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Abstract. We continue our investigation of the real space H of Hermitian matrices
in Mn(C) with respect to norms on Cn. We complete the commutative case by showing
that any proper real subspace of the real diagonal matrices on Cn can appear as H . For the
non-commutative case, we give a complete solution when n = 3 and we provide various
illustrative examples for n ≥ 4. We end with a short list of problems.

2020 Mathematics Subject Classification. 15A60, 47A12

1. Introduction. This paper is a continuation of [4]. Standard numerical range
notation and basic facts about Hermitians can be found in [2, 3].

Let X = (Cn, ‖ · ‖) with dual space X ′ = (Cn, ‖ · ‖′). We denote by HX , or simply H ,
the set of matrices in Mn(C) which are Hermitian with respect to the norm ‖ · ‖ or, equiv-
alently, with respect to the corresponding operator norm | · | on Mn(C). We write dim(H)
for the real dimension of H . Where several norms are distinguished by subscripts, we shall
use the same subscripts for the corresponding sets of Hermitians (and other sets dependent
on the norms). Thus, for ‖ · ‖1 and ‖ · ‖2, we write H1 and H2, respectively.

A result of Bauer [1, p. 38] is particularly useful. Define an equivalence relation
on the set of norms for Cn as follows. Let norms ‖ · ‖1 and ‖ · ‖2 be similar if there
exists an (invertible) L ∈ Mn(C) such that ‖v‖2 = ‖Lv‖1 (v ∈ Cn). Then, the numerical
range of T ∈ Mn(C) with respect to ‖ · ‖1 is the numerical range of L−1TL with respect
to ‖ · ‖2 and, in particular, T ∈ H1 if and only if L−1TL ∈ H2. The mapping T �→ L−1TL
is an isometric isomorphism from (Mn(C), | · |1) to (Mn(C), | · |2). Since H1 maps to H2,
dim(H1)= dim(H2) and H1 + iH1 is an algebra/C∗-algebra if and only if H2 + iH2 is an
algebra/C∗-algebra. The property of being absolute is not necessarily preserved by similar
norms. For example,

‖(x, y, z)‖1 = |x| + |y| + |z| and ‖(x, y, z)‖2 = |x| + |y + z| + |y − z|
define similar norms, but only ‖ · ‖1 is absolute. Examples suggest that in any equivalence
class, absolute norms are quite sparse. Indeed, the equivalence class containing the norm
in [4, Theorem 3.9] contains no absolute norms.
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The paper is divided into five sections. Preliminary results are covered in Section 2,
including properties of the similarity relation for norms. In Section 3, we consider the case
of H commutative. We answer a question concerning non-absolute norms and prove a non-
similarity result on norms which give the same H . Non-commutative H are the subject of
Section 4. We give a comprehensive description of the case n = 3 and show by examples
that for n = 4, the situation is much more complicated. For every n ≥ 3, we show that there
is a norm on Cn giving the minimum dimension of 4. Questions of maximum dimension
remain open. We conclude, in Section 5, with a short selection of problems.

NOTES 1.1. We shall make use of the following facts. See [4, Lemma 2.1,
Theorem 2.3 and Remarks].

(1) A norm on Cn is absolute if and only if H includes all real diagonal matrices.
(2) If a norm on Cn is absolute, then H + iH is all diagonal matrices or a direct sum of

C∗-algebras.
(3) For any complex Banach space, if H contains A and B with AB 
= BA, then I, A, B

and i[A, B] = i(AB − BA) are linearly independent (over C and so also over R).
Hence, dim(H)≥ 4.

2. Preliminary results. Here, we include a number of results most of which will be
used in later sections. The first two lemmas are more powerful than [3, Lemma 15.2] for
inductive arguments.

The following notation is assumed in Lemmas 2.1, 2.3, 2.5 and Corollary 2.4. Let
p = m + n. For x = (x1, . . . , xm) ∈ Cm and y = (y1, . . . , yn) ∈ Cn write

(x, y)= (x1, . . . , xm, y1, . . . , yn) ∈ Cp and 0 = (0, . . . , 0) (as required).

Let X = (Cm, ‖ · ‖X ) and Z = (Cp, ‖ · ‖Z) with

‖x‖X = ‖(x, 0)‖Z (x ∈ X ).

Let T = [tjk] ∈ Mp(C) have block matrix form T =
⎡
⎣P Q

R S

⎤
⎦ where P ∈ Mm(C).

LEMMA 2.1. Let ‖(x, 0)‖Z ≤ ‖(x, y)‖Z for all (x, y) ∈ Z and let T ∈ HZ. Then P ∈ HX .

Proof. Let α ∈ X ′ and let γ = (α, 0) ∈ Z′. Then, for (x, y) ∈ Z,

|γ(x, y)| = |α(x)| ≤ ‖α‖′
X ‖x‖X = ‖α‖′

X ‖(x, 0)‖Z ≤ ‖α‖′
X ‖(x, y)‖Z

so that ‖γ‖′
Z ≤ ‖α‖′

X . It follows that if α ∈ DX (x), then γ ∈ DZ(x, 0) and

γ(T(x, 0))=
[
α0

] ⎡
⎣P Q

R S

⎤
⎦

⎡
⎣ x

0

⎤
⎦ = α(Px).

So α(Px) ∈ R and the result follows.

NOTE 2.2. The following example illustrates how Lemma 2.1 can be generalised. The
same generalisation applies to Lemma 2.3 and Corollary 2.4, below.
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Suppose, in C4, ‖(w, 0, y, 0)‖ ≤ ‖(w, x, y, z)‖ and T = [tjk] ∈ M4(C) is Hermitian.

Then, in C2 with norm defined by ‖(w, y)‖ = ‖(w, 0, y, 0)‖,

⎡
⎣ t11 t13

t31 t33

⎤
⎦ is Hermitian.

LEMMA 2.3. Let T ∈ HZ and R = O. Then, P ∈ HX .

Proof. Let α ∈ DX (x). By the Hahn–Banach theorem, α has a norm 1 extension, α+ ∈
Z′, which must be of the form

(α, β)= (α1, . . . , αm, β1, . . . , βn)

since α+(ej)= α(ej)= αj (j = 1, . . . ,m). Then (α, β) ∈ DZ(x, 0) and

(α, β)(T(x, 0))=
[
αβ

] ⎡
⎣ P Q

O S

⎤
⎦

⎡
⎣ x

0

⎤
⎦ = α(Px).

So α(Px) ∈ R and the result follows.

It is straightforward to verify that the numerical range of a matrix M with respect to
a given norm is equal to the numerical range of its transpose M ′ with respect to the dual
norm. This leads to the following corollary to Lemma 2.3.

COROLLARY 2.4. Let T ∈ HZ and Q = O. Then P ∈ HX .

Proof. Since T ∈ HZ , T ′ ∈ HZ′ . So, by Lemma 2.3, P′ ∈ HX ′ and hence P ∈ HX .

Define T = [sjk] ∈ Mp(C)where sjk = tjk (j, k = 1, . . . , p). For v = (v1, . . . , vp) ∈ Cp

let v = (v1, . . . , vp ).

LEMMA 2.5. Let ‖v‖Z = ‖v‖Z for all v ∈ Z and let T ∈ HZ. Then T ∈ HZ and it follows
easily that

Re T = 1
2 (T + T) ∈ HZ and i Im T = 1

2 (T − T) ∈ HZ .

Proof. For γ ∈ Z′ and v ∈ Z, |γ(v)| = |γ(v)|. Hence, ‖γ‖′ = ‖γ‖′ and γ ∈ DZ(v) if and
only if γ ∈ DZ(v). It is straightforward to verify that γ(Tv)= γ(Tv) from which the result
follows.

LEMMA 2.6. Let ‖ · ‖1 and ‖ · ‖2 be similar norms for Cn. Then, the corresponding
dual norms, ‖ · ‖′

1 and ‖ · ‖′
2, are also similar.

Proof. Let ‖v‖2 = ‖Lv‖1 (v ∈ Cn). We regard vectors v and φ in the space and its dual
space, respectively, as row or column vectors as dictated by their matrix products with
L ∈ Mn(C). We have

|φ(v)| = |(φL−1)(Lv)| ≤ ‖φL−1‖′
1‖Lv‖1 = ‖φL−1‖′

1‖v‖2

so that ‖φ‖′
2 ≤ ‖φL−1‖′

1. If ‖v‖1 = 1 and |(φL−1)v| = ‖φL−1‖′
1 then ‖L−1v‖2 = 1 and

|φ(L−1v)| = |(φL−1)(v)| = ‖φL−1‖′
1.

Hence ‖φ‖′
2 = ‖Kφ‖′

1 where K is the transpose of L−1.
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PROPOSITION 2.7. Let ‖ · ‖ be a norm for Cn. There is a similar norm ‖ · ‖0 such that,
for v ∈ Cn,

‖v‖∞ ≤ ‖v‖0 ≤ ‖v‖1

where ‖v‖∞ and ‖v‖1 are the �∞ and �1 norms, respectively.

We first prove two lemmas. Let X = (Cn, ‖ · ‖) with n ≥ 2. Let S+ be the set of
matrices T = [φjk] ∈ Mn(C) where the rows φj = (φj1, . . . , φjn) (j = 1, . . . , n) are func-
tionals in X ′ with ‖φj‖′ = 1, and let S = {T ∈ S+ : det(T) 
= 0}. Then, S 
= ∅ (consider φj,
(j = 1, . . . , n) linearly independent).

Let D = {| det(T)| : T ∈ S}. There exists M > 0 such that, for all θ = (θ1, . . . , θn) ∈ X ′,
max

j
|θj| ≤ M‖θ‖′. So, for T ∈ S , the Leibniz formula for det(T) gives | det(T)| ≤ n!M .

Hence, D is bounded above.

LEMMA 2.8. For some T ∈ S , | det(T)| = max D.

Proof. With respect to the operator norm, S+ is compact and T �→ | det(T)| is
continuous. Since det(T)= 0 for T ∈ S+ \ S , it follows that | det(T)| = max D for
some T ∈ S .

For T ∈ S , the columns of T−1 = [xjk] are given by

xk = (x1k, . . . , xnk)= 1

�
(c1k, . . . , cnk), (2.1)

where �= det(T) and [cjk] is the cofactor matrix of T . Observe that each det(T)xk is
independent of φ1k, . . . , φnk .

LEMMA 2.9. Let T = [φjk] ∈ S with | det(T)| = max D. Then, each column of T−1 =
[xjk], regarded as a vector in X , has norm 1.

Proof. We show that ‖x1‖ = 1. The proofs for ‖xk‖ (k = 2, . . . , n) are similar.
Since φ1(x1)= 1, ‖x1‖ ≥ 1. Suppose ‖x1‖ = 1/t> 1. Then, tx1 = y1 = (y11, . . . , yn1) has
a support functional ψ1 = (ψ11, . . . , ψ1n) (say), and ψ1, φ2, . . . , φn are linearly inde-
pendent since ψ1(x1)= 1/t and φ2(x1)= · · · = φn(x1)= 0. Let V be T with first row,
(φ11, . . . , φ1n), replaced with (ψ11, . . . , ψ1n), let V−1 = [zjk] and let 	 = det(V). Then,
considering (2.1) and the observation following, it follows that

z1 = (z11, . . . , zn1)= 1

	
�(x11, . . . , xn1)= �

	t
(y11, . . . , yn1)= �

	t
y1.

We have ψ1(z1)= 1, and since ψ ∈ D(y1), ψ1(y1)= 1. Hence, �= 	t so that |�|< |	|.
This contradicts | det(T)| = max D. Hence ‖x1‖ = 1.

Proof of Proposition 2.7. With respect to ‖ · ‖, let T ∈ S with | det(T)| = max D. For
v, θ ∈ Cn, define

‖v‖0 = ‖T−1v‖ so that ‖θ‖′
0 = ‖θT‖′.

Let T = [φjk] and T−1 = [xjk], and let {e1, . . . , en} be the usual basis for Cn. Then regarding
e1, . . . , en as vectors in X ′ and X in turn we have, for m = 1, . . . , n,

‖em‖′
0 = ‖φm‖′ = 1 and ‖em‖0 = ‖xm‖ = 1.
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Hence, for v = (v1, . . . , vn) ∈ Cn,

max
m

|vm| = max
m

|em(v)| ≤ ‖v‖0 = ‖v1e1 + · · · + vnen‖0 ≤ |v1| + · · · + |vn|
and the result follows.

Note that the norm ‖ · ‖0 in Proposition 2.7 has the property that ‖ek‖0 = ‖ξk‖′
0 = 1

for all the usual basis vectors ek and ξk in the space and its dual space, respectively. We call
such a norm doubly normalised.

We use Proposition 2.7 to establish a further result along the lines of Lemmas 2.1
and 2.3.

LEMMA 2.10. Let X = (Cm, ‖ · ‖1), Y = (Cn, ‖ · ‖2) and Z = (Cm+n, ‖ · ‖0) where

‖(x, y)‖0 = max{‖x‖1, ‖y‖2}.

Let T be the block matrix

⎡
⎣P Q

R S

⎤
⎦, where P is m × m and S is n × n. Then

T ∈ H0 ⇐⇒ P ∈ H1, S ∈ H2 and Q, R are zero-matrices.

Proof. Part (i). Suppose, first, that both ‖ · ‖1 and ‖ · ‖2 are doubly normalised. Let
	 = (φ, ψ) ∈ Z′. Then

	(z)= 	(x, y)= 	(x, 0)+ 	(0, y)= φ(x)+ψ(y) and ‖	‖′
0 = ‖φ‖′

1 + ‖ψ‖′
2.

For ‖(x, y)‖0 = 1,

D0(x, y)=
⎧⎨
⎩

{(φ, 0) : φ ∈ D1(x)} if ‖x‖1 = 1> ‖y‖2 (Case 1 ),

{(0, ψ) :ψ ∈ D2(y)} if ‖x‖1 < 1 = ‖y‖2 (Case 2 ),

and when ‖x‖1 = ‖y‖2 = 1

D0(x, y)= {((1 − t)φ, tψ) : φ ∈ D1(x), ψ ∈ D2(y), 0 ≤ t ≤ 1} (Case 3 ).

Let U =
⎡
⎣ P O

O S

⎤
⎦. Then considering 	(Uz), where 	 ∈ D0(z), in the three cases above,

leads to

U ∈ H0 ⇐⇒ P ∈ H1 and S ∈ H2. (2.2)

Let T ∈ H0. It remains to show that P ∈ H1, S ∈ H2 and Q, R are zero matrices.

Case 1. For φ ∈ D1(x), (φ, 0) ∈ D0(x, 0) and (φ, 0)(T(x, 0))= φ(Px). So φ(Px) ∈ R

and hence P ∈ H1.

Case 2. Similarly, S ∈ H2.

Case 3. From (2.2), U ∈ H0 and hence V = T − U =
⎡
⎣O Q

R O

⎤
⎦ ∈ H0. Taking t = 0

gives

(φ, 0) ∈ D0(x, y) and hence (φ, 0)(V(x, y))= φ(Qy) ∈ R
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for all ‖x‖1 = ‖y‖2 = 1 and φ ∈ D1(x). Let {e1, . . . , en} and {ξ1, . . . , ξm} be the usual bases
for Y and X ′, respectively. Let qjk be the (j, k)-th entry in Q and choose x so that ξj ∈ D1(x).
Then, for any |λ| = 1,

(ξj, 0)(V(x, λek))= λξj(Qek)= λqjk ∈ R.

So qjk = 0 and hence Q = O. Taking t = 1, a similar argument gives R = O.
Part (ii). Now remove the restriction that ‖ · ‖1 and ‖ · ‖2 are doubly normalised. In

view of Proposition 2.7, there are doubly normalised norms ‖ · ‖01 and ‖ · ‖02 similar to
‖ · ‖1 and ‖ · ‖2, respectively. Let ‖x‖01 = ‖Ax‖1 (x ∈ Cm) and ‖y‖02 = ‖By‖2 (y ∈ Cn).
Define ‖(x, y)‖00 = max{‖x‖01, ‖y‖02}. Then

‖(x, y)‖00 = ‖C(x, y)‖0 where C =
⎡
⎣ A O

O B

⎤
⎦

and

T ∈ H0 ⇐⇒ C−1TC ∈ H00 ⇐⇒
⎡
⎣A−1 O

O B−1

⎤
⎦

⎡
⎣P Q

R S

⎤
⎦

⎡
⎣ A O

O B

⎤
⎦ ∈ H00

⇐⇒
⎡
⎣ A−1PA A−1QB

B−1RA B−1SB

⎤
⎦ ∈ H00

⇐⇒ A−1PA ∈ H01, B−1SB ∈ H02, A−1QB = O, B−1RA = O (by Part (i))

⇐⇒ P ∈ H1, S ∈ H2, Q = O, R = O

as required.

EXAMPLE 2.11. Let Cp = Cm+n have norm defined for (z,w)= (z1, . . . , zm,

w1, . . . ,wn) by

‖(z,w)‖ = max{|zr|, |zs + zt|, |wu| : r, s, t = 1, . . . ,m, s< t, u = 1, . . . , n}.

Then, H consists of all real diagonal matrices of the form

⎡
⎣rI O

O �

⎤
⎦ where I is m × m and

� is n × n, and H has real dimension n + 1. See [4, Theorem 3.2].

3. Commutative H . In [4, Section 3], we noted that when H is commutative, we
may suppose, via a similarity change of norm on Cn, that H is a real subspace of the real
diagonal matrices on Cn. We asked if the converse is true.

THEOREM 3.1. Let K be any proper real subspace of the real diagonal matrices on
Cn with I ∈ K. Then, there exists a non-absolute norm on Cn for which H = K.

Proof. Suppose that dim(K)= m (thus m< n). Choose any basis for K which contains
I . Perform the usual row operations on these diagonals to form a triangular basis. If neces-
sary, exchange the order of the usual basis in Rn to arrive at a basis for H given by I and
the diagonal matrices Dj with entries:

(0, 1, a23, a24, . . . , a2n), (0, 0, 1, a34, . . . , a3n), . . . , (0, 0, . . . , 0, 1, amm+1, . . . , amn)

(3.1)
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with all ajk ∈ R. Let w = (w1, . . . ,wn) with each wj ∈ T, and let �n denote the set of nth

roots of unity. For z = (z1, . . . , zn) ∈ Cn, define

‖z‖ = max{|Lz| : w ∈ Tn, γj ∈�n}, (3.2)

where L = L1 + L2 and

L1z = w1γ1z1 + w1w2γ2z2 + w1wa23
2 w3γ3z3 + · · · + w1wa2m

2 wwa3m
3 . . .wmγmzm,

L2z = w1wa2 m+1

2 wa3 m+1

3 . . .wam m+1
m γm+1zm+1 + · · · + w1wa2n

2 wa3n
3 . . .wamn

m γnzn.

It is clear that ‖ · ‖ is a seminorm on Cn. We complete the proof with four lemmas.

LEMMA 3.2. The seminorm ‖ · ‖ given by (3.2) is a norm.

Proof. Suppose ‖z‖ 
= 0. Taking a scalar multiple, we may assume that some zk = 1
and that |zj| ≤ 1 (j 
= k). Now take all wj = 1 and γk = 1. Choose the remaining γj so that
Re(γjzj)≥ 1. Then Re(Lz)≥ 1, and hence ‖z‖ 
= 0.

LEMMA 3.3. Each diagonal matrix Dj is Hermitian.

Proof. For t ∈ R, we have

exp(itDj)= diag(1, 1, . . . , 1, exp(it), exp(iaj j+1t), . . . , exp(iajnt)).

In the formula for ‖ exp(itDj)z‖, each exponential in the entries for exp(itDj) is absorbed
into w

aj j+k

j+k and hence the norm is unchanged as ‖z‖ and Dj is Hermitian.

LEMMA 3.4. Let T be a Hermitian matrix with respect to ‖ · ‖. Then, T is a real
diagonal matrix.

Proof. For γ ∈�n, let φ be the functional given by

φγ = (γ1, γ2, . . . , γn).

Clearly ‖φγ‖ ≤ 1, and for each j, we have γ−1
j φγ(ej)= 1. Hence ‖γ−1

j φγ‖ = 1 and so

γ−1
j φγ(Tej)= 1 ∈ R. Thus

γ−1
j γ1t1j + γ−1

j γ2t2j + tjj + γ−1
j γntnj ∈ R (3.3)

for all choices of γ. We may choose values of γ1 so that, for j 
= 1, γ−1
j γ1 takes the values

1, ω, . . . , ωn−1 where ω= exp(2π i/n), and similarly for each other term in (3.3). Add to
give ntjj ∈ R. Now choose values of γ1 so that, for j 
= 1, every value of γ−1

j γ1 is the fixed
value ων and all the other values are as above. Add again to give ων t1j ∈ R for all ν, and so
t1j = 0. Similarly for all the other terms. Hence, T is a real diagonal matrix.

LEMMA 3.5. The only real diagonal Hermitians with respect to ‖ · ‖ are determined
by the basis (3.1).

Proof. Suppose, towards a contradiction, that there is a further real diagonal Hermitian
�with respect to ‖ · ‖. By row operations as before, we may suppose that� has zeros in the
first m positions and entry 1 in some position N with m<N ≤ n. Let X be the subspace of
Cn spanned by e1, . . . , em, eN . By [3, Lemma 15.2] (or by Lemma 2.2), �|X is Hermitian
and also for the restriction of every other basis element in (3.1). For X with the induced
norm, the space of diagonal Hermitians has full dimension and so by [4, Lemma 2.1] the
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norm on X is absolute. We show that this is false. Let all entries of ξ ∈ X be 1, so that
‖ξ‖ = m + 1, and let all entries of η be 1 except for the last one which is exp(iθ). The
norm formula for η has only m + 1 terms in it. We may choose w2, . . . ,wm successively so
that the first m terms each line up as 1, but for infinitely many choices of θ , the last value
fails to line up, and hence the norm is not absolute.

Note in passing that the norm given by (3.2) is an extension of the �1 norm
on Cm.

The next proposition shows that there are uncountably many different similarity
equivalence classes on C2 with H equal to all real diagonal matrices.

PROPOSITION 3.6. Let p, q ∈ [1,∞] and let ‖ · ‖p and ‖ · ‖q denote, respectively, the
�p and �q norm on C2. If p 
= q, then ‖ · ‖p and ‖ · ‖q are not similar.

Proof. Write p ∼ q when ‖ · ‖p and ‖ · ‖q are similar. We show that p ∼ q implies p = q.
Suppose first that p, q ∈ [1,∞) with q 
= 2, and p ∼ q. Then, there exists (invertible)

T =
[ a b

c d

]
∈ M2(C) such that, for (x, y) ∈ C2, ‖(x, y)‖p = ‖T(x, y)‖q. Thus

(|ax + by|q + |cx + dy|q)1/q = (|x|p + |y|p)1/p. (3.4)

Putting (x, y)= (1, 0) and (x, y)= (0, 1) gives

|a|q + |c|q = |b|q + |d|q = 1 (3.5)

and putting (x, y)= (1, λ)= (1, eit) gives

F(t)= |a + λb|q + |c + λd|q = 2q/p. (3.6)

Differentiating (3.6) with respect to t gives

F′(t)= −q[|a + λb|q−2 Im(λab)+ |c + λd|q−2 Im(λcd)] = 0 (3.7)

for all |λ| = 1 with |a + λb| and |c + λd| non-zero.

Case 1. Suppose ab and cd are non-zero. We can choose μ with |μ| = 1 such
that |a ±μb|, |c ±μd|, Re(μab), Im(μcd) are all non-zero. Putting λ= ±μ in (3.7)
gives

|a ±μb|q−2 Im(μab)

Im(μcd)
+ |c ±μd|q−2 = 0 so that |c ±μd| = R|a ±μb| (say).

Then, by (3.6), (1 + Rq)|a ±μb|q = 2q/p. Hence, |a +μb| = |a −μb| so that Re(μab)= 0
contradicting the choice of μ.

Case 2. Suppose ab = 0 and cd 
= 0. [ab 
= 0 and cd = 0 is similar.] Then, by (3.7),
|c + λd| = 0 for almost all |λ| = 1. Hence, c = d = 0 contradicting cd 
= 0.

Case 3. Suppose ab = 0 and cd = 0. By (3.5), we cannot have a = c = 0 or b = d = 0.
If a = d = 0, then (3.5) gives |b| = |c| = 1 and (3.4) then gives ‖(x, y)‖p = ‖(x, y)‖q. So
p = q. Similarly if b = d = 0.

The above arguments show that p 
∼ q when p, q ∈ [1,∞) with q 
= 2 and p 
= q.
For such p and q, the ordered pair (p, q) is indicated on the table, below, by •. By
Lemma 2.6, if p 
∼ q, then p′ 
∼ q′ where pp′ = p + p′ and qq′ = q + q′. Each such further
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(p′, q′) is indicated by ◦. And if p 
∼ q, then q 
∼ p. Such further (q, p) are each indicated
by ∗.

p = 1 u 2 v ∞
1 • • •
u • • • ◦

q = 2 ∗ ∗ ∗ ∗
v • • • ◦
∞ ◦ ◦ ◦

(1< u< 2< v<∞)

To complete the proof, we show that ∞ 
∼ 1. Let p = ∞ and q = 1. Then, (3.4), (3.5), (3.6)
and (3.7) remain valid provided we substitute max{|x|, |y|} for (|x|p + |y|p)1/p in (3.4) and
1 for 2q/p in (3.6). The arguments in Case 1 (with 1 for 2q/p) and Case 2 give the same
contradictions as before. Case 3 leads to the contradiction 2 = 1.

4. Non-Commutative H . In this section, we investigate the problem of finding non-
absolute norms on Cn for which H is non-commutative. It is clear from the Remarks at the
end of [4] that there are no such norms on C2. In [4, Theorem 3.9], we gave such a norm
on C3 and we prove below that all H for such norms on C3 are isometrically isomorphic as
real Lie algebras. But first, we generalise that example to Cn for n ≥ 4.

For j, k = 1, . . . , n, let Ejk be the usual elementary matrices in Mn(C), and for j< k
define Gjk = i(Ejk − Ekj). This notation is used at several points in this section for different
values of n.

THEOREM 4.1. Let Cn have norm defined by

‖(z1, . . . , zn)‖0 = max
{∣∣∣

n∑
j=1

αjzj

∣∣∣ : αj ∈ R,

n∑
j=1

α2
j = 1

}
.

Then, H has a basis consisting of I and every Gjk. Hence, dim(H)= 1 + 1
2 n(n − 1).

Proof. Since exp(itGjk)= I + i(sin t)Gjk + (cos t − 1)Pjk where Pjk = Ejj + Ekk , it fol-
lows that each Gjk ∈ H . For the subsequent arguments in [4], we simply expand each 3-
vector to an n-vector by inserting zeros arbitrarily. Finally, we note the linear independence
of I and the Gjk since the matrices have no non-zero overlapping entries.

Next, we consider norms on C3 and investigate the dimension and algebraic structure
of H when H is non-commutative and, in particular, when H + iH is not C∗.

THEOREM 4.2. Let C3 have a norm for which H is non-commutative.

(1) If the norm on C3 is similar to an absolute norm, then dim(H)≥ 5.
(2) If the norm on C3 is not similar to any absolute norm, then dim(H)= 4 and all

such H are isometrically isomorphic as real Lie algebras.

Note that [4, Theorem 3.9] shows that there does exist a norm on C3 such that H is
non-commutative and dim(H)= 4.

Proof. (1) Let the norm on C3 be similar to an absolute norm. Then, H + iH is a C∗-
algebra and since H is non-commutative, it is the direct sum of full matrix algebras. Since
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I ∈ H the isomorphic split into a direct sum cannot be M2(C)⊕ {0}. Hence, dim(H)≥ 5.
(2) Let A and B be non-commuting Hermitians. So, the set S = {I, A, B, i[A, B]} is,

or can be extended to, a basis for H . Then, A has eigenvalues α1 ≥ α2 ≥ α3 with α1 >α3

(otherwise AB = BA). Replacing A in the basis with (α1 − α3)
−1(A − α3I), we may assume

that A has eigenvalues 1 ≥ t ≥ 0. Then, we may replace the given norm with a similar norm
under which P−1SP = {I,D, E, i[D, E]} where D is the diagonal matrix diag(1, t, 0).

The remainder of the proof takes the form of a sequence of lemmas. Here, we set out
the steps involved.

We show first, in Lemma 4.3, that if t ∈ (0, 1) and t 
= 1
2 , then the norm is absolute.

Then, in Lemma 4.4, we show that when t = 1
2 and E has a particular form, again the

norm is absolute. This is then used in Lemma 4.5 to show that if t = 0 or t = 1, the norm
is absolute. Thus, we reach a position where the norm can only be non-absolute if t = 1

2 .
Under these restrictions, Lemma 4.6 gives dim(H)= 4. Finally, Lemma 4.7 shows (by
comparing with H0 in [4, Theorem 3.9]) that all H with dim(H)= 4 are isometrically
isomorphic as real Lie algebras.

We shall assume, in Lemmas 4.3–4.7, that D and E are as defined in (2), above, with
t ∈ [0, 1]. Note that since A and B do not commute neither do D and E.

LEMMA 4.3. Let t ∈ (0, 1), t 
= 1
2 . Then, the norm on C3 is absolute.

Proof. Let

E =

⎡
⎢⎢⎣

a b c

d f g

h j k

⎤
⎥⎥⎦

be Hermitian. Let E1 = i[D, E] and En = i[D, En−1] (n = 2, 3, . . .). Then, writing s = 1 − t,
we have, for n = 4m,

En =

⎡
⎢⎢⎣

0 bsn c

dsn 0 gtn

h jtn 0

⎤
⎥⎥⎦ → U =

⎡
⎢⎢⎣

0 0 c

0 0 0

h 0 0

⎤
⎥⎥⎦ ∈ H as n → ∞

and, for n = 4m + 1,

En = i

⎡
⎢⎢⎣

0 bsn c

−dsn 0 gtn

−h −jtn 0

⎤
⎥⎥⎦ → V =

⎡
⎢⎢⎣

0 0 ic

0 0 0

−ih 0 0

⎤
⎥⎥⎦ ∈ H as n → ∞.

Hence

i[U, V ] = 2ch

⎡
⎢⎢⎣

1 0 0

0 0 0

0 0 −1

⎤
⎥⎥⎦ = 2chW (say)

is Hermitian. If ch 
= 0 then, since t 
= 1
2 , I , D and W are linearly independent diago-

nal matrices. So, all diagonal matrices are in H , and hence the norm on C3 must be
absolute.
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Suppose now that ch = 0. Then, c = h = 0 since otherwise U would be a non-zero
nilpotent contradicting U ∈ H . If s< t then, writing u = s/t, we have, for n = 4m,

(1/tn)En =

⎡
⎢⎢⎣

0 bun 0

dun 0 g

0 j 0

⎤
⎥⎥⎦ → U ′ =

⎡
⎢⎢⎣

0 0 0

0 0 g

0 j 0

⎤
⎥⎥⎦ ∈ H as n → ∞

and, for n = 4m + 1,

(1/tn)En = i

⎡
⎢⎢⎣

0 bun 0

−dun 0 g

0 −j 0

⎤
⎥⎥⎦ → V ′ =

⎡
⎢⎢⎣

0 0 0

0 0 ig

0 −ij 0

⎤
⎥⎥⎦ ∈ H as n → ∞.

Hence

i[U ′, V ′] = 2gj

⎡
⎢⎢⎣

0 0 0

0 1 0

0 0 −1

⎤
⎥⎥⎦ = 2gjW ′ (say)

is Hermitian. If dg 
= 0 then I , D and W ′ are linearly independent, since t 
= 2, and again
the norm must be absolute.

If t< s, a similar argument forces an absolute norm if bd 
= 0. That leaves us with
the case where bd = ch = gj = 0. Using the above nilpotent argument, all of b, d, c, h, g, j
must be 0 so that E = diag(a, f , k) which commutes with D, a contradiction.

The values of t ∈ [0, 1] not covered by Lemma 4.3 are 0, 1
2 and 1. Of these t = 0 and

t = 1 are equivalent. The next lemma shows that t = 1
2 may also imply that the norm is

absolute.

LEMMA 4.4. Let t = 1
2 and let

E =

⎡
⎢⎢⎣

0 0 c

0 0 0

h 0 0

⎤
⎥⎥⎦ with ch> 0.

Then, the norm on C3 is absolute.

Proof. It is enough to show that every real diagonal matrix is Hermitian. Define
Hermitian matrices

D′ = 2D − I =

⎡
⎢⎢⎣

1 0 0

0 0 0

0 0 −1

⎤
⎥⎥⎦ and F = i[D, E] =

⎡
⎢⎢⎣

0 0 ic

0 0 0

−ih 0 0

⎤
⎥⎥⎦ .
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Since ch> 0, c/|c| = h/|h| = λ (say) and hence

(Re λ)E + (Im λ)F =

⎡
⎢⎢⎣

0 0 λc

0 0 0

λh 0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 |c|
0 0 0

|h| 0 0

⎤
⎥⎥⎦ ∈ H .

So, without loss, we shall assume that c = 1 and h> 0. Let φ = (α, β, γ) be a support
functional for v = (x, y, z). Then, φ(v)= 1 and φ(D′v), φ(Ev), φ(Fv) ∈ R so that

αx + βy + γz = 1, (4.1)

αx − γz ∈ R, (4.2)

αz + γhx ∈ R, (4.3)

αz − γhx ∈ iR. (4.4)

From (4.3) and (4.4), we have

αz = γhx = p (say) and γhx = p. (4.5)

Case 1. Let αz or γx be non-zero. It follows from (4.5) that both are non-zero
and hence that α, z, γ, x and p are non-zero. Then from (4.5), α= p/z and γ = p/(hx).
Substituting in (4.2) gives px/z − pz/(hx) ∈ R and hence

(px/z)− r(px/z) ∈ R where r = (1/h)|z/x|2 > 0.

It follows that px/z ∈ R. Then, (4.5), (4.2) and (4.1) give, in turn, αx, γz, βy ∈ R. Hence,
for any real T = diag(a, f , k), we have

φ(Tv)= αax + βfy + γkz ∈ R (4.6)

so that T is Hermitian.

Case 2. Let αz = γx = 0. If α = γ = 0 or x = z = 0, then (4.1) gives by ∈ R. If α=
x = 0, then (4.2) gives γz ∈ R and (4.1) gives βy ∈ R. Similarly, if γ = z = 0, then αx, βy ∈
R. So again (4.6) holds for any real T = diag(a, f , k), and the proof is complete.

LEMMA 4.5. Let t = 0 or t = 1. Then, there is a similar absolute norm on C3.

Proof. We prove the case t = 1. Let

E =

⎡
⎢⎢⎣

a b c

d f g

h j k

⎤
⎥⎥⎦ .

Then

F = i[D, E] =

⎡
⎢⎢⎣

0 0 ic

0 0 ig

−ih −ij 0

⎤
⎥⎥⎦ and G = −i[D, F] =

⎡
⎢⎢⎣

0 0 c

0 0 g

h j 0

⎤
⎥⎥⎦ ∈ H .
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The eigenvalues of G are 0,±√
ch + gj so that ch + gj ≥ 0. If ch + gj = 0 then, since G is

Hermitian, G = O, and

E =

⎡
⎢⎢⎣

a b 0

d f 0

0 0 k

⎤
⎥⎥⎦

commutes with D contradicting the given hypotheses. So, without loss, suppose that
ch + gj = 1. With

P =

⎡
⎢⎢⎣

c −j c

g h g

1 0 −1

⎤
⎥⎥⎦ and P−1 =

⎡
⎢⎢⎣

h/2 j/2 1/2

−g c 0

h/2 j/2 −1/2

⎤
⎥⎥⎦

we have

U = P−1GP =

⎡
⎢⎢⎣

1 0 0

0 0 0

0 0 −1

⎤
⎥⎥⎦ and V = P−1FP =

⎡
⎢⎢⎣

0 0 −i

0 0 0

i 0 0

⎤
⎥⎥⎦ .

So there is a similar norm such that 1
2 (I + U)= diag(1, 1

2 , 0) and V satisfy the conditions
of Lemma 4.4.

LEMMA 4.6. Let the norm on C3 be non-absolute, and let t = 1
2 . Then dim(H)= 4.

Proof. Let

E =

⎡
⎢⎢⎣

a b c

d f g

h j k

⎤
⎥⎥⎦ .

Under the given hypotheses, at least one of b, c, d, g, h, j is non-zero. We show that H
is spanned by I,D, F,G where F and G are defined below. Let E1 = i[D, E] and En =
i[D, En−1] (n = 2, 3, . . .). Then, for n = 4m,

En =

⎡
⎢⎢⎣

0 b/2n c

d/2n 0 g/2n

h j/2n 0

⎤
⎥⎥⎦ → U =

⎡
⎢⎢⎣

0 0 c

0 0 0

h 0 0

⎤
⎥⎥⎦ ∈ H as n → ∞

and, for n = 4m + 1,

En = i

⎡
⎢⎢⎣

0 b/2n c

−d/2n 0 g/2n

−h −j/2n 0

⎤
⎥⎥⎦ → V =

⎡
⎢⎢⎣

0 0 ic

0 0 0

−ih 0 0

⎤
⎥⎥⎦ ∈ H as n → ∞.
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From E4 − U and E5 − V , we deduce that

F =

⎡
⎢⎢⎣

0 b 0

d 0 g

0 j 0

⎤
⎥⎥⎦ and G =

⎡
⎢⎢⎣

0 ib 0

−id 0 ig

0 −ij 0

⎤
⎥⎥⎦

are Hermitian. Hence

E0 = E − U − F =

⎡
⎢⎢⎣

a 0 0

0 f 0

0 0 k

⎤
⎥⎥⎦ and i[F,G] = 2

⎡
⎢⎢⎣

bd 0 0

0 gj − bd 0

0 0 −gj

⎤
⎥⎥⎦

are Hermitian. Considering eigenvalues of E0, U and i[F,G], it follows that

a, f , k, bd, gj ∈ R and ch ≥ 0. (4.7)

Since the norm is non-absolute, diagonal Hermitians must be linear combinations of I and
D so that

a + k = 2f and bd = gj. (4.8)

Since D and U are in H and the norm is not absolute, Lemma 4.4 implies that ch = 0. If
c = 0 and h 
= 0 (or vice versa), then U is a non-zero nilpotent. So

c = h = 0. (4.9)

This implies that F 
= O since otherwise E is diagonal and commutes with D. Note that
(4.7), (4.8) and (4.9) hold for any E satisfying the given hypotheses. Let

E′ =

⎡
⎢⎢⎣

a′ b′ c′

d′ f ′ g′

h′ j′ k′

⎤
⎥⎥⎦ ∈ H and F′ =

⎡
⎢⎢⎣

0 b′ 0

d′ 0 g′

0 j′ 0

⎤
⎥⎥⎦

with E′ not a linear combination of I and D. Then, D and E′ do not commute, otherwise all
real diagonal matrices would be Hermitian and the norm would be absolute. Hence

K = i[F, F′] = i

⎡
⎢⎢⎣

bd′ − db′ 0 bg′ − gb′

0 db′ − bd′ + gj′ − jg′ 0

jd′ − dj′ 0 jg′ − gj′

⎤
⎥⎥⎦ ∈ H .

If DK 
= KD, then from (4.9)

bg′ = gb′ and jd′ = dj′ (4.10)

and if DK = KD, then (4.10) remains true since

DK − KD = i

⎡
⎢⎢⎣

0 0 bg′ − gb′

0 0 0

dj′ − jd′ 0 0

⎤
⎥⎥⎦ .
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Taking real linear combinations of F and G, it follows that, for all λ ∈ C,

Cλ =

⎡
⎢⎢⎣

0 λb 0

λd 0 λg

0 λj 0

⎤
⎥⎥⎦

is Hermitian. At least one of b and g is non-zero, otherwise F is a non-zero nilpotent.
Suppose g 
= 0 (the other case is similar). Let λ= g′/g. Then

Cλ − F′ =

⎡
⎢⎢⎣

0 0 0

λd − d′ 0 0

0 λj − j′ 0

⎤
⎥⎥⎦

which is a non-zero nilpotent unless λd = d′ and λj = j′. So F′ = Cλ and H is spanned by
I,D, F,G.

LEMMA 4.7. Let the norm on C3 be non-absolute, let t = 1
2 and let H0 be the space

of Hermitians with respect to ‖ · ‖0 in [4, Theorem 3.9]. Then, H and H0 are isometrically
isomorphic as real Lie algebras.

Proof. From the proof of Lemma 4.6, H has a basis {I,D, F, i[D, F]} where

F =

⎡
⎢⎢⎣

0 b 0

d 0 g

0 j 0

⎤
⎥⎥⎦

with bd = jg = r (say). Considering eigenvalues, r> 0. So, in the basis, we can replace D
with D′ = 2D − I and

F =

⎡
⎢⎢⎣

0 b 0

r/b 0 r/j

0 j 0

⎤
⎥⎥⎦ with F′ = −1√

2r
F.

Let

L =

⎡
⎢⎢⎣

ib/2j −b/2j 0

0 0 (
√

r/2)/j

i/2 1/2 0

⎤
⎥⎥⎦ so that L−1 =

⎡
⎢⎢⎣

−ij/b 0 −i

−j/b 0 1

0 (
√

2/r)j 0

⎤
⎥⎥⎦ .

Then

L−1D′L =

⎡
⎢⎢⎣

0 i 0

−i 0 0

0 0 0

⎤
⎥⎥⎦ = X , L−1F′L =

⎡
⎢⎢⎣

0 0 i

0 0 0

−i 0 0

⎤
⎥⎥⎦ = Y

and {I, X , Y , i[X , Y ]} is a basis for H0. It follows that H and H0 are isomorphic as Lie
algebras under the mapping T �→ L−1TL. Since the mapping preserves eigenvalues, the
operator norms of T ∈ H and L−1TL ∈ H0 are equal.
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This completes the proof of Theorem 4.2. We give one further result for norms
satisfying conditions (2) of the theorem.

PROPOSITION 4.8. Let C3 have a norm which is not similar to any absolute norm,
and let H be non-commutative.

(1) alg(H), the algebra generated by H, is M3(C).
(2) Let G ∈ H. Then G2 ∈ H if and only if G is a real multiple of the identity.

Proof. It is enough to prove the results for H = H0, the Hermitians corresponding to
‖ · ‖0 of [4, Theorem 3.9].

(1) For {j, k,m} = {1, 2, 3} with j< k, we have Gjk ∈ H0 and

G2
jk = I − Emm, EjjGjk = iEjk, GjkEjj = −iEkj.

It follows that, for all j, k = 1, 2, 3, Ejk ∈ alg(H0) and hence alg(H0)= M3(C).

(2) (⇒) Let G ∈ H0. Since {I,G12,G13,G23} is a basis for H0 (the basis given in [4,
Theorem 3.9]), G = δI + K where δ ∈ R and

K = αG12 + βG13 + γG23 with α, β, γ ∈ R.

Then

K2 =

⎡
⎢⎢⎣
α2 + β2 βγ −αγ

βγ α2 + γ2 αβ

−αγ αβ β2 + γ2

⎤
⎥⎥⎦ ∈ H0.

Comparing K2 with a real linear combination of I,G12,G13 and G23 gives

αβ = αγ = βγ = 0, (4.11)

α2 + β2 = α2 + γ2 = β2 + γ2. (4.12)

From (4.11), at least two of α, β, γ are 0 and then, from (4.12), α = β = γ = 0. Hence
K = O and G = δI .

(2) (⇐) Clear.

As was mentioned in Note 1.1 (3), for any complex Banach space where H is non-
commutative, dim(H)≥ 4. The example in [4, Theorem 3.9] shows that dim(H)= 4 can
be achieved by a norm on Cn with n = 3. We show next that modified versions of this norm
achieve this minimum dimension for any n ≥ 4.

LEMMA 4.9. Define norms ‖ · ‖1 and ‖ · ‖2 for C2 by

‖(x, y)‖1 = max{|x|, 1
2 |x + y|, 1

2 |x − y|} and ‖(x, y)‖2 = max{|x|, |y|, |x + y|}.
Then H1 = H2 = {rI : r ∈ R}.

Proof. The norms are similar since ‖(x, y)‖1 = ‖P(x, y)‖2 where P =
[

1 1

1 −1

]
. And

H2 = {rI : r ∈ R} by [4, Lemma 3.1].
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PROPOSITION 4.10. Let C4 have norm defined by

‖(x, y, z,w)‖ = max{|ax + by + cz|, 1
2 |ax + by + cz + w| : (a, b, c) ∈ S}

where S = {(a, b, c) ∈ R3 : a2 + b2 + c2 = 1}. Then, {I,G12,G13,G23} is a basis for H.

Proof. We make use of ‖ · ‖1 from Lemma 4.9. The matrices I , G12, G13 and G23 are
linearly independent. They are also in H . For example, with t ∈ R, C = cos t and S = sin t,

‖ exp(itG12)(x, y, z,w)‖ = ‖(Cx − Sy, Cy + Sx, z,w)‖ = ‖(x, y, z,w)‖
since, for (a, b, c) ∈ S,

a(Cx − Sy)+ b(Cy + Sx)+ cz + dw = (aC + bS)x + (bC − aS)y + cz + dw

and (aC + bS)2 + (bC − aS)2 + c2 = a2 + b2 + c2. We have

‖(x, 0, 0,w)‖ = max{|x|, 1
2 |ax + w| : a ∈ R, |a| ≤ 1}

= max{|x|, 1
2 |x + w|, 1

2 |x − w|} = ‖(x,w)‖1

≤ ‖(x, y, z,w)‖.
For the inequality, use (±1, 0, 0) ∈ S in the definition of ‖(x, y, z,w)‖. Similar arguments
apply to ‖(0, y, 0,w)‖ and ‖(0, 0, z,w)‖. It follows from Lemma 2.1 and Note 2.2 that any
T ∈ H must be of the form ⎡

⎢⎢⎢⎢⎢⎣

r ∗ ∗ 0

∗ r ∗ 0

∗ ∗ r 0

0 0 0 r

⎤
⎥⎥⎥⎥⎥⎦

where r ∈ R.

We also have ‖(x, y, z, 0)‖ = ‖(x, y, z)‖0 where ‖ · ‖0 is the norm for C3 in [4, Theorem
3.9]. So, it follows from Lemma 2.3 that the top-left 3 × 3 submatrix of T must be a real
linear combination of the basis matrices in [4, Theorem 3.9], and the proof is complete.

COROLLARY 4.11. Let Cn (n ≥ 5) have norm defined, for v = (x, y, z,w4, . . . ,

wn), by

‖v‖ = max{|ax + by + cz|, 1
2 |ax + by + cz + wj| : (a, b, c) ∈ S, j = 4, . . . , n}.

Then, {I,G12,G13,G23} is a basis for H.

Proof. Let T ∈ H . Arguing as in the proof of Proposition 4.10, it follows from

Lemma 2.1 that T must be of block matrix form

[
U O

O rI

]
where U is 3 × 3 with diagonal

(r, r, r), r ∈ R. Then, Lemma 2.3 completes the proof.

Our final example is a norm ‖ · ‖ on C4 for which H is non-commutative with
dim(H)= 5. The first formulation allows for easy verification that ‖ · ‖ is a norm. For
v = (w, x, y, z) ∈ C4, define

‖v‖ = max{|λμw + νx +μy + λνz| : |λ| = 1, |μ|2 + |ν|2 = 1}. (4.13)
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Writing

λμw + νx +μy + λνz = αμ+ βν (say)

and applying Cauchy’s inequality followed by setting

μ= α√|α|2 + |β|2 and ν = β√|α|2 + |β|2 (α, β not both 0)

yields

‖v‖ = max
|λ|=1

√
|λw + y|2 + |x + λz|2 (4.14)

and this translates easily to

‖v‖ =
√

|w|2 + |x|2 + |y|2 + |z|2 + 2|wȳ + x̄z| (4.15)

which allows easier computation of particular norm values.
Let P,Q, R, S be, respectively, the matrices⎡

⎢⎢⎢⎢⎢⎣

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎤
⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 i

0 0 −i 0

0 i 0 0

−i 0 0 0

⎤
⎥⎥⎥⎥⎥⎦
.

Clearly I, P,Q, R, S are linearly independent. We show that they form a basis for H . Note
that for the Lie algebra structure, we have

i[P,Q] = i[P, R] = i[P, S] = 0, and i[Q, R] = 2S, i[R, S] = 2Q, i[S,Q] = 2R.

LEMMA 4.12. P,Q, R, S are Hermitian with respect to ‖ · ‖.

Proof. Let T be any of P,Q, R, S. Then, T2 = I so that exp(itT)= cos t I + i sin t T .
We have exp(itP)= diag(eit, e−it, e−it, eit) and hence

‖ exp(itP)v‖2 = |w|2 + |x|2 + |y|2 + |z|2 + 2|eitweitȳ + eitx̄eitz| = ‖v‖2.

Thus P ∈ H , and similarly Q ∈ H . Next, we have

exp(itR)=

⎡
⎢⎢⎢⎢⎢⎣

cos t 0 0 i sin t

0 cos t i sin t 0

0 i sin t cos t 0

i sin t 0 0 cos t

⎤
⎥⎥⎥⎥⎥⎦
.

So, writing C = cos t and S = sin t,

‖ exp(itR)v‖2 = |Cw + iSz|2 + |Cx + iSy|2 + |Cy + iSx|2 + |Cz + iSw|2
+2|(Cw + iSz)(Cy − iSx)+ (Cx − iSy)(Cz + iSw)|

= |w|2 + |x|2 + |y|2 + |z|2 + 2|(C2 + S2)(wy + xz)| = ‖v‖2.

Thus R ∈ H , and similarly S ∈ H .
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PROPOSITION 4.13. The matrices I, P,Q, R, S form a basis for H.

Proof. It remains to prove that I, P,Q, R, S span H . Let T = [tjk] ∈ H . Since

‖(w, x, 0, 0)‖ =
√

|w|2 + |x|2 ≤ ‖(w, x, y, z)‖
it follows from Lemma 2.1 that⎡

⎣ t11 t12

t21 t22

⎤
⎦ is �2 Hermitian

so that t11, t22 ∈ R and t21 = t12. In view of Note 2.2, we can similarly compare
‖(0, 0, y, z)‖, ‖(w, 0, 0, z)‖ and ‖(0, x, y, 0)‖ with ‖(w, x, y, z)‖ to show that t33, t44 ∈ R

and t43 = t34, t41 = t14, t32 = t23. We also have

‖(w, 0, y, 0)‖ = |w| + |y| ≤ ‖(w, x, y, z)‖
so that ⎡

⎣ t11 t13

t31 t33

⎤
⎦ is �1 Hermitian

giving t13 = t31 = 0. And comparing ‖(0, x, 0, z)‖ with ‖(w, x, y, z)‖ similarly gives t24 =
t42 = 0. Thus, we can write

T =

⎡
⎢⎢⎢⎢⎢⎣

a b 0 d

b f g 0

0 g m n

d 0 n s

⎤
⎥⎥⎥⎥⎥⎦

(say) where a, f ,m, s ∈ R. (4.16)

It is straightforward to verify that φ = (α, β, γ, δ) is a support functional for u = (w, x, y, z)
if and only if ψ = (α,−β, γ,−δ) is a support functional for v = (w,−x, y,−z). Since
φ(Tu)=ψ(Uv) where

U =

⎡
⎢⎢⎢⎢⎢⎣

a −b 0 −d

−b f −g 0

0 −g m −n

−d 0 −n s

⎤
⎥⎥⎥⎥⎥⎦
,

it follows that U ∈ H . Let V = 1
2 (T + U) and W = 1

2 (T − U). Then

V =

⎡
⎢⎢⎢⎢⎢⎣

a 0 0 0

0 f 0 0

0 0 m 0

0 0 0 s

⎤
⎥⎥⎥⎥⎥⎦

and W =

⎡
⎢⎢⎢⎢⎢⎣

0 b 0 d

b 0 g 0

0 g 0 n

d 0 n 0

⎤
⎥⎥⎥⎥⎥⎦

are in H .
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Since the norm is not absolute, it follows from Note 1.1 (1) that V must be a real linear
combination of I, P,Q. It then follows that

a + f = m + s (4.17)

and this property must hold for the diagonal of any Hermitian matrix. The Hermitian
matrices i[W , R] and i[W , S] are, respectively,

i

⎡
⎢⎢⎢⎢⎢⎣

d − d 0 b − n 0

0 g − g 0 b − n

n − b 0 g − g 0

0 n − b 0 d − d

⎤
⎥⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎣

d + d 0 b + n 0

0 −g − g 0 −b − n

n + b 0 g + g 0

0 −n − b 0 −d − d

⎤
⎥⎥⎥⎥⎥⎦
.

Applying (4.17) gives

(d − d)+ (g − g)= (g − g)+ (d − d) and (d + d)+ (−g − g)= (g + g)+ (−d − d).

Hence g = d. And comparing with the form of matrix in (4.16), b − n = b + n = 0 which
gives b = n = 0. Hence W = (Re d)R + (Im d)S and since T = V + W , it follows that T is
a real linear combination of I, P,Q, R and S, as required.

For the above norm on C4, it is straightforward to check that alg(H) comprises all
diagonal and anti-diagonal matrices in M4(C). It follows that alg(H) is isomorphic to a
direct sum of two copies of M2(C).

5. Problems. Where it appears, H is the real space of Hermitians in Mn(C) for some
norm ‖ · ‖ on Cn.

1. Let A be the complex subalgebra of Mn(C) generated by H . Is A always semisimple
(and hence isomorphic to a direct sum of full matrix algebras)?

2. Does Proposition 3.6 generalise to �p(C
n) with n ≥ 3?

3. The norm ‖ · ‖0 defined in [4, Theorem 3.9] and the dual norm ‖ · ‖′
0 have the same

set of Hermitians. Are the two norms similar?
4. Find a short proof of Theorem 4.2.
5. For given n, what is the maximal dimension of H when H is not commutative and

‖ · ‖ is not similar to any absolute norm?
6. For n ≥ 4 and H not commutative, are there only finitely many equivalence classes

of similar norms?
7. Let K be any real Lie subalgebra of Mn(C)with Lie product given by i(AB − BA), let

I ∈ K, and let all matrices in K be diagonable with real eigenvalues. Is there always
a norm on Cn with H = K? [The commutative case is given by Theorem 3.1.]
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