj) of the mean velocity.
Substitution of (2.42) into (2.35)–(2.39) gives

ν

〈ε〉

〈(
∂ui

∂xi

)2
〉

= ν

〈ε〉 〈giigii〉 ≈ 1
15

+ C1,iiii × K × ( y+)−1/2, (2.44)

ν

〈ε〉

〈(
∂ui

∂xj

)2
〉

= ν

〈ε〉
〈
gijgij

〉 ≈ 2
15

+ C1,ijij × K × ( y+)−1/2, (2.45)

ν

〈ε〉
〈
∂ui

∂xj

∂uk

∂xj

〉
= ν

〈ε〉
〈
gijgkj

〉 ≈ C1,ijkj × K × ( y+)−1/2, (2.46)

〈(
∂ui/∂xj

)2〉
〈
(∂ui/∂xi)

2〉 =
〈
gijgij

〉
〈giigii〉 ≈ 2 + (15C1,ijij − 30C1,iiii) × K × ( y+)−1/2, (2.47)

and
εij

2 〈ε〉 ≈ 1
3
δij + C1,iαjα × K × ( y+)−1/2, (2.48)

to the leading order of small 1/y+; higher-order terms in 1/y+ are omitted in (2.44)–(2.48).

3. Statistics in DNS of turbulent channel flow

This section presents the statistics in DNS of fully developed TCF and compares the
statistics with the theoretical conjectures discussed in the previous section.

3.1. Data resources
Our statistical analysis was based on a database, which we call DB-TCF, produced from a
series of DNSs of TCF with friction Reynolds numbers Reτ up to approximately 8000.
The DNSs use a Fourier-spectral method in the wall-parallel, i.e. x- and z-directions,
and a second-order accurate finite-difference method in the wall-normal, i.e. y direction.
Alias errors associated with the pseudo-spectral method are removed using the 3/2 rule.
This implies that (NxNz) × (3/2)2 collocation points are used to evaluate the nonlinear
convolution terms at each y in the DNSs. Readers may refer to Yamamoto & Kunugi
(2011, 2016) for the details of the numerical schemes used in the DNSs.

Some of the key DNS parameters are listed in table 1. The initial conditions of R8000
were given by a field generated in a previous DNS (Yamamoto & Tsuji 2018) at Reτ ≈
8000, which used a spatial-resolution and discretisation scheme differing from those of
R8000. The statistics of R8000 presented below were obtained from a time interval after
a certain initial transient period. In practice, we put the initial transient period of R8000
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Run Reτ U+
b Lx/δ Lz/δ Nx Ny Nz (�x)+ (�y)+ (�z)+ T+/Reτ Nt

R500 500 18.1 16.0 6.4 500 384 384 16.0 0.4-5.3 8.3 13.1 60
R1000 1000 20.0 16.0 6.4 1000 512 768 16.0 0.6-8.0 8.3 12.0 55
R2000 2000 21.7 16.0 6.4 2000 1024 1536 16.0 0.6-8.0 8.3 10.0 92
R4000 3996 23.4 16.0 6.4 4000 2048 3072 16.0 0.6-8.0 8.3 14.0 —
R8000 7987 25.0 16.0 6.4 6912 4096 5760 18.5 0.6-8.0 8.9 7.5 76
R1000L 1000 20.0 16.0 6.4 864 512 720 18.5 0.6-8.0 8.9 13.0 —
R1000H 1000 20.0 16.0 6.4 2048 512 1536 7.8 0.6-8.0 4.2 13.0 —

Table 1. DNS parameters. Here, Ub is the bulk velocity, Lx and Lz are respectively the fundamental periodicity
length in the x- and z-directions, Nx (�x), Ny (�y) and Nz (�z) are respectively the grid numbers (width) in the
x-,y- and z-directions, T is the simulation time interval after the initial transient period and Nt is the number of
flow fields used to compute the second-order moments

〈
gijgmn

〉
of the fluctuating velocity gradients.

to be 3Reτ in wall units. The length of the simulation time interval 7.5Reτ in wall units as
shown in table 1 is approximately equal to 11.7 Tw, where Tw is the wash-out time given
by Tw ≡ Lx/Uc, in which Uc is the mean centre-line velocity. The statistics of the other
runs were also obtained from a time interval (denoted by T in table 1) after a certain initial
transient period, which we put to at least 3Reτ in wall units. It was confirmed that the total
shear stress fits the linear profile in all the runs within an error of at most 0.05 in wall units
as in previous DNSs (Yamamoto & Tsuji 2018). Furthermore, the mean spanwise velocity
component normalised by the mean streamwise velocity component is less than 0.07 % at
any y in all the runs.

The second-order moments
〈
gijgmn

〉
of the fluctuating velocity gradients were computed

by using several velocity fields stored in the DB-TCF database, and by taking the averages
over the homogeneous directions (i.e. the x- and z-directions) and time. The number of
fields is denoted as Nt in table 1. With regards to R4000, such a field is not available in the
database, so that no statistics of

〈
gijgmn

〉
by R4000 are presented below.

Let εg ≡ νgαβgαβ . In homogeneous turbulence, we have
〈
εg
〉 = 〈ε〉. It is easy to

reformulate or re-interpret the theory presented in § 2 using εg instead of ε. Then, we
only need to change appropriately ε to εg in and after the first hypothesis of similarity for
TSF in § 2. Regarding (2.33), it is to be replaced by εg = νgαβgαβ , but (2.27), (2.32) and
(2.34) with ε replaced by εg remain valid.

In the analysis of the energy budget in WBT, εg plays key roles (see Appendix A), and
it is convenient to use εg rather than ε as a measure representing the energy dissipation
rate. In fact, εg has been commonly used in research investigating the WBT budget. The
use of εg makes it easier for us to compare the DNS results in this study with the reported
findings, as shown in figures 2(a) and 2(b) below. In the following in this section and
in Appendix A, we therefore use εg instead of ε as the measure representing the energy
dissipation rate, and we omit the subscript g, i.e. we use the symbol εg to mean νgαβgαβ ,
unless otherwise stated. It is known that the difference between 〈ε〉 and

〈
εg
〉

is small in
WBT for a wide range of Reynolds numbers, at least outside near the wall region (see e.g.
Antonia et al. 1991; Bradshaw & Perot 1993; Folz & Wallace 2010; Tardu 2017). This is
also confirmed in our DNS results as shown in figure 1. It is unlikely that the difference
would significantly affect the discussions in this paper.

R1000L and R1000H were performed to check the possible influence of spatial
resolution on the statistics at the energy DR scales. Although the grid width �y in the
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Figure 1. Comparison between
〈
εg
〉

and 〈ε〉. (a) Distributions of
〈
εg
〉

and 〈ε〉 and (b) ratio
〈
εg
〉
/ 〈ε〉.
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Colored lines: Lee &
Moser (2015)

–0.04

–0.03

–0.02

–0.01

0

0.01

0.02

Symboles: R1000L,
Colored lines: R1000H

P1
ε, P2

ε,

P4
ε,

P3
ε

Tε

Vε

γε.

Πε,

(b)(a)

Pk
+, 〈ε+ 〉, Tk

+, 
Dk

+, ErrorΠk
+,

Figure 2. Grid-sensitivity analysis for R1000L, (a) k-budget terms in comparison with DNS by Lee & Moser
(2015), (b) 〈ε〉-budget terms in comparison with R1000H.

wall-normal direction in the runs listed in table 1 is smaller than or similar to η, those in
the wall-parallel directions are larger than η. Therefore, particular attention was paid to
the influence of grid widths �x and �z.

Figure 2(a) shows a comparison of k-budget terms by R1000L and DNS by Lee &
Moser (2015) at Reτ = 1000, here k(= 〈uαuα〉 /2) is the mean turbulent kinetic energy
per unit mass. The grid widths (�x)+ = 18.5, (�z)+ = 8.9 in the former are larger
than (�x)+ = 10.9, (�z)+ = 4.6 in the latter. Figure 2(b) shows a comparison of the
mean energy dissipation rate (〈ε〉)-budget terms of R1000L and R1000H that is with
finer resolution (�x)+ = 7.8, (�z)+ = 4.2. (The data of 〈ε〉-budget terms for such a
comparison are not available in Lee & Moser 2015.) The definition of the k- and 〈ε〉-budget
terms used in the figures is given in Appendix A (k is not wavenumber in this section nor
in Appendix A).

In both figures 2(a) and 2(b), it is observed that the statistics of R1000L with
lower resolution (�x)+ = 18.5, (�z)+ = 8.9 agree well with those of DNSs with higher
resolution. The Kolmogorov length scale η is generally a function of Reτ and y. At a given
y, the scale η at higher Reτ is similar to η at smaller Reτ in the region including the inertial
sublayer, as shown in Morishita, Ishihara & Kaneda (2019) and Lee & Moser (2019). This
result and table 1 imply that the grid width in units of η of all the runs at Reτ ≥ 1000 listed
in table 1 is similar to that in R1000L. The agreement of the k- and 〈ε〉-budget terms of
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1/κε, κε = 0.45
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0
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y+
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y+

y+ d
U

+ /
d

y+

1/κ, κ = 0.39

R8000, R4000, R2000, R1000, R500,
Reτ = 5186, Lee & Moser (2015),  Reτ = 4072, Bernardini et al. (2014), 

Reτ = 2003, Hoyas & Jiménez (2006),  Reτ = 1000, Lee & Moser (2015)

(b)(a)

Figure 3. Normalised mean velocity gradient and energy dissipation rate, (a) (dU+/dy+)y+ vs y+. Thin solid
straight lines represent (dU+/dy+)y+ with κ = 0.39, (b) 〈ε〉+ y+ vs y+. Thin solid straight lines correspond to
〈ε〉+ y+ = 1/κε with κε = 0.45. Thick straight lines show the ranges y+ ∈ [2.6Re1/2

τ , 0.2Reτ ].

R1000L with those of DNSs with higher resolution is encouraging for us to use the DNS
data for the analysis of the second-order moments of the fluctuating velocity gradients.

3.2. Mean flow, energy dissipation rate and ratio γ

Figures 3(a) and 3(b) confirm (2.40) and (2.41), where data by DNSs with larger
computational domains (Lee & Moser 2015; Hoyas & Jiménez 2006; Bernardini, Pirozzoli
& Orlandi 2014) are also plotted as coloured lines (ε given by (2.33) was used in Bernardini
et al. 2014). Figure 3(a) demonstrates that the mean flow profile U( y) fits (2.40) well
in a certain range of y+, especially for R8000. Figure 3(b) shows that, although the
approximation (2.41) for 〈ε〉 is not as good as the approximation (2.40) for U( y), the
y-dependence of 〈ε〉 y in the DNS is fairly weak in that range. In this sense, the results
shown in figures 3(a) and 3(b) agree with the observations in Kaneda, Morishita & Ishihara
(2013), Abe & Antonia (2016), Morishita et al. (2019) and Lee & Moser (2019) (Kaneda
et al. (2013) and Morishita et al. (2019) used ε given by (2.33)).

Figures 3(a) and 3(b) show that the DNS profiles of U( y) and 〈ε〉 ( y) depend on Reτ

and they approach those obtained from simple theories such as (2.40) and (2.41) with an
increase in Reτ . Readers may refer to Jiménez & Moser (2007) and Abe & Antonia (2016)
for theories on the influence of finite Reτ on U( y) and 〈ε〉 ( y), respectively.

A least squares fit of (2.40) and (2.41) to the DNS data in the range y+ ∈
[2.6Re1/2

τ , 0.2Reτ ] (Klewicki 2010; Chin et al. 2014) for the run at Reτ ≈ 8000, for which
[2.6Re1/2

τ , 0.2Reτ ] ≈ [232, 1600], gives

κ = 0.39, κε = 0.45, K ≡ κ
1/2
ε

κ
= 1.72. (3.1a–c)

Figure 4(a) plots γ as a function of y+ and confirms that, in each run, there is a range of
y where γ is small. The existence of such a range is a prerequisite for the theory proposed
in § 2. In figure 4(b), γ in each run is seen to scale well with ( y+)−1/2 in an appropriate
range, in accordance with (2.42).
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Figure 4. (a) Ratio γ vs y+, (b) y+1/2γ vs y+. Thin solid straight lines show γ = K( y+)−1/2 with K = 1.72.
The meaning of thick straight lines is the same as in figure 3.

3.3. Second-order moments of gij

Figures 5(a,c,e) and 5(b,d, f ) show the moments (ν/ 〈ε〉) 〈g2
ii
〉
and the anisotropy correction

|(ν/ 〈ε〉) 〈g2
ii
〉− 1/15| for i, j = 1, 2 and 3, as functions of y+, respectively. Figure 5(a,c,e)

displays that, with an increase in y+, i.e. a decrease of γ , the moments approach the
constant 1/15 in an appropriate range of y+. This is in accordance with (2.44). The slope
of anisotropy correction for i = 1 in figure 5(b,d, f ) is approximately −1/2, in accordance
with (2.44). The slope −1/2 for i = 1 agrees with the value by Lee & Moser (2019), who
computed (1 − 15ν

〈
g2

11
〉
/ 〈ε〉) and noted that it varies in a manner similar to ( y+)−1/2.

This slope −1/2 for i = 1 agrees with the value by Lee & Moser (2019), who computed
(1 − 15ν

〈
g2

11
〉
/ 〈ε〉) and noted that it varies in a manner similar to ( y+)−1/2.

Figure 5(b,d, f ) shows that the moments (ν/ 〈ε〉) 〈g2
ii
〉

for i = 2 and 3 approach the
isotropy value of 1/15 with an increase in y+, and the approaches are considerably faster
than that of (ν/ 〈ε〉) 〈g2

11
〉
. Correspondingly to this difference, the anisotropy corrections

|(ν/ 〈ε〉) 〈g2
ii
〉− 1/15| for i = 2, 3 seen in figure 5(b,d, f ) are considerably smaller than the

correction for i = 1. This suggests that the anisotropy correction coefficients C1,iiii for
i = 2, 3 are considerably smaller than C1,1111.

One might think that the agreement of (2.44) with the DNS is poor. However, it is to be
recalled that terms of O(γ 1) are discarded in (2.35) and (2.44). The discarded terms may
not be negligible compared with the C1,iiii-term for i = 2, 3. If this is the case, then the
departure of the DNS curves from the ( y+)−1/2 scaling would be not surprising.

Figure 6 displays the moments (ν/ 〈ε〉) 〈(gij)
2〉 for i, j = 1, 2 and 3 with i /= j and figure 7

shows the same but for the anisotropy corrections |(ν/ 〈ε〉) 〈(gij)
2〉− 2/15|. In accordance

with (2.45), all moments in figure 6 approach the isotropy value 2/15 and the slopes of the
moments in figure 6 are approximately −1/2 except for (i, j) = (2, 3). The smallness of the
anisotropy correction value for (i, j) = (2, 3) compared with those for the other set of (i, j)
observed in figure 7 suggests that the difference of the slopes for (i, j) = (2, 3) by DNS
and the theory in (2.45) is due to the smallness of the anisotropy correction coefficient
C1,ijij.
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Figure 5. (a,c,e) Value of ν
〈
(gii)

2〉 / 〈ε〉 vs y+ for i = 1, 2 and 3. (b,d, f ) The same as (a,c,e) but for
|ν 〈(gii)

2〉 / 〈ε〉 − 1/15|. Thin solid straight lines in (a,c,e) and (b,d, f ), respectively, show ν
〈
(gii)

2〉 / 〈ε〉 = 1/15
and the slope −1/2. The meaning of thick straight lines is the same as in figure 3.

Let λijk be the length scale (Taylor microlength scale) defined by

1
(λijk)2

〈
ui(x)uj(x)

〉 = − ∂2

∂r2
k

〈
ui(x)uj(x + r)

〉∣∣∣∣∣
r=0

. (3.2)

These length scales are a generalisation of those studied by Vreman & Kuerten (2014)
who computed λi ≡ λiii in DNS with Reτ up to 590. In TCF, in which the statistics of the
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Figure 6. Value of ν
〈
(gij)

2〉 / 〈ε〉 vs y+ for (a) (i, j) = (1, 2), (b) (i, j) = (2, 1), (c) (i, j) = (2, 3), (d) (i, j) =
(3, 2), (e) (i, j) = (3, 1), ( f ) (i, j) = (1, 3). Thin solid straight lines show ν

〈
(gij)

2〉 / 〈ε〉 = 2/15. The meaning
of thick lines is the same as in figure 3.

fluctuating field u are homogeneous in the x1 and x3 directions, we have

− ∂2

∂r2
k

〈
ui(x)uj(x + r)

〉∣∣∣∣∣
r=0

= −δk2
∂

∂x2

〈
ui(x)

∂

∂x2
uj(x)

〉
+ Cikjk(x). (3.3)

If the inhomogeneity in the x2 direction is weak so that the first term on the right-hand
side of (3.3) and the x2-dependence of

〈
ui(x)uj(x)

〉
are negligible, then (3.2) and (3.3)

with (2.41) and (2.44), (2.45) yield λiik ∝ ( y+)1/2. This is consistent with the results by
Morishita et al. (2019), who computed λiik (in the present notation) in DNSs of TCF with
Reτ up to ≈ 5200.
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Figure 7. Same as in figure 6, but for |ν 〈(gij)
2〉 / 〈ε〉 − 2/15|. Thin solid straight lines show the slope −1/2.

The meaning of thick lines is the same as in figure 3; (a) (i, j) = (1, 2), (b) (i, j) = (2, 1), (c) (i, j) = (2, 3),
(d) (i, j) = (3, 2), (e) (i, j) = (3, 1), ( f ) (i, j) = (1, 3).

Figure 8 displays the moments (〈ε〉 /ν)
〈
g1jg2j

〉 = (〈ε〉 /ν)
〈
g2jg1j

〉
. In view of the

geometrical symmetry of TCF, it is natural to assume that
〈
u3(x, y, z))uk(x + x′, y + y′, z)

〉
= 0 and

〈
u3(x, y, z))uk(x, y, z + z′)

〉 = 0 is odd in z′ for any x, y, z and (x′, y′) if k = 1 or
2, so that

〈
gijgkj

〉 = 0 unless (i, k) = (1, 2) or (2, 1). Therefore, these moments are not
shown here unless (i, k) = (1, 2) or (2, 1). It is observed that the slope of (〈ε〉 /ν) 〈g13g23〉
is approximately −1/2 in an appropriate range of y+ (e.g. y+ ∼ 103) in the run with
Reτ ≈ 8000, in accordance with (2.46). The difference of the slopes from (2.46) for j = 1
and 2 is presumably due to the smallness of the anisotropy correction coefficient C1,1j2j
for j = 1 and 2.
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Figure 8. Value of ν
〈
(gijgkj)

〉
/ 〈ε〉 vs y+ for (i, k) = (1, 2) and j = 1, 2, 3; (a) j = 1, (b) j = 2 and (c) j = 3.

Thin solid straight lines show the slope −1/2. The meaning of thick lines is the same as in figure 3.

Figure 9 presents the ratios
〈
(gij)

2〉 / 〈(gii)
2〉 for i, j = 1, 2, and 3 with i /= j. It is

observed that, with an increase in y+ i.e. with a decrease in γ , they approach the
isotropy value of two, in accordance with the theoretical conjecture (2.47). The results
in figure 9 are consistent with those in Pumir et al. (2016) who computed the ratios
ξi ≡ 〈

(∂u1/∂xi)
2〉 / 〈(∂u1/∂x1)

2〉 in the DNS of TCF at Reτ ≈ 1000 and showed that the
ratios ξ2 and ξ3 decrease towards two near the centre of the channel in the DNS.

Figure 10 displays the anisotropy corrections | 〈(gij)
2〉 / 〈(gii)

2〉− 2| for i, j = 1, 2 and 3
with i /= j. The slopes at large y+ are close to −1/2 in accordance with (2.47), except for
(i, j) = (2, 3). The difference in the slope from (2.47) for (i, j) = (2, 3) is presumably due
to the smallness of the anisotropy correction coefficient C1,12323, as suggested by the curve
for (i, j) = (2, 3) in figure 7(c) and the fast approach to 2 in the curve for (i, j) = (2, 3) in
figure 9(d).

3.4. Energy dissipation rate tensor
Figure 11(a,b,c) presents εii/(2 〈ε〉) for i = 1, 2 and 3. Additionally, figure 12 shows the
magnitude of the deviatoric parts dij of εij/(2 〈ε〉) for {i, j} = {1, 2, 3}, where

dij ≡ εij

2 〈ε〉 − 1
3
δij. (3.4)
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Figure 9. Ratios
〈
(gij)

2〉 / 〈(gii)
2〉 vs y+ for i, j = 1, 2 and 3 with i /= j; (a) (i, j) = (1, 2), (b) (i, j) = (1, 3),

(c) (i, j) = (2, 1), (d) (i, j) = (2, 3), (e) (i, j) = (3, 1), ( f ) (i, j) = (3, 2). Thin solid straight lines show〈
(gij)

2〉 / 〈(gii)
2〉 = 2. The meaning of thick lines is the same as in figure 3.

As noted above, a consideration of the geometrical symmetry of TCF gives 〈gikgik〉 = 0,
so that dij = 0 if (i, j) = (2, 3), (3, 2), (3, 1) or (1, 3). Therefore, d23, d32, d13 and d31 are
not plotted in figure 12.

Figure 11(a,b,c) demonstrates that εii/(2 〈ε〉) for i = 1, 2 and 3 approach the isotropy
value of 1/3 with an increase in y+ in accordance with (2.48). The slopes of d11 and d22
from the DNS at y+ ∼ 103 are approximately −1/2 in accordance with (2.48). Regarding
d33 in figure 12(c), the departure of the slope from −1/2 is presumably due to the
smallness of C1,3α3α .

Using the data of a series of DNSs of TCF with Reτ up to 5200, Lee & Moser (2019)
computed the second invariant IIε of dij as suggested by Antonia et al. (1991) and Antonia,
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Figure 10. Same as figure 9, but for | 〈(gij)
2〉 / 〈gii)

2〉− 2|. Thin solid straight lines show the slope −1/2.
The meaning of thick lines is the same as in figure 3; (a) (i, j) = (1, 2), (b) (i, j) = (1, 3), (c) (i, j) = (2, 1),
(d) (i, j) = (2, 3), (e) (i, j) = (3, 1), ( f ) (i, j) = (3, 2).

Djenidi & Spalart (1994), which is given in the present notation as

IIε ≡ 1
2 dαβdβα = 1

2

[
(d11)

2 + (d22)
2 + (d33)

2 + 2(d12)
2
]
. (3.5)

They noted that, in the overlap region (y+ ≈ 100 to y/δ ≈ 0.2), IIε varies as ( y+)−5/4,
where 2δ is the channel width. This exponent −5/4 appears to be consistent with
figure 13(a).

In contrast, (2.39), (2.48), (3.4) and (3.5) give

IIε ≈ CIIγ
2, (3.6)
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Figure 11. Values of εii/(2 〈ε〉) for i = 1, 2 and 3 vs y+. Thin solid straight lines show εii/(2 〈ε〉) = 1/3. The
meaning of thick lines is the same as in figure 3.

and IIε ∝ ( y+)−1 for large y+, where CII is a dimensionless constant determined using
the constants C1,ijkj. Thus, the slope obtained by (2.48) appears to be in conflict with
that obtained by DNS. However, it is to be recalled that (2.39) is based on (2.27), which
discards possible corrections of the O(γ ) terms for small γ to �

〈
gijgmn · · · 〉, as well as

corrections due to effects other than the mean shear, which are not taken into account by
the parameter γ .

As regards the correction, say �2γ , to �
〈
gijgmn

〉
by terms of O(γ ), a naive idea suggests

that one may approximate it by a term such as c2γ
α , where c2 and α(> 1) are constants.

If one simply puts α = 2, then the addition of the correction term c2γ
2 to (2.27) gives

IIε ≈ CIIγ
2 + DIIγ

3. (3.7)

Substitution of (2.42) into (3.7) gives

IIε ≈ CII( y+)−1 + D′
II( y+)−β, (β = 3/2), (3.8)

where CII, DII and D′
II are dimensionless constants, and D′

II = CDII . Here, terms of O(γ 3)

in (3.7) and O(( y+)−β) in (3.8) are ignored.
Regarding possible corrections by effects other than the mean shear, one can consider

those related to the finiteness of the distance, say y, from the wall. In this respect, it is of
interest to note that (2.43) gives η/y ∝ ( y+)−3/4 in the inertial sublayer. If one assumes
(i) that such a correction, say �w, due to the finiteness of 1/y is linear in 1/y, so that it
is given by the form �w ≈ c′

w/y as a first approximation, and (ii) that the coefficient c′
w
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depends only on ν and 〈ε〉, then one has c′
w ∝ η, so that �w ≈ cw( y+)−3/4, where cw is a

dimensionless constant. The addition of such correction term to (2.27) gives IIε but with
β = 5/4.

It is of interest to ask how much the difference between the theory and DNS is
attributable to these corrections. Figures 13 and 14 may give an idea on this question.
Figure 13(b) shows IIε/γ 2 vs γ . A least squares fit of IIε/γ 2 given by (3.7) with β = 3/2
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Reτ = 2003, Hoyas & Jiménez (2006)

R8000
R4000
R2000
R1000
R500

(b)

Figure 14. (a) Value of IIεy+ vs y+. Broken line shows the fit (3.8) with β = 3/2, CII = 1.64 × 10−1 and
D′

II = 4.83, and the dotted line displays the fit (3.8) with β = 5/4, CII = −3.16 × 10−2 and D′
II = 1, 96, and

(b) IIε vs γ .

to the DNS data in the range of γ that corresponds to the range y+ ∈ [232, 1600] provides

CII = 4.40 × 10−2, DII = 1.08. (3.9a,b)

The value given by (3.7) with (3.9a,b) is plotted together with the DNS data. It is observed
that IIε is well approximated by (3.7) in a certain range of γ .

Figure 14(a) shows IIεy+ vs y+. A least squares fit of IIεy+ given by (3.8) with β = 3/2
and 5/4 to the DNS data in the range of y+ ∈ [2.6Re1/2

τ , 0.2Reτ ] ≈ [232, 1600] gives

β = 3/2; CII = 1.64 × 10−1, D′
II = 4.83, (3.10a,b)

β = 5/4; CII = −3.16 × 10−2, D′
II = 1.96. (3.11a,b)

The values given by (3.8) with (3.10a,b) and (3.11a,b) are plotted in figure 14(a) together
with the DNS data. It is observed that IIεy+ is well approximated by (3.8) in the range
of y+ ∈ [232, 1600]. This result suggests that the difference between the slope −5/4
observed in DNS data and −1 by the theory is attributable at least partly to the finiteness
of γ . However, the possibility that the slope −5/4 is an intrinsic feature and remains
constant −5/4 in an appropriate range of y+ at Reτ → ∞ is not excluded, and the question
of how to fix the best value of the exponent β in (3.8) is not yet settled.

Figure 13(a) shows that, at small γ , (e.g. γ < 0.03), DNS data for IIε/γ 2 do not fit well
to (3.6), but blow up like ∝ γ m with m ≈ −2. This result implies that IIε ≈ constant, in
the small−γ range, as confirmed by figure 14(b), which shows IIε vs γ . This disagreement
of DNS data with (3.6) is not surprising because the anisotropy in εij can in general be
induced not only by the mean shear, but also by other factors, in particular the anisotropy
of energy-containing eddies, while the effect of the latter is assumed to be negligible
compared with those of the former in the derivation of (3.6). In the central region of
the channel, the statistics of the large-scale eddies are anisotropic, and their influence on
small-scale statistics can remain finite, even if γ is very small. This implies that, in this
region, the anisotropy measure IIε can remain finite, independently of the smallness of γ .
This picture is consistent with figure 14(b), which shows that IIε is small but finite at
γ � 1.
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4. Discussion and conclusions

4.1. Influence of large-scale eddies
As noted in the last paragraph of § 2.1, we assumed in this study that the influence of the
anisotropy in energy-containing eddies on the statistics at scales ∼ η is not significant, or
at most of similar order compared with the effect of the mean shear. In this subsection,
we consider in some details about the possible influence of the anisotropy in energy
containing eddies.

In order to get some idea on the influence, it is instructive to decompose the fluctuating
field u as

u = uL + uS, (4.1)

where uL and uS, respectively, represent the fluctuating velocity components by large-scale
eddies of the energy-containing range and by the other smaller eddies. Correspondingly to
this decomposition, v can be decomposed as

v = vL + vS, (4.2)

so that the first three terms on the right-hand side of (2.7) can be written as

(V · ∇)v = (V · ∇)vL + (V · ∇)vS, (4.3)

(v · ∇)V = (vL · ∇)V + (vS · ∇)V , (4.4)

(v · ∇)v = (vL · ∇)vL + (vL · ∇)vS + (vS · ∇)vL + (vS · ∇)vS, (4.5)

where vL(r, s) ≡ uL(r + r0, s + t0) − uL(x0, t0) and vS(r, s) ≡ uS(r + r0, s + t0) −
uS(x0, t0). Simple order estimates (see Appendix B) of the terms on the right-hand sides
of (4.3)–(4.5) show that

(vL · ∇)vS ∼ (vS · ∇)vL ∼ γe(v
S · ∇)vS, (4.6)

and that the order of the magnitude of each of the other terms including vL is smaller than
that of (vL · ∇)vS ∼ (vS · ∇)vL provided that γe � 1 and γ � 1, where γe is the ratio
of the time scale τη ≡ η/vη of small eddies of size ∼ η to the time scale τE ≡ �/u′ of
energy-containing eddies, i.e.

γe ≡ η/vη

�/u′ = u′

�

η

vη

, (4.7)

in which 3(u′)2 = 〈u · u〉, and � is the characteristic length scale of the energy-containing
eddies. This implies that, if γe � 1 and γ � 1, then the magnitude of the terms
representing the influence of the large-scale fluctuating velocity field vL in (2.7) is
negligibly small compared with that of the nonlinear coupling term (vS · ∇)vS ∼ (v · ∇)v

and the viscous term ν∇2vS ∼ ν∇2v.
The substitution of η/vη = (ν/〈ε〉)1/2 into (4.7) gives

γe = u′

�

(
ν

〈ε〉
)1/2

. (4.8)

Hence, if 〈ε〉 ∼ u′3/�, then we have γe ∼ Re−1/2
u , where Reu ≡ u′�/ν. This means that

γe is small for large Reu. Thus, the assumption of the smallness of the influence of the
anisotropy of large-scale fluctuating eddies is acceptable, if Reu is so large that γe given
by (4.8) is sufficiently small.
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If one may assume that in the inertial sublayer u′ ∼ uτ and � ∼ y, then (4.8) and (2.41)
give γe ∼ ( y+)−1/2. This and (2.42) imply γe ∼ γ in the inertial sublayer. One might
therefore think it questionable that the influence of vL, i.e. the influence of anisotropy of
large-scale fluctuating eddies (LS-anisotropy) is negligible compared with that of mean
shear (MS-anisotropy), in the inertial sublayer.

However, it is to be recalled that γ and γe are, respectively, proportional to the norm S
of the tensor (∂Ui/∂xj) and approximately proportional to the magnitude of the large-sale
fluctuating velocity vL, and that the average of vL, in contrast to those of ∂Ui/∂xj and V , is
zero. This and the estimate (4.6) yield the conjecture that the influence on the small-scale
statistics by LS-anisotropy is not as strong as that by MS-anisotropy, even if γ ∼ γe.

4.2. Assumption of linearity of �1 〈B〉 in the tensor (∂Ui/∂xj)

In the second hypothesis of similarity for TSF proposed in § 2.1, we assumed that the
change � 〈B〉 of 〈B〉 owing to the mean shear can be approximated to be linear in the
scalar γ , not in the tensor (∂Ui/∂xj), i.e. not in the tensor (γij), for sufficiently small but
finite γ , where

(γij) ≡
(

ν

〈ε〉
)1/2 (

∂Ui

∂xj

)
. (4.9)

Here, the tensor whose elements are given by aij... is denoted as (aij...). In this subsection
we consider the assumption of the linearity of �1 〈B〉 in (∂Ui/∂xj), i.e. in (γij), instead of
γ , where �1 〈B〉 is the leading order term(s) of � 〈B〉 for small γ .

In a study of the response of the second-order velocity correlation spectra, say �Qij(k),
in the ISR to small but finite mean shear, Ishihara et al. (2002) assumed the response to
be approximately linear in the tensor (∂Ui/∂xj) (not the scalar S) under an appropriate
normalization, where k is the wave vector. This gives �Qij(k) ≈ Tijαβ(k)∂Uα/∂xβ under
certain assumptions, where (Tijαβ) is an isotropic fourth-order tensor independent of
(∂Ui/∂xj). They showed that it is in reasonable agreement with DNS of homogeneous
TSF under simple mean shear.

From this, one might think that one may assume, instead of the second hypothesis (ii)
proposed in § 2.1, the following modified hypothesis.

(m-ii) Modified second hypothesis of similarity for TSF.
For sufficiently small but finite γ , �〈B〉 can be approximated to be linear in the
tensor (γij), i.e. �〈B〉 ≈ �1〈B〉, where �1〈B〉 = cαβγαβ , in which the coefficients
cαβ are independent of (γij).

Regarding the other hypotheses, i.e. the first and third hypotheses (i) and (iii) of
similarity for TSF proposed in § 2.1, we assume here them to be still applicable (but the
symbol c in the third hypothesis (iii) is to be understood appropriately.) When applied to
B = gijgmn, the modified hypothesis (m-ii) implies that �〈gijgmn〉 ≈ �1〈gijgmn〉, where
�1〈gijgmn〉 = c1,ijmnαβγαβ , in which the coefficients c1,ijmnαβ are independent of (γij).
The third hypothesis (iii) then implies that c1,ijmnαβ must be an isotropic 6th-order tensor
uniquely determined by ν and 〈ε〉.

However, a simple consideration suggests that the applicability of the modified
hypothesis (m-ii) under the first and third hypotheses (i) and (iii) is questionable.
To see this, note that the modified hypothesis (m-ii) and the hypotheses (i) and
(iii) yield an expression for 〈g11g11〉 like (2.35) but with γ C1,1111 replaced by
γαβC1,1111αβ , where (C1,ijmnαβ) is an isotropic 6th-order tensor independent of (∂Ui/∂xj).
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Then consider, for example, �1 〈B〉 for B = g11g11 in TCF in which (∂Ui/∂xj) is given by
∂Ui/∂xj = δi1δj2[dU( y)/dy]. The use of (4.9) then gives

γαβC1,1111αβ ∝ C1,111112
dU( y)

dy
, (4.10)

while from the symmetry condition it is clear that 〈g11g11〉 should not depend on
the sign of dU/dy. If the hypotheses (m-ii) and (iii) are to be compatible with this,
(m-ii) and (iii) yield �1〈gijgmn〉 = 0. Then, the hypotheses (m-ii), (i) and (iii) yield
(ν/ 〈ε〉) 〈g11g11〉 − 1/15 = o(γ ) instead of (2.35). However, this appears to conflict with
figure 5(b), which suggests (ν/ 〈ε〉) 〈g11g11〉 − 1/15 ∝ γ . Thus, in view of figure 5(b) the
applicability of the modified hypothesis (m-ii) under the first and third hypotheses (i) and
(iii) is questionable.

To get some idea on the reason why �1
〈
gijgmn · · · 〉 needs not be linear in the disturbance

parameter γij, it is instructive to consider the fundamental solution v(r) of the so-called
Oseen equation that satisfies

(U · ∇)v + 1
ρ

∇p − ν∇2v = f δ(r), ∇ · v = 0, (4.11)

and the boundary conditions

v → 0, p − p0 → 0, at r → ∞, (4.12)

where U and f are constant vectors, δ(r) is the three-dimensional Dirac delta function,
and p0 is a constant. The Oseen equation is similar to (2.7) in the sense that both of them
include parameters representing the small disturbance [U in the Oseen equation (4.11),
and (∂Ui/∂xj) in (2.7) with (2.8)], as small coefficients coupled to the gradient operator
∇ that works on v.

Because of the linearity of (4.11), v may be written without loss of generality in the form

vi(r) = Diα(r)fα, (4.13)

where the tensor (Diα(r)) depends only on U, ν and r.
Suppose that we do not know how to theoretically derive the tensor (Dij) for small but

finite γ ≡ Ur/ν from the Oseen equation (4.11). Then, it is natural to assume, similarly to
the first hypothesis of similarity for TSF, the following hypothesis.

(i′) The first hypothesis of similarity for Dij.
In the limit γ → 0, (Dij) is an isotropic tensor and is uniquely determined by ν and
r independently of U .

From this assumption, one can correctly arrive at

Dij(r) → De,ij(r) = 1
νr

Fij(r̂), (4.14)

at γ → 0, where (Fij(r̂)) is an isotropic second-order tensor that depends on only r̂ ≡ r/r
and is independent of U and ν.

For small but finite γ , let Dij(r) be written as

Dij(r) = De,ij(r) + �Dij(r). (4.15)
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Then, one might assume the following two hypotheses:

(ii′) The second hypothesis of similarity for Dij.
For sufficiently small but finite γ , the change �Dij of Dij owing to the finite vector
(γi) ≡ (Uir/ν) can be approximated to be linear in (γi), i.e. �Dij ≈ �1Dij, where
�1Dij = cijαγα = cijαUαr/ν, in which the coefficients cijα are independent of (γi).

(iii′) The third hypothesis of similarity for Dij.
The tensor (cijα) is an isotropic third-order tensor that is uniquely determined by ν

and r.

The second and third hypotheses give

�Dij(r) = 1
νr

[
Cijα(r̂)

Uαr
ν

+ o(γ )

]
, (4.16)

where Cijα(r̂) are functions only of r̂ = r/r, and satisfy Cijα(−r̂) = −Cijα(r̂). This implies
that the leading-order terms �1Dij(r) of �Dij(r) for small Ur/ν satisfy �1Dij(−r) =
−�1Dij(r).

However, this is in conflict with the exact solution of the Oseen equation (4.11) (readers
may refer to standard textbooks in fluid mechanics regarding this point). Thus, this example
suggests that the response � 〈B〉 is not necessarily linear in the vector or the tensor
representing the disturbance [U in (4.11), (∂Ui/∂xj) in (2.7) with (2.8)], provided that the
coefficients, such as cijα and c1,ijmnαβ , must satisfy certain conditions, such as the isotropy
condition.

The above discussions do not exclude the possibility that the modified hypothesis (m-ii)
and the first and third hypotheses (i) and (ii) hold and some DNS results unaccountable by
them are due to (an) unidentified effect(s) other than that of mean shear gradients.

4.3. Conclusions
In this study, we proposed an extension of the idea of K41 to take into account the influence
of the mean shear in TSF on the statistics in the DR. In the extension, we introduced three
hypotheses for the small-scale statistics in TSF;

(i) (the first hypothesis) local isotropy in the limit γ → 0,
(ii) (the second hypothesis) approximate linearity of � 〈B〉 in γ , i.e. � 〈B〉 ≈ �1

〈B〉 = cγ , for sufficiently small but finite γ ,
(iii) (the third hypothesis) localness of the coefficient c in the expression �1 〈B〉 = cγ ,

where γ is a local dimensionless measure of the strength of the mean shear, � 〈B〉 is
the change of the average of the observable B due to the mean shear and �1 〈B〉 is the
leading-order term of � 〈B〉 for small γ .

When applied to the second-order moments of the gradients gij of the fluctuating
velocity field in the inertial sublayer of wall turbulence, the extension gives estimates of
the dependence of the moments of gij on the distance from the wall. Particular attention is
paid to the second-order moments

〈
gijgkj

〉
which make up the energy dissipation rate tensor

(εij) ≡ 2ν(
〈
giαgjα

〉
), and the theory was tested by comparison with the data of DNSs of

turbulent channel flow with friction Reynolds numbers Rτ up to approximately 8000.
The comparison shows that the hypothesis (i) is consistent with the approach of the

statistics by the DNSs to the values given by the isotropy and locality assumptions with an
increase in y+ as seen in figures 5(a,c,e), 6, 9 and 11, and also that the hypotheses (ii) and
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(iii) are consistent with the slopes by the DNSs observed in figures 5(b,d, f ), 7, 8, 10 and
12. These results suggest that the simple hypotheses are in reasonable agreement with the
DNSs.
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Appendix A. Turbulent kinetic energy and energy dissipation rate budget terms in
turbulent channel flow

We assume here that the mean flow U is given by U = (U1, 0, 0) and the statistics are
homogeneous in the x1- and x3-directions, and use the notation in Mansour et al. (1988)
(but in a dimensional form and a typo is corrected).

The equation for the mean turbulent kinetic energy k = 〈uαuα〉 /2 can be then written
as

Dk
Dt

= Pk + Tk + Πk + Dk − 〈ε〉 , (A1)

where D/Dt ≡ ∂/∂t + U1∂/∂x1, and the budget terms on the right-hand side are given by

Pk = −〈u1u2〉 ∂U1

∂x2
, (A2)

Tk = −1
2

∂

∂x2
(〈u1u1u2〉 + 〈u2u2u2〉 + 〈u3u3u2〉) , (A3)

Πk = − ∂

∂x2

〈
pu2

ρ

〉
, (A4)

Dk = ν
∂2k

∂x2
2
, (A5)

〈ε〉 = ν

〈
∂uα

∂xβ

∂uα

∂xβ

〉
. (A6)

The equation for mean energy dissipation rate 〈ε〉 can be written as

D 〈ε〉
Dt

= P1
ε + P2

ε + P3
ε + P4

ε + Tε + Πε + Dε − γε, (A7)

where the 〈ε〉-budget terms on the right-hand side are given by

P1
ε = −2ν

〈
∂u1

∂xα

∂u2

∂xα

〉
∂U1

∂x2
, (A8)

P2
ε = −2ν

〈
∂uα

∂x1

∂uα

∂x2

〉
∂U1

∂x2
, (A9)
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P3
ε = −2ν

〈
u2

∂u1

∂x2

〉
∂2U1

∂x2
2

, (A10)

P4
ε = −2ν

〈
∂uα

∂xβ

∂uα

∂xγ

∂uγ

∂xβ

〉
, (A11)

Tε = −ν
∂

∂x2

〈
∂uα

∂xβ

∂uα

∂xβ

u2

〉
, (A12)

Πε = −2ν
∂

∂x2

〈
1
ρ

∂p
∂xα

∂u2

∂xα

〉
, (A13)

Dε = ν
∂2 〈ε〉
∂x2

2
, (A14)

γε = 2ν2
〈

∂2uα

∂xβ∂xγ

∂2uα

∂xβ∂xγ

〉
. (A15)

Appendix B. Estimates of terms on the right-hand sides of (4.3)–(4.5)

Since (2.2b,c) gives r0 = x0 at time t = t0, i.e. s = 0, V and vL can be respectively
expanded for small r ≡ |r| as (2.8) and

vL = uL(r + x0) − uL(x0) = ∂uL

∂xα

rα + · · · , (B1)

at s = 0, where ∂uL/∂xα = ∂uL/∂xα|x=x0 . In view of (2.8) and (B1), rough order
estimates of the terms in (4.3), (4.4) and (4.5) for r ∼ η are obtained by using

V ∼ Sη, vL ∼ ∂uL

∂xα

η ∼ u′

�
η, vS ∼ vη, (B2a–c)

and

(∇V , ∇vL, ∇vS) ∼ 1
η
(V , vL, vS), (B3)

where 3(u′)2 = 〈u · u〉, and � is the characteristic length scale of large-scale
energy-containing eddies. Equations (B2) and (B3) give

V ∼ γ vS, vL ∼ γev
S, (B4a,b)

and

∇V ∼ γ∇vS, ∇vL ∼ γe∇vS, (B5a,b)

where γe is given by (4.7). We therefore have

(vS · ∇)vS ∼ v2
η

η
, (B6)

(V · ∇)vL ∼ (vL · ∇)V ∼ γ γe
v2
η

η
, (B7)

929 A13-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

81
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.815


Y. Kaneda and Y. Yamamoto

(V · ∇)vS ∼ (vS · ∇)V ∼ γ
v2
η

η
, (B8)

(vL · ∇)vL ∼ γ 2
e

v2
η

η
, (B9)

and

(vL · ∇)vS ∼ (vS · ∇)vL ∼ γe
v2
η

η
. (B10)
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