Journal of the Marine Biological Association of the United Kingdom, 2012, 92(5), 997–1012. © Marine Biological Association of the United Kingdom, 2011 doi:10.1017/S0025315411000658

Terebellomorph polychaetes from hydrothermal vents and cold seeps with the description of two new species of Terebellidae (Annelida: Polychaeta) representing the first records of the family from deep-sea vents

MICHAEL REUSCHER^{1,2}, DIETER FIEGE³ AND THOMAS WEHE¹

¹Universität Heidelberg, Institut für Zoologie, Abteilung Morphologie/Ökologie, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany, ²Present address: Harte Research Institute, Texas A&M University–Corpus Christi, 6300 Ocean Drive, Unit 5869, Corpus Christi, Texas 78412-5869, USA, ³Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Sektion Marine Evertebraten II, Senckenberganlage 25, D-60325, Frankfurt/M., Germany

Terebellomorph polychaetes are reported from hydrothermal vents and cold seeps collected in the Pacific and Atlantic Oceans. Two new species of Terebellidae, Neoamphitrite hydrothermalis sp. nov. and Streblosoma kaia sp. nov., are described from hydrothermal vents of the western Pacific. These are the first terebellid species described from hydrothermal vents. New records from hydrothermal vents and cold seeps and new geographical records are presented for nine additional species belonging to Ampharetidae, Alvinellidae, Terebellidae and Trichobranchidae. A synoptic table with diagnostic characters for all species of the genus Streblosoma Sars, 1872 is provided. Keys for all terebellomorph species currently known from hydrothermal vents and cold seeps, respectively, are included. Additionally the new combination Neoamphitrite pachyderma (Hutchings & Glasby, 1988) comb. nov. is proposed.

Keywords: hydrothermal vent, cold seep, Terebellomorpha, Alvinellidae, Ampharetidae, Terebellidae, Trichobranchidae, *Neoamphitrite, Streblosoma*, deep sea

Submitted 16 August 2010; accepted 1 April 2011; first published online 13 June 2011

INTRODUCTION

Since the discovery of the rich fauna at hydrothermal vents in 1977, about 115 polychaete species from 23 different families have been recorded from this habitat (Aguado & Rouse, 2006; Morineaux et al., 2010). Terebellidae Malmgren, 1866, is one of the most speciose polychaete families with more than 550 valid species (Garraffoni & Lana, 2010). No terebellid species had been identified from deep-sea vents prior to this study. The only available evidence of the family was recorded as Terebellidae indet. (Hashimoto et al., 1995; Schander et al., 2010). The second largest terebellomorph family, the Ampharetidae, is represented with four species that regularly form dense aggregations at vents in the Pacific and Atlantic Oceans, respectively. The Alvinellidae, initially described as aberrant representatives of Ampharetidae, seem to be confined to hydrothermal vents in the Pacific Ocean. Eleven species and one subspecies of these 'Pompeii worms' have

Corresponding author: M. Reuscher Email: Michael.Reuscher@tamucc.edu been described. Trichobranchids have not been found at vent sites.

Cold seep faunas seem to be less distinct from surrounding non-seep environments than hydrothermal vent faunas. Determining the number of polychaete species from this habitat is therefore less straightforward. Among terebellomorph polychaetes the Ampharetidae show highest species richness. Eleven species have been found; three of them are new records of this study. Three of the four hydrothermal vent species occur at cold seeps as well. Three species of Terebellidae and Trichobranchidae have been found at cold seeps, respectively. Two of the records in each family are new. Alvinellids seem to be absent from cold seeps. The fifth family that is traditionally considered as belonging to Terebellomorpha, the Pectinariidae, has not been recorded from either habitat to date.

MATERIALS AND METHODS

The specimens examined in this study have been collected during cruises of the German research vessels RV 'Meteor' and RV 'Sonne' to hydrothermal vent sites in the Atlantic, the

Table 1. List of stations (MAR, Mid-Atlantic Ridge; PAR, Pacific - Antarctic Ridge; Me, RV 'Meteor'; So, RV 'Sonne'; TVG, TV-grab; ROV, remotely
operated vehicle; HV, hydrothermal vent; CS, cold seep; HV \rightarrow CS, hydrothermal vent in transition to cold seep).

Cruise	Station	Region	Location	Coordinates	Depth (m)	Date	Habitat
Me 60/3	35 TVG	MAR Logatchev HF 1	Irina II	14°45.19'N 44°58.75'W	3019	25 January 2004	HV
	56 ROV	MAR Logatchev HF 1	Irina II; Anjàs garden	14°45.20'N 44°58.77'W– 14°45.19'N 44°58.74'W	3038-3046	31 January 2004	HV
	66 ROV	MAR Logatchev HF 1	Irina I; Irina II; Calyptogena Field	14°45.07′N 44°58.73′W– 14°45.19′N 44°58.75′W	2950-3050	3 February 2004	HV
Me 64/1	109 TVG	MAR 5°S	Wideawake Mussel Field	4°48.64′S 12°22.36′W	2998	9 April 2005	HV
	125 ROV	MAR 5°S	Wideawake Mussel Field	4°48.62′S 12°22.36′W	2985-3000	12 April 2005	HV
	132 TVG	MAR 5°S	Wideawake Mussel Field	4°48.62′S 12°22.34′W	2996	13 April 2005	HV
	200 ROV	MAR 10°S	Lilliput	9°32.86′S 13°12.56′W	1495	25 April 2005	HV
Me 64/2	232 ROV	MAR Logachev HF 1	Irina II Mussel Site 1	14°45.11′N 44°58.81′W	3037	14 April 2005	HV
	244 ROV	MAR Logachev HF 1	Irina II Mussel Site 2	14°45.18′N 44°58.73′W	3032	18 May 2005	HV
	266 ROV	MAR Logachev HF 1	Irina II Mussel Site 1 & Site B	14°45.18′N 44°58.74′W– 14°45.10′N 44°58.67′W	3003-3034	23 May 2005	HV
	277 ROV	MAR Logachev HF 1	Irina II E-Wall	14°45.18′N 44°58.72′W	3046	25 May 2005	HV
	281 ROV	MAR Logachev HF 1	Quest Site	14°45.21′N 44°58.81′W	3053	25 May 2005	HV
So 99	115 TVG	North Fiji Basin	LHOS	16°59.65′S 173°54.73′E	2003	26 January 1995	HV
So 109/2	121 TVG	Cascadia Margin off Oregon	'Bioherm'	44°40.233'N 125°06.568'W- 44°40.193'N 125°06.605'W	622	24 June 1996	CS
So 110/1a	4 ROV	Cascadia Margin off Oregon	'Bioherm'	44°40.4′N 125°06.5′W– 44°40.2′N 125°06.5′W	632-635	10 July 1996	CS
	8 ROV	Cascadia Margin off Oregon	'Bioherm'	44°40.169′N 125°05.867′W – 44°40.451′N 125°05.947′W	592-615	11 July 1996	CS
	9 TVG	Cascadia Margin off Oregon	'Bioherm'	44°40.167′N 125°05.873′W	596	12 July 1996	CS
	15 ROV	Cascadia Margin off Oregon	'Bioherm'	44°40.15′N 125°05.81′W– 44°40.14′N 125°05.72′W	595	12 July 1996	CS
So 133	10 TVG	Lihir Basin	Edison Seamount	3°18.855'S 152°34.913'E	1474	22 July 1998	$HV \rightarrow CS$
	33 TVG	Lihir Basin	Edison Seamount	3°19.041′S 152°34.854′E	1480	25 July 1998	$HV \rightarrow CS$
	44 TVG	Lihir Basin	Mussel Cliff	3°19.352′S 152°35.462′E	1577	26 July 1998	CS
So 134	35 TVG	North Fiji Basin	LHOS Area A	16°59.426'S 173°54.819'E	2002	20 August 1998	HV
	66 TVG	North Fiji Basin	LHOS Area A	16°59.447′S 173°54.937′E	1997	25 August 1998	HV
	99 TVG	North Fiji Basin	Near Mussel Hill Area A	16°59.486′S 173°54.910′E	1999	3 September 1998	HV
So 157	30 TVG	PAR	Central Axial High	37°47.443′S 110°54.834′W	2212	28 June 2001	HV

west, north-east and the south-east Pacific Ocean, i.e. Me 60/3, Hydromar I: Mid-Atlantic Ridge (Kuhn *et al.*, 2004); Me 64/1, Marsüd 2: Mid-Atlantic Ridge (Haase *et al.*, 2005); Me 64/2, Hydromar II: Mid-Atlantic Ridge (Lackschewitz *et al.*, 2005); So 99, Hyfiflux I: North Fiji Basin (Halbach *et al.*, 1996); So 109/2, Hydrotrace: Axial Seamount off Oregon (Herzig *et al.*, 1997); So 110, So-Ro: So 110/1a: Cascadia Margin off Oregon (Suess & Bohrmann, 1997); So 133, Edison II: Lihir Basin (Bismarck Archipelago) (Herzig *et al.*, 1998); So 134, Hyfiflux II: North Fiji Basin (Halbach *et al.*, 1998); and So 157, Foundation 3: Pacific-Antarctic Ridge (Stoffers *et al.*, 2001).

Samples were taken using Van Veen grabs with integrated TV camera (TVG), and remotely operated vehicles (ROVs) and sieved on-board. Specimens were fixed in 10% formaldehyde-seawater solution and later transferred to 70% ethanol. Preserved specimens were examined using the stereo microscopes Wild Heerbrugg M5 and Zeiss Stemi 2000-C and the compound microscopes Olympus BH-2 and Zeiss Axiostar. Methylene blue was used in order to enhance contrast and visibility of certain structures.

Drawings of specimens were made using a camera lucida. Drawings were finalized according to the method described by Coleman (2003). Photographs were taken with a Canon Powershot G7. Adobe Photoshop was used for shadings and assembly of plates.

The condition of the specimens is indicated in the text as: cs (complete specimen) and af (anterior fragment).

Types and additional specimens have been deposited in the following institutions: Senckenberg Museum Frankfurt (SMF) (http://sesam.senckenberg.de), Natural History Museum, London (NHMUK) and Muséum National d'Histoire Naturelle, Paris (MNHN).

Fig. 1. Amathys lutzi. (A) Complete specimen, lateral view; (B) Y-shaped segment (*), dorsal view.

SYSTEMATICS Family AMPHARETIDAE Malmgren, 1866 Genus Amathys Desbruyères & Laubier, 1996 Amathys lutzi Desbruyères & Laubier, 1996 (Figure 1A, B)

Amathys lutzi Desbruyères & Laubier, 1996: 249–254, figures 1–3.—Desbruyères 2006d: 295, figures 1–5; 2010a: DVD, 5 figures.

SPECIMENS EXAMINED

15 specimens (12 cs, 3 af) (Me 60/3, Station 35 TVG) [SMF 17782, 17783, 17785, 17787-17790, 17792]. 2 specimens, complete (Me 60/3, Station 56 ROV) [SMF 17791]. 2 specimens, complete (Me 60/3, Station 66 ROV) [SMF 17784]. 78 specimens (76 cs, 2 af) (Me 64/1, Station 109 TVG) [SMF 17864, 17865]. 14 specimens (13 cs, 1 af) (Me 64/1, Station 125 ROV) [SMF 17859-17861, 17863]. 59 specimens (58 cs, 1 af) (Me 64/1, Station 132 TVG) [SMF 17866]. 1 specimen, complete (Me 64/2, Station 200 ROV) [SMF 17830]. 15 specimens (14 cs, 1 af) (Me 64/2, Station 244 ROV) [SMF 17827]. 2 specimens (1 cs, 1 af) (Me 64/2, Station 277 ROV) [SMF 17828]. 26 specimens (25 cs, 1 af), (Me 64/2, Station 281 ROV) [SMF 17826].

DIAGNOSIS

Prostomial glandular ridges and eye-spots absent. Buccal tentacles smooth. 4 pairs of cirriform branchiae in segments III and IV (2 + 2). Segment II without chaetae (paleae). 20 thoracic chaetigers. 17 thoracic uncinigers. No modified segment. Abdomen with glandular pads above neuropodia. Up to 18 abdominal segments. Thoracic and abdominal uncini with four teeth in one vertical row. Juvenile uncini with teeth in up to four rows.

REMARKS

While the regular number of notopodia is 20 (Figure 1A), twelve of the 207 complete specimens examined (6%) had an abnormal number of notopodia on one side. Five specimens had only 19 notopodia, six specimens had 21 notopodia, and one specimen 22 notopodia on one side while the opposite side showed the regular number of 20 notopodia. In most of those specimens it is the last thoracic segment or the first abdominal segment that lost or gained one notopodium,

Fig. 2. Amphisamytha galapagensis. Complete specimen, dorsolateral view.

respectively. In contrast, two of the specimens had a Y-shaped segment in the mid-thorax that bears two notopodia on one side and only one on the other side (Figure 1B).

DISTRIBUTION

Hydrothermal vent fields along the Mid-Atlantic Ridge. The species was originally described from the Lucky Strike area and has meanwhile been recorded from the Rainbow, Broken Spur, Snake Pit and Logachev hydrothermal fields. It is here newly recorded from the hydrothermal vent fields Wideawake and Lilliput on the Mid-Atlantic Ridge.

Genus Amphisamytha Hessle, 1917 Amphisamytha galapagensis Zottoli, 1983 (Figure 2)

Amphisamytha galapagensis Zottoli, 1983: 382–389, figures 1–2.—Desbruyères 2006e: 296, figures 1–7; 2010b: DVD, 7 figures.

Amphisamytha fauchaldi Solís-Weiss & Hernández-Alcántara, 1994: 128–133, figure 1.

SPECIMENS EXAMINED

1 specimen, complete (So 110/1a, Station 8 ROV) [SMF 17812]. 4 specimens, complete (So 157, Station 30 TVG) [SMF 17753-17755].

COMPARATIVE MATERIAL EXAMINED

Amphisamytha fauchaldi Solís-Weiss & Hernández-Alcántara, 1994. Holotype, complete (Alvin Dive 1979) Guaymas Basin (Southern Trough), *Riftia* washings, 2014 m. Collected 18 February 1988 [USNM 168087].

Amphisamytha galapagensis Zottoli, 1983. Holotype, complete (Alvin Dive N 990 #41) Galapagos Rift (Rose Garden), 2450 m. Collected 7 December 1979 [USNM 81288].

DIAGNOSIS

Prostomial glandular ridges and eye-spots absent. Buccal tentacles smooth. 4 pairs of cirriform branchiae in segments III and IV (2 + 2). Segment II without chaetae (paleae). 17 thoracic chaetigers. 14 thoracic uncinigers. No modified segment. Abdomen with glandular pads above neuropodia. Up to 15 abdominal segments. Thoracic and abdominal uncini with four teeth in one vertical row. Juvenile uncini with teeth in up to four rows.

REMARKS

Amphisamytha fauchaldi Solís-Weiss & Hernández-Alcántara, 1994 is considered a junior synonym (see Reuscher *et al.* (2009) for a discussion).

DISTRIBUTION

Hydrothermal vent fields of the north-east and east Pacific (British Columbia; Guaymas Basin; EPR 21° N; EPR $9^{\circ} - 13^{\circ}$ N; Galapagos Rift, type locality). Newly recorded here from hydrothermal vent fields at the Pacific–Antarctic Ridge in the south-east Pacific and from cold seeps sites at the Cascadia Margin off Oregon. This finding represents the first cold seep record since an earlier record from cold seeps at the Florida Escarpment was based on misidentification (McHugh & Tunnicliffe, 1994).

The distribution of *A. galapagensis* is restricted to the eastern Pacific while records from the western Pacific appear to belong to the recently described species *Amphisamytha vanuatuensis* Reuscher, Fiege & Wehe, 2009.

Amphisamytha galapagensis may be a species complex consisting of cryptic species (Chevaldonné *et al.*, 2002).

Genus Grassleia Solís-Weiss, 1993 Grassleia hydrothermalis Solís-Weiss, 1993 (Figure 3)

Grassleia hydrothermalis Solís-Weiss, 1993: 662–665, figure 1.

SPECIMENS EXAMINED

1 specimen, complete (So 110/1a, Station 15 ROV) [SMF 17810].

DIAGNOSIS

Prostomial glandular ridges absent. Buccal tentacles smooth. 4 pairs of cirriform branchiae, arranged in one transverse line (presumably in segment IV). Segment II with notochaetae, not shaped as paleae. 15 thoracic chaetigers. 10 thoracic uncinigers. No modified segment. Abdomen without rudimentary notopodia. 7 abdominal segments. Thoracic and abdominal uncini with a multitude of teeth in several rows.

DISTRIBUTION

Hydrothermal vent fields of the north-east Pacific (off Oregon, type locality). Newly recorded here from cold seeps of the same area.

Family ALVINELLIDAE Desbruyères & Laubier, 1980 Genus *Paralvinella* Desbruyères & Laubier, 1982 *Paralvinella (Miralvinella) dela* Detinova, 1988 (Figure 4A, B)

Fig. 3. Grassleia hydrothermalis. Complete specimen, ventrolateral view.

Paralvinella dela Detinova, 1988: 861–863, figure 2.— Desbruyères & Laubier 1993: 235.—Desbruyères 2006a: 286, figures 1 & 2; 2010c: DVD, 2 figures.

SPECIMENS EXAMINED

2 specimens (1cs, 1 af) (So 134, Station 99 TVG) [SMF 17855].

DIAGNOSIS

Up to 170 chaetigers. 4 pairs of pinnate branchiae. Segment VII with 4 visible acicular hooks. Uncini from chaetigers 40–63. Notopodia without lobes. Uncini with two teeth.

REMARKS

Long and slender, with numerous (cs with 150) short segments (Figure 4A). Peristomium with ventral longitudinal furrows (Figure 4B).

DISTRIBUTION

Hydrothermal vent fields of the north-east Pacific (Juan de Fuca, type locality). Newly recorded here from hydrothermal vent fields of the west Pacific (North Fiji Basin).

Paralvinella (Miralvinella) hessleri Desbruyères & Laubier, 1989

(Figure 4C, D)

Paralvinella hessleri Desbruyères & Laubier, 1989: 761-767, figures 1-4.—Miura & Ohta 1991: 383-385, figure 1.— Desbruyères 2006b: 287, figures 1-3; 2010d: DVD, 5 figures.

SPECIMENS EXAMINED

11 specimens, complete (So 134, Station 35 TVG) [SMF 17851, 17854]. 10 specimens (8cs, 2af) (So 134, Station 99 TVG) [SMF 17852].

DIAGNOSIS

Up to 73 chaetigers. 4 pairs of pinnate branchiae. Segment VII with 4–5 visible acicular hooks. Uncini from chaetigers 14–21, located in long tori. Notopodia of segment IV through to segments XIII–XVII with dorsal lobes. Uncini with two teeth.

REMARKS

Most conspicuous notopodial lobes located in segment VIII (Figure 4C). We found that segment VII bears eight acicular hooks (Figure 4D). However, only 4–5 hooks penetrate the epidermis. A re-examination of the number of the acicular hooks of each species may be of taxonomic interest.

One specimen bears acicular hooks in segment IX (only on one side).

DISTRIBUTION

Hydrothermal vent fields of the west Pacific (Mariana Back-Arc Basin, type locality; Okinawa Trough; Manus Basin). Newly recorded here from hydrothermal vent fields of the North Fiji Basin.

Paralvinella (Nautalvinella) unidentata Desbruyères & Laubier, 1993 (Figure 4E, F)

Paralvinella unidentata Desbruyères & Laubier, 1993: 226–232, figures 1, 3 & 4.—Desbruyères 2006c: 289–290, figures 1–9; 2010e: DVD, 8 figures.

Fig. 4. *Paralvinella dela*: (A) complete specimen, dorsolateral view; (B) lower lip, ventral view. *Paralvinella hessleri*: (C) segments V–XIV, ventral view, showing 5 acicular hooks in segment VII (\rightarrow) and notopodial lobes in segment VIII (*); (D) dissected chaetae of segment VII, showing 8 acicular hooks. *Paralvinella unidentata*: (E) acicular hooks of segment VII in mature specimen, dorsal view; (F) anterior end, ventrolateral view, showing regular chaetae of segment VII in immature specimen (\rightarrow).

SPECIMENS EXAMINED

30 specimens (26 cs, 4 af) (So 134, Station 35 TVG) [SMF 17853, 17886]. 9 specimens (8cs, 1 af) (So 134, Station 99 TVG) [SMF 17857, 17858].

DIAGNOSIS

Up to 88 chaetigers. 4 pairs of pinnate branchiae with terminal cirriform filament. Segment VII of larger specimens (>10 mm) with 2-3 relatively small and brittle acicular hooks. Uncini from chaetigers 23-31, located in long tori. Notopodia without dorsal lobes. Uncini with only one tooth.

REMARKS

While the maximum body length is given with 11 mm in the original description, our specimens measured up to 24 mm. Uncini start in chaetigers 23–31, rather than in chaetigers

26-31 as reported by Desbruyères & Laubier (1993). Acicular hooks were only developed in specimens with a body length of 11-24 mm and 80-82 chaetigers (Figure 4E). Specimens with a length of 2-10 mm and 35-80 chaetigers have not yet developed hooks in chaetiger 7. Instead, they bear simple capillary chaetae as in remaining segments (Figure 4F). Thus, Paralvinella unidentata seems to develop acicular hooks in a rather late stage of development. Similarly, Desbruyères & Laubier (1986) described the development of acicular hooks in P. pandorae irlandei Desbruyères & Laubier, 1986 in specimens of >60 segments, i.e. close to the maximum number of segments (at a body length of ~14 mm). In contrast, P. hessleri has developed stout hooks in the 35 chaetiger stages at a body length of 1.5 mm (authors' observations). Desbruyères & Laubier (1993) described P. unidentata with acicular hooks, although their specimens measured only 4.8-11 mm.

Fig. 5. Neoamphitrite hydrothermalis sp. nov. [SMF 17871; holotype]: (A) anterior end, lateral view; (B) capillary chaeta; (C) uncinus from anterior thoracic torus, lateral view.

DISTRIBUTION

Hydrothermal vent fields of the west Pacific (North Fiji Basin, type locality).

> Family TEREBELLIDAE Malmgren, 1866 Genus Neoamphitrite Hessle, 1917

TYPE SPECIES Amphitrite affinis Malmgren, 1866.

GENERIC DIAGNOSIS (ACCORDING TO: HOLTHE 1986A, EMENDED)

3 pairs of dichotomous branchiae with pronounced stems in segments II-IV. Lateral lobes usually present. Nephridial papillae in segment III only or extending for a variable number of segments. Thorax with 15-39 pairs of notopodia starting in segment IV, and 14-38 uncinigerous neuropodia starting in segment V. Capillary chaetae distally hirsute. Uncini avicular, arranged in double rows in posterior thorax and, occasionally in anterior abdomen.

REMARKS

The generic diagnosis is emended to include Neoamphitrite hydrothermalis sp. nov. and N. glasbyi Londoño-Mesa & Carrera-Parra, 2005 whose numbers of notopodia are lower and higher, respectively, than in previously described species of this genus.

The genus Neoamphitrite was erected by Hessle (1917) for some species formerly described as belonging to Amphitrite O.F. Müller, 1771. In contrast to the latter genus, Neoamphitrite has, according to Hessle, dichotomous rather than filiform branchiae, the number of nephridia is higher, and the nephridial tubes are free rather than fused. Fauvel (1927) and Hutchings & Glasby (1988) rejected Neoamphitrite since they considered the number and arrangement of nephridia as inappropriate for taxonomic purposes. The latter authors also regarded the different shapes of branchiae as not useful to delineate these two genera. They argued that the reduction of the branchial stem causes the filiform shape but that this reduction varied gradually among species of both genera. Nevertheless, we consider these characters useful and treat Neoamphitrite as a valid genus, as do a number of other authors (e.g. Hilbig, 2000a; Londoño-Mesa & Carrera-Parra, 2005).

> Neoamphitrite hydrothermalis sp. nov. (Figure 5A-C)

TYPE MATERIAL

Holotype, anterior fragment (So 133, Station 10 TVG) [SMF 17871]. Paratype, anterior fragment (So 133, Station 10 TVG) [SMF 17870].

ADITIONAL MATERIAL EXAMINED

10 specimens, anterior fragments (So 133, Station 33 TVG) [SMF 17869].

DIAGNOSIS

3 pairs of dichotomous branchiae with pronounced stems in segments II-IV, gradually increasing in size. Lateral lobes present in segments II-IV, gradually decreasing in size. Nephridial papillae in segment III. 15 pairs of notopodia. Notochaetae capillaries with hirsute tips. Uncini avicular, arranged in double rows in last 8 thoracic segments and at least first 3 abdominal segments. Uncini with high number of teeth above main fang.

DESCRIPTION

Body small and delicate. Holotype incomplete, consisting of complete thorax with 15 chaetigers and three abdominal segments. Length about 13 mm. Head region bent at sharp angle. Epidermis of some anterior segments detached on dorsal side, giving anterior end a swollen appearance (Figure 5A). Tentacular lobe short and collar-like. Buccal tentacles filiform with a deep ventral groove. Eyespots absent. Upper lip undulating. Lower lip retracted, covering mouth, cushion-like. Peristomium with a fleshy ridge on ventral side, separated anteriorly from lower lip by groove. 3 pairs of branchiae in segments II-IV, gradually increasing in size. Branchiae dichotomous, with distinct annulated main stem and thick secondary branches with blunt ends. Branchiae arranged along longitudinal line; last pair of branchiae attached closely to notopodia, leaving a wide dorsomedian gap. Segment II with prominent lateral lobes protruding forwards. Lateral lobes of segment III slightly smaller, also protruding forwards. Lobes of segment IV small, only dorsally developed. Segments II and III ventrally thickened, cushion-like. One pair of large nephridial papillae, resembling notopodia; nephridial papillae located in segment III, arranged in line with following notopodia. Glandular pads in segments V-XII, gradually decreasing in width forming a glandular groove from segment XIII. 15 pairs of notopodia from segment IV. Neuropodia from segment V continuing to abdomen. Uncini in single rows from segments V-XI, in double rows, 'face-to-face', in thoracic segments XII-XIX and in three remaining abdominal segments. Capillary chaetae bilimbate with hirsute tips (Figure 5B). Uncini of thorax and abdomen of same shape, avicular with large main fang, surmounted by 3 rows of numerous teeth, subrostrum with small process (Figure 5C).

VARIATIONS IN PARATYPES

No clear distinction between glandular pads and glandular groove.

REMARKS

The species differs from all other species of the genus *Neoamphitrite* by the number of notopodia. Whereas *Neoamphitrite hydrothermalis* sp. nov. has 15 pairs of notopodia, the remaining species have between 17 and 39 pairs. Unusual is also the arrangement of uncini in double rows in abdominal segments, a character also found in *N. figulus* (Dalyell, 1853) and *N. pachyderma* (Hutchings & Glasby, 1988) comb. nov. The latter species was originally described as belonging to the genus *Amphitrite*. The new combination was introduced as the branchial shape of this species fits to the genus *Neoamphitrite*, rather than *Amphitrite*.

ETYMOLOGY

The species is named after the hydrothermal vent habitat where it was collected.

DISTRIBUTION

Hydrothermal vent fields of the west Pacific: Lihir Basin (Bismarck Archipelago).

Genus *Pista* Malmgren, 1866 *Pista shizugawaensis* Nishi & Tanaka, 2006

Pista shizugawaensis Nishi & Tanaka 2006: 141–144, figures 2–4.

SPECIMENS EXAMINED

3 specimens (1 cs, 2af) (So 133, Station 44 TVG) [SMF 17868].

DIAGNOSIS

2 pairs of arborescent branchiae with pronounced stems in segments II-III, each pair consisting of equally or unequally

Fig. 6. Streblosoma kaia sp. nov. [SMF 17820; holotype]: (A) anterior end, lateral view; (B) uncinus from anterior torus, lateral view; (C) uncinus from anterior torus, frontal view; (D) [SMF 17817; paratype] pygidium, dorsal view.

Species	Branchial filaments (segments II; III; IV)	Eyes	Notopodial pairs	Uncini of anterior torus	Uncini of posterior torus	Remarks
<i>S. abranchiata</i> ^{1,2} Day, 1963 <i>S. acymatum</i> ^{1,9,10} Hutchings & Rainer, 1979	0; 0; 0 18-30; 16-20; 18-25	- +	>19 >37	MF:4-5:8-12 MF:2-4:0-2	MF:4-5:8-12 MF:2-3:1-3	Branchiae absent Branchial filaments originate from swollen glandular areas; those of segment II forming continuous band
<i>S. amboinense</i> ^{1,10} Caullery,	8-12; 7-8; 9-10	+	n.d.	MF:2:1:9:∞	n.d.	
<i>S. antarctica</i> ^{1,12} (Monro, 1936)	1-2; 1-2; 1-2	_	28	MF:3:4	MF:5:9	
<i>S. atlanticus</i> ^{1,8} (Hartman & Fauchald, 1971)	1; 1; 0	n.d.	13	MF:3-4:5-7: 8-10: ∞	n.d.	
S. atos ^{1,9,10} Hutchings & Murray, 1984	12; 5; 6	+	25	MF:2-4:3-7	MF:2-4:3-7	
<i>S. bairdi</i> ^{5,6,12} (Malmgren, 1866)	7; 4; 4	+/ -	90	MF:2-3:4-6	n.d.	
S. bingarra ¹ Nogueira & Hutchings, 2007	∞; ∞; ∞	+	>15	MF:2-4	?	Numerous branchial filaments form continuous bands
S. cespitosa ^{1,10} Willey, 1905	5; 6; 5	+	>24	MF:2:1:5:∞	n.d.	
<i>S. chilensis</i> ^{1,2,8} (McIntosh, 1885)	1; 1; 0	-	>20	MF:1:1-3	n.d.	
S. comatus ³ (Grube, 1859)	28-35; 24-28; 19-22	+	\sim 66	MF:1-2:0-6	MF:2:5-8	Uncini from mid-body in C-shaped curves
S. crassibranchia ^{1,4} Treadwell, 1914	5; 4; 3	+	31	MF:3	MF:3	Uncini from segment VI
S. duplicata ¹ Hutchings, 1990	1; 2; 2	_	23	MF:2-3:1	n.d.	Uncini form closed circle in segments XIV– XXIV
S. dyticos ¹ Hutchings & Glasby, 1990	4-7; 3-6; 2-4	+	55	MF:2-3:2-6: 3-6	MF:2-3:4-6: 4-6	
<i>S. gracile</i> ^{1,10} Caullery, 1944	10-12; 8; 10	_	>17	MF:2:3:2	n.d.	
S. hartmanae ^{1,11} Kritzler, 1971	12-14; 7-8; 5-6	+	38	MF:2-3	MF:2-3	Branchial filaments of segments II–IV form transverse band
<i>S. hesslei</i> ^{1,2} Day, 1955	n.d.	+	33	MF:2-5:5-9	MF:2-5:5-9	Uncini arranged in loops from segment IX
S. <i>intestinalis</i> ^{5,6} Sars, 1872	3-5; 2-3; 0-3	_	30	MF:2-3:5	n.d.	c
S. japonica ^{1,10} Hessle, 1917	9; 7; 9	+	>19	MF:2:3	MF:2-3:3-5	
S. kaia sp. nov. ¹³	0-4; 0-2; 0	-	82	MF:2:3	MF:2:3	Branchiae reduced to papillae; notopodia in almost all segments
S. latitudinis ^{1,10} Hutchings & Murray, 1984	24-26; 12-14; 10-12	+	23	MF:2:2-3	MF:2:2-3	
S. longa ¹ Mohammad, 1973	10; 12; 18-20	+	\sim 120	MF:3:5-6	MF:3:5-6	
<i>S. longifilis</i> ¹ Rioja, 1962	15-17; 12-15; 10-13	+	39	MF:2:0-1	MF:2:0-1	
S. longiremis ^{1,10} Caullery, 1915	12; 10; 10	_	>30	MF:2:1-3	n.d.	
S. maligirrima ¹ Hutchings, 1997	10-12; 13-15; 10-11	+	>85	MF:2:3:2:∞	MF:3−4:5:∞	
S. minutum ^{1,10} Hutchings & Glasby, 1987	0-1;1;1	+/ -	>23	MF:2-3:3-5	MF:2-3:2-4	
S. oligobranchiatum ¹ Nogueira & Amaral, 2001	1-2; 1; 0-1	+	26	MF:2:5	MF:4:9	Branchiae strongly reduced
S. pacifica ^{*1} Hilbig, 2000a	n.d.	+	29-30	MF:2:3:2	MF:2:3:2	Uncini from segment III; branchiae in segments II-VI or VII
S. <i>patriciae</i> ¹ dos Santos, Nogueira, Fukuda & Christoffersen, 2010	10-37; 15-26; 14-25	+	35	MF:1-3:1-2	MF:1-3:1-2	Branchial filaments originate from swollen glandular areas
S. persica ² (Fauvel, 1908)	n.d.	_	38	MF:2-3:1-5	n.d.	
<i>S. polybranchia</i> ¹ Verrill, 1900	n.d.	n.d.	44	MF:2:1-3	MF:2:1-3	Branchiae in segments

Table 2. Synoptic table for all species of the genus Streblosoma Sars 1872. (MF, main fang; n.d., no data).

Continued

Species	Branchial filaments (segments II; III; IV)	Eyes	Notopodial pairs	Uncini of anterior torus	Uncini of posterior torus	Remarks
<i>S. porchatensi</i> s ¹ Nogueira, Garraffoni & Alves, 2004	17; 7; 7	+	58	MF:1-3:6-7	MF:1-3:6-7	Uncini in loops from segments XV–XVI
S. prora ^{1,7,10} Hutchings & Glasby, 1987	4-11; 2-10; 3-12	+	30	MF:2-3:4-8	MF:3-5:3-5:5-7	-
S. quadridentatum ^{1,10} Caullery, 1944	∞; ∞; ∞	-	>19	MF:2:3:3	MF:2:2:5	
S. sinica ¹ (Wu, Wu & Qian, 1987)	3-4; 2; 2	-	n.d.	MF:2:3-5	MF:4:3	
S. spiralis ¹ (Verrill, 1874)	n.d.	_	\sim 120	n.d.	n.d.	
S. toddae ¹ Hutchings & Smith, 1997	40; 15; 15	+	140	MF:2-3	MF:2	Notopodia in almost all segments; uncini in loops from mid-body
S. uncinatus ¹ (Kudenov, 1975)	12-15; 5-9; 5-9	+;	55	MF:2:0-1	MF:2:0-1	Notopodia in almost all segments; uncini in loops in chaetigers 15– 56
S. variouncinatum ¹ (Hartmann-Schröder & Rosenfeldt, 1991)	5; 4; 1-3	_	34	(a) MF:2 (b) MF:2:1	MF:2-4:1-7:2-3	Two types of uncini in anterior tori
S. xiangyanghong ¹ Wu, Wu & Qian, 1987	5-6; 3; 3	+	34	MF:3-4:3-5	n.d.	

Table 2. Continued

The number of notopodia given indicates the highest number found in the respective species. Numbers given with '>' indicate the lowest number reported, based on the original description or counting on incomplete type specimens. (1) Original description; (2) Day (1967); (3) Glasby & Hutchings (1987); (4) Hartman (1969); (5) Hessle (1917); (6) Holthe (1986a); (7) Hutchings (1997); (8) Hutchings & Glasby (1986); (9) Hutchings & Glasby (1987); (10) Hutchings & Glasby (1990); (11) Londoño-Mesa & Carrera-Parra (2005); (12) Wu *et al.* (1987); (13) authors' observations. According to Santos *et al.* (2010), *Pseudothelepus nyanganus* Augener, 1918 belongs to *Streblosoma*. A re-description of this species from South Africa is in preparation (Nogueira *et al.*, in preparation, cited in Santos *et al.* (2010)). *The description of *S. pacifica* Hilbig, 2000a appears to be based on a misinterpretation of the generic diagnosis of the genus *Streblosoma* and should be re-examined.

Invalid species (according to Holthe 1986b):

S. cochleatum Sars, 1872	Synonym of Streblosoma bairdi Malmgren, 1866
S. crassibranchiata Monro, 1933	Error for Streblosoma crassibranchia Treadwell, 1914
S. magna Treadwell, 1937	Synonym of Thelepus crispus Johnson, 1901

S. verrilli Treadwell, 1911

Synonym of *Thelepus setosus* (Quatrefages, 1866)

sized branchiae. Lateral lobes present in peristomium and segments II–VI; peristomial lobes large, fleshy, conical protrusions, fused dorsally and ventrally; lobes of segment II small, ventrally fused, otherwise mostly covered by lobes of segment III; the latter lobes pronounced semi-circular protrusions; lobes of segment IV distinct protrusions but smaller than lobes of segment III; lobes of segments V and VI small and paddle-like, on ventral side. Nephridial papillae in segments VI and VII. 17 pairs of notopodia with smooth capillary chaetae from segment IV. Uncinigerous neuropodia from segment V. Uncini avicular, with prolonged shaft throughout, however less distinct in posterior thoracic segments.

REMARKS

The specimens from the Lihir Basin differ slightly from the description of *Pista shizugawaensis*: (1) in the shape of the peristomial lateral lobes which are conical rather than semicircular; and (2) in the shape of the uncini of the posterior thoracic segments with chitinized shafts clearly prolonged, albeit less distinct than in uncini of anterior segments. The first point may be due to preservation artefacts, while the latter is probably dependent on the stage of development (Saphronova, 1985). Therefore, these differences do not justify the erection of a new species.

DISTRIBUTION

West Pacific: Japan (type locality: Shizugawa Bay, Honshu). Newly recorded here from cold seeps of the Lihir Basin (Bismarck Archipelago).

Genus Streblosoma Sars, 1872

TYPE SPECIES *Grymaea bairdi* Malmgren, 1866.

GENERIC DIAGNOSIS (ACCORDING TO: KRITZLER,

1971, EMENDED)

Usually 3 pairs of filiform branchiae, some species with 0, 2, 4 or 5 pairs of branchiae; exceptionally, branchiae may be rudimentary. Branchiae from segment II. No lateral lobes. Nephridial papillae present or absent. Notopodia from segment II. Neuropodia from segment V. Notochaetae smooth capillaries. Uncini avicular, usually with well developed sub-terminal button. Uncini in single rows throughout, occasionally arranged in loop.

REMARKS

The generic diagnosis of Kritzler (1971) was emended to include *Streblosoma kaia* sp. nov. characterized by the presence of branchial rudiments.

Streblosoma kaia sp. nov. (Figure 6A – D; Table 2)

TYPE MATERIAL

Holotype, anterior fragment (So 134, Station 66 TVG) [SMF 17820]. Paratypes (1 cs, 1 af) (So 134, Station 35 TVG) [SMF 17817]. Paratypes (1 cs, 2 af) (So 134, Station 35 TVG) [SMF 17832]. Paratypes (1 cs) (So 134, Station 35 TVG) [MNHN-POLY TYPE 1526]. Paratypes (3 af) (So 134, Station 35 TVG) [NHMUK: 2011. 13-15]. Paratypes (1cs, 1 af) (So 134, Station 99 TVG) [SMF 17818].

ADDITIONAL MATERIAL EXAMINED

8 specimens, anterior fragments (So 99, Station 115 TVG) [SMF 17824]. 49 specimens (1cs, 48 af) (So 134, Station 35 TVG) [SMF 17821, 17874]. 21 specimens, anterior fragments (So 134, Station 66 TVG) [SMF 17873]. 51 specimens, anterior fragments (So 134, Station 99 TVG) [SMF 17875].

DIAGNOSIS

Branchiae reduced to small papilliform rudiments in segments II and III, or entirely lacking. Four pairs of nephridial papillae from segments IV–VII. Up to 82 pairs of notopodia with smooth capillary chaetae from segment II continuing almost to posterior end. Neuropodia with uncini from segment V to posterior end. Uncini avicular, with broad and blunt subterminal button.

DESCRIPTION

Length of holotype about 80 mm for 57 thoracic chaetigers. Posterior end missing. Tentacular lobe collar-like. Numerous long tentacles with deep median groove. Eye-spots absent. Upper lip folded. Lower lip crenulated (Figure 6A). Two pairs of small papilliform branchial rudiments in segments II and III. First pair with two papillae on each side, second pair with one big papilla on each side, situated immediately dorsally to notopodia, leaving a wide dorsomedian gap. Lateral lobes absent. Glandular pads, in anterior segments hardly discernible because of highly rugose epidermis, continuing to segment XXVII. Central ventral groove from segment XXVIII. Four pairs of nephridial papillae in segments IV-VII, gradually increasing in size. Papillae situated below notopodia or between notopodia and neuropodia, respectively. Notopodia with smooth capillary chaetae from segment II, first pair slightly shifted dorsally. Neuropodia with uncini from segment V, becoming more erect in posterior segments. Uncini avicular, with 2 horizontally arranged teeth above main fang and three uppermost teeth. Basal prow moderately developed. Sub-terminal button well developed, broad and blunt, separated from prow by distinct notch (Figure 6B, C). Uncini with same shape throughout, gradually decreasing in size towards posterior end. Pygidium missing in holotype.

VARIATIONS IN PARATYPES AND

ADDITIONAL MATERIAL

Complete specimens without distinct separation of thorax and abdomen. Notopodia and notochaetae present almost to pygidium, notopodia becoming gradually smaller and hardly visible in posterior segments. Up to 8_2 chaetigers with notochaetae and 18 posterior segments with uncini only. Number of branchial rudiments of all specimens studied varies between 0 and 4 in segment II and 0 and 2 in segment III. Rudiments of some specimens are arranged on a more or less distinct transverse ridge. Pygidium surrounded by a circle of about 9-14 broad, blunt papillae (Figure 6D). Tubes stiff, yellow-brown.

REMARKS

The strong reduction of branchiae is one of the remarkable characters of the new species described here. A similar phenomenon is described for S. oligobranchiatum Nogueira & Amaral, 2001 and for two species in the genus Thelepus Leuckart, 1849: T. praecox Hutchings & Glasby, 1987 with minute papillae and T. microbranchiatus Caullery, 1944 with very short, rudimentary filaments. Nephridial papillae are hardly visible in some specimens, especially smaller ones. In some specimens, notopodia in segment II are completely absent or present only on one side. Because there are no visible scars, an intra-specific variation regarding the presence of the first notopodia may be possible. This would, however, question the distinction between the genera Streblosoma (segment II with notopodia) and Thelepus (segment II without notopodia). We rather consider those specimens as aberrant.

The only species with a complete branchial reduction in the genus Streblosoma is S. abranchiata Day, 1963. It differs from S. kaia sp. nov. in having a lower number of notopodia, a considerable number of abdominal segments without notopodia and a different shape of uncini. The morphologically most similar species to S. kaia sp. nov. regarding reduced number and length of branchiae is S. oligobranchiatum. It differs from S. kaia sp. nov. in the shape of the uncini and the possession of eyes, whereas the small number of segments described for S. oligobranchiatum may be correlated to the small body size of the type material. The following species have a reduced number of branchial filaments: S. antarctica (Monro, 1936), S. atlanticus (Hartman & Fauchald, 1971), S. chilensis (McIntosh, 1885), S. duplicata Hutchings, 1990, S. intestinalis Sars, 1872 and S. minutum Hutchings & Glasby, 1987. In contrast to the new species described here, only the number but not the size of branchial filaments is reduced. Table 2 shows the distinguishing characters for all valid species of the genus Streblosoma.

ETYMOLOGY

The species name refers to the Melanesian demons *Kaia* that inhabit volcanoes and metamorphose into different animals.

DISTRIBUTION

Hydrothermal vent fields of the west Pacific: North Fiji Basin.

Genus *Thelepus* Leuckart, 1849 *Thelepus extensus* Hutchings & Glasby, 1987

Thelepus extensus Hutchings & Glasby, 1987: 233-236, figure 9.

SPECIMEN EXAMINED

1 specimen, complete (So 109/2, Station 121 TVG) [SMF 17872].

DIAGNOSIS

3 pairs of filiform branchiae in segments II–IV with distinct dorsomedian gap. About 80 pairs of notopodia with smooth capillary chaetae from segment III. Neuropodia with uncini from segment V to posterior end. Number of abdominal segments about 110. Uncini avicular, with sub-terminal button.

REMARKS

Thelepus extensus is similar to *Thelepus setosus* Quatrefages, 1866. The latter is described as a cosmopolitan species, which also occurs in north-east Pacific waters. The specimen examined here belongs to *T. extensus* since it has a distinct dorsomedian gap between the branchial filaments and more abdominal than thoracic segments, which are the distinguishing characters, according to Hutchings & Glasby (1987).

DISTRIBUTION

Western Pacific: Australia (type locality: West Island, South Australia). Newly recorded here from cold seeps of the northeast Pacific off Oregon.

Family TRICHOBRANCHIDAE Malmgren, 1866 Genus *Terebellides* Sars, 1835 *Terebellides horikoshii* Imajima & Williams, 1985

Terebellides horikoshii Imajima & Williams, 1985: 15-16, figure 4d-f.—Hilbig, 2000b: 303-304, figure 10.4.—Hutchings & Peart, 2000: table 3a & b.

SPECIMENS EXAMINED

2 specimens (1cs, 1 af) (So 110/1a, Station 9 TVG) [SMF 17838].

DIAGNOSIS

Branchial lobes fused for half of their length. First pair of notopodia well developed. Lateral lappets of chaetigers 1-3 well developed, those of chaetigers 4 and 5 inconspicuous. Notopodia of segment 2 somewhat elevated. Acicular neuro-chaetae of chaetiger 6 gently curved, their tip not covered by sheath. Following thoracic chaetigers with about 40 long-handled uncini per neuropodium.

DISTRIBUTION

West Pacific: Japan (type locality: Suruga Bay, Honshu), off Kamchatka. East Pacific: California. Newly recorded here from cold seeps of the north-east Pacific off Oregon.

Terebellides kerguelensis (McIntosh, 1885)

Terebellides stroemii kerguelensis McIntosh, 1885: 480–481, plate 19A, figures 7 & 8, plate 38A, figure 4.—Hutchings & Peart, 2000: tables 3a & 3b.

Terebellides kerguelensis Parapar & Moreira, 2008: 145–148, figures 1–5.

SPECIMEN EXAMINED

1 specimen, complete (So 110/1a, Station 4 ROV) [SMF 17836].

DIAGNOSIS

Branchial lobes fused for half of their length. First pair of notopodia well developed. Lateral lappets weakly developed, only distinguishable in chaetigers 1 and 2. Acicular neurochaetae of chaetiger 6 bent at right angle. Following thoracic chaetigers with about 10 long-handled uncini per neuropodium.

DISTRIBUTION

Antarctic: Kerguelen Islands (type locality: off London River and Christmas Harbour), South Shetland Islands, Bellingshausen Sea. Newly recorded here from cold seeps of the north-east Pacific off Oregon.

KEY TO TEREBELLOMORPH POLYCHAETES FROM HYDROTHERMAL VENTS:

Alvinellidae

3.	Chaetigers 4 and 5 with acicular hooks
	Alvinella Desbruyères & Laubier, 1980 4
	- Chaetiger 7 with acicular hooks
	Paralvinella Desbruyères & Laubier, 1982 5
4.	Body divided into two parts. Posterior part tail-like.
	Notopodia of posterior part with digitiform lobes. Up to
	200 chaetigers
	Alvinella caudata Desbruyères & Laubier, 1986
	- Body uniform. Posterior part not tail-like. Notopodia of
	posterior part without digitiform lobes. Less than 100 chae-
	tigers
	Alvinella pompejana Desbruyères & Laubier, 1980
5.	First uncinigerous tori in chaetiger 5 or 6
_	- First uncinigerous tori in more posterior chaetiger7
6.	First uncinigerous tori in chaetiger 5
	Paralvinella pandorae pandorae Desbruyeres &
	Laubler, 1986
	- First uncinigerous tori in chaetiger 6
	Laubier 1086
_	Eirst uncipigarous tari in chaotigar at ar more enterior
/•	chaetiger
	- First uncinigerous tori in chaetiger 25 or more posterior
	chaetiger
8	Less than 70 chaetigers
0.	- More than 70 chaetigers
9.	First uncinigerous tori in chaetigers 25 – 31
<i>.</i>	Paralvinella sulfincola Desbruvères & Laubier, 1993
	- First uncinigerous tori in more anterior chaetiger 10
10	. First uncinigerous tori in chaetigers 16-21. 4-5 acicular
	hooks. Notopodial lobes from chaetigers 4 to 13-17
	Paralvinella hessleri Desbruyères & Laubier, 1989
	- First uncinigerous tori in chaetigers 12-19. 3-4 acicu-
	lar hooks. Notopodial lobes from chaetigers 9 to 30
	Paralvinella fijiensis Desbruyères & Laubier, 1993

Ampharetidae

14.	10 thoracic uncinigers
	Grassleia hydrothermalis Solís-Weiss, 1993
	- 14 or 17 thoracic uncinigers
15.	17 thoracic uncinigers
	- 14 thoracic uncinigers16
16.	Up to 25 abdominal segments. Abdominal glandular
	ridges with papilliform cirri
	Amphisamytha vanuatuensis Reuscher,
	Fiege & Wehe, 2009
	- Up to 15 abdominal segments. Abdominal glandular
	ridges without papilliform cirri
	Amphisamytha galapagensis Zottoli, 1983

Terebellidae

KEY TO TEREBELLOMORPH POLYCHAETES FROM COLD SEEPS:

- Buccal tentacles retractable. Branchiae cirriform
 Ampharetidae Malmgren, 1866 5
 Buccal tentacles not retractable. Branchiae dichotomous,filiform or, reduced Terebellidae Malmgren, 1866 15

Trichobranchidae (genus Terebellides)

- Lateral lappets in chaetigers 1-5. Acicular hooks bent at right angle.... *Terebellides kerguelensis* (McIntosh, 1885)

Ampharetidae

5.	3 pairs of branchiae
	- 4 pairs of branchiae
6.	12 thoracic unchaigers. Notopodia of unchaiger 8 elevated
	Anobolnrus laubieri (Desbruyeres, 1978)
	- 11 thoracic uncinigers. Notopodia of unciniger 8 not
	elevated
7.	No gap between left and right group of branchiae
	<i>Glyphanostomum holthei</i> Reuscher, Fiege & Wehe,
	2009
	- Wide median gap between groups of branchiae
	Glyphanostomum pallescens (Théel, 1879)
8.	10 thoracic uncinigers
	Grassleia hydrothermalis Solís-Weiss, 1993
	- 11, 12 or 14 thoracic uncinigers
9.	11 thoracic uncinigers
	Amagopsis klugei Pergament & Khlebovich in Klebovich
	1964
	- 12 or 14 thoracic uncinigers
10	. 12 thoracic uncinigers
	- 14 thoracic uncinigers13
11	. Notopodia of unciniger 8 elevated
	Anobothrus apaleatus Reuscher, Fiege & Wehe, 2009
	- Notopodia of unciniger 8 not elevated
12	. Notochaetae of segment II present
	Pavelius ushakovius Kuznetsov & Levenstein, 1988
	- Notochaetae of segment II absent Amage benhami
	Reuscher, Fiege & Wehe, 2009
13	. Notochaetae of segment II present
0	
	- Notochaetae of segment II absent
14	. Up to 25 abdominal segments. Abdominal glandular
	ridges with papilliform cirri
	Amphisamytha vanuatuensis Reuscher.
	Fiege & Wehe, 2009
	- Up to 15 abdominal segments. Abdominal glandular
	ridges without papilliform cirri
	Amphisamytha valapavensis Zottoli 1082
	Tarahallidaa
	1 CI CUCIII (uac
15	. Branchiae dichotomous. Uncini of anterior thorax with

ACKNOWLEDGEMENTS

We thank our colleagues Michael Türkay and Jens Stecher (both Senckenberg Forschungsinstitut und Naturmuseum), Thomas Jellinek (University of Canterbury, Christchurch, New Zealand, formerly Senckenberg Forschungsinstitut und Naturmuseum), and Heiko Sahling (Marum, University of Bremen) for collecting and making the material available to us. Kristian Fauchald (Smithsonian Institution, National Museum of Natural History, Washington, DC) is thanked for the loan of type specimens, and Julio Parapar (Universidade da Coruña) for providing us with a then unpublished manuscript.

REFERENCES

- **Aguado M.T. and Rouse G.W.** (2006) First record of Sphaerodoridae (Phyllodocida: Annelida) from hydrothermal vents. *Zootaxa* 1383, 1–21.
- Augener H. (1918) Polychaeta. Beiträge zur Kenntnis der Meeresfauna Westafrikas 2, 67–625.
- **Caullery M.** (1915) Sur les térébelliens de la tribu des Thelepinae. Examen des genres. Tube spiralé de *Streblosoma longiremis* n. sp. *Bulletin de la Société Zoologique de France* 40, 44–53.
- Caullery M. (1944) Polychètes sédentaires de l'expedition du Siboga. Ariciidae, Spionidae, Chaetopteridae, Chlorhaemidae, Opheliidae, Oweniidae, Sabellariidae, Sternaspidae, Amphictenidae, Ampharetidae, Terebellidae. Siboga-Expeditie. Utkomsten op zoologisch, botanisch, oceanographisch en geologisch Gebied verzameld in Nederlandsch Oost-Indië 1899–1900 aan Boord H.M. Siboga onder Commando van Luitenant ter zee 1. kl. G.F. Tydeman 24, 1–204.
- Chevaldonné P., Jollivet D., Desbruyères D., Lutz R.A. and Vrijenhoek R.C. (2002) Sister-species of eastern Pacific hydrothermal vent worms (Ampharetidae, Alvinellidae, Vestimentifera) provide new mitochondrial COI clock calibration. *Cahiers de Biologie Marine* 43, 367–370.
- **Coleman C.O.** (2003) 'Digital inking': how to make perfect line drawings on computers. *Organisms, Diversity and Evolution* 3, 1–14, Electronic Supplement 14.
- Dalyell J.G. (1853) The powers of the Creator displayed in the creation; or, observations on life amidst the various of the humbler tribes of animated nature: with practical comments and illustrations, Volume 2. London: John van Voorst.
- **Day J.H.** (1955) The Polychaeta of South Africa. Part 3. Sedentary species from cape shores and estuaries. *Journal of the Linnean Society, London* 42, 407–452.
- **Day J.H.** (1963) The polychaete fauna of South Africa. Part 7. Species from depths between 1000 and 3330 metres west of Cape Town. *Annals of the South African Museum* 46, 353-371.
- **Day J.H.** (1967) A monograph on the Polychaeta of Southern Africa. Part I + II. London: British Museum (Natural History), London.
- **Desbruyères D.** (1978) *Melythasides laubieri* gen. sp. nov. Ampharetidae (annélides polychètes sédentaires) abyssal de la mer de Norvège. *Bulletin du Muséum d'histoire Naturelle, Paris* 3, 231–238.
- Desbruyères D. (2006a) Paralvinella (Miralvinella) dela Detinova, 1988. Denisia 18, 286.
- Desbruyères D. (2006b) Paralvinella (Nautalvinella) hessleri Desbruyères & Laubier, 1989. Denisia 18, 287.
- Desbruyères D. (2006c) Paralvinella (Nautalvinella) unidentata Desbruyères & Laubier, 1993. Denisia 18, 289–290.
- Desbruyères D. (2006d) Amathys lutzi Desbruyères & Laubier, 1996. Denisia 18, 295.
- Desbruyères D. (2006e) Amphisamytha galapagensis Zottoli, 1983. Denisia 18, 296.
- **Desbruyères D.** (2010a) *Amathys lutzi* Desbruyères & Laubier, 1996. In Morineaux M., Baker M., Ramirez-Llodra E. and Desbruyères D. (eds) *DVD of deep-sea hydrothermal vent fauna*. ChEss and Ifremer.

- **Desbruyères D.** (2010b) Amphisamytha galapagensis Zottoli, 1983. In Morineaux M., Baker M., Ramirez-Llodra E. and Desbruyères D. (eds) DVD of deep-sea hydrothermal vent fauna. ChEss and Ifremer.
- **Desbruyères D.** (2010c) *Paralvinella dela* Detinova, 1988. In Morineaux M., Baker M., Ramirez-Llodra E. and Desbruyères D. (eds) *DVD of deep-sea hydrothermal vent fauna*. ChEss and Ifremer.
- **Desbruyères D.** (2010d) *Paralvinella hessleri* Desbruyères & Laubier, 1989. In Morineaux M., Baker M., Ramirez-Llodra E. and Desbruyères D. (eds) *DVD of deep-sea hydrothermal vent fauna*. ChEss and Ifremer.
- **Desbruyères D.** (2010e) *Paralvinella unidentata* Desbruyères & Laubier, 1993. In Morineaux M., Baker M., Ramirez-Llodra E. and Desbruyères D. (eds) *DVD of deep-sea hydrothermal vent fauna*. ChEss and Ifremer.
- **Desbruyères D. and Laubier L.** (1980) *Alvinella pompejana* gen. sp. nov., Ampharetidae aberrant des sources hydrothermales de la ride Est-Pacifique. *Oceanologica Acta* 3, 267–274.
- Desbruyères D. and Laubier L. (1982) Paralvinella grasslei, new genus, new species of Alvinellinae (Polychaeta: Ampharetidae) from the Galápagos Rift geothermal vents. Proceedings of the Biological Society of Washington 95, 484–494.
- **Desbruyères D. and Laubier L.** (1986) Les Alvinellidae, une famille nouvelle d'annélides polychètes inféodées aux sources hydrothermales sous-marines: systématique, biologie et écologie. *Canadian Journal of Zoology* 64, 2227–2245.
- **Desbruyères D. and Laubier L.** (1989) *Paralvinella hessleri*, new species of Alvinellidae (Polychaeta) from the Mariana Back–Arc Basin hydro-thermal vents. *Proceedings of the Biological Society of Washington* 102, 761–767.
- **Desbruyères D. and Laubier L.** (1991) Systematics, phylogeny, ecology and distribution of the Alvinellidae (Polychaeta) from deep-sea hydrothermal vents. In Proceedings of the 2nd International Polychaete Conference. *Ophelia* Supplement 5, 31–45.
- **Desbruyères D. and Laubier L.** (1993) New species of Alvinellidae (Polychaeta) from the North Fiji Back-Arc Basin hydrothermal vents (Southwestern Pacific). *Proceedings of the Biological Society of Washington* 106, 225–236.
- **Desbruyères D. and Laubier L.** (1996) A new genus and species of ampharetid polychaete from deep-sea hydrothermal vent community in the Azores triple-junction area. *Proceedings of the Biological Society* of Washington 109, 248–255.
- Detinova N.N. (1988) New species of polychaetous annelids from hydrothermal vents of the Juan de Fuca Ridge (Pacific Ocean). *Zoologicheskij Zhurnal* 57, 858–864.
- Fabricius O. (1780) Fauna Groenlandica, systematice sistens, Animalia Groenlandiae occidentalis hactenus indagata, quoad nomen specificum, triviale, vernaculumque synonyma auctorum plurium, descriptionem, locum, victum, generationem, mores, usum, capturamque singuli prout detegendi occasio fuit, maximaque parte secundum proprias observationes. Copenhagen: Hafniae et Lipsiae, xvi + 452 pp.
- Fauvel P. (1908) Sur un térébellien nouveau du Golfe Persique (Grymaea persica nov. sp.) Bulletin du Muséum d'Histoire Naturelle, Paris 14, 386–389.
- Fauvel P. (1927) Polychètes sédentaires. Addenda aux errantes, Archiannélides, Myzostomaires. Paris: Paul Lechevalier.
- Garraffoni A.R.S. and Lana P.C. (2010) A critical review of ontogenetic development in Terebellidae (Polychaeta). *Acta Zoologica* 91, 390–401.
- Glasby C.J. and Hutchings P.A. (1987) A new species of *Thelepus* from Punta Arenas, Chile, together with a redescription of *Streblosoma*

comatus (Grube) and *Thelepus pequenianus* Augener (Thelepinae: Terebellidae). *Journal of Natural History* 21, 977–986.

- **Grube A.-E.** (1859) Annulata Oerstediana. Enumeratio Annulatorum quae in itinere per Indiam occidentalem et Americam centralem annis 1845–1848 suscepto legit cl. A. S. Oersted, adjectis speciebus nonnullis a. cl. H. Kröyer in itinere ad Americam meridionalem collectis. Videnskabelige Meddelelser fra den Dansk naturhistoriske Forening i Kjöbenhavn for Aaret 1859, 105–120.
- Haase K., Flies C., Fretzdorff S., Giere O., Houk A., Klar S., Koschinsky A., Küver J., Marbler H., Mason P., Nowald N., Ostertag-Henning C., Paulick H., Perner M., Petersen S., Ratmeyer V., Schmidt W., Schott T., Schröder M., Seifert R., Seiter C., Stecher J., Strauss H., Süling J., Unverricht D., Warmuth M., Weber S. and Westernströer U. (2005) Meteor Berichte 05. Mid-Atlantic Expedition 2005. Cruise No. 64, Leg 1. MARSÜD 2. 2 April-3 May 2005, Mindelo (Cape Verde)—Fortaleza (Brazil). Leitstelle Meteor, Institut für Meereskunde der Universität Hamburg, 59 pp.
- Halbach P., Auzende J.M., Türkay M. and the Scientific Party of the HYFIFLUX I cruise (1996) The Hyfiflux Project. Hydrothermalism in the North Fiji Basin: Evolution of fluids, mass fluxes and special biological activity. Hyfiflux Part I. Evolution of mineral formation and zonation, special biological activity. R/V Sonne So 99 Research Cruise. 24.12.1994–28.01.1995. Manila–Suva–Suva. Technical Cruise Report SO 99, Berlin, 106 pp.
- Halbach P., Giere O., Seifert T., Seifert R. and the Scientific Party of the HYFIFLUX II cruise (1998) Hyfiflux II – SO 134. Hydrothermal fluid development, material balancing and special biological activity in the North Fiji Basin. Research Cruise with RV Sonne, cruise no. SO 134.
 11. Aug. 1998 (Suva, Fiji)–8. Sept. 1998 (Suva, Fiji). Technical Cruise Report, Berlin, 148 pp.
- Hartman O. (1969) Atlas of the sedentariate polychaetous annelids from California. Los Angeles: Allan Hancock Foundation, University of Southern California.
- Hartman O. and Fauchald K. (1971) Deep-water benthic polychaetous annelids off New England to Bermuda and other North Atlantic Areas. Part II. Allan Hancock Monographs in Marine Biology 6, 1–327.
- Hartmann-Schröder G. and Rosenfeldt P. (1991) Die Polychaeten der 'Walther Herwig'-Reise 68/1 nach Elephant Island (Antarktis) 1985. Teil 2: Acrocirridae bis Sabellidae. *Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut* 88, 73-96.
- Hashimoto J., Ohta S., Fujikura K. and Miura T. (1995) Microdistribution pattern and biogeography of the hydrothermal vent communities of the Minami–Ensei Knoll in the Mid-Okinawa Trough, Western Pacific. *Deep-Sea Research I* 42, 577–598.
- Herzig P., Suess E. and Linke P. with contributions by the cruise participants (1997) Cruise Report So 109 Hydrotrace. So 109-1: Astoria– Victoria, May 23–June 5, So 109-2: Victoria–Astoria, June 6–June 25, 1996, So 109-3: Astoria–Victoria, June 26–July 8, 1996. GEOMAR Report 58, Freiberg University of Mining and Technology, 250 pp.
- Herzig P., Hannington M., Stoffers P., Becker K.-P., Drischel M., Franz L., Gemmell B., Höppner B., Horn C., Horz K., Franklin J., Jellinek T., Jonasson I., Kia P., Mühlhan N., Nickelsen S., Percival J., Perfit M., Petersen S., Schmidt M., Seifert T., Thiessen O., Türkay M., Tunnicliffe V. and Winn K. (1998) Volcanism, Hydrothermal Processes and Biological Communities at Shallow Submarine Volcanoes of the New Ireland Fore-Arc (Papua New Guinea). Cruise Report Sonne 133 (BMBF FK 03G0133A), July 10–August 10, 1998, Manila–Kavieng–Rabaul–Suva. Freiberg University of Mining and Technology, 146 pp.
- Hessle C. (1917) Zur Kenntnis der terebellomorphen Polychaeten. Zoologiska Bidrag från Uppsala 5, 39-258.
- Hilbig B. (2000a) Family Terebellidae Grube, 1851. In Blake J.A., Hilbig B. and Scott P.V. (eds) *Taxonomic atlas of the benthic fauna of the Santa*

Maria Basin and Western Santa Barbara Channel. Volume 7. The Annelida Part 4. Polychaeta: Flabelligeridae to Sternaspidae. Santa Barbara, CA: Santa Barbara Museum of Natural History, pp. 231–293.

- Hilbig B. (2000b) Family Trichobranchidae Malmgren, 1866. In Blake J.A., Hilbig B. and Scott P.V. (eds) *Taxonomic atlas of the benthic fauna of the Santa Maria Basin and Western Santa Barbara Channel. Volume 7. The Annelida Part 4. Polychaeta: Flabelligeridae to Sternaspidae.* Santa Barbara, CA: Santa Barbara Museum of Natural History, pp. 295–309.
- Holthe T. (1986a) Polychaeta Terebellomorpha. *Marine Invertebrates of Scandinavia* 7, 1–192.
- **Holthe T.** (1986b) Evolution, systematics, and distribution of the Polychaeta Terebellomorpha, with a catalogue of the taxa and a bibliography. *Gunneria* 55, 1–236.
- Hutchings P.A. (1990) Terebellidae (Polychaeta) from the Hong Kong region. In Morton B. (ed.) *Proceedings of the Second International Marine Biological Workshop: The Marine Flora and Fauna of Hong Kong and Southern China, Hong Kong, 1986.* Hong Kong: Hong Kong University Press, pp. 377–412.
- Hutchings P. (1997) The Terebellidae (Polychaeta) of northern Australia with a key to all the described species of the region. In Hanley J.R., Caswell G., Megirian D. and Larson H.K. (eds) *Proceedings of the Sixth International Marine Biological Workshop. The Marine Flora and Fauna of Darwin Harbour, Northern Territory, Australia.* Darwin: Museums and Art Galleries of the Northern Territory and the Australian Marine Science Association, pp. 133–161.
- Hutchings P.A. and Glasby C.J. (1986) A revision of the genus *Euthelepus* (Terebellidae: Thelepinae). *Records of the Australian Museum* 38, 105–117.
- **Hutchings P.A. and Glasby C.J.** (1987) The Thelepinae (Terebellidae) from Australia, with a discussion of the generic and specific characters of the subfamily. *Bulletin of the Biological Society of Washington* 7, 217–250.
- Hutchings P.A. and Glasby C.J. (1988) The Amphitritinae (Polychaeta: Terebellidae) from Australia. *Records of the Australian Museum* 40, 1–60.
- Hutchings P.A. and Glasby C.J. (1990) Additional new species of Terebellidae (Polychaeta) from Western Australia, with a key to all described species of the region. In Wells F.E., Walker D.I., Kirkman H. and Lethbridge R. (eds) Proceedings of the Third International Marine Biological Workshop: The Marine Flora and Fauna of Albany, Western Australia. Perth: Western Australian Museum 1, 251–289.
- Hutchings P.A. and Murray A. (1984) Taxonomy of polychaetes from the Hawkesbury River and the southern estuaries of New South Wales, Australia. *Records of the Australian Museum* 36 (Supplement 3), 1-118.
- Hutchings P. and Peart R. (2000) A revision of the Australian Trichobranchidae (Polychaeta). *Invertebrate Taxonomy* 14, 225–272.
- Hutchings P. and Rainer S. (1979) The polychaete fauna of Careel Bay, Pittwater, New South Wales, Australia. *Journal of Natural History* 13, 745–796.
- Hutchings P.A. and Smith R.I. (1997) Descriptions of new species and comments on previously described species of terebellid polychaetes from New Zealand and Australia. In Reish D. and Qian P. (eds) *Proceedings of the 5th International Polychaete Conference. Bulletin* of Marine Science 60, 324–349.
- Imajima M. and Williams S.J. (1985) Trichobranchidae (Polychaeta) chiefly from the Sagami and Suruga Bays, collected by R/V *Tansei-Maru* (Cruises KT-65 ~ 76). Bulletin of the National Science Museum Tokyo, Series A 11, 7–18.

- Johnson H.P. (1901) The Polychaeta of the Puget Sound Region. Proceedings of the Boston Society of Natural History 29, 381-437.
- Klebovich V.V. (1964) [Bristleworms (Polychaeta) from the northern part of the Greenland Sea, Spitsbergen and Franz-Joseph Land]. *Trudy Arkticheskogo i Antarcticheskogo Nauchno-Issledovateĺskogo Instituta* 259, 167–180. [In Russian.]
- Kritzler H. (1971) Observations on a new species of *Streblosoma* from the northeast Gulf of Mexico (Polychaeta: Terebellidae). *Bulletin of Marine Science* 21, 904–913.
- Kudenov J.D. (1975) Sedentary polychaetes from the Gulf of California. *Journal of Natural History* 9, 205–231.
- Kuhn T., Alexander B., Augustin N., Birgel D., Borowski C., Carvalho L.M. de, Engemann G., Ertl S., Franz L., Grech C., Hekinian R., Imhoff J.F., Jellinek T., Klar S., Koschinsky A., Kuever J., Kulescha F., Lackschewitz K., Petersen S., Ratmeyer V., Renken J., Ruhland G., Scholten J., Schreiber K., Seifert R., Süling J., Türkay M., Westernströer U. and Zielinski F. (2004) Meteor Berichte 03-04. Mid-Atlantic Expedition 2004. Cruise No. 60, Leg 3. Mineralogical, geochemical, and biological investigations of hydrothermal systems on the Mid-Atlantic Ridge between 14°45′N and 15°05′N (Hydromar I). 14 January-14 February 2004, Fort-de-France–Fort-de-France (Martinique). Leitstelle Meteor, Institut für Meereskunde der Universität Hamburg, 60 pp.
- Kuznetsov A.P. and Levenstein R.Y. (1988) [Pavelius uschakovi gen. et sp. n. (Polychaeta, Ampharetidae) from Paramushir Gas Hydrate Spring in the Okhotsk Sea]. Zoologicheskii Zhurnal 67, 819–825. [In Russian.]
- Lackschewitz K.S., Armini M., Augustin N., Dubilier N., Edge D., Engemann G., Fabian M., Felden J., Franke P., Gärtner A., Garbe-Schönberg D., Gennerich H.-H., Hüttig D., Marbler H., Meyerdierks A., Pape T., Perner M., Reuter M., Ruhland G., Schmidt K., Schott T., Schroeder M., Schroll G., Seiter C., Stecher J., Strauss H., Viehweger M., Weber S., Wenzhöfer F. and Zielinski F. (2005) Meteor Berichte 05. Mid-Atlantic Expedition 2005. Cruise No. 64, Leg 2. Longterm study of hydrothermalism and biology at the Logatchev field, Mid-Atlantic Ridge at 14°45'N (revisit 2005; Hydromar II). 6 May-6 June 2005, Fortaleza (Brazil)-Dakar (Senegal). Leitstelle Meteor, Institut für Meereskunde der Universität Hamburg, 62 pp.
- Leuckart R. (1849) Zur Kenntnis der Fauna von Island. Archiv für Naturgeschichte Berlin 15, 149–208.
- Londoño-Mesa M.H. and Carrera-Parra L.F. (2005) Terebellidae (Polychaeta) from Mexican Caribbean with description of four new species. Zootaxa 1057, 1-44.
- Malmgren A.J. (1866) Nordiska Hafs-Annulater. Öfversigt af Kongliga Vetenskaps-Akademiens Förhandlingar, Stockholm 22, 355–410.
- McHugh D. and Tunnicliffe V. (1994) Ecology and reproductive biology of the hydrothermal vent polychaete *Amphisamytha galapagensis* (Ampharetidae). *Marine Ecology Progress Series* 106, 111–120.
- McIntosh W.C. (1885) Report on the Annelida Polychaeta collected by H.M.S. Challenger during the years 1873–1876. Report on the Scientific Results of the Voyage of H.M.S. Challenger during the years 1872–76 12, 1–554.
- Miura T. and Ohta S. (1991) Two polychaete species from the deep-sea hydrothermal vent in the Middle Okinawa Trough. *Zoological Science* 8, 383–387.
- Mohammad M.-B.M. (1973) New species and records of polychaete annelids from Kuwait, Arabian Gulf. *Zoological Journal of the Linnean Society* 52, 23–44.
- Monro C.C.A. (1933) The Polychaeta Sedentaria collected by Dr. C. Crossland at Colón in the Panama region, and the Galapagos

Islands during the expedition of the S.Y. 'St. George'. *Proceedings of the Zoological Society, London* 1933, 1039–1092.

- Monro C.C.A. (1936) Polychaete worms II. 'Discovery' Reports 12, 59–198.
- Morineaux M., Baker M., Ramirez-Llodra E. and Desbruyères D. (eds) (2010) Deep-sea hydrothermal vent fauna. DVD. Ifremer & ChEss.
- Müller O.F. (1771) Von Würmern des süßen und salzigen Wassers. Copenhagen: Heineck und Faber.
- Nishi E. and Tanaka K. (2006) A new species of *Pista* (Annelida: Polychaeta: Terebellidae) from shallow waters of Shizugawa Bay, Sanriku Coast, Japan. *Scientia Marina* 70, 139–144.
- Nogueira J.M.M. and Amaral A.C.Z. (2001) New terebellids (Polychaeta: Terebellidae) living in colonies of a stony coral in the state of São Paulo, Brazil. *Proceedings of the Biological Society of Washington* 114, 285–296.
- Nogueira J.M.M., Garraffoni A.R.S and Alves T.M. (2004) A new species of *Streblosoma* Sars, 1872 (Polychaeta, Terebellidae, Thelepodinae) from Brazil, with comments on *Streblosoma oligobranchiatum* Nogueira & Amaral, 2001. *Beaufortia* 54, 93–103.
- Nogueira J.M.M. and Hutchings P.A. (2007) New species of terebellid polychaetes (Polychaeta: Terebellidae) from Australia. *Zootaxa* 1473, 1-24.
- **Parapar J. and Moreira J.** (2008) Redescription of *Terebellides kerguelen*sis stat. nov. (Polychaeta: Trichobranchidae) from Antarctic and sub-Antarctic waters. *Helgoland Marine Research* 62, 143–152.
- **Quatrefages A. de** (1866) *Histoire naturelle des Annelés marins et d'eau douce. Annélides et Géphyriens.* Paris: Librarie Encyclopédique de Rôret, 336 pp. [imprinted publication date 1865].
- **Reuscher M., Fiege D. and Wehe T.** (2009) Four new species of Ampharetidae (Annelida: Polychaeta) from Pacific hot vents and cold seeps, with a key and synoptic table of characters for all genera. *Zootaxa* 2191, 1–40.
- Rioja E. (1962) Estudios anelidologicos 26. Algunos anelidos poliquetos de las costas del Pacifico de Mexico. Anales del Instituto de Biología, Universidad Nacional Autónoma de Mexico 33, 131–229.
- Santos A.S., Nogueira J.M.M., Fukuda M.V. and Christoffersen M.L. (2010) New terebellids (Polychaeta: Terebellidae) from northeastern Brazil. *Zootaxa* 2389, 1–46.
- Saphronova M.A. (1985) Variability of some morphological characters in members of the genus *Pista* (Polychaeta, Terebellidae). Polychaeta. *Morphology, Systematics, Ecology. Proceedings of the USSR Polychaete Conference Leningrad, 1983. Explorations of the Fauna of the Seas* 34, 108-111. [English translation by the National Museums of Canada, 1987.]
- Sars M. (1835) Beskrivelser og lagttagelser over nogle moerkelige eller nye i Havet ved den Bergenske Kyst levende Dyr af Polypernes, Acalephernes, Radiaternes, Annelidernes og Molluskernes classer, med en kort Oversigt over de hidtil af Forfatteren sammesteds fundne Arter og deres Forekommen. Bergen: Thorstein Hallegers Forlag hos Chr. Dahl.
- Sars M. (1872) Diagnoser af nye Annelider fra Christianiafjorden. Forhandlinger Videnskabs-Selskabet i Christiania 1871, 406-417.
- Schander C., Rapp H.T, Kongsrud J.A, Bakken T., Berge J., Cochrane S., Oug E., Byrkjedal I., Todt C., Cedhagen T., Fosshagen A., Gebruk A., Larsen K., Levin L., Obst M., Pleijel F., Stöhr S., Warén A., Mikkelsen N.T., Hadler-Jacobsen S., Keuning R., Heggøy Petersen K., Thorseth I.H. and Pedersen R.B. (2010) The fauna of hydrothermal vents on the Mohn Ridge (North Atlantic). Marine Biology Research 6, 155-171.
- Solís-Weiss V. (1993) *Grassleia hydrothermalis*, a new genus and species of Ampharetidae (Annelida: Polychaeta) from the hydrothermal vents

off the Oregon coast (U.S.A.), at Gorda Ridge. *Proceedings of the Biological Society of Washington* 106, 661–665.

- Solís-Weiss V. and Hernández-Alcántara P. (1994) Amphisamytha fauchaldi: a new species of ampharetid (Annelida: Polychaeta) from the hydrothermal vents at Guaymas Basin, Mexico. Bulletin of the Southern California Academy of Sciences 93, 127–134.
- Stoffers P., Worthington T., Petersen S., Hannington M., Türkay M., Ackermand D., Borowski C., Dankert S., Fretzdorff S., Haase K., Hekinian R., Hoppe A., Jonasson I., Kuhn T., Lancaster R., Monecke T., Renno A., Stecher J. and Weiershäuser L. (2001) Cruise Report Sonne 157, Foundation 3. Magmatic and Hydrothermal Processes at a Spreading Axis influenced by a Hotspot: the Pacific-Antarctic Ridge and Off-Axis Seamounts near 37°S. Valparaiso, Chile-Easter Island, Chile, 15 June-14 July 2001. Berichte-Reports. Institut für Geowissenschaften, Universität Kiel, Nr. 17, 132 pp.
- Suess E. and Bohrmann G. (eds) (1997) RV Sonne Cruise Report SO 110. GEOMAR Report 59, 181 pp.
- Théel H.J. (1879) Les Annélides Polychètes des mers de la Nouvelle-Zemble. *Kungliga Svenska Vetenskaps-Akademiens Handlingar* 16, 1–75.
- **Treadwell A.L.** (1911) Polychaetous annelids from the Dry Tortugas, Florida. Bulletin of the American Natural History Museum 30, 1–12.
- **Treadwell A.L.** (1914) Polychaetous annelids of the Pacific coast in the collections of the Zoological Museum of the University of California. *University of California Publications in Zoology* 13, 175–234.
- **Treadwell A.L.** (1937) The Templeton Crocker Expedition. VIII. Polychaetous annelids from the West Coast of Lower California, the Gulf of California and Clarion Island. *Zoologica* 22, 139–160.

- Verrill A.E. (1874) Explorations of Casco Bay by the U.S. Fish Commission, in 1873. Proceedings of The American Association for the Advancement of Science 22, 340–395.
- **Verrill A.E.** (1900) Additions to the Turbellaria, Nemertina, and Annelida of the Bermudas, with revisions of some New England genera and species. *Transactions of the Connecticut Academy of Arts and Sciences* 10, 595–672.
- Willey A. (1905) Report on the Polychaeta collected by Professor Herdmann, at Ceylon, in 1902. Ceylon Pearl Oyster Fisheries Supplement Report 30, 243–324.
- Wu Q., Wu B. and Qian P.Y. (1987) Five new species of polychaetous Annelida (Ampharetidae and Terebellidae) from south oceans. *Investigatio et Studium Naturae* 7, 44–54.

and

Zottoli R.A. (1983) Amphisamytha galapagensis, a new species of ampharetid polychaete from the vicinity of abyssal hydrothermal vents in the Galapagos Rift, and the role of this species in rift ecosystems. Proceedings of the Biological Society of Washington 96, 379-391.

Correspondence should be addressed to:

M. Reuscher

Harte Research Institute

Texas A&M University-Corpus Christi

6300 Ocean Drive, Unit 5869, Corpus Christi, Texas

78412-5869, USA

email: Michael.Reuscher@tamucc.edu