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Abstract

Invasive populations of Dalmation toadflax [Linaria dalmatica (L.) Mill.] and yellow toadflax
(Linaria vulgaris Mill.) are widespread throughout the Intermountain West, where gene flow
between these nonnative species is producing vigorous and fertile hybrids. These hybrid toad-
flax populations are less responsive to herbicides than either parent species, and biocontrol
agents routinely released on L. dalmatica and L. vulgaris often fail to establish on hybrid hosts.
Early detection of hybrid Linaria populations is therefore essential for effective management,
but resources are limited for scouting large expanses of range and wildland. We used species
distribution modeling to identify environmentally suitable areas for these invasive Linaria taxa
in Montana, Wyoming, and Colorado. Areas suitable for hybrid Linaria establishment were
estimated using two different modeling approaches: first, based on known hybrid occurrence
and associated environmental conditions, and second, based on zones environmentally suitable
for co-occurrence of the parent species. This also allowed comparison of different model out-
puts, especially relevant when modeling emerging invasives, such as novel hybrids, with min-
imal occurrence data. Combining the two model outputs identified areas at greatest risk of
hybrid Linaria invasion, including parts of north-centralMontana, wheremodel estimates indi-
cate the hybrid may spread without prior co-invasion of the parents. Potential hybrid hot spots
were also identified in western Montana; northwestern, northeastern, and southeastern
Wyoming; and the Western Slope and Front Range of Colorado. Despite relatively few con-
firmed occurrences of hybrid populations to date, our results indicate that extensive spread
of hybrid populations is possible within the studied area. Model-based maps of potential
Linaria distributions will allow area weed managers to direct limited resources more effectively
for locating and controlling these invaders.

Introduction

Recent studies have explored the role of interspecific hybridization in stimulating new plant
invasions or accelerating invasions already in progress (e.g., Gaskin 2017; Hovick and
Whitney 2014; Hovick et al. 2012; Schierenbeck and Ellstrand 2009). Gene exchange between
differentiated taxa can facilitate invasion in several different ways. Hybridization between intro-
duced and native congeners may result in acquisition of adaptive alleles by the invading species
(Rieseberg et al. 2007), while similar gene flow at the edge of an invasion front can enable iso-
lated colonizing individuals to overcome Allee effects (Mesgaran et al. 2016). Hybridization in
an invaded range, whether between an introduced and a native species, or between newly sym-
patric nonnative taxa, generates novel recombinant genotypes that may outcompete and dis-
place the parent species in the invaded habitat: reported examples include Spartina (Ort and
Thornton 2016), Fallopia (Parepa et al. 2014), and Typha (Zapfe and Freeland 2015). There
is also evidence that genome rearrangement and gene shuffling following hybridization can gen-
erate phenotypes capable of invading new habitats beyond the ranges occupied by the parent
species (Hovick and Whitney 2014; Rieseberg et al. 1999).

Dalmatian toadflax [Linaria dalmatica (L.) Mill.], yellow toadflax (Linaria vulgaris Mill.),
and their hybrids are invasive plants in the U.S. Intermountain West and other regions of
North America. Linaria dalmatica is native to the Mediterranean (Alex 1962) and was intro-
duced to the United States in the late 1800s, possibly as an ornamental (Vujnovic and Wein
1997); it is now classified as a noxious weed in seven states (USDA-NRCS 2018). The native
range of L. vulgaris extends from northern and central Europe into temperate Eurasia. It
was brought to the eastern United States as a medicinal herb by European settlers in the late
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17th century and became the first nonnative plant invasion to be
recorded in North America: by the 1750s, expanding L. vulgaris
populations were observed spreading beyond areas where they
were originally planted (Mack 2003). Linaria vulgaris has since
invaded all lower 48 states, Alaska, and 9 Canadian provinces,
and is listed as a noxious weed in 8 states (USDA-NRCS 2018).
The native ranges of L. dalmatica and L. vulgaris do not overlap,
and hybridization between these congeners has not been reported
in Eurasia (Sutton 1988). Both species are perennial forbs that gen-
erally colonize disturbed areas (Arnold 1982; Vujnovic and Wein
1997), though L. vulgaris has also invaded intact native plant com-
munities in high-elevation wilderness areas (Sutton et al. 2007).
These Linaria species are obligate outcrossers that can spread
via roots and rhizomes (Saner et al. 1995; Vujnovic and Wein
1997), and both have high levels of intraspecific genetic diversity
within and among invading populations throughout their North
American ranges (Boswell et al. 2016; Brown 2008; Ward
et al. 2008).

It is unknown when co-invasion and gene flow between
L. dalmatica and L. vulgaris first occurred in our study area of
Montana, Wyoming, and Colorado. These interspecific hybrids
were confirmed relatively recently (Ward et al. 2009), although
cryptic hybrids resulting from several generations of backcrossing
may be more widespread in invasive Linaria populations than pre-
viously realized (Boswell et al. 2016). Early-generation hybrids
betweenL. dalmatica and L. vulgaris are vigorous fertile perennials
that are morphologically intermediate compared with the parents;
pollination among hybrids or via backcrossing to either parent also
produces fertile progeny, resulting in complex multigenerational
hybrid swarms in the field (Ward et al. 2009). These hybrid pop-
ulations are of concern, because both parent species are highly
invasive, and experimental evidence indicates their heterotic prog-
eny are likely to be even more invasive. In a series of common

garden experiments conducted in Colorado and Montana, hybrid
Linaria genotypes outperformed the parent taxa across a number
of vegetative and reproductive traits, including earlier emergence
from dormancy, greater seasonal biomass accumulation, longer
flowering time, larger number of flowering shoots, and more pro-
lific seed production (Turner MFS 2012). Potential outcomes of
hybridization between L. dalmatica and L. vulgaris include hybrid
populations displacing one or both parents in currently invaded
areas and expansion of hybrid genotypes with greater ecological
amplitude into areas previously uninvaded by Linaria. Hybrid
Linaria populations present additional management challenges,
as currently available chemical and biological controls are often
less effective on these populations (Sing et al. 2016). Accurate taxo-
nomic identification can be complicated by decreasing morpho-
logical differences between late-generation backcrossed hybrids
and the recurrent parent (Olson et al. 2009), leading in the case
of Linaria hybrids to deployment of biocontrol agents that are sub-
optimally matched with the host plants (Boswell et al. 2016; Sing
et al. 2016).

During initial stages of invasion, sparsely distributed colonizing
populations often remain undetected until the invasion has
become widespread (Mack et al. 2000; Maxwell et al. 2012;
Rauber et al. 2016). Spatial estimates of potential invasive distribu-
tion, such as those generated by statistical modeling, can help land
managers prioritize resource allocation to locate invaders before
eradication becomes unfeasible or prohibitively expensive
(Kaplan et al. 2014; Koncki and Aronson 2015; West et al.
2016). Improved geographic information systems (GIS) and
greater availability of modeling algorithms and detailed geospatial
environmental data, including remote sensing data (Shafii et al.
2003), have led to the use of species distributionmodeling formany
applications in ecological research (Jarnevich et al. 2015; Peterson
et al. 2011). Modeling aids assessment of future areas of invasion,
because requisite data can be obtained relatively quickly, and mod-
els have also been shown to accurately predict future invasion areas
(Jarnevich et al. 2010; Koncki and Aronson 2015; West et al. 2016).
Species distribution models empirically relate species occurrence
data and environmental covariates to create environmental suit-
ability maps for a defined area (Elith and Leathwick 2009).
These models also identify the most significant environmental
conditions contributing to distribution of a species, which is useful,
as early detection of infestations is more effective when supported
by knowledge of conditions that promote species invasions
(Bradley and Marvin 2011).

Maximum entropy (MaxEnt) modeling estimates the probabil-
ity of species presence throughout a delineated study area by relat-
ing species occurrence at known locations to environmental
characteristics of those locations (Fourcade et al. 2014; Phillips et al.
2006). MaxEnt has been widely used as a species distribution mod-
eling application for inferring species distributions, niches, and
environmental tolerances (Warren and Seifert 2011). MaxEnt
applies a machine learning technique that is not affected by sample
size in the same way as generalized linear or additive statistical
models and is therefore well suited for species with a small number
of occurrence records (Benito et al. 2009; López-Alvarez et al.
2015), due to its regularization procedure, which prevents overfit-
ting (Hernandez et al. 2006; Phillips et al. 2006). A comparison of
different species distributionmodels showed superior performance
for MaxEnt, even with small sample sizes (Wisz et al. 2008), and
MaxEnt has been successfully used to predict species distributions
with as few data points as 5 (Pearson et al. 2007) and 11 (Kumar
and Stohlgren 2009).MaxEntmodels developed from small sample

Management Implications

Linaria dalmatica (Dalmatian toadflax) and Linaria vulgaris (yel-
low toadflax) are nonnative perennials found throughout much of
North America. Both species are aggressive invaders in western
states, forming persistent colonies through root and rhizome spread
and seed production. Hybrids resulting from cross-pollination
between L. dalmatica and L. vulgaris have greater growth and repro-
ductive potential than either of the parent species and are more dif-
ficult to control using currently available herbicides or biocontrol
agents. Successful management of any weedy Linaria species
depends on early detection, especially for invasive hybrid popula-
tions, but effective scouting over large expanses of wildland and
rangeland in the Rocky Mountain region is generally impractical.
Prior knowledge of areas vulnerable to invasion, especially by
Linaria hybrids, would allow more effective direction of limited
management resources. In this study, we used species distribution
modeling based on environmental covariates associated with known
locations of Linaria occurrence to identify regions of Montana,
Wyoming, and Colorado at greatest risk of future invasion by
L. dalmatica, L. vulgaris, and hybrid Linaria populations. Some areas
where reports of L. dalmatica and L. vulgaris are sparse or nonexist-
ent were nevertheless identified by our models as suitable habitat for
Linaria hybrids. These areas should be prioritized for monitoring to
facilitate elimination of hybrid populations while they are small
enough for this to be feasible.
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sizes are also effective at predicting species occurrence in previ-
ously unsurveyed areas (Rebelo and Jones 2010). These are impor-
tant considerations when modeling a newly emerged invasive such
as hybrid Linaria for which there are as yet few confirmed
occurrences.

This research used MaxEnt modeling in combination with GIS
processing to identify areas vulnerable to Linaria invasion in the
northern Rockies. The objectives were (1) to identify the most
important contributing environmental covariates associated with
distributions of invasive L. dalmatica, L. vulgaris, and their hybrids;
(2) to create environmental suitability maps for these three Linaria
taxa; (3) to create overlay and environmental suitability maps esti-
mating areas most at risk for Linaria hybrid distribution; and (4) to
compare two differentMaxEntmodeling approaches bymeasuring
the degree of agreement between these environmental suitability
and overlay maps.

Materials and Methods

Study Area
Our study area consisted of Montana, Wyoming, and Colorado,
three states that comprise a large part of the drier Intermountain
West. These states form a large contiguous unit with mountainous

western zones and eastern plains, and they experience similar sea-
sonal weather patterns, with a north–south latitudinal gradient for
variables such as temperature, photoperiod, and length of growing
season. The Rocky Mountains and the western Continental Divide
run roughly north to south through all three states; this mountain
range encompasses significant elevation differences and geographic
variation, driving local variation in climatic conditions. East of the
Rocky Mountains, the lower-elevation Great Plains region extends
through all three states, characterized by higher mean temperatures
and a longer growing season (WRCC 2016). Elevation in this study
area ranges from 550 to 4,400 m (1,800 to 14,433 feet). Mean
annual precipitation throughout the three-state area varies from
highs of approximately 290 cm in the mountains to lows of less
than 14 cm in southwesternWyoming and south-central Colorado
(Wang et al. 2012). Themost prevalent types of land cover and land
uses in the study area are coniferous forest, grazed rangelands,
farming, and some developed urban locations, representing a
broad array of ecosystems and plant communities (USDA 2012).

Occurrence Data
Occurrence data for L. dalmatica, L. vulgaris, and their hybrids
were obtained from seven online herbaria accessed between
November 22 and December 13, 2016: Rocky Mountain Region

Figure 1. Linaria dalmatica occurrence shown graphically as points per 1,000 km2 in each county of the study area and points of occurrence throughout the area. This map
reflects where L. dalmatica was recorded by an observer, which may imply some degree of sampling bias, as not all areas were sampled equally.
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Digital Herbarium, University of Wyoming (2016), SEINet
(2016), Consortium of Pacific Northwest Herbaria, University
of Washington (2016), Global Biodiversity Information Faci-
lity (2016), Early Detection and Distribution Mapping
System, University of Georgia (2016), University of Colorado–
Boulder Museum of Natural History (2016), and iDigBio
(2016). Occurrence data were also provided by individual contrib-
utors throughout the three-state area, ranging from county weed
managers to federal agency regional managers. Twenty individuals
contributed occurrence data for L. dalmatica and 18 for L. vulgaris,
but only three for hybrids, indicative of low levels of recognition of
hybrid populations and limited knowledge of their prevalence. We
confirmed the taxonomic identity of all hybrid populations recorded
as occurrence points, based on intermediate morphology as
described in Ward et al. (2009). For putative hybrid populations
for which plant morphology was ambiguous, we used cpDNA
and ncDNA markers as described by Boswell et al. (2016) and
Ward et al. (2009) to confirm taxonomic identity. See Figures 1–3
for occurrence maps for each taxon.

After acquiring occurrence data for all taxa, we executed a spa-
tial filtering step to reduce spatial autocorrelation (Brown 2014).
Filtering methods outperform unfiltered methods in correcting

for sampling bias, which increases spatial autocorrelation and
may lead to overfittedmodels with falsely high-performance values
(Boria et al. 2014; Dormann 2007). The spatial filtering step was
performed in ArcGIS v. 10.2 using the Spatially Rarefy
Occurrence Data tool in SDMtoolbox (Brown 2014). This step
eliminated duplicate points within a 3-km radius due to dense clus-
tering of points in more intensively sampled areas. This step pre-
vents statistically overweighting a clustered area. When filtering
was complete, 1,024 points remained for L. dalmatica, 1,159 for
L. vulgaris, and 32 for hybrids; these occurrence data were inputs
for the subsequent modeling process.

Occurrence location bias on a larger spatial scale was addressed
by creating a bias layer using the Gaussian Kernel Density tool in
SDMtoolbox (Brown 2014) and then inputting the layer into each
MaxEnt run. The bias layer downweights the importance of occur-
rence points in regions greater than a 3-km radius with a greater
number of samples (Elith et al. 2010). This corrects for potential
sampling bias and mitigates clumping resulting from more preva-
lent occurrence data in areas that are of greater botanical or man-
agement interest or exposed to increased human activity. For
example, our original data set included multiple reports of invasive
Linaria populations for the Greater Yellowstone area and the

Figure 2. Linaria vulgaris occurrence shown graphically as points per 1,000 km2 in each county of the study area and points of occurrence throughout the area. This map reflects
where L. vulgaris was recorded by an observer, which may imply some degree of sampling bias, as not all areas were sampled equally.
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Colorado Front Range. These are likely sources of bias, because
compared with other parts of our study area, the larger numbers
of reported occurrences are likely to reflect increased human obser-
vation rather than a greater density of Linaria populations.

Environmental Covariates
There is little information on which environmental factors are the
most important drivers of invasive Linaria establishment in the
northern Rockies. Based on the biological and ecological character-
istics of the Linaria taxa described earlier, we therefore selected 73
environmental covariates in the form of GIS layers for preliminary
evaluation as possible distribution predictors (Supplementary
Table 1). These covariates were categorized by climate, land use
or cover, phenology metrics, soils, topography, and remote
sensing–derived vegetation indices. The spatial resolution for all
GIS layers was 1 km2 and Albers equal area conic was the coordi-
nate system used. Some layers required resampling to conform to
1-km2 spatial resolution.

We downloaded and processed climate data using
ClimateWNA (Climate Western North America) v. 5.30 (Wang
et al. 2012). Decadal, seasonal, and annual data for 1991 to 2000
and 2001 to 2010 were obtained for the study area. The inputs
to ClimateWNA were a raster of the area and a selection of vari-
ables to download. An R script was created to average the two dec-
adal layers for each covariate to generate 20-yr mean layers.

We then incorporated a land use/cover layer for 2011 from the
National Land Cover Database provided by the Multi-Resolution
Land Characteristics Consortium (Homer et al. 2015). This
national layer was clipped to our study area following recom-
mended protocols (MRLC 2016).

The phenology metrics and the vegetation drought response
index (VegDRI) were downloaded from the U.S. Geological
Survey EarthExplorer Web application (USGS 2016a). VegDRI
weekly data were downloaded for 2010 to 2015; phenology metrics
annual data were downloaded for 2010 to 2014 (2015 data were
unavailable when modeling was performed). We calculated the
annual and later the multiyear mean and standard deviation layers

Figure 3. Map of observed hybrid Linaria occurrence showing count of points per county.
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for the VegDRI and phenologymetrics layers. For example, the 5 yr
of VegDRI mean layers were averaged into a single layer represent-
ing the multiyear mean; the same processing was performed for 4
yr of phenology metrics data.

Soil data were downloaded from the World Soil Information
site in the SoilGrids collection (Hengl et al. [2017] through
ISRIC WDC-Soils). The proportion of clay at 0 to 5 cm was found
to be a significant contributor to an earlier species distribution
model for L. vulgaris created during preliminary research; clay per-
centages at depths of 0 to 5 cm and 5 to 15 cmwere therefore evalu-
ated as covariates for this expanded modeling project. We then
used Earth Explorer to download the Global 30 Arc-Second
Elevation GTOPO30 Digital Elevation Model (DEM) product
(USGS 2016a). These data were analyzed in ArcGIS v. 10.2 to cre-
ate layers for slope and aspect. The euclidean distance from the
water layer was constructed from this DEM, and the vector
water-body data for the study area were obtained from Earth
Explorer.

Finally, we retrieved the normalized difference vegetation index
(NDVI) and enhanced vegetation index products (MOD13A3
Vegetation Indices Monthly 1km) from the online MODIS
Reprojection Tool (USGS 2016b). These products were obtained
for each month from 2010 to 2015, then monthly data were aver-
aged for each year, and the 6 yr were averaged for the final multi-
year mean and standard deviation layers.

Species Distribution Modeling and Environmental Suitability
Maps
Given its performance in estimating potential distributions
compared with other modeling techniques (Phillips and Dudik
2008), we chose maximum entropy modeling or MaxEnt
(Phillips et al. 2006) to create environmental suitability maps.
The entire MaxEnt modeling process was performed separately
for each Linaria taxon.

The covariate selection process was performed incrementally
using layers from each group of environmental covariates to deter-
mine which layers were the most significant contributors to taxon-
specific estimated distributions. Covariates were grouped based on
similar sources, such as climate or phenology indices. The “jack-
knife” and “response curve” outputs of MaxEnt were analyzed
to rank the importance of each covariate to its model, and response
curves for each taxon were reviewed in relation to published

biological and ecological information to ensure they were biologi-
cally relevant (Supplementary Figure 1). This was an important
consideration, as environmental covariates that can be related
directly to the ecology or biology of a species have been shown
to be more discriminating when modeling a predicted invasive
range (Jimenez-Valverde et al. 2011; Rodder et al. 2009).
Correlation between covariates was handled throughout the mod-
eling process by generating a correlation table and evaluating
strong correlations (Pearson correlation coefficient |r| ≥ 0.80).
After cross-correlations were assessed, one to two covariates from
each set of correlated covariates were retained in the go-forward
models (Lestina et al. 2016). After identifying the covariate(s) with
the most significant contribution to the model from one group, we
added the next group of covariates. The determination process was
repeated until the highest-contributing covariates for the current
group were found, then the next group was added, and so on, until
the final suites of covariates were identified (Table 1). Strongly cor-
related covariates were only retained in the final models when their
presence or absence significantly influenced the model results: this
was tested by comparing outputs from versions of the model that
included one, the other, or both variables. This iterative process
reduced the number of variables to eight for the L. dalmatica
model, seven for the L. vulgaris model, and four for the hybrid
model. Environmental covariates used as inputs for each species
distribution model are listed in Table 1, and the percent contribu-
tions of the different covariates to each model are summarized in
Table 2. Correlations among the final covariates are provided in
Supplementary Tables 2–4.

Models were averaged across 10 replicates using the 10-fold
cross-validation procedure in MaxEnt. We evaluated model per-
formance using the area under the receiver operating characteristic
curve (AUC). AUC measures the probability that a random pres-
ence point in the study area is ranked above background (or
pseudo-absence) points (Phillips and Dudik 2008). The value of
AUC when assessing model performance has been the subject of
critical debate (Lobo et al. 2008), especially when projecting inva-
sive species distribution on spatial scales that greatly exceed the
sampling regions (Mainali et al. 2015). However, AUC remains
a useful assessment option for models using presence-only data
(Merow et al. 2013) to estimate invasive species distributions
across regions that reflect the scale of sampling (e.g., West et al.
2016; York et al. 2011). AUC values vary from 0 to 1; 0.5 shows

Table 1. Final species distribution models for Linaria dalmatica (LD), Linaria vulgaris (LV), and hybrid Linaria (HL).a,b

Model description
MaxEnt
settings* Model evaluation

Model n Most significant environmental covariates No. of
variables

Features β Average
test AUC

Minimum
training

presence test
omission

10th percentile
training

presence test
omission

LD 1,024 Maximum summer temperature, elevation, land
use/cover, continentality, NDVI mean, % clay at
5–15 cm, winter precipitation, annual heat-
moisture index

8 LQTH 2 0.762 0.20% 11.86%

LV 1,159 Maximum autumn temperature, land use/cover,
NDVI mean, winter precipitation, % clay at 5–15
cm, summer degree days above 18 C, slope

7 LQTH 1.5 0.810 0.26% 12.09%

LH 32 Number of summer frost-free days, end of season
NDVI SD, summer precipitation, slope

4 LQH 1.5 0.853 6.67% 10.00%

aAbbreviations: MaxEnt (maximum entropy) settings are linear (L), quadratic (Q), product (P), threshold (T), and hinge (H) features; β is the regularization multiplier; AUC is area under the
received characteristic curve; n is number of occurrence data points; NDVI is normalized difference vegetation index.
bNote that key model inputs, settings, and evaluation metrics are summarized here for each model, but should not be compared among models.
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the model performance is not better than random, values less than
0.5 are worse than random; 0.5 to 0.7 indicate poor performance;
0.7 to 0.9, reasonable/moderate performance; and 0.9, high perfor-
mance (Peterson et al. 2011). We also assessed our models by com-
paring 0% and 10% training presence test omission rates. A 0%
omission rate indicates that all the training presence locations were
found within the predicted suitable environment, and the 10%
omission rate indicates that 10% of training presence locations
lie beyond the predicted taxon-specific suitable environment
(Liu et al. 2013). The default parameter settings in MaxEnt do
not always produce the best distribution estimates (Kumar et al.
2014; Merow et al. 2013); accordingly, MaxEnt was executed with
varying feature types and regularization multipliers (specifically, 1,
1.5, 2, 2.5, and 3). We calculated the Akaike information criterion
(corrected for small sample size: AICc) using environmental niche
modeling tools or ENMTools (Warren et al. 2010). The AICc proc-
ess was followed to determine MaxEnt settings for the optimal
model considered in conjunction with biological characteristics
of the taxon. The final models selected had the most biologically
relevant covariates, though these were not themodels with the low-
est AICc scores (Supplementary Tables 5–7).

Estimating Potential Hybrid Distribution
We compared two different modeling approaches to predict hybrid
environmental suitability: first, a hybrid MaxEnt model based on
environmental parameters for currently known locations of hybrid
Linaria populations; and second, amap overlay of estimated L. dal-
matica and L. vulgaris distributions used to identify potential
hybridization zones. The hybrid MaxEnt model was created with
taxon occurrence data and candidate environmental covariates as
inputs, using the same method employed for predicting L. dalma-
tica and L. vulgaris environmental suitability. A threshold was
applied to the MaxEnt model output to produce a binary map
showing areas where hybrid Linaria is and is not expected.

For the overlay map, the process involved the following steps,
with the first two steps performed for both L. dalmatica and L. vul-
garis. First, in ArcGIS, we converted the final average ASCII file cre-
ated by MaxEnt into a grid raster with the ASCII to Raster tool.
Second, we reclassified these grid rasters to threshold classification
maps, using the “10th percentile training presence logistic threshold”
from MaxEnt results (Carter and Young 2011). The values used for
this threshold fromMaxEnt outputswere:L. dalmatica= 0.4722 and
L. vulgaris= 0.4762. This classification results in an area that covers
90% of the occurrence points in predicted environmentally suitable
areas. This step reduced the environmental suitability maps for
L. dalmatica and L. vulgaris to two classifications: suitable and

unsuitable. Third, we added these classification maps together using
the Raster Calculator tool. The resulting overlay map contained four
values describing the environment as: (1) unsuitable for both taxa,
(2) suitable for L. dalmatica, (3) suitable for L. vulgaris, and (4) suit-
able for both taxa and therefore potentially suitable for the formation
of hybrid Linaria populations. It should be noted that this overlay
approach assumes that co-invasion of L. dalmatica and L. vulgaris
is the best predictor for hybrid occurrence. This assumption may
be an oversimplification, as it excludes the possibility of propagule
movement establishing hybrid populations in new areas indepen-
dent of the parent species. This is discussed further under
Estimated Invasive Range for Hybrid Linaria in the Results and
Discussion section.

Completion of these steps made it possible to generate a hot-
spots map for Linaria hybrids using classified areas with a thresh-
old applied for (1) the MaxEnt hybrid environmental suitability
map, applying the same threshold variable with a value for hybrid
Linaria of 0.2771; and (2) the overlay map. The hot-spots map
shows classes of suitability for these two areas as well as the com-
bined area, that is, where both the MaxEnt model and the overlay
map predicted environments suitable for Linaria hybrids.

Statistical Analysis
Following Broennimann et al. (2012), a principal component analy-
sis (PCA) was performed on environmental covariates to quantify
the amount of environmental space shared by L. dalmatica and
L. vulgaris (Austin and Smith 1989; Green 1971). This method com-
pares the environmental conditions available for a species within a
defined study extent (background) with its observed occurrences
and estimates the available environmental space defined by the first
two axes from the PCA. Ten thousand random points were gener-
ated, and values were extracted from select covariate rasters at each
point. An R script was used (Broennimann et al. 2012) to generate a
graphical depiction of environmental-space overlap (Supplementary
Figure 2). To evaluate the quantity and similarity of locations
between the hybrid MaxEnt environmental suitability binary map
(i.e., threshold applied to give values of 0 or 1) and the hybrid zone
of the overlay map, we used the kappa statistic tool in the Map
Comparison Kit (Visser and de Nijs 2006; West et al. 2016)
(Supplementary Figure 3).

Results and Discussion

Model Performance and Comparison

Model assessments were based on AUC and omission rates at
different thresholds. Our AUC metrics indicated acceptable

Table 2. Percent contribution of environmental covariates to each MaxEnt model.a

Linaria dalmatica model
covariate

Percent
contribution Linaria vulgaris model covariate

Percent
contribution Hybrid Linaria model covariate

Percent
contribution

Maximum summer temperature 25.7 Maximum autumn
temperature

24.7 Number of frost-free summer
days

47.1

Elevation 25.4 Land use/cover 21.3 End of season NDVI SD 22.2
Land use/cover 16.7 NDVI mean 20.6 Summer precipitation 17.6
Continentality 11.8 Winter precipitation 16 Slope 13.1
NDVI mean 9.1 % Clay at 5–15 cm 11.4
% Clay at 5–15 cm 4.6 Summer degree days above 18 C 3.3
Winter precipitation 3.4 Slope 2.7
Annual heat-moisture index 3.3

aAbbreviations: MaxEnt, maximum entropy; NDVI, normalized difference vegetation index.
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model performance: L. dalmatica, 0.762; L. vulgaris, 0.810; and
hybrid Linaria, 0.853 (Table 1). For the minimum percentile
training presence test omission, an expected result is zero, or
100% correctly predicted presences. Our L. dalmatica and L. vul-
garis results met this ideal. For hybrid Linaria, our result was
6.67%, that is, approximately 2 of 32 presences predicted incor-
rectly. The 10th percentile training presence test omission
expected result is 10%, which it was for our hybrid Linariamodel.
The L. dalmatica and L. vulgaris values were 11.9% and 12.1%,
respectively, indicating these models were slightly less accurate
than expected. When comparing the predicted areas for hybrid
occurrence between theMaxEnt hybrid environmental suitability
map and the overlay map, the kappa statistic was 0.261, indicating
a low degree of similarity. This may result from differences in the
number of occurrence points used as model inputs: the overlay
map was based on 1,024 points for L. dalmatica and 1,159 for
L. vulgaris, derived from reported observations over several dec-
ades. However, the environmental suitability map for hybrid
Linaria was based on only 32 occurrence points, due to the recent
identification of these hybrid populations and limited recording
of their presence to date. The model outputs also reflect different
approaches and assumptions. The overlay map assumes that
hybrid population establishment requires prior co-invasion by
both parent species, and therefore only areas deemed suitable
for both L. dalmatica and L. vulgaris are projected as hybrid
habitat (Figures 4 and 5). In contrast, the model output based

on environmental covariates associated with currently known
hybrid populations estimates more extensive areas as suitable
for hybrid populations (Figure 5), including several counties in
north-central Montana projected as unsuitable for L. dalmatica
and L. vulgaris (Figure 4) that have few or no occurrence data
for these species (Figures 1 and 2). This result indicates that
future Linaria hybrid invasions could be spatially or temporally
disjunct with current distributions of the parents; combined with
greater ecological amplitude, this may enable the hybrids to
occupy a more extensive and diverse range of habitats.

Numerous hybrid hot spots were common to both maps even
if they were not classified with the same degree of risk by both
modeling approaches (Figure 5), and mapped model outputs were
generally consistent with known biological and ecological charac-
teristics of the three Linaria taxa. Such differences emphasize the
value of using more than one modeling method for an emerging
taxon such as hybrid Linaria, for which few occurrence points
are known. Areas identified by both models as suitable hybrid hab-
itat are of particular concern and should be priorities for proactive
scouting and management.

Predicted Invasive Ranges for Linaria dalmatica and Linaria
vulgaris

The model-generated map for L. dalmatica identifies as suitable
environment large areas of western Montana, northwestern and

Figure 4. Estimated habitat suitability for Linaria dalmatica and Linaria vulgaris.
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eastern Wyoming, and northeastern Colorado plus parts of the
Western Slope and Front Range (Figure 4). These aremostly areas
with higher temperatures compared with other parts of the
region, as would be expected for a species originating from the
dry climate of the Mediterranean. The model also showed that
L. dalmatica establishment is more likely at elevations below
2,800 m, but this reflects a more complex interplay of environ-
mental covariates than simple association of warmer summer
temperatures with lower elevation. Linaria dalmatica overwin-
ters aboveground as a vegetative rosette, limiting its ability to
invade at higher elevations, where it would be exposed to extreme
winter cold and extended periods of snow cover that could dam-
age the overwintering rosette and inhibit spring shoot growth.
Linaria dalmatica was also modeled as most likely to occur in
open areas dominated by grasses and in areas with reduced veg-
etative cover but more roads or other human-created disturb-
ances. This agrees with published studies describing
L. dalmatica invasion (e.g., Blumenthal et al. 2012; Vujnovic
and Wein 1997).

For L. vulgaris, potential habitat was identified in western
Montana, northwestern and southeastern Wyoming, and west of
the Front Range in Colorado, reflecting this species’ tolerance of
higher elevations with cooler temperatures and its preference for
higher moisture (Figure 4). In contrast to L. dalmatica, elevation
was not identified in our model as a significant environmental
covariate for L. vulgaris. This reflects the fact that L. vulgaris

overwinters entirely belowground and emerges from dormancy
later in the spring than L. dalmatica, allowing it to survive colder
winter temperatures and seasonally extended snow cover at higher
elevations. Consequently, L. vulgaris has invaded a more diverse
range of habitats across a wider range of elevations than L. dalma-
tica, from undisturbed subalpinemeadows to lower-elevation areas
with roads or other human-created disturbances (Sing et al. 2016).
Higher mean NDVI is associated with L. vulgaris occurrence,
reflecting the preference of this species for higher moisture condi-
tions that maintain greener vegetation throughout the growing
season. For both L. dalmatica and L. vulgaris, the emergence of
land use/cover as a significant contributing covariate is largely
driven by the limited potential of these species to establish in
low-light habitat such as forest understory (Blumenthal et al. 2012;
Sutton et al. 2007), restricting their predicted invaded ranges to
nonforested areas.

Our models identified several areas where occurrence data
were sparse or lacking (see Figures 1 and 2 for mapped occurrence
points) as suitable habitat for both L. dalmatica and L. vulgaris
(Figure 4). These areas included the Black Hills region in
northeastern Wyoming, the southwestern corner of Wyoming
west of the Red Desert, and large parts of northwestern
Colorado. It is possible that L. dalmatica and/or L. vulgaris have
invaded in these areas but their presence has been underreported,
or populations have yet to spread extensively. The possibility that
unrecognized or unreported populations may already be present

Figure 5. Estimated habitat suitability for Linaria hybrids based on environmental covariates of known hybrid populations (left) and on the overlay of habitat suitability maps for
the parent species (right).
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should be considered by managers when using model output to
identify areas at risk for Linaria invasion.

Estimated Invasive Range for Hybrid Linaria

As described earlier, we used two different modeling approaches to
estimate the invasive range for hybrid Linaria within our study
area. The overlay map (Figure 5) combines the L. dalmatica and
L. vulgaris environmental suitability maps to identify areas at risk
for hybrid populations. The model found 72.2% of L. dalmatica
and 78.9% of L. vulgaris occurrence points within overlapping
areas of habitat suitability that would also be suitable for hybrid
Linaria. This approach assumes that hybrid Linaria invasion
requires co-occurrence of L. dalmatica and L. vulgaris, with sub-
sequent gene flow between them and formation of a hybrid zone.
Invasion predictions based on the overlay map therefore exclude
the possibility of hybrid introduction via seed movement from
an established hybrid population elsewhere. A further limitation
of the overlay map is that it is based on threshold values to produce
binary suitability throughout the study area; in fact, habitat suit-
ability is more accurately considered as a continuum; therefore,
the overlay rendering represents a generalization. However, for
the purposes of our modeling, constructing the overlay is inform-
ative despite these limitations, as it identifies areas where co-occur-
rence of the parent taxa and generation of novel hybrid
populations is likely. The overlay map in Figure 5 highlights these
at-risk areas. They include large parts of western Montana; the
Black Hills region, the Laramie and Medicine Bow mountain
ranges, and the foothills of the Big Horn andWind River mountain
ranges inWyoming; and the Front Range andmuch of theWestern
Slope in Colorado.

As an alternative modeling approach, we used MaxEnt to gen-
erate an environmental suitability map for Linaria hybrids based
on locations of known hybrid populations and associated environ-
mental covariates. Many of these hybrids combine ecophysiolog-
ical and phenological traits from both parents: Linaria hybrids
emerge from dormancy earlier than the parent species, flower
sooner and for longer, and often resemble the L. vulgaris parent
in growth form, overwintering belowground, which enables them
to survive at higher and colder elevations (TurnerMFS 2012;Ward
et al. 2009). Themost significant contributing environmental cova-
riates in our model suggest that hybrids tolerate warmer summer
temperatures similar to the L. dalmatica parent, and will competi-
tively exploit higher summer precipitation and a longer growing
season in habitats similar to those preferred by the L. vulgaris
parent.

The environmental suitability map (Figure 5) estimates a more
limited potential hybrid distribution than the overlay map, with
approximately half the study area identified as being of low envi-
ronmental suitability. This reflects the low number of occurrence
points (n= 32) used to generate the environmental suitability map.
With fewer occurrence points, a smaller climatic and environmen-
tal range is deemed hospitable, and the hybrid environmental suit-
ability map should therefore be considered a conservative
prediction. This is reflected in the hybrid Linaria uncertainty
map, which shows larger areas where the coefficient of variation
from repeated model runs exceeded 0.05 than were obtained for
the parent taxa (Supplementary Figures 4–6). Despite greater pre-
dictive uncertainty and the risk of underestimating suitable habitat,
especially for species with broad ecological tolerance (Hernandez
et al. 2006), MaxEnt models based on limited presence-only data

have been shown to provide useful estimates of potential range for
nonnative species at early stages of invasion (West et al. 2016),
including novel populations resulting from hybridization between
an introduced plant species and a native congener (Jazwa et al.
2018). The areas modeled as suitable environments for hybrid
Linaria in our study should not be considered as locations where
invasion is inevitable, but as areas at greater risk of hybrid
population establishment. These areas include several national
parks, wilderness areas, and Native American reservations
(shown in Supplementary Figure 7) that present additional man-
agement challenges, as described below under Applications and
Implications of Model Outputs.

Part of north-central Montana was identified by the environ-
mental suitabilitymodel as potential habitat for hybrid populations
(Figure 5), even though neither parent has been reported there.
This potential habitat is also mapped in yellow in Figure 6. This
was surprising, as model projections show this area to be highly
unsuitable for L. vulgaris and only marginally suitable for L. dal-
matica (Figure 4). However, genetic recombination can expand
the ecological amplitude of novel hybrids beyond that of either
parent (Milne and Abbott 2000; Rieseberg et al. 2007; Turner
MFS 2012), potentially allowing hybrid Linaria populations to
invade a wider range of environments than either parent species.
Our model output indicates this area should be monitored for new
hybrids. Establishment of hybrid Linaria populations without
prior co-invasion by the parent species could result from hybrid
seed transported from elsewhere by wildlife or livestock or by
human activity. Elimination of the parent populations by a biocon-
trol or herbicide that is ineffective on the hybrid could also allow
hybrid populations to persist alone, as could displacement of the
original co-invading parent species by more competitive hybrid
phenotypes.

The overlay map and the environmental suitability map share
areas of estimated hybrid distribution (Figure 5); by combining the
two maps we can most accurately visualize the predicted distribu-
tions common to both models. Figure 6 shows these areas in red:
these represent hot spots at highest risk of hybrid invasion. For L.
dalmatica, L. vulgaris, and hybrid Linaria, 43%, 42%, and 81% of
occurrence points are found in the hot-spot areas, respectively.
This substantiates the strength of the model in predicting likeli-
hood of environmental suitability for hybrid Linaria and shows
that suitability exists in areas not fully inhabited by both parent
species. These at-risk areas are western Montana, the Black Hills
region, the Laramie Range in southeastern Wyoming, plus the
Front Range and parts of the Western Slope of Colorado.

Caveats and Uncertainty in Modeling

Our models were calibrated using occurrence data and environ-
mental covariates from only the region of interest, not the entire
invaded ranges of L. dalmatica and L. vulgaris; they are therefore
more correctly considered partial invasive species distribution
models, or iSDM (Vaclavik and Meentemeyer 2009). All species
distribution models are affected by decisions made during model
calibration thatmay result in uncertainties in potential distribution
estimates (Jarnevich et al. 2015). These uncertainties arise from
various sources when using presence-only or presence-back-
ground modeling techniques to predict environmental suitability
for a species, including sampling bias, spatial autocorrelation, mul-
ticollinearity between environmental covariates, temporal resolu-
tion of data, and modeling techniques (Guisan et al. 2007a, 2007b;
Jarnevich et al. 2015; Syfert et al. 2013; Veloz 2009).
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Figure 6. Predicted hot spots for hybrid Linaria invasion. High-risk areas (red) were identified as suitable habitat in both model outputs.
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We addressed spatial autocorrelations by rarefying presence
points and sampling bias before modeling by using the Gaussian
Kernel Density of Sampling Locations tool in SDMtoolbox to cre-
ate a bias file that facilitates control of background point selection.
Spatially clustered occurrence points may indicate suitable habitat;
however, such clustering can also result from increased human
activity leading to more recorded observations within areas of spe-
cial interest. Although we rarefied presence points, final occur-
rence maps for all three Linaria taxa show that more numerous
observations sometimes overlapped with higher human popula-
tion densities (e.g., the Colorado Front Range) or with more inten-
sively studied areas of special interest, such as Yellowstone and the
Grand Tetons (Figures 1–3). These areas may have been sta-
tistically overweighted in our models if these occurrence data
did in fact reflect increased human observation rather than habitat
suitability.

Hybrid Linaria populations incorrectly reported as L. dalma-
tica represent another potential source of field-sampling bias
(SES, personal observation). Some L. dalmatica populations that
appear to be taxonomically unambiguous based on plant morphol-
ogy have been found to contain L. vulgarisDNA, introduced by an
earlier hybridization event followed by repeated backcrossing
(Boswell et al. 2016). The frequency of L. dalmatica and L. vulgaris
populations that contain introgressed DNA from the other species
is unknown. The 32 confirmed hybrid Linaria populations used as
occurrence points in ourmodel were early-generation hybrids with
intermediate morphology. Later-generation and backcrossed
hybrid populations were not included in this data set: their iden-
tification requires DNA marker analysis, because morphological
traits are insufficient for reliable taxonomic assignment. Our
model inputs may therefore have underestimated the current
occurrence of hybrid Linaria populations in our study region,
resulting in overly conservative mapping of potential habitat for
these novel genotypes.

Multicollinearity between environmental covariates was
handled throughout the modeling process by generating a corre-
lation table and evaluating strong correlations during covariate
selection. Some degree of correlation between environmental cova-
riates is unavoidable, and acceptable thresholds for correlation
coefficients vary among published modeling studies (Dormann
et al. 2013). To minimize overfitting and improve model estimates
of at-risk areas where Linaria invasion has not yet been reported,
we retained strongly correlated variables only when removal of one
or the other significantly altered model output and the correlated
variables had identifiably different biological or ecological effects.
For example, number of summer degree days above 18 C was cor-
related with maximum autumn temperature in our data (Pearson’s
coefficient |r|= 0.882), but we retained both variables in our L. vul-
garis model, because number of summer degree days predomi-
nantly affects vegetative growth and onset of flowering in this
species, while autumn temperature influences seedpod develop-
ment and seed maturation. We note that the climatic covariates
used may represent a source of uncertainty, as they were derived
from decadal averages from the ClimateWNA application for 1991
to 2010, while the Linaria occurrence data were collected over time
periods ranging from 1913 to 2016. The temporal differences
between these data sets means the climatic covariates may not
accurately represent the conditions that Linaria populations expe-
rienced when they were surveyed (Lestina et al. 2016).

The fine-scale accuracy of any SDM-based occurrence maps
will be constrained by the spatial resolution of data used as model
inputs. The spatial resolution of GIS layers used in our models was

1 km2. This is sufficient to identify within-state zones at risk of
Linaria invasion, but not to pinpoint individual management
units. It would be possible, and potentially useful, to generate a
finer-scale hot-spots map for a smaller area, such as a county,
within the three states; however, doing so requires rerunning the
modeling step using test data and environmental covariates from
only that area to prevent loss of reliability and prediction accuracy
(Kumar et al. 2014). A further trade-off is that at smaller spatial
scales for environmental data, fewer occurrence points are usually
available for modeling, reducing the accuracy of fine-scale model
predictions (Guisan et al. 2007a; Hernandez et al. 2006).

Applications and Implications of Model Outputs

Despite these limitations, maps based on our modeling provide
insights into current and potential future Linaria invasion in the
U.S. northern Rockies. This is the first study to estimate potential
geographic distribution of novel hybrid Linaria genotypes, which
appear to be the most invasive of these weedy taxa (Turner MFS
2012). Management options for hybrid Linaria are limited: as pre-
viously noted, chemical and biocontrol methods used on L. dalma-
tica and L. vulgaris are often less effective on hybrids (Sing et al.
2016). Three species of stem-boring weevils, Mecinus janthinus
Germar, Mecinus janthiniformis Tosevski & Caldara, and
Mecinus heydenii Wencker, attack hybrid Linaria under green-
house conditions (SES, personal observation), but the ability of
these biocontrol agents to reduce hybrid populations in the field
is so far untested. An additional complication is that public rela-
tions or regulatory issues may reduce herbicide application to
an option of last resort in highly visible and environmentally sen-
sitive locations, such as national parks and wilderness areas, several
of which—as previously noted—are within areas predicted by our
models to be at high risk of hybrid Linaria invasion. Early detection
could allow elimination of hybrid Linaria populations by carefully
targeted repeated herbicide application or by hand pulling when
they are still small enough for such methods to be feasible.

Using our model-based maps to alert weed managers in areas at
high risk of hybrid Linaria occurrence could allow more effective
use of limited resources for scouting and early identification of
hybrid populations. As already noted, the spatial resolution of
our three-state model output is insufficient to pinpoint individual
management units such as counties. However, our maps can iden-
tify at-risk areas where additional predictive distribution modeling
on a finer spatial scale might be useful, in addition to targeted
informational outreach to resource managers. Our maps also iden-
tify large areas where risk of Linaria invasion is relatively low,
potentially allowing redirection of weed management resources
to more urgent problems. There can be substantial benefits to this
use of species distribution modeling: for example, Kaplan et al.
(2014) estimated that model-based targeting of areas at high risk
of nonnative tree invasion in South Africa reduced search effort
by 83%.

Previously published studies using MaxEnt modeling to esti-
mate the potential distribution of invasive plants in a novel range
have focused on individual species (e.g., Bromberg et al. 2011;
Choudhury et al. 2016; Koncki and Aronson 2015; Ndlovu et al.
2018; West et al. 2016). We could find only one previously pub-
lished study in which species distribution modeling has been used
to estimate the potential invasive range of hybrid populations
resulting from gene flow between invasive parent species:
Jovanovic et al. (2018) reported, based on MaxEnt modeling, that
suitable habitat in southeastern Europe for Bohemian knotweed
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(Reynoutria × bohemica Chrtek & Chrtková), a hybrid between
Japanese knotweed (Reynoutria japonica Houtt) and giant knot-
weed [Reynoutria sachalinensis (F. Schmidt) Nakai], differs from
that of the parent species. This appears to reflect the capacity of
R. × bohemica to tolerate higher seasonal temperatures and
drought. Our model-based maps suggest Linaria hybrids could
resemble Reynoutria hybrids in their ability to invade areas beyond
the ranges of the parent species (Figures 5 and 6). Gene flow
between L. vulgaris and L. dalmatica is producing hybrid popula-
tions that challenge currentmanagementmethods, especially those
using biocontrol; these novel recombinant Linaria genotypes may
also have the adaptive potential to colonize a wider range of hab-
itats than the parent taxa (Sing et al. 2016; Turner MFS 2012).
Further investigation of physiological and phenological differences
between Linaria hybrids and the parent species is needed. As
already noted, repeated backcrossing between early-generation
hybrids and either L. vulgaris or L. dalmatica results in populations
that resemble the recurrent parent but contain genetic material
from its co-invading congener; whether this introgression
increases the ecological amplitude and invasive capacity of the
recurrent parent populations has yet to be investigated (Boswell
et al. 2016).

The model projections presented here represent a single point
in time, but future changes in climate and land use may modify the
potential habitat and distribution of invasive Linaria taxa. Climatic
factors were the most significant environmental variable identified
in each of ourmodels (meanmaximum summer temperature for L.
dalmatica, late-seasonmeanmaximum temperature for L. vulgaris,
and number of frost-free days in the growing season for hybrid
Linaria). This suggests that a warming climate in our study area
could have significant impacts on future distribution of Linaria
taxa in the U.S. RockyMountain region, including invasion of hab-
itats not currently considered vulnerable. Updated distribution
estimates will require further modeling with new occurrence
and environmental data.

Author ORCID. Sharlene E. Sing, 0000-0001-5290-291X; Sarah M. Ward,
0000-0002-9288-1110.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/inp.2019.15

Acknowledgments. KRM received fellowship funding from the Colorado
Mountain Club Foundation (http://www.cmc.org/About/CMCFoundation.
aspx) and scholarship funding from GIS Colorado (http://giscolorado.org/
scholarships). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the article, and no conflicts of
interest have been declared. We thank different organizations that asked indi-
viduals to share Linaria occurrence data with us and the 20 contributors who
did; these data greatly improved the quality of the models. We also thank
Randall Boone for reviewing the map products and Jordan Lestina for contrib-
uting to the modeling.

References

Alex, J (1962) The taxonomy, history, and distribution of Linaria dalmatica.
Can J Bot 40:295–307

Arnold, RM (1982) Pollination, predation and seed set in Linaria vulgaris
(Scrophulariaceae). Am Midl Nat 107:360–369

Austin, M, Smith, T (1989) A newmodel for the continuum concept. Plant Ecol
83:35–47

Benito, BM, Martinez-Ortega, MM, Munoz, LM, Lorite, J, Penas, J (2009)
Assessing extinction-risk of endangered plants using species distribution

models: a case study of habitat depletion caused by the spread of greenhouses.
Biodivers Conserv 18:2509–2520

Blumenthal, DM, Norton, AP, Cox, SE, Hardy, EM, Liston, GE, Kennaway, L,
Booth, DT, Derner, JD (2012) Linaria dalmatica invades south-facing slopes
and less grazed areas in grazing-tolerant mixed-grass prairie. Biol Invasions
14:395–404

Boria, RA, Olson, LE, Goodman, SM, Anderson, RP (2014) Spatial filtering to
reduce sampling bias can improve the performance of ecological niche mod-
els. Ecol Model 275:73–77

Boswell, A, Sing, SE, Ward, SM (2016) Plastid DNA analysis reveals cryptic
hybridization in invasive Dalmatian toadflax (Linaria dalmatica) popula-
tions. Invasive Plant Sci Manag 9:112–120

Bradley, BA, Marvin, DC (2011) Using expert knowledge to satisfy data needs:
mapping invasive plant distributions in the western United States. West N
Am Nat 71:302–315

Broennimann, O, Fitzpatrick, MC, Pearman, PB, Petitpierre, B, Pellissier, L,
Yoccoz, NG, Thuiller, W, Fortin, MJ, Randin, C, Zimmermann, NE,
Graham, CH, Guisan, A (2012) Measuring ecological niche overlap from
occurrence and spatial environmental data. Global Ecol Biogeogr 21:481–497

Bromberg, JE, Kumar, S, Brown, CS, Stohlgren, TJ (2011) Distributional
changes and range predictions of downy brome (Bromus tectorum) in
Rocky Mountain National Park. Invasive Plant Sci Manag 4:173–182

Brown, JL (2014) SDMtoolbox: a Python-based GIS toolkit for landscape
genetic, biogeographic and species distribution model analyses. Methods
Ecol Evol 5:694–700

Brown, LS (2008) Genetic Variation of the Invasive Linaria dalmatica in Its
Introduced Range in Western North America and the Impact of Its
Predominant Biological Control Agent, Mecinus janthinus. MS thesis.
Moscow, ID: University of Idaho. 91 p

Carter, L, Young, N (2011) Identifying Niche Overlap from Maxent Model
Predictions. http://ibis.colostate.edu/WebContent/WS/ColoradoView/
TutorialsDownloads/Niche_Overlap_v4.pdf. Accessed: May 5, 2016

Choudhury, MR, Deb, P, Singha, H, Chakdar, B, Medhi, M (2016) Predicting
the probable distribution and threat of invasiveMimosa diplotricha Suavalle
and Mikania micrantha Kunth in a protected tropical grassland. Ecol Eng
97:23–31

Dormann, CF (2007) Effects of incorporating spatial autocorrelation into the
analysis of species distribution data. Global Ecol Biogeogr 16:129–138

Dormann, CF, Elith, J, Bacher, S, Buchmann, C, Carl, G, Carré, G, García
Marquéz, JR, Gruber, B, Lafourcade, B, Leitão, PJ, Münkemüller, T,
McClean, C, Osborne, PE, Reineking, B, Schróder, B, Skidmore, AK,
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