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In this paper, we review some recent results on the stochastic comparison of order
statistics and related statistics from independent and heterogeneous proportional haz-
ard rates models, gamma variables, geometric variables, and negative binomial variables.
We highlight the close connections that exist between some classical stochastic orders and
majorization-type orders.

1. INTRODUCTION

Order statistics and related statistics have received considerable attention in the literature
as they play an important role in many areas including statistical inference, goodness-of-fit
tests, reliability theory, economics, and operations research. Let Xi:n denote the ith order
statistic arising from independent random variables X1, . . . , Xn having possibly different
probability distributions. A lot of work has been done in the literature on order statis-
tics for the case when the underlying variables are independent and identically distributed
(i.i.d.). Due to the complexity of the distribution theory in the case when samples are
non-i.i.d., only limited results are available in the literature; see, for example, David and
Nagaraja [15], Balakrishnan and Rao [4,5], and Balakrishnan [3] for a comprehensive dis-
cussion on order statistics arising from independent and non-identically distributed (i.ni.d.)
random variables.

In this review paper, we discuss the existing results placing special emphasis to recent
developments on stochastic comparisons of order statistics from various samples. Inciden-
tally, Kochar [27] and Boland, Shaked, and Shanthikumar [11], Boland, Hu, and Shaked [10],
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Khaledi and Kochar [25], and Kochar and Xu [30] have all presented reviews on this topic
earlier up to 1998, 2002, and 2007, respectively. In Section 2, we focus on stochastic compar-
isons of order statistics and sample ranges from proportional hazard rates (PHR) models.
Sections 3 and 4 are devoted to stochastic comparisons of order statistics from gamma,
geometric, and negative binomial samples.

We first recall some notions of stochastic orders, and majorization and related orders
which are most pertinent to the discussions in this paper. Throughout the paper, the term
increasing is used for monotone non-decreasing and similarly decreasing is used for monotone
non-increasing.

1.1. Stochastic Orders

Definition 1.1: For two random variables X and Y with densities fX and fY , and dis-
tribution functions FX and FY , respectively, let FX = 1 − FX and FY = 1 − FY be the
corresponding survival functions. Then:

(i) X is said to be smaller than Y in the likelihood ratio order (denoted by X ≤lr Y ) if
fY (x)/fX(x) is increasing in x;

(ii) X is said to be smaller than Y in the hazard rate order (denoted by X ≤hr Y ) if
FY (x)/FX(x) is increasing in x;

(iii) X is said to be smaller than Y in the reversed hazard rate order (denoted by X ≤rh Y )
if FY (x)/FX(x) is increasing in x;

(iv) X is said to be smaller than Y in the stochastic order (denoted by X ≤st Y ) if
FY (x) ≥ FX(x);

(v) X is said to be smaller than Y in the increasing convex order (denoted by X ≤icx Y )
if
∫∞

t
FX(x)dx ≤ ∫∞

t
FY (x)dx for all t;

(vi) X is said to be smaller than Y in the mean residual life order (denoted by X ≤mrl Y )
if EXt ≤ EYt, where Xt = (X − t|X > t) is the residual life at age t > 0 of the random
lifetime X.

Definition 1.2: The random vector X = (X1, . . . , Xn) is said to be larger than another

random vector Y = (Y1, . . . , Yn) (denoted by X
st� Y) in the multivariate stochastic order if

E[φ(X)] ≥ E[φ(Y)]

for all increasing functions φ. It is well known that multivariate stochastic order implies
component-wise stochastic order. For elaborate details on various stochastic orders, one
may refer to Shaked and Shanthikumar [42] and Müller and Stoyan [38].

One of the basic criteria for comparing variability in probability distributions is the
dispersive order.

Definition 1.3: A random variable X is said to be less dispersed than another random
variable Y (denoted by X ≤disp Y ) if

F−1(v) − F−1(u) ≤ G−1(v) − G−1(u)

for 0 ≤ u ≤ v ≤ 1, where F−1 and G−1 are the right continuous inverses of the distribution
functions F and G of X and Y , respectively.

https://doi.org/10.1017/S0269964813000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964813000156


ORDERING PROPERTIES OF ORDER STATISTICS FROM HETEROGENEOUS 405

A weaker variability order, called the excess wealth order, is defined as below.

Definition 1.4: X is said to have less excess wealth than Y (denoted by X ≤ew Y ) if∫ ∞

F−1(p)

F (t)dt ≤
∫ ∞

G−1(p)

G(t)dt, 0 ≤ p ≤ 1.

Then, the following implications are well known:

X ≤disp Y =⇒ X ≤ew Y =⇒ Var(X) ≤ Var(Y ).

Definition 1.5: X is said to be smaller than Y in the convex transform order (denoted by
X ≤c Y ) if G−1F (x) is convex in x on the support of X.

Definition 1.6: X is said to be smaller than Y in the star order (denoted by X ≤� Y ) if
G−1F (x)/x is increasing in x on the support of X.

The convex transform order as well as the star order are scale invariant. The star order
is also called the more IFRA (increasing failure rate in average) order in reliability theory.
It is known from Marshall and Olkin [36] that

X ≤� Y =⇒ cv(X) ≤ cv(Y ),

where cv(X) =
√

Var(X)/E(X) is the coefficient of variation of X. Detailed discussions on
these two orders can be found in Barlow and Proschan [8] and Marshall and Olkin [36].

1.2. Majorization and Related Orders

We will use the notion of majorization in our discussion as it is quite useful to establish
inequalities. Let x(1) ≤ · · · ≤ x(n) be the increasing arrangement of the components of the
vector x = (x1, . . . , xn).

Definition 1.7:

(i) A vector x = (x1, . . . , xn) ∈ �n is said to majorize another vector y = (y1, . . . , yn) ∈
�n (written as x

m� y) if

j∑
i=1

x(i) ≤
j∑

i=1

y(i) for j = 1, . . . , n − 1,

and
∑n

i=1 x(i) =
∑n

i=1 y(i);
(ii) A vector x ∈ �n is said to weakly supermajorize another vector y ∈ �n (written as

x
w� y) if

j∑
i=1

x(i) ≤
j∑

i=1

y(i) for j = 1, . . . , n;

(iii) A vector x ∈ �n is said to weakly submajorize another vector y ∈ �n (written as
x �w y) if

n∑
i=j

x(i) ≥
n∑

i=j

y(i) for j = 1, . . . , n;
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(iv) A vector x ∈ �n
+ is said to be p-larger than another vector y ∈ �n

+ (written as x
p

� y)
if

j∏
i=1

x(i) ≤
j∏

i=1

y(i) for j = 1, . . . , n.

(v) A vector x ∈ �n
+ is said to reciprocal majorize another vector y ∈ �n

+ (written as

x
rm� y) if

j∑
i=1

1
x(i)

≥
j∑

i=1

1
y(i)

for j = 1, . . . , n.

Those functions that preserve the majorization ordering are said to be Schur-convex.

Evidently, x
m� y implies x

w� y, and x
p

� y is equivalent to log(x)
w� log(y), where log(x) is

the vector of logarithms of the coordinates of x. It is known that

x
w� y =⇒ x

p

� y =⇒ x
rm� y

for any two non-negative vectors x and y. For more details on majorization, p-larger and
reciprocal majorization orders and their applications, one may refer to Marshall, Olkin, and
Arnold [35], Bon and Pǎltǎnea [12], and Zhao and Balakrishnan [49].

2. PHR CASE

Independent random variables X1, . . . , Xn are said to follow the PHR model if, for i =
1, . . . , n, the survival function of Xi can be expressed as

F i(x) = [F (x)]λi ,

where F (x) is the survival function of some baseline random variable X. If r(t) denotes
the hazard rate function of the baseline distribution F , then the survival function of Xi is
given by

F i(x) = exp{−λiR(x)}
for i = 1, . . . , n, where R(x) =

∫ x

0
r(t)dt is the cumulative hazard rate of X. Many well-

known distributions are special cases of the PHR model such as exponential, Weibull, Pareto,
and Lomax distributions. A classic example of such a situation is when the components
have independent exponential distributions with respective hazard rates (λ1, . . . , λn). In
reliability engineering and system security, it is of great interest to study the effect on the
survival function, the hazard rate function and other characteristics of order statistics when
the vector (λ1, . . . , λn) gets changed to another vector (λ∗

1, . . . , λ
∗
n).

2.1. Comparisons Between two Heterogeneous PHR Samples

Pledger and Proschan [40] were the first time to deal with this problem, and they established
the following result.

Theorem 2.1: Let (X1, . . . , Xn) be a vector of independent random variables with propor-
tional hazard rate vector (λ1, . . . , λn), and (X∗

1 , . . . , X∗
n) be another vector of independent

random variables with proportional hazard rate vector (λ∗
1, . . . , λ

∗
n). Then,

(λ1, . . . , λn)
m� (λ∗

1, . . . , λ
∗
n) =⇒ Xk:n ≥st X∗

k:n. (2.1)
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Proschan and Sethuraman [41] strengthened this result from componentwise stochastic
order to multivariate stochastic order, that is, under the same setup as in Theorem 2.1,
they proved that

(λ1, . . . , λn)
m� (λ∗

1, . . . , λ
∗
n) =⇒ (X1:n, . . . , Xn:n)

st� (X∗
1:n, . . . , X∗

n:n). (2.2)

In the case of Weibull distributions with common shape parameter α and scale parameter
vectors (λ1, . . . , λn) and (λ∗

1, . . . , λ
∗
n), it follows immediately from (2.2) that

(λα
1 , . . . , λα

n)
m� ((λ∗

1)
α, . . . , (λ∗

n)α) =⇒ (X1:n, . . . , Xn:n)
st� (X∗

1:n, . . . , X∗
n:n). (2.3)

Khaledi and Kochar [26] also provided a similar result in the Weibull case as follows.

Theorem 2.2: Let (X1, . . . , Xn) be a vector of independent Weibull random variables with
common shape parameter α ≤ 1 and scale parameter vector (λ1, . . . , λn), and (X∗

1 , . . . , X∗
n)

be another vector of independent Weibull random variables with common shape parameter
α and scale parameter vector (λ∗

1, . . . , λ
∗
n). Then,

(λ1, . . . , λn)
m� (λ∗

1, . . . , λ
∗
n) =⇒ (X1:n, . . . , Xn:n)

st� (X∗
1:n, . . . , X∗

n:n).

Khaledi and Kochar [26] also compared the smallest order statistics from heterogeneous
Weibull samples and obtained the following stronger results:

(λ1, . . . , λn)
m� (λ∗

1, . . . , λ
∗
n) =⇒ X1:n ≥hr X∗

1:n for 0 < α ≤ 1

and

(λ1, . . . , λn)
m� (λ∗

1, . . . , λ
∗
n) =⇒ X1:n ≤hr X∗

1:n for α ≥ 1.

For the exponential case, Khaledi and Kochar [23] partially improved the ordering
property in (2.1) by weakening the sufficient condition as

(λ1, . . . , λn)
p

� (λ∗
1, . . . , λ

∗
n) =⇒ Xn:n ≥st X∗

n:n, (2.4)

while Khaledi and Kochar [25] extended the result in (2.4) from the exponential case to
the PHR model, but they also showed there by means of a counterexample that the result
in (2.4) may not hold for other order statistics. Moreover, as asserted in Kochar and Xu [30],
the result in (2.4) cannot be strengthened to the hazard rate order or the reversed hazard
rate order. Dykstra, Kochar, and Rojo [17] proved, in the exponential framework, that

(λ1, . . . , λn)
m� (λ∗

1, . . . , λ
∗
n) =⇒ Xn:n ≥rh X∗

n:n. (2.5)

With the help of a counterexample, Boland, EL-Neweihi, and Proschan [9] showed
that (2.1) cannot be strengthened from the usual stochastic order to the hazard rate order;
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but for the case when n = 2, they established, in the exponential framework, that

(λ1, λ2)
m� (λ∗

1, λ
∗
2) =⇒ X2:2 ≥hr X∗

2:2. (2.6)

Dykstra et al. [17] further improved (2.6) from the hazard rate order to the likelihood ratio
order as

(λ1, λ2)
m� (λ∗

1, λ
∗
2) =⇒ X2:2 ≥lr X∗

2:2. (2.7)

Joo and Mi [21] gave some sufficient conditions under which the hazard rate order in (2.6)
holds. Specifically, they proved, under the condition λ1 ≤ λ∗

1 ≤ λ∗
2 ≤ λ2, that

(λ1, λ2)
w� (λ∗

1, λ
∗
2) =⇒ X2:2 ≥hr X∗

2:2. (2.8)

Zhao and Balakrishnan [50] covered all the results in (2.6)–(2.8) and established the
following two equivalent characterizations.

Theorem 2.3: Let (X1,X2) be a vector of independent exponential random variables with
respective hazard rates λ1 and λ2, and (X∗

1 ,X∗
2 ) be another vector of independent exponen-

tial random variables with respective hazard rates λ∗
1 and λ∗

2. Suppose λ1 ≤ λ∗
1 ≤ λ∗

2 ≤ λ2.
Then,

(i)

(λ1, λ2)
w� (λ∗

1, λ
∗
2) ⇐⇒ X2:2 ≥lr [≥rh]X∗

2:2; (2.9)

(ii)

(λ1, λ2)
p

� (λ∗
1, λ

∗
2) ⇐⇒ X2:2 ≥hr [≥st]X∗

2:2. (2.10)

As an immediate consequence of Theorem 2.3, we have the following corollary.

Corollary 2.1: Let (X1,X2) be a vector of independent exponential random variables with
respective hazard rates λ1 and λ2, and (X∗

1 ,X∗
2 ) be another vector of independent exponential

random variables with common hazard rate λ. Suppose λ ≤ max(λ1, λ2). Then,

(i) λ ≥ λ1+λ2
2 ⇐⇒ X2:2 ≥lr [≥rh]X∗

2:2;

(ii) λ ≥ √
λ1λ2 ⇐⇒ X2:2 ≥hr [≥st]X∗

2:2.

Remark 2.1: In fact, the result in Corollary 2.1 is valid without the assumption that λ ≤
max(λ1, λ2). Let Zλ [Zμ] be the second order statistic of a random sample of size 2 from
an exponential distribution with common hazard rate λ [μ]. Assume λ < μ. We then have
Zλ ≥lr Zμ from Theorem 1.C.33 of Shaked and Shanthikumar [42]. Based on this fact, it can
be concluded that the result in Corollary 2.1 is also valid for the case when λ > max(λ1, λ2).

Remark 2.2: Theorem 2.4 of Joo and Mi [21] stated the condition in Part (i) of Theorem 2.3
as a sufficient condition for the hazard rate order, but they left the case λ1 + λ2 > λ∗

1 + λ∗
2 as

an open question. It can be seen that Part (ii) of Theorem 2.3 provides a complete answer to
this problem since it establishes the characterization condition λ1λ2 ≤ λ∗

1λ
∗
2 for the hazard

rate order which does include the condition λ1 + λ2 ≤ λ∗
1 + λ∗

2 as a special case. For example,
let (λ1, λ2) = (2, 7) and (λ∗

1, λ
∗
2) = (3, 5). We then have λ1λ2 ≤ λ∗

1λ
∗
2 and λ1 + λ2 > λ∗

1 + λ∗
2,

and in this case we see from Figure 1 that X2:2 ≥hr X∗
2:2.
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Figure 1. Plot of the hazard rate functions of two lifetimes of parallel systems with expo-
nential units, where h(t; a, b) denotes the hazard rate function for the case with exponential
parameter vector (a, b).

The results in (2.9) and (2.10) can also be extended from the exponential case to the
PHR model as follows.

Theorem 2.4: Let (X1,X2) be a vector of independent random variables with respective
survival functions F

λ1 and F
λ2 , and (X∗

1 ,X∗
2 ) be another vector of independent ran-

dom variables with respective survival functions F
λ∗

1 and F
λ∗

2. Suppose λ1 ≤ λ∗
1 ≤ λ∗

2 ≤ λ2.
Then,

(i)

(λ1, λ2)
w� (λ∗

1, λ
∗
2) =⇒ X2:2 ≥lr X∗

2:2;

(ii)

(λ1, λ2)
p

� (λ∗
1, λ

∗
2) =⇒ X2:2 ≥hr X∗

2:2.

Zhao and Balakrishnan [51] established the following result for the mean residual life
order.

Theorem 2.5: Let (X1,X2) be a vector of independent exponential random variables with
respective hazard rates λ1 and λ2, and (X∗

1 ,X∗
2 ) be another vector of independent exponential

random variables with respective hazard rates λ∗
1 and λ∗

2. Suppose λ1 ≤ λ∗
1 ≤ λ∗

2 ≤ λ2. Then,

(λ1, λ2)
rm� (λ∗

1, λ
∗
2) =⇒ X2:2 ≥mrl X∗

2:2.

Remark 2.3: If λ1 ≤ λ∗
1 ≤ λ∗

2 ≤ λ2, Theorem 2.3 states that λ1 + λ2 ≤ λ∗
1 + λ∗

2 and λ1λ2 ≤
λ∗

1λ
∗
2 are necessary and sufficient conditions for X2:2 ≥lr X∗

2:2 and X2:2 ≥hr X∗
2:2, respec-

tively. It can be seen that Theorem 2.5 provides a sufficient condition for the mean
residual life order which includes the condition λ1λ2 ≤ λ∗

1λ
∗
2 as a special case since
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Figure 2. Plot of the hazard rate functions of two lifetimes of parallel systems with expo-
nential units, where h(t; a, b) denotes the hazard rate function for the case with exponential
parameter vector (a, b).

Figure 3. Plot of the mean residual life functions of two lifetimes of parallel systems with
exponential units, where ϕ(t; a, b) denotes the mean residual life function for the case with
exponential parameter vector (a, b).

(λ1, λ2)
p

� (λ∗
1, λ

∗
2) implies (λ1, λ2)

rm� (λ∗
1, λ

∗
2). For example, let (λ1, λ2) = (2, 6.5) and

(λ∗
1, λ

∗
2) = (3, 4). Then, we have λ1 + λ2 > λ∗

1 + λ∗
2, λ1λ2 > λ∗

1λ
∗
2, and 1

λ1
+ 1

λ2
> 1

λ∗
1

+ 1
λ∗

2
,

and while X2:2 ≥hr X∗
2:2 does not hold, X2:2 ≥mrl X∗

2:2 does hold, as can be seen in Figures 2
and 3.
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Also, the following result is an immediate consequence of Theorem 2.5.

Corollary 2.2: Let (X1,X2) be a vector of independent exponential random variables with
respective hazard rates λ1 and λ2, and (X∗

1 ,X∗
2 ) be another vector of independent exponential

random variables with common hazard rate λ. Then,

λ ≥ 2
1
λ1

+ 1
λ2

⇐⇒ X2:2 ≥mrl X∗
2:2.

The following result extends Theorem 2.5 to the PHR model.

Theorem 2.6: Let (X1,X2) be a vector of independent random variables with respective
survival functions F

λ1 and F
λ2 , and (X∗

1 ,X∗
2 ) be another vector of independent random

variables with respective survival functions F
λ∗

1 and F
λ∗

2 . Suppose λ1 ≤ λ∗
1 ≤ λ∗

2 ≤ λ2. Then,
if the baseline distribution F is decreasing failure rate (DFR), we have

(λ1, λ2)
rm� (λ∗

1, λ
∗
2) =⇒ X2:2 ≥mrl X∗

2:2.

Zhao and Balakrishnan [55] stochastically compared the variability between the maxima
in terms of the dispersive order and the excess wealth order, and established the following
result.

Theorem 2.7: Let (X1,X2) be a vector of independent random variables with respective
survival functions F

λ1 and F
λ2 , and (X∗

1 ,X∗
2 ) be another vector of independent random

variables with respective survival functions F
λ∗

1 and F
λ∗

2 . Suppose λ1 ≤ λ∗
1 ≤ λ∗

2 ≤ λ2. If
the baseline distribution F is DFR, then

(i)

(λ1, λ2)
p

� (λ∗
1, λ

∗
2) =⇒ X2:2 ≥disp X∗

2:2;

(ii)

(λ1, λ2)
rm� (λ∗

1, λ
∗
2) =⇒ X2:2 ≥ew X∗

2:2.

Joo and Mi [21] pointed out that the hazard rate order between two maxima does
not necessarily hold in the case when λ1 ≤ λ∗

1 ≤ λ2 ≤ λ∗
2. Da, Ding, and Li [14] gave a

sufficient condition for the hazard rate order to hold in this case, and established, under the
exponential setup and the condition λ1 ≤ λ∗

1 ≤ λ2 ≤ λ∗
2, that

(λ1, λ
∗
2)

w� (λ∗
1, λ2) [or equivalently, λ1 + λ∗

2 ≤ λ∗
1 + λ2] =⇒ X2:2 ≥hr X∗

2:2. (2.11)

Yan, Da, and Zhao [46] discussed this problem further and strengthened the result in (2.11)
as follows.

Theorem 2.8: Let (X1,X2) be a vector of independent random variables with respective
survival functions F

λ1 and F
λ2 , and (X∗

1 ,X∗
2 ) be another vector of independent random

https://doi.org/10.1017/S0269964813000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964813000156


412 N. Balakrishnan and P. Zhao

variables with respective survival functions F
λ∗

1 and F
λ∗

2 . Suppose λ1 ≤ λ∗
1 ≤ λ2 ≤ λ∗

2.
Then,

(i)

(λ1, λ
∗
2)

w� (λ∗
1, λ2) [or equivalently, λ1 + λ∗

2 ≤ λ∗
1 + λ2] =⇒ X2:2 ≥lr X∗

2:2;

(ii)

(λ1, λ
∗
2)

p

� (λ∗
1, λ2) [or equivalently,

λ2

λ1
≥ λ∗

2

λ∗
1

] =⇒ X2:2 ≥hr X∗
2:2.

Presented below are some numerical examples provided by Yan et al. [46] which demon-
strate the main results in Theorem 2.8. For ease of descriptions, let h(λ1, λ2)(t) and f(λ1, λ2)(t)
denote the hazard rate and density functions of the maximum from two independent
exponential random variables with respective hazard rates λ1 and λ2.

Example 2.1:

(a) Set λ1 = 2, λ2 = 4.5, λ∗
1 = 4 and λ∗

2 = 6. It may be easily verified that the assumption
in Part (i) of Theorem 2.8 is satisfied. So, we have X2:2 ≥lr X∗

2:2. This coincides with
what is displayed in Figure 4(a);

(b) Set λ1 = 2, λ2 = 4.5, λ∗
1 = 2.05 and λ∗

2 = 8. The assumption in Part (i) of
Theorem 2.8 is violated, and Figure 4 (b) shows that the likelihood ratio function
f(2, 4.5)(t)/f(2.05, 8)(t) has a locally decreasing trend, which means X2:2 �lr X∗

2:2 and
X2:2 �lr X∗

2:2;
(c) Set λ1 = 2.05, λ2 = 8, λ∗

1 = 4 and λ∗
2 = 11. Although the assumption in Part (i) of

Theorem 2.8 is not satisfied, as seen in Figure 4(c), X2:2 ≥lr X∗
2:2 still holds.

Example 2.2:

(a) Set λ1 = 2, λ2 = 3, λ∗
1 = 2.4 and λ∗

2 = 3.4. It can be readily seen that the assumption
in Part (ii) of Theorem 2.8 is satisfied. So, we have h(2, 3)(t) ≤ h(2.4, 3.4)(t). This
coincides with what is displayed in Figure 5(a);

(b) Set λ1 = 2.4, λ2 = 3.4, λ∗
1 = 2.405 and λ∗

2 = 5. The assumption in Part (ii) of
Theorem 2.8 is violated, and Figure 5 (b) shows that h(2.4, 3.4)(t) and h(2.405, 5)(t)
cross each other;

(c) Set λ1 = 2, λ2 = 3, λ∗
1 = 2.405 and λ∗

2 = 5. Although the assumption in Part (ii) of
Theorem 2.8 is not satisfied, as seen in Figure 5 (c), h(2.405, 5)(t) is still above h(2, 3)(t)
for all t ≥ 0.

Remark 2.4: It can be seen from Examples 2.1 (c) and 2.2 (c) that the conditions of
Theorem 2.8 are sufficient but not necessary for the likelihood ratio and hazard rate orders
between X2:2 and X∗

2:2, respectively. Also, by extensive empirical check, we observed that
these sufficient conditions are somewhat stringent.

Open Problem 1: Are there sharper sufficient conditions than those presented in
Theorem 2.8? It will be of interest to find better sufficient conditions or even equivalent
characterization conditions for the likelihood ratio and hazard rate ordering results stated
in Theorem 2.8 to hold.
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(a) (b)

(c)

Figure 4. Plots of likelihood ratio functions considered in Example 2.1.

The following counterexample is given to illustrate that the result in Part (ii) of
Theorem 2.8 cannot be strengthened from the hazard rate order to the likelihood ratio
order.

Example 2.3: Set λ1 = 1, λ2 = 80, λ∗
1 = 1.5, and λ∗

2 = 115. As can be seen in Figure 6, the
likelihood ratio function between X2:2 and X∗

2:2 decreases locally, which means X2:2 �lr X∗
2:2,

and X2:2 �lr X∗
2:2.

2.2. Comparisons in Multiple-Outlier PHR Models

Now, let X1, . . . , Xn be independent random variables following the multiple-outlier
exponential model with parameters

(λ1, . . . , λ1︸ ︷︷ ︸
p

, λ2, . . . , λ2︸ ︷︷ ︸
q

),
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(a) (b)

(c)

Figure 5. Plots of hazard rate functions considered in Example 2.2.

where p + q = n, and Y1, . . . , Yn be another set of independent random variables following
the multiple-outlier exponential model with parameters

(λ∗
1, . . . , λ

∗
1︸ ︷︷ ︸

p

, λ∗
2, . . . , λ

∗
2︸ ︷︷ ︸

q

).

Here, by an exponential distribution with parameter λ, we mean the distribution with
survival function

F (t) = exp(−λt), t > 0, λ > 0.

Then, Kochar and Xu [32] established the following interesting result for the star ordering.
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Figure 6. Plot of the likelihood ratio function decreasing locally.

Theorem 2.9: Under the above multiple-outlier setting, we have

λ(2)

λ(1)
≥

λ∗
(2)

λ∗
(1)

=⇒ Xk:n ≥� Yk:n, for k = 1, . . . , n,

where λ(2) = max{λ1, λ2} and λ(1) = min{λ1, λ2}.

As stated in Kochar and Xu [32], the condition in Theorem 2.9 is very general. For
example, it includes any of the following conditions:

(a) (λ1, λ2)
m� (λ∗

1, λ
∗
2);

(b) (log(λ1), log(λ2))
m� (log(λ∗

1), log(λ∗
2));

(c) (1/λ1, 1/λ2)
m� (1/λ∗

1, 1/λ∗
2).

The following example, due to Kochar and Xu [32], provides a counterexample to show
that the result in Theorem 2.9 cannot be extended to the general case when the n parameters
are all different.

Example 2.4: Let (X1,X2,X3) be a vector of independent exponential variables with
parameter vector (1, 2, 9), and (Y1, Y2, Y3) be another vector of independent exponential
variables with parameter vector (1, 5, 6). Then, it is clear that

(1, 2, 9)
m� (1, 5, 6).

However,
cv(X3:3) = 0.815396 < 0.921265 = cv(Y3:3),

which implies that X3:3 �� Y3:3.

As a direct consequence of Theorem 2.9, the following corollary shows that order
statistics from multiple-outlier exponential model are more skewed than the corresponding
statistics from the homogeneous exponential model in the sense of star order.
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Corollary 2.3: Let X1, . . . , Xn be independent random variables following the multiple-
outlier exponential model with parameters

(λ1, . . . , λ1︸ ︷︷ ︸
p

, λ2, . . . , λ2︸ ︷︷ ︸
q

),

where p + q = n, and Y1, . . . , Yn be an i.i.d. random sample from any exponential distribu-
tion. Then,

Xk:n ≥� Yk:n for k = 1, . . . , n.

Upon using Corollary 2.3, Kochar and Xu [32] presented the following equivalent
characterization results.

Theorem 2.10: Let X1, . . . , Xn be independent random variables following the multiple-
outlier exponential model with parameters

(λ1, . . . , λ1︸ ︷︷ ︸
p

, λ2, . . . , λ2︸ ︷︷ ︸
q

),

where p + q = n, and Y1, . . . , Yn be a random sample from an exponential distribution with
parameter λ. Then:

(i) if

λ ≥ λ̂ =

[(
n

k

)−1 ∑
l∈Lk

(
p

l

)(
n − p

k − l

)
λl

1λ
k−l
2

]1/k

,

where

Lk = {l : max{k − n + p, 0} ≤ l ≤ min{p, k}},
we have,

Xk:n ≥disp Yk:n ⇐⇒ Xk:n ≥hr Yk:n ⇐⇒ Xk:n ≥st Yk:n;

(ii) if

λ ≥ λ̃ =
k∑

j=1

1
n − j + 1

⎡
⎣ n∑

j=n−k+1

(−1)j−n+k−1

(
j − 1
n − k

)

×
∑

m∈Mj

(
p

m

)(
n − p

j − m

)
1

mλ1 + (j − m)λ2

⎤
⎦−1

,

where

Mj = {m : max{j − n + p, 0} ≤ m ≤ min{p, j}},
we have,

Xk:n ≥ew Yk:n ⇐⇒ EXk:n ≥ EYk:n.

They also discussed the general case of PHR models and presented the following results.
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Theorem 2.11: Let X1, . . . , Xn be independent random variables following the multiple-
outlier PHR model with survival functions

(F
λ1

, . . . , F
λ1︸ ︷︷ ︸

p

, F
λ2

, . . . , F
λ2︸ ︷︷ ︸

q

),

where p + q = n, and Y1, . . . , Yn be a random sample from a distribution with survival
function F

λ
. If F is DFR, then

(i)

λ ≥ λ̂ =⇒ Xk:n ≥disp Yk:n;

(ii)

λ ≥ λ̃ =⇒ Xk:n ≥ew Yk:n.

It can be seen that the results in Theorem 2.11 extend the corresponding ones in
Theorem 2.10 from exponential case to the PHR models. Along these lines, Zhao and Bal-
akrishnan [54] recently discussed the likelihood ratio order (reversed hazard rate order) and
the hazard rate order (usual stochastic order) and obtained the following results.

Theorem 2.12: Let X1, . . . , Xn be independent random variables following the multiple-
outlier exponential model with parameters

(λ1, . . . , λ1︸ ︷︷ ︸
p

, λ2, . . . , λ2︸ ︷︷ ︸
q

),

where p + q = n, and Y1, . . . , Yn be another set of independent random variables following
the multiple-outlier exponential model with parameters

(λ∗
1, . . . , λ

∗
1︸ ︷︷ ︸

p

, λ∗
2, . . . , λ

∗
2︸ ︷︷ ︸

q

).

Suppose λ1 ≤ λ∗
1 ≤ λ∗

2 ≤ λ2. Then,

(i)

(λ1, . . . , λ1︸ ︷︷ ︸
p

, λ2, . . . , λ2︸ ︷︷ ︸
q

)
w� (λ∗

1, . . . , λ
∗
1︸ ︷︷ ︸

p

, λ∗
2, . . . , λ

∗
2︸ ︷︷ ︸

q

) ⇐⇒ Xn:n ≥lr [≥rh]Yn:n;

(ii)

(λ1, . . . , λ1︸ ︷︷ ︸
p

, λ2, . . . , λ2︸ ︷︷ ︸
q

)
p

� (λ∗
1, . . . , λ

∗
1︸ ︷︷ ︸

p

, λ∗
2, . . . , λ

∗
2︸ ︷︷ ︸

q

) ⇐⇒ Xn:n ≥hr [≥st]Yn:n.

The following example, due to Zhao and Balakrishnan [54], illustrates the validity of
the results in Theorem 2.12.
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Figure 7. Plot of fX5:5/fY5:5 when p = 2, q = 3, λ∗
1 = 0.05, λ1 = 0.28, λ∗

2 = 0.11, and
λ2 = 0.26.

Example 2.5:

(a) Setting p = 2, q = 3, λ∗
1 = 0.05, λ1 = 0.28, λ∗

2 = 0.11 and λ2 = 0.26 in Part (i) of
Theorem 2.12, we find

(0.05, 0.05, 0.28, 0.28, 0.28)
w� (0.11, 0.11, 0.26, 0.26, 0.26).

Figure 7 presents the plot of the ratio of the two density functions from which it can be
seen that fX5:5(t)/fY5:5(t) is increasing in t ∈ �+, which is consistent with the result
in Part (i) of Theorem 2.12.

(b) Setting p = 2, q = 3, λ∗
1 = 1/8, λ1 = 4, λ∗

2 = 1/2 and λ2 = 2 in Part (ii) of
Theorem 2.12, we find

(1/8, 1/8, 4, 4, 4)
p

� (1/2, 1/2, 2, 2, 2),

but the
w� order does not hold between these two vectors. Figures 8 and 9 present

plots of the ratios of two density and survival functions, respectively, from which it
can be seen that fX5:5(t)/fY5:5(t) in Figure 8 is not monotone while FX5:5(t)/FY5:5(t)
in Figure 9 is increasing in t ∈ �+. These are consistent with the result in Part (ii)
of Theorem 2.12.

For the PHR models, we have the following analogous results.

Theorem 2.13: Let X1, . . . , Xn be independent random variables following a PHR model
with survival functions

([F (x)]λ1 , . . . , [F (x)]λ1︸ ︷︷ ︸
p

, [F (x)]λ2 , . . . , [F (x)]λ2︸ ︷︷ ︸
q

),

https://doi.org/10.1017/S0269964813000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964813000156


ORDERING PROPERTIES OF ORDER STATISTICS FROM HETEROGENEOUS 419

Figure 8. Plot of fX5:5/fY5:5 when p = 2, q = 3, λ∗
1 = 1/8, λ1 = 4, λ∗

2 = 1/2, and λ2 = 2.

Figure 9. Plot of FX5:5/FY5:5 when p = 2, q = 3, λ∗
1 = 1/8, λ1 = 4, λ∗

2 = 1/2, and λ2 = 2.

where p + q = n, and Y1, . . . , Yn be another set of independent random variables following
a PHR model with survival functions

([F (x)]λ
∗
1 , . . . , [F (x)]λ

∗
1︸ ︷︷ ︸

p

, [F (x)]λ
∗
2 , . . . , [F (x)]λ

∗
2︸ ︷︷ ︸

q

).
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Suppose λ1 ≤ λ∗
1 ≤ λ∗

2 ≤ λ2. Then,

(i)

(λ1, . . . , λ1︸ ︷︷ ︸
p

, λ2, . . . , λ2︸ ︷︷ ︸
q

)
w� (λ∗

1, . . . , λ
∗
1︸ ︷︷ ︸

p

, λ∗
2, . . . , λ

∗
2︸ ︷︷ ︸

q

) =⇒ Xn:n ≤lr Yn:n;

(ii)

(λ1, . . . , λ1︸ ︷︷ ︸
p

, λ2, . . . , λ2︸ ︷︷ ︸
q

)
p

� (λ∗
1, . . . , λ

∗
1︸ ︷︷ ︸

p

, λ∗
2, . . . , λ

∗
2︸ ︷︷ ︸

q

) =⇒ Xn:n ≤hr Yn:n.

Open Problem 2: Similar to likelihood ratio order [reversed hazard rate order] and hazard
rate order [usual stochastic order] mentioned above, it would be also of interest to check
whether, under the condition λ1 ≤ λ∗

1 ≤ λ∗
2 ≤ λ2, the result

(λ1, . . . , λ1︸ ︷︷ ︸
p

, λ2, . . . , λ2︸ ︷︷ ︸
q

)
rm� (λ∗

1, . . . , λ
∗
1︸ ︷︷ ︸

p

, λ∗
2, . . . , λ

∗
2︸ ︷︷ ︸

q

) =⇒ Xn:n ≥mrl Yn:n

holds.

Next, we present a result for the dispersive order.

Theorem 2.14: Let X1, . . . , Xn be independent random variables following the multiple-
outlier exponential model with scale parameters

(λ1, . . . , λ1︸ ︷︷ ︸
p

, λ2, . . . , λ2︸ ︷︷ ︸
q

),

where p + q = n, and Y1, . . . , Yn be another set of independent random variables following
the multiple-outlier exponential model with scale parameters

(λ∗
1, . . . , λ

∗
1︸ ︷︷ ︸

p

, λ∗
2, . . . , λ

∗
2︸ ︷︷ ︸

q

).

Suppose λ1 ≤ λ∗
1 ≤ λ∗

2 ≤ λ2. Then,

(λ1, . . . , λ1︸ ︷︷ ︸
p

, λ2, . . . , λ2︸ ︷︷ ︸
q

)
p

� (λ∗
1, . . . , λ

∗
1︸ ︷︷ ︸

p

, λ∗
2, . . . , λ

∗
2︸ ︷︷ ︸

q

) =⇒ Xn:n ≥disp Yn:n.

Proof: From Part (ii) of Theorem 2.12, it follows that

(λ1, . . . , λ1︸ ︷︷ ︸
p

, λ2, . . . , λ2︸ ︷︷ ︸
q

)
p

� (λ∗
1, . . . , λ

∗
1︸ ︷︷ ︸

p

, λ∗
2, . . . , λ

∗
2︸ ︷︷ ︸

q

) =⇒ Xn:n ≥st Yn:n.

Since the assumption satisfies the condition in Theorem 2.9, we also have

Xn:n ≥� Yn:n.

On the other hand, it is known from Ahmed et al. [1] that, for two continuous random
variables X and Y , if X ≤� Y , then

X ≤st Y =⇒ X ≤disp Y.
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From these facts, we therefore can conclude that

Xn:n ≥disp Yn:n.

�
The above result can be readily extended to the general case of PHR models as follows.

Theorem 2.15: Let X1, . . . , Xn be independent random variables following a PHR model
with survival functions

([F (x)]λ1 , . . . , [F (x)]λ1︸ ︷︷ ︸
p

, [F (x)]λ2 , . . . , [F (x)]λ2︸ ︷︷ ︸
q

),

where p + q = n, and Y1, . . . , Yn be another set of independent random variables following
a PHR model with survival functions

([F (x)]λ
∗
1 , . . . , [F (x)]λ

∗
1︸ ︷︷ ︸

p

, [F (x)]λ
∗
2 , . . . , [F (x)]λ

∗
2︸ ︷︷ ︸

q

).

Suppose λ1 ≤ λ∗
1 ≤ λ∗

2 ≤ λ2. If F is DFR, then

(λ1, . . . , λ1︸ ︷︷ ︸
p

, λ2, . . . , λ2︸ ︷︷ ︸
q

)
p

� (λ∗
1, . . . , λ

∗
1︸ ︷︷ ︸

p

, λ∗
2, . . . , λ

∗
2︸ ︷︷ ︸

q

) =⇒ Xn:n ≥disp Yn:n.

Open Problem 3: Similar to dispersive order mentioned above, it would be of interest to
see whether, under the condition λ1 ≤ λ∗

1 ≤ λ∗
2 ≤ λ2, the result

(λ1, . . . , λ1︸ ︷︷ ︸
p

, λ2, . . . , λ2︸ ︷︷ ︸
q

)
rm� (λ∗

1, . . . , λ
∗
1︸ ︷︷ ︸

p

, λ∗
2, . . . , λ

∗
2︸ ︷︷ ︸

q

) =⇒ Xn:n ≥ew Yn:n

holds.

2.3. Comparisons Between Heterogeneous and Homogeneous PHR Samples

Let X1, . . . , Xn be independent exponential random variables with Xi having hazard rate
λi, for i = 1, . . . , n. Let Y1, . . . , Yn be another random sample of size n from an exponential
distribution with hazard rate λam =

∑n
i=1 λi/n, the arithmetic mean of λi’s, and denote by

Yn:n the corresponding largest order statistic. Dykstra et al. [17] then proved that

Xn:n ≥hr Yn:n and Xn:n ≥disp Yn:n, (2.12)

which was strengthened by Kochar and Xu [29] as

Xn:n ≥lr Yn:n. (2.13)

Khaledi and Kochar [23] strengthened the result in (2.12), under a weaker condition, by
proving that if Z1, . . . , Zn is a random sample of size n from an exponential distribution
with hazard rate λgm = (

∏n
i=1 λi)1/n, the geometric mean of λis, then

Xn:n ≥hr Zn:n and Xn:n ≥disp Zn:n. (2.14)

Subsequently, Kochar and Xu [29] and Khaledi and Kochar [26] extended the results in (2.13)
and (2.14) from the exponential case to the general PHR case as follows.
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Theorem 2.16: Let X1, . . . , Xn be independent random variables having survival function
F

λi
, i = 1, . . . , n. Let Y1, . . . , Yn[Z1, . . . , Zn] be a random sample with common survival

function F
λam [F

λgm ]. Then,

(i) Xn:n ≥lr Yn:n;
(ii) Xn:n ≥hr Zn:n;
(iii) Xn:n ≥disp Zn:n, if F is DFR.

The next example, due to Khaledi and Kochar [26], shows the DFR condition in Part
(iii) of Theorem 2.16 can not be dispensed with.

Example 2.6: Let X1 and X2 be independent random variables with Xi having survival
function

F i(x) = (1 − x)λi , 0 ≤ x ≤ 1, i = 1, 2.

Let Y1 and Y2 be independent random variables with common survival function

G(x) = (1 − x)(λ1λ2)
1/2

, 0 ≤ x ≤ 1.

If λ1 = 1 and λ2 = 4, then we have

Var(X2:2) = 73/720 < 11/225 = Var(Y2:2),

from which it can be concluded that Part (iii) of Theorem 2.16 may not hold for the case when
F , the baseline distribution, is not DFR. Notice that here F , being a uniform distribution
on (0, 1), is IFR.

The following corollary can be directly obtained from Theorem 2.16.

Corollary 2.4: Let X1, . . . , Xn be independent Weibull random variables with Xi having
shape parameter α and scale parameter λi, for i = 1, . . . , n. Let Z1, . . . , Zn be an independent
Weibull random sample with common shape parameter α and scale parameter λgm. Then,

(i) Xn:n ≥hr Zn:n for all α > 0;
(ii) Xn:n ≥disp Zn:n if 0 < α ≤ 1.

In this connection, Fang and Zhang [18] recently considered the case when α > 1 for
the dispersive order and established the following result.

Theorem 2.17: Let X1, . . . , Xn be independent Weibull random variables with Xi having
shape parameter α and scale parameter λi, for i = 1, . . . , n. Let X∗

1 , . . . , X∗
n be an indepen-

dent Weibull random sample with common shape parameter α and scale parameter λ. If
α > 1, then

λ ≥ (
∏n

i=1 λα
i )1/n

λα−1
min

=⇒ Xn:n ≥disp X∗
n:n,

where λmin = min{λ1, . . . , λn}.
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Open Problem 4: Upon noting that

(
∏n

i=1 λα
i )1/n

λα−1
min

≥ n

√√√√ n∏
i=1

λi = λgm,

can we establish, similar to the result for the hazard rate order in Part (i) of Corollary 2.4,
under the setup of Theorem 2.17, the result that

λ ≥ λgm =⇒ Xn:n ≥disp X∗
n:n, for all α > 0?

Suppose λ∗
1 = · · · = λ∗

n = λ. For the exponential case, Bon and Pǎltǎnea [13] provided
the necessary and sufficient condition on λ for Xk:n ≥st X∗

k:n of the following form:

Xk:n ≥st X∗
k:n ⇐⇒ λ ≥

⎡
⎣(n

k

)−1 ∑
1≤i1<···<ik≤n

λi1 . . . λik

⎤
⎦

1
k

.

Kochar and Xu [31] proved that the largest order statistic from heterogeneous exponential
variables is more skewed in the sense of convex transform order than that from homogeneous
exponential variables, which is quite a general result as there is no any restriction on the
parameters. They also proved the following two characterization results in this regard:

Xn:n ≥disp X∗
n:n ⇐⇒ λ ≥ λgm

and

Xn:n ≥ew X∗
n:n ⇐⇒ λ ≥ λew,

where

λew =

(
n∑

i=1

1
i

)⎡⎣ n∑
k=1

(−1)k+1
∑

1≤j1<···<jk≤n

1∑k
i=1 λji

⎤
⎦−1

.

Mao and Hu [34] generalized the above results and established the following characteriza-
tions.

Theorem 2.18: Let X1, . . . , Xn be independent exponential random variables with respec-
tive hazard rates λ1, . . . , λn, and X∗

1 , . . . , X∗
n be i.i.d. exponential random variables with a

common hazard rate λ. Then,

(i) Xn:n ≥lr X∗
n:n ⇐⇒ Xn:n ≥rh X∗

n:n ⇐⇒ λ ≥ λam;
(ii) Xn:n ≥hr X∗

n:n ⇐⇒ Xn:n ≥st X∗
n:n ⇐⇒ Xn:n ≥disp X∗

n:n ⇐⇒ λ ≥ λgm;
(iii) Xn:n ≥mrl X∗

n:n ⇐⇒ Xn:n ≥icx X∗
n:n ⇐⇒ Xn:n ≥ew X∗

n:n ⇐⇒ λ ≥ λew;
(iv) Xn:n ≤order X∗

n:n ⇐⇒ λ ≤ min1≤i≤n λi, where ≤order denotes any one of the orders
≤lr,≤hr,≤rh,≤st, and ≤disp.

Recently, some attention has been paid to ordering results concerning the second order
statistic of exponentials, viz., the lifetimes of the (n − 1)-out-of-n systems, which are com-
monly referred to as fail-safe systems; see Barlow and Proschan [7]. Pǎltǎnea [39] proved
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that

X2:n ≥hr X∗
2:n ⇐⇒ λ ≥ λhr =

√√√√√√√
∑

1≤i<j≤n

λiλj(
n

2

) (2.15)

and

X2:n ≤hr X∗
2:n ⇐⇒ λ ≤ λu =

min
1≤i≤n

Λi

n − 1
, (2.16)

where Λi =
∑n

j=1 λj − λi. Zhao, Li, and Balakrishnan [57] obtained the corresponding
characterization on the likelihood ratio order as follows:

X2:n ≥lr X∗
2:n ⇐⇒ λ ≥ λlr =

1
2n − 1

[
2Λ(1) +

Λ(3) − Λ(1)Λ(2)
Λ2(1) − Λ(2)

]
, (2.17)

where Λ(k) =
∑n

i=1 λk
i , k = 1, 2, 3, and

X2:n ≤lr X∗
2:n ⇐⇒ λ ≤ λu. (2.18)

As an immediate consequence of (2.17) and (2.18), the following result compares the
corresponding second order statistics in terms of the likelihood ratio order for the case
when both exponential samples are heterogeneous. If X1, . . . , Xn are independent exponen-
tial random variables with respective hazard rates λ1, . . . , λn, and X∗

1 , . . . , X∗
n are another

set of independent exponential random variables with respective hazard rates μ1, . . . , μn,
then

λlr ≤ μu =

n∑
i=1

μi − max
1≤i≤n

μi

n − 1
=⇒ X2:n ≥lr X∗

2:n. (2.19)

Zhao and Balakrishnan [48] presented the following characterization for the mean residual
life order as

X2:n ≥mrl X∗
2:n ⇐⇒ λ ≥ λmrl =

(2n − 1)

n(n − 1)

(
n∑

n=1

1
Λi

− n − 1
Λ

) , (2.20)

where Λ =
∑n

i=1 λi, and moveover

X2:n ≤mrl X∗
2:n ⇐⇒ λ ≤ λu. (2.21)

As a consequence of Theorems 2.20 and 2.21, the following result, similar to (2.19),
provides a comparison of the second order statistics in terms of the mean residual life order
for the case when both exponential samples are heterogenous:

λmrl ≤ μu =⇒ X2:n ≥mrl X∗
2:n.

Remark 2.5: Note that the characterization results in (2.15), (2.17), and (2.20) in terms of
the hazard rate order, likelihood ratio order and mean residual life order, respectively, are
all under the same setup. Therefore, based on these three characterizations and the fact
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Figure 10. Plots of mean residual life functions of X2:3 from three exponentials with
hazards (1, 10, 40) and Y2:3 from i.i.d. exponentials with parameter λu = 5.5, λmrl = 8.673,
λhr = 12.2474, and λlr = 15.5667.

that the likelihood ratio order implies the hazard rate order which in turn implies the mean
residual life order, the following interesting inequalities can be obtained between different
means:

λmrl ≤ λhr ≤ λlr ≤ λam. (2.22)

For example, for the non-negative vector (λ1, λ2, λ3) = (1, 10, 40), we have

λmrl ≈ 8.673, λhr ≈ 12.2474, λlr ≈ 15.5667, λam = 17,

which support the order in (2.22).

Example 2.7: Let (X1,X2,X3) be a vector of independent exponential random vari-
ables with hazard rate vector (1, 10, 40). Denote by ϕ(t; 1, 10, 40) and r(t; 1, 10, 40) the
corresponding mean residual life and hazard rate functions of the second order statis-
tic X2:3. Let (Y1, Y2, Y3) be another vector of i.i.d. exponential random variables with
common hazard rate λ, and denote by ϕ(t; 3, λ) and r(t; 3, λ) the corresponding mean
residual life and hazard rate functions of Y2:3. Figure 10 presents the mean residual
life functions of X2:3 and Y2:3 for λ taking λu = 5.5, λmrl = 8.673, λhr = 12.2474, and
λlr = 15.5667. It can be seen that the best bounds for ϕ(t; 1, 10, 40) are ϕ(t; 3, λmrl) and
ϕ(t; 3, λu), with the former being the best approximation near the origin and the latter
having the same limit as ϕ(t; 1, 10, 40). In Figure 11, we have presented the corre-
sponding hazard rate functions. Clearly, the best bounds for r(t; 1, 10, 40) are r(t; 3, λhr)
and r(t; 3, λu), but if λ = λmrl, the hazard rates r(t; 1, 10, 40) and r(t; 3, λmrl) are not
comparable.
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Figure 11. Plots of hazard rate functions of X2:3 from three exponentials with haz-
ards (1, 10, 40) and Y2:3 from i.i.d. exponentials with parameter λu = 5.5, λmrl = 8.673,
λhr = 12.2474, and λlr = 15.5667.

Zhao and Balakrishnan [52] and Zhao, Li, and Da [58] discussed the dispersive order
and excess wealth order, respectively, and established the characterizations

X2:n ≥disp X∗
2:n ⇐⇒ λ ≥ λhr, (2.23)

X2:n ≥ew X∗
2:n ⇐⇒ X2:n ≥mrl X∗

2:n ⇐⇒ EX2:n ≥ EX∗
2:n ⇐⇒ λ ≥ λmrl, (2.24)

and
X2:n ≤ew X∗

2:n ⇐⇒ X2:n ≤disp X∗
2:n ⇐⇒ λ ≤ λu. (2.25)

In fact, we can establish the following general result for the exponential case.

Theorem 2.19: Let X1, . . . , Xn be independent exponential random variables with respec-
tive hazard rates λ1, . . . , λn, and X∗

1 , . . . , X∗
n be i.i.d. exponential random variables with a

common hazard rate λ. Then,

(i) X2:n ≥lr X∗
2:n ⇐⇒ X2:n ≥rh X∗

2:n ⇐⇒ λ ≥ λlr;
(ii) X2:n ≥hr X∗

2:n ⇐⇒ X2:n ≥st X∗
2:n ⇐⇒ X2:n ≥disp X∗

2:n ⇐⇒ λ ≥ λhr;
(iii) X2:n ≥mrl X∗

2:n ⇐⇒ X2:n ≥icx X∗
2:n ⇐⇒ X2:n ≥ew X∗

2:n ⇐⇒ λ ≥ λmrl;
(iv) X2:n ≤order X∗

2:n ⇐⇒ λ ≤ λu, where ≤order denotes any one of the orders ≤lr,≤hr,
≤rh, ≤mrl,≤disp, and ≤ew.

Proof: (i) We only need to prove that X2:n ≥rh X∗
2:n =⇒ λ ≥ λlr. Since X2:n has its

distribution function as

FX2:n(t) = 1 −
n∑

i=1

e−Λit + (n − 1)e−Λt, t ≥ 0,
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and its density function as

fX2:n(t) =
n∑

i=1

Λie
−Λit − (n − 1)Λe−Λt, t ≥ 0,

by applying Taylor’s expansion at the origin, we get

fX2:n(t) =

[
(n − 1)Λ2 −

n∑
i=1

Λ2
i

]
t − 1

2

[
(n − 1)Λ3 −

n∑
i=1

Λ3
i

]
t2 + o(t2),

and

FX2:n(t) =
1
2

[
(n − 1)Λ2 −

n∑
i=1

Λ2
i

]
t2 + o(t2).

Thus,

rX2:n(t) =
fX2:n(t)
FX2:n(t)

=
2
t
−

(n − 1)Λ3 −
n∑

i=1

Λ3
i

(n − 1)Λ2 −
n∑

i=1

Λ2
i

+ o(1),

and likewise,

rX∗
2:n

(t) =
fX∗

2:n
(t)

FX∗
2:n

(t)
=

2
t
− (2n − 1)λ + o(1).

Since X2:n ≥rh X∗
2:n implies rX2:n(t) ≥ rX∗

2:n
(t) for all t ≥ 0, we have

λ ≥
(n − 1)Λ3 −

n∑
i=1

Λ3
i

(2n − 1)

[
(n − 1)Λ2 −

n∑
i=1

Λ2
i

] =
1

2n − 1

[
2Λ(1) +

Λ(3) − Λ(1)Λ(2)
Λ2(1) − Λ(2)

]
= λlr.

The results in (ii), (iii) and (iv) can all be readily obtained from (2.15)–(2.25). �
The following theorem, due to Zhao and Balakrishnan [52] and Zhao et al. [58], presents

the analogous results for the general case of PHR models.

Theorem 2.20: Let X1, . . . , Xn be independent random variables with Xi having survival
function F

λi for i = 1, . . . , n. Let X∗
1 , . . . , X∗

n be a random sample with common survival
function F

λ
. If F is DFR, then

(i) λ ≥ λhr =⇒ X2:n ≥disp X∗
2:n;

(ii) λ ≥ λmrl =⇒ X2:n ≥ew X∗
2:n;

(iii) λ ≤ λu =⇒ X2:n ≤disp X∗
2:n.

Finally, we turn our attention to the sample ranges. Let X1, . . . , Xn be independent
exponential random variables with Xi having hazard rate λi for i = 1, . . . , n, Y1, . . . , Yn

be a random sample of size n from an exponential distribution with hazard rate λam, and
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Z1, . . . , Zn be another random sample of size n from an exponential distribution with hazard
rate λgm. Then, Kochar and Rojo [28] proved that

Xn:n − X1:n ≥st Yn:n − Y1:n. (2.26)

Subsequently, Khaledi and Kochar [24] improved this result as

Xn:n − X1:n ≥st Zn:n − Z1:n.

Kochar and Xu [29] strengthened the result in (2.26) from the usual stochastic order to the
reversed hazard rate order as

Xn:n − X1:n ≥rh Yn:n − Y1:n.

Genest, Kochar, and Xu [19] further proved that

Xn:n − X1:n ≥lr Yn:n − Y1:n and Xn:n − X1:n ≥disp Yn:n − Y1:n.

The following theorem, due to Mao and Hu [34], presents two characterizations.

Theorem 2.21: Let X1, . . . , Xn be independent exponential random variables with respec-
tive hazard rates λ1, . . . , λn, and X∗

1 , . . . , X∗
n be i.i.d. exponential random variables with a

common hazard rate λ. Then,

(i)

Xn:n − X1:n ≥lr X∗
n:n − X∗

1:n ⇐⇒ Xn:n − X1:n ≥rh X∗
n:n − X∗

1:n

⇐⇒ λ ≥ λam;

(ii)
Xn:n − X1:n ≤order X∗

n:n − X∗
1:n ⇐⇒ λ ≤ min

1≤i≤n
λi,

where ≤order is any one of the orders ≤lr,≤hr,≤rh, and ≤st.

Under the setup of Theorem 2.21, Zhao and Li [56] presented the following equivalent
characterization:

Xn:n − X1:n ≥st X∗
n:n − X∗

1:n ⇐⇒ λ ≥ λrange−st, (2.27)

where

λrange−st =
(∏n

i=1 λi

λam

)1/(n−1)

.

As an immediate consequence of (2.27), we can get a simple upper bound for the
distribution function as

P(Xn:n − X1:n ≤ x) ≤ (1 − e−λrange−stx
)n−1

, x ≥ 0.

The counterexample below, due to Zhao and Li [56], demonstrates that the result
in (2.27) cannot be strengthened to the reversed hazard rate order.

Example 2.8: Consider (X1,X2,X3), an independent exponential random vector with
hazard rate vector (λ1, λ2, λ3) = (5.5, 5.5, 40), and (Y1, Y2, Y3), i.i.d. exponential random
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variables with the hazard rate vector λrange−st =
√

1210
17 . Denote by FR3(X) and FR3(Y ) the

distribution functions of R3(X) = X3:3 − X1:3 and R3(Y ) = Y3:3 − Y1:3, respectively. Then,
we have

FR3(X)(0.05)
FR3(Y )(0.05)

≈ 0.761353 > 0.742095 ≈ FR3(X)(0.06)
FR3(Y )(0.06)

.

Thus, the ratio FR3(X)(x)

FR3(Y )(x) is not increasing with respect to x ≥ 0, which implies X3:3 −
X1:3 �rh Y3:3 − Y1:3.

Recently, Xu and Balakrishnan [44] proved that the sample range from heterogeneous
exponential variables is stochastically larger than that from a homogeneous exponential
sample in the sense of the star order, that is, under the setup of Theorem 2.21, we have

Xn:n − X1:n ≥� X∗
n:n − X∗

1:n. (2.28)

As a direct consequence of (2.28), the following result provides a bound for the coefficient
of variation for the range of heterogeneous exponential samples:

cv(Xn:n − X1:n) ≥

√∑n−1

k=1

1
k2∑n−1

k=1

1
k

.

With the help of (2.28), Xu and Balakrishnan [44] also presented the following
characterizations.

Theorem 2.22: Under the setup of Theorem 2.21, we have

(i)

Xn:n − X1:n ≥hr X∗
n:n − X∗

1:n ⇐⇒ Xn:n − X1:n ≥st X∗
n:n − X∗

1:n

⇐⇒ Xn:n − X1:n ≥disp X∗
n:n − X∗

1:n

⇐⇒ λ ≥ λrange−st;

(ii)

Xn:n − X1:n ≥ew X∗
n:n − X∗

1:n ⇐⇒ E(Xn:n − X1:n) ≥ E(X∗
n:n − X∗

1:n)

⇐⇒ λ ≥ λrange−ew,

where

λrange−ew =
n−1∑
k=1

1
k

⎡
⎣ n∑

k=1

(−1)k+1
∑

1≤j1≤···≤jk≤n

1∑k
i=1 λji

− 1∑n
k=1 λk

⎤
⎦−1

.

Open Problem 5: In the case of general spacings, Xu and Balakrishnan [44] conjectured
that

Xk:n − X1:n ≥� X∗
k:n − X∗

1:n.

As mentioned by them, the key step will be to prove that

Xk:n ≥� X∗
k:n,

which has been shown to be true for the multiple-outlier exponential models by Kochar and
Xu [32], but the general result remains open.

https://doi.org/10.1017/S0269964813000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964813000156


430 N. Balakrishnan and P. Zhao

For the PHR case, Kochar and Xu [30] established the following result.

Theorem 2.23: Let X1, . . . , Xn be independent random variables with Xi having survival
function F

λi for i = 1, . . . , n. Let X∗
1 , . . . , X∗

n be a random sample with common survival
function F

λam . Then,

Xn:n − X1:n ≥st X∗
n:n − X∗

1:n.

We also have the following result for the PHR models which compares the sample range
and the largest order statistic.

Theorem 2.24: Let X1, . . . , Xn be independent random variables with Xi having survival
function F

λi for i = 1, . . . , n. Let X∗
1 , . . . , X∗

n−1 be a random sample of size n − 1 with

common survival function F
λrange−st . If F is NWU , then

Xn:n − X1:n ≥st X∗
n−1:n−1.

Proof: Let H(x) = − log F (x) be the cumulative hazard of F . The NWU property
of F implies that F (x + y) ≥ F (x)F (y) for x, y ≥ 0, which is actually equivalent to
H(x + y) ≤ H(x) + H(y) for x, y ≥ 0. From David and Nagaraja [15], the distribution of
R(X) = Xn:n − X1:n is given by

FR(X)(x) =
n∑

i=1

∫ ∞

0

λi[F (u)]λi−1f(u)
n∏

j �=i

([F (u)]λj−1 − [F (u + x)]λj−1)du

=
n∑

i=1

∫ ∞

0

λie
−λiH(u)r(u)

n∏
j �=i

(e−λjH(u) − e−λjH(u+x))du

≤
n∑

i=1

λi

n∏
j �=i

[1 − e−λjH(x)]
∫ ∞

0

r(u)e−
∑n

i=1 λiH(u)du

=
n∑

i=1

λi∑n
i=1 λi

n∏
j �=i

[1 − e−λjH(x)]

for x > 0, where r(u) is the hazard rate of F . For convenience, we us the simpler notation
λ̂ = λrange−st. From (2.27), it is known that

n∑
i=1

λi∑n
i=1 λi

n∏
j �=i

[1 − e−λjx] ≤ (1 − e−λ̂x)n−1

for x > 0. Replacing x with H(x) in the above inequality, we get

n∑
i=1

λi∑n
i=1 λi

n∏
j �=i

[1 − e−λjH(x)] ≤ (1 − e−λ̂H(x))n−1 (2.29)

for x > 0. It can be readily observed that the right hand side of (2.29) is the distribution
function of X∗

n−1:n−1, which yields the desired result. �
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3. GAMMA CASE

Gamma distribution is one of the most commonly used distributions in statistics, reliability
and life-testing. It has also been widely applied in actuarial science since many total insur-
ance claim distributions have similar shape to that of gamma distributions: non-negatively
supported, skewed to the right and unimodal. Let X be a gamma random variable with
shape parameter r and scale parameter λ. Then, X has its pdf as

f(x; r, λ) =
λr

Γ(r)
xr−1exp(−λx), x > 0.

It is a flexible family of distributions with decreasing, constant, and increasing failure rates
when 0 < r < 1, r = 1 and r > 1, respectively. Now, let X1, . . . , Xn be independent gamma
random variables with Xi having shape parameter r and scale parameter λi, i = 1, . . . , n,
and X∗

1 , . . . , X∗
n be another set of independent gamma random variables with X∗

i having
shape parameter r and scale parameter λ∗

i . Then, in this section, we describe some ordering
results between order statistics from these two sets of random variables.

3.1. Comparisons Between two Heterogeneous Gamma Samples

Hu [20] proved under the scale model framework that, if 0 < r ≤ 1, then

(λ1, . . . , λn)
m� (λ∗

1, . . . , λ
∗
n) =⇒ (X1:n, . . . , Xn:n)

st� (X∗
1:n, . . . , X∗

n:n). (3.1)

It should be mentioned here that the result in (3.1) was also proved independently by Sun
and Zhang [43], who also established that

(λ1, . . . , λn)
m� (λ∗

1, . . . , λ
∗
n) =⇒ Xn:n ≥st X∗

n:n (3.2)

and

(λ1, . . . , λn)
m� (λ∗

1, . . . , λ
∗
n) =⇒ X1:n ≤st X∗

1:n for r > 1.

The result in (3.2) was further strengthened by Khaledi, Farsinezhad, and Kochar [22] as

(λ1, . . . , λn)
p

� (λ∗
1, . . . , λ

∗
n) =⇒ Xn:n ≥st X∗

n:n. (3.3)

Obviously, the results in (3.1) and (3.3) extend the corresponding results in (2.2) and (2.4)
from the exponential case to the gamma case. Recently, Misra and Misra [37] obtained the
following interesting result for the reversed hazard rate order.

Theorem 3.1: Let (X1, . . . , Xn) be a vector of independent gamma random variables with
common shape parameter r and scale parameter vector (λ1, . . . , λn), and (X∗

1 , . . . , X∗
n) be

another vector of independent gamma random variables with common shape parameter r
and scale parameter vector (λ∗

1, . . . , λ
∗
n). Then,

(λ1, . . . , λn)
w� (λ∗

1, . . . , λ
∗
n) =⇒ Xn:n ≥rh X∗

n:n.

It can be seen that the result in Theorem 3.1 extends the corresponding result in (2.5),
established earlier by Dykstra et al. [17], from the exponential case to the gamma case.

For the two-dimensional case, Zhao [47] established the following two results for the
likelihood ratio and hazard rate orders.
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Theorem 3.2: Let (X1,X2) be a vector of independent gamma random variables with com-
mon shape parameter r and scale parameters λ1 and λ2, and (X∗

1 ,X∗
2 ) be another vector of

independent gamma random variables with common shape parameter r and scale parameters
λ∗

1 and λ∗
2, respectively. Suppose λ1 ≤ λ∗

1 ≤ λ∗
2 ≤ λ2. Then,

(i)

(λ1, λ2)
w� (λ∗

1, λ
∗
2) =⇒ X2:2 ≥lr X∗

2:2;

(ii)

(λ1, λ2)
p

� (λ∗
1, λ

∗
2) =⇒ X2:2 ≥hr X∗

2:2, if r ≤ 1.

As an immediate consequence of Theorem 3.2, we obtain the following corollary.

Corollary 3.1: Let (X1,X2) be a vector of independent gamma random variables with
common shape parameter r > 0 and scale parameters λ1 and λ2, and (X∗

1 ,X∗
2 ) be another

vector of independent gamma random variables with common shape and scale parameters r
and λ, respectively. Then,

(i)

λ ≥ λ1 + λ2

2
=⇒ X2:2 ≥lr X∗

2:2;

(ii)

λ ≥
√

λ1λ2 =⇒ X2:2 ≥hr X∗
2:2, if r ≤ 1.

In order to illustrate the result in Theorem 3.2, we provide the following two numerical
examples taken from Zhao [47].

Example 3.1: Let (X1,X2) be a vector of independent heterogeneous gamma random vari-
ables with common shape parameter r = 0.5 and scale parameter vector (1, 4). Denote by
h(t; 1, 4) the corresponding hazard rate function of the maximum order statistic X2:2. Let
(Y1, Y2) be a vector of independent heterogeneous gamma random variables with common
shape parameter r = 0.5 and scale parameter vector (2, 3.5), and denote by h(t; 2, 3.5) the

corresponding hazard rate function of Y2:2. We then have 1 ≤ 2 ≤ 3.5 ≤ 4 and (1, 4)
w�

(2, 3.5). It can be seen from Figure 12 that h(t; 1, 4) ≤ h(t; 2, 3.5) which is in accordance with
the result of Part (i) Theorem 3.2. Let (Z1, Z2) be a vector of another set of heterogeneous
gamma random variables with common shape parameter r = 0.5 and scale parameter vector
(2, 2.5). Denote by h(t; 2, 2.5) the corresponding hazard rate function of Z2:2. Note that the

condition in Part (i) of Theorem 3.2 does not hold even though we have (2, 2.5)
w� (2, 3.5),

and in this case we cannot compare the hazard rate functions as seen in Figure 12.

Example 3.2: Let (X1,X2) be a vector of independent gamma random variables with com-
mon shape parameter r = 0.5 and scale parameter vector (2, 8). Denote by h(t; 2, 8) the
corresponding hazard rate function of the maximum order statistic X2:2. Let (Y1, Y2) be a
vector of two independent gamma random variables with common shape parameter r = 0.5
and scale parameter vector (4, 4), and denote by h(t; 4, 4) the corresponding hazard rate func-
tion of Y2:2. Figure 13 presents the hazard rate functions of X2:2 and Y2:2. It can be seen
that h(t; 2, 8) ≤ h(t; 4, 4) which is in accordance with the result in Part (ii) of Theorem 3.2.
Let (Z1, Z2) be a vector of two independent gamma random variables with common shape
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Figure 12. Plots of hazard rate functions of X2:2 from two gamma distributions with
common shape parameter 0.5 and scale parameter vector (1, 4), Y2:2 from two gamma dis-
tributions with common shape parameter 0.5 and scale parameter vector (2, 3.5), and Z2:2

from two gamma distributions with common shape parameter 0.5 and scale parameter
vector (2, 2.5).

parameter r = 0.5 and scale parameter vector (3.5, 3.5), and denote by h(t; 3.5, 3.5) the
corresponding hazard rate function of Z2:2. It is clear that the hazard rate order does not
hold between X2:2 and Z2:2 as seen in Figure 13.

Zhao and Balakrishnan [53] compared stochastically the maxima in terms of the
dispersive and star orders.

Theorem 3.3: Under the same setup as in Theorem 3.2, we have

(i)

(λ1, λ2)
p

� (λ∗
1, λ

∗
2) =⇒ X2:2 ≥disp [≥�]X∗

2:2;

(ii)

(1/λ1, 1/λ2)
m� (1/λ∗

1, 1/λ∗
2) =⇒ X2:2 ≥� X∗

2:2.

The following example, due to Zhao and Balakrishnan [53], shows the dispersive order
in Part (i) of Theorem 3.3 cannot be extended to the general case when n > 2.

Example 3.3: Let (X1,X2,X3) be an independent exponential random vector with parame-
ter vector (0.1, 2, 9), and (Y1, Y2, Y3) be another independent exponential random vector with
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Figure 13. Plots of hazard rate functions of X2:2 from two independent gamma distri-
butions with common shape parameter 0.5 and scale parameter vector (2, 8), Y2:2 from
two gamma distributions with common shape parameter 0.5 and scale parameter vector
(4, 4), and Z2:2 from two gamma distributions with common shape parameter 0.5 and scale
parameter vector (3.5, 3.5).

parameter vector (0.1, 4, 5). It is clear that

(0.1, 2, 9)
p

� (0.1, 4, 5).

Now, when Xi ∼ Exp(θi), i = 1, 2, 3, are independent random variables, it can be readily
shown that (see Arnold, Balakrishnan, and Nagaraja [2])

E(X3:3) = θ1 + θ2 + θ3 − θ1θ2

θ1 + θ2
− θ1θ3

θ1 + θ3
− θ2θ3

θ2 + θ3
+

θ1θ2θ3

θ1θ2 + θ1θ3 + θ2θ3

and

E(X2
3:3) = 2θ2

1 + 2θ2
2 + 2θ2

3 − 2
( 1

θ1
+ 1

θ2
)2

− 2
( 1

θ1
+ 1

θ3
)2

− 2
( 1

θ2
+ 1

θ3
)2

+
2

( 1
θ1

+ 1
θ2

+ 1
θ3

)2
.

By using these expressions, in this case, we find the variances of X3:3 and Y3:3 to be

Var[X3:3] = 99.5619 ≤ 99.8326 = Var[Y3:3],

which implies that X3:3 �disp Y3:3.

Remark 3.1: As in the case of dispersive order, one may also wonder whether the result in
Theorem 3.3 can be extended to the general case when n > 2, say for the star order. In
this regard, Example 2.4 in the preceding section can serve as a counterexample to give a
negative answer.
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Figure 14. Plots of the hazard rate functions when r = 0.5.

3.2. Comparisons Between Heterogeneous and Homogeneous Gamma Samples

Recently, Balakrishnan and Zhao [6] established the following result for the gamma case.

Theorem 3.4: Let X1, . . . , Xn be independent gamma random variables with Xi having
shape parameter r and scale parameter λi for i = 1, . . . , n, and Y1, . . . , Yn be a random
sample of size n from a gamma distribution with shape parameter r and a common scale
parameter λ ≥ λgm. If r ≤ 1, then

Xn:n ≥hr Yn:n.

As a direct consequence of Theorem 3.4, we can obtain an upper bound on the hazard
rate function of Xn:n from heterogeneous gamma variables in terms of the hazard rate
function of Yn:n from an i.i.d. gamma sample. The following numerical example, due to
Balakrishnan and Zhao [6], can be used to illustrate this fact.

Example 3.4: Let (X1,X2,X3) be a vector of independent heterogeneous gamma random
variables with common shape parameter r = 0.5 and scale parameter vector (λ1, λ2, λ3) =
(1, 2, 6), and h(t; 1, 2, 6) denote the hazard rate function of X3:3. Let (Y1, Y2, Y3) be an i.i.d.
gamma random sample with common shape parameter 0.5 and scale parameter 3 (the arith-
metic mean of (1, 2, 6)), and let h(t; 3, 3, 3) denote the hazard rate function of Y3:3. Let
(Z1, Z2, Z3) be an i.i.d. gamma random sample with common shape parameter 0.5 and scale
parameter 3

√
12 (the geometric mean of (1, 2, 6)), and let h(t; 3

√
12, 3

√
12, 3

√
12) denote the haz-

ard rate function of Z3:3. Figure 14 presents a plot of the hazard rate functions of these three
largest order statistics, which can be seen to be in accordance with the result of Theorem 3.4.
It can also be seen that the upper bound given by h(t; 3

√
12, 3

√
12, 3

√
12) is better than that

offered by h(t; 3, 3, 3).
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Figure 15. Plots of the hazard rate functions when r = 3.

Open Problem 6: A natural question that arises is whether the result in Theorem 3.4
also holds for the case when the shape parameter is larger than 1. It is possible that this
may be true as can be seen in Figure 15 (the hazard rate plots under the same setup as in
Figure 14, but the shape parameter is now 3), but it remains as an open problem.

Open Problem 7: Moreover, it would be interesting to see whether the result in
Theorem 3.4 can be established for the likelihood ratio order. For the exponential case,
such results have been derived by Khaledi and Kochar [23] and Kochar and Xu [29].

4. DISCRETE CASE

4.1. Geometric Case

The geometric distribution is the discrete counterpart of the exponential distribution since
they both possess lack of memory property and constant hazard rates. For a geometric
random variable X with parameter p ∈ (0, 1), the probability mass function is given by

P(X = k) = p(1 − p)k, k ∈ N0 = {0, 1, 2, · · · }.
Mao and Hu [34] proved the following result for this geometric case.

Theorem 4.1: Let X1, . . . , Xn be independent geometric random variables with parameters
p1, . . . , pn, and X∗

1 , . . . , X∗
n be another set of independent geometric random variables with

parameters p∗1, . . . , p
∗
n, respectively. Then,

(p1, . . . , pn)
p

� (p∗1, . . . , p
∗
n) =⇒ Xn:n ≥st X∗

n:n.

The result in Theorem 4.1 is an analogue of (2.4). Mao and Hu [34] further showed that
Theorem 4.1 might not hold for other order statistics by using the following counterexample.
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Example 4.1: Let (X1,X2,X3) be a vector of independent geometric variables with param-
eter vector (p1, p2, p3) = (0.01, 0.1, 0.9), and (X∗

1 ,X∗
2 ,X∗

3 ) be another vector of independent
geometric variables with parameter vector (p∗1, p

∗
2, p

∗
3) = (0.1, 0.2, 0.5). Then, we have

(p1, p2, p3)
p

� (p∗1, p
∗
2, p

∗
3).

But, observe that

P(X1:3 ≥ 1) = 0.081 < 0.360 = P(X∗
1:3 ≥ 1),

which implies that X1:3 �st X∗
1:3.

Moreover, they also used the following counterexample to show an analogue of (2.5)
does not hold for the reversed hazard rate order under the geometric framework.

Example 4.2: Let (X1,X2,X3) be a vector of independent geometric variables with param-
eter vector (p1, p2, p3) = (0.2, 0.4, 0.8), and (X∗

1 ,X∗
2 ,X∗

3 ) be another vector of independent
geometric variables with parameter vector (p∗1, p

∗
2, p

∗
3) = (0.4, 0.4, 0.6). Then, we have

(p1, p2, p3)
m� (p∗1, p

∗
2, p

∗
3).

However,
FX1:3(1)
FX1:3(0)

= 3.456 < 3.584 =
FX∗

1:3
(1)

FX∗
1:3

(0)

and
FX1:3(3)
FX1:3(2)

= 1.3518 > 1.2831 =
FX∗

1:3
(3)

FX∗
1:3

(2)
,

which imply that X1:3 �rh X∗
1:3.

Recently, Xu and Hu [45] further proved the following multivariate stochastic order
result.

Theorem 4.2: Under the same setup as in Theorem 4.1, we have

(log(1 − p1), . . . , log(1 − pn)) �w (log(1 − p∗1), . . . , log(1 − p∗n))

=⇒ (X1:n, . . . , Xn:n) �st (X∗
1:n, . . . , X∗

n:n).

The following corollary is a direct consequence of Theorem 4.2.

Corollary 4.1: Let X1, . . . , Xn be independent geometric random variables with param-
eters p1, . . . , pn, respectively, and Y1, . . . , Yn be i.i.d. geometric random variables with a
common parameter p. Then,

p ≥ pcg =⇒ (X1:n, . . . , Xn:n) �st (Y1:n, . . . , Yn:n),

where

pcg = 1 −
{

n∏
i=1

(1 − pi)

}1/n

.
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The following result, due to Mao and Hu [34], compares the largest order statistics from
heterogeneous and homogeneous geometric samples in terms of the likelihood ratio order.

Theorem 4.3: Let X1, . . . , Xn be independent geometric random variables with parameters
p1, . . . , pn, respectively, and Y1, . . . , Yn be i.i.d. geometric random variables with common
parameter p. Then,

p ≥ pcg =⇒ Xn:n ≥lr Yn:n.

They also pointed out that the reversed hazard rate order (and hence the likelihood
ratio order) does not hold between Xn:n and Yn:n under the condition p ≥ pam = 1

n

∑n
i=1 pi

even though it does hold for the corresponding exponential case; see Kochar and Xu [29].
Moreover, they left the question whether the hazard rate order holds between Xn:n and Yn:n

under the condition p ≥ pam as an open problem. Du, Zhao, and Balakrishnan [16] recently
answered this problem partially for the case when n = 2 by proving the following result.

Theorem 4.4: Let X1, X2 be independent geometric variables with parameters p1, p2,
and X∗

1 , X∗
2 be another set of independent geometric variables with parameters p∗1, p

∗
2,

respectively. Suppose p1 ≤ p∗1 ≤ p∗2 ≤ p2. Then,

(p1, p2)
p

� (p∗1, p
∗
2) ⇐⇒ X2:2 ≥hr X∗

2:2 ⇐⇒ X2:2 ≥st X∗
2:2.

Next, we present a numerical example to illustrate the results established in
Theorem 4.4.

Example 4.3: Let (X1,X2) be a vector of independent geometric variables with parameter
vector (p1, p2) = (1/6, 1/2), and h (k; 1/6, 1/2) be the corresponding hazard rate function of
X2:2. Let (X∗

1 ,X∗
2 ) be another vector of independent geometric variables with parameter

vector (p∗1, p
∗
2) = (1/4, 1/5), and h (k; 1/4, 2/5) be the corresponding hazard rate function of

X∗
2:2. It can be readily seen that (p∗1, p1)

p

� (p∗2, p2). Figure 16 presents plots of the hazard
rate functions of these two maxima, which are in accordance with the result in Theorem 4.4.

Du et al. [16] also examined the likelihood ratio order of the maxima in two multiple-
outlier geometric samples.

Theorem 4.5: Let X1, . . . , Xn be independent geometric variables with parameters

(p1, . . . , p1︸ ︷︷ ︸
r

, p2, . . . , p2︸ ︷︷ ︸
q

),

where r + q = n, and Y1, . . . , Yn be another set of independent geometric variables with
parameters

(p∗1, . . . , p
∗
1︸ ︷︷ ︸

r

, p∗2, . . . , p
∗
2︸ ︷︷ ︸

q

),

respectively. Then, if p1 ≤ p∗1 ≤ p∗2 ≤ p2 and

(− log(1 − p1), . . . ,− log(1 − p1)︸ ︷︷ ︸
r

,− log(1 − p2), . . . ,− log(1 − p2)︸ ︷︷ ︸
q

)

w� (− log(1 − p∗1), . . . ,− log(1 − p∗1)︸ ︷︷ ︸
r

,− log(1 − p∗2), . . . ,− log(1 − p∗2)︸ ︷︷ ︸
q

), (4.1)
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Figure 16. Plots of the hazard rate functions of the maxima of geometric variables with
parameter vector (1/6, 1/2) and (1/4, 2/5).

we have
Xn:n ≥lr Yn:n.

Since the likelihood ratio order implies the hazard rate order, the result in Theorem 4.5
can be used to compare the hazard rate functions of the maxima from two multiple-outlier
geometric samples. The following example, from Du et al. [16], illustrates this point.

Example 4.4: Let (X1,X2,X3) be a vector of independent geometric random variables
with parameter vector (1/6, 1/6, 2/7), and h (k; 1/6, 1/6, 2/7) be the corresponding hazard
rate function of X3:3. Let (Y1, Y2, Y3) be another vector of independent geometric random
variables with parameter vector (1/5, 1/5, 1/4), and h (k; 1/5, 1/5, 1/4) be the corresponding
hazard rate function of Y3:3. It can be readily verified that condition (4.1) in Theorem 4.5
is satisfied in this case. Figure 17 presents plots of the hazard rate functions of these two
maxima which are readily seen to be in accordance with the result of Theorem 4.5.

4.2. Negative Binomial Case

The negative binomial distribution is one of the important distributions in statistics, and
has wide applications in reliability theory, engineering, game theory, quality control, and
communication theory. For a negative binomial random variable X with parameter (r, p) ∈
(0,+∞) × (0, 1), the probability mass function is given by

P(X = k) =
(

r + k − 1
k

)
pr(1 − p)k, k ∈ N0 = {0, 1, 2, . . .}.

Let X1, . . . , Xn be a set of independent negative binomial random variables with param-
eters (k1, p1), . . . , (kn, pn), respectively, and let X∗

1 , . . . , X∗
n be another set of independent

negative binomial random variables with parameters (k∗
1 , p∗1), . . . , (k

∗
n, p∗n), respectively, Xu

and Hu [45] then obtained the following two results.
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Figure 17. Plots of the hazard rate functions of maxima from two geometric samples with
parameter vectors as (1/6, 1/6, 2/7) and (1/5, 1/5, 1/4).

Theorem 4.6: If ki = k∗
i = k for i = 1, . . . , n, then

(i)

(p1, . . . , pn)
p

� (p∗1, . . . , p
∗
n) =⇒ Xn:n ≥st X∗

n:n;

(ii)

(1 − p1, . . . , 1 − pn)
p

� (1 − p∗1, . . . , 1 − p∗n) =⇒ X1:n ≤st X∗
1:n, for k ≥ 1;

(iii)

(log(1 − p1), . . . , log(1 − pn)) �w (log(1 − p∗1), . . . , log(1 − p∗n))

=⇒ X1:n ≥st X∗
1:n, for 0 < k ≤ 1.

Theorem 4.7: If pi = p∗i = p for i = 1, . . . , n, then

(k1, . . . , kn) �w [
w�](k∗

1 , . . . , k∗
n) =⇒ Xn:n ≥st X∗

n:n[X1:n ≤st X∗
1:n].

It is apparent that the result in Part (i) of Theorem 4.6 extends the corresponding one
in Theorem 4.1 from the geometric case to the negative binomial case. Also, Xu and Hu [45]
gave the following result which can be readily derived by using Part (iii) of Theorem 4.6
and Theorem 2 in Ma [33].

Corollary 4.2: If ki = k∗
i = k ∈ (0, 1] for i = 1, . . . , n and p∗1 = · · · = p∗n = p, then

p ≥ pcg =⇒ Xr:n ≥st X∗
r:n, r = 1, . . . , n.

Xu and Hu [45] also displayed, with the help of a counterexample, that the result in
Corollary 4.2 does not hold for the case when ki > 1 for i = 1, . . . , n.
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12. Bon, J.L. & Pǎltǎnea, E. (1999). Ordering properties of convolutions of exponential random variables.
Lifetime Data Analysis 5: 185–192.
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