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Exact solution to neutrino-plasma two-flavor dynamics
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Abstract. It is shown that the two-flavor neutrino oscillation equations admit
an exact analytic solution for arbitrarily chosen normalized electron neutrino
population, provided the electron plasma density is adjusted in a certain way.
The associated formula for the electron plasma density is applied to the cases of
exponentially decaying or oscillating electron neutrino populations.

1. Introduction
The energy exchange between neutrino beams and
plasma collective modes can be a crucial mechanism
e.g. for shocks in type II supernovae (Bingham et al.
2004). The associated neutrino charge coupling (Serbeto
et al. 2004) leads to kinetic effects such as neutrino
Landau damping (Silva et al. 1999), as well as to the
generation of quasi-static magnetic fields (Shukla et al.
1998). The orthodox approach to the neutrino–plasma
interaction problem is to assume specific medium prop-
erties, and then to solve the dynamical equations, either
in approximate or numerical forms. In this respect, one
can have sinusoidal variations of the electron density
(Schafer and Koonin 1987; Krastev and Smirnov 1989;
Koike et al. 2009; Kneller et al. 2013), general time-
dependent media (Hollenberg and Päs 2012), stochastic
backgrounds (Torrente-Lujan 1999; Benatti and Flore-
anini 2005) as well as instabilities due to electron density
ripples (Shukla 2011). In an inverse way, in the present
work, a certain electron density profile is assumed, and
then the corresponding medium properties are unveiled.
The procedure is restricted to two-flavor neutrino pop-
ulations. No further approximations are needed.

The work is organized as follows. Section 2 describes
the general method, leading to (2.8), the central result
of the paper. Section 3 briefly discusses the cases of
exponentially decaying or oscillating electron neutrino
populations. Section 4 is reserved to final remarks.

2. Exact solution
The equations for neutrino-flavor oscillations in a
plasma are well known (Raffelt 1996) and we present
them in the form

Ṗ1 = −Ω(t)P2 , Ṗ2 = Ω(t)P1 − Ω0P3 , Ṗ3 = Ω0P2 ,

(2.1)

where P = (P1, P2, P3) is the three-dimensional flavor
polarization vector, such that the density matrix can be

written as

ρ =
N0

2
(1 + P · σ) , (2.2)

using the total neutrino number N0 = Ne + Nμ and
the Pauli matrices σ = (σx, σy, σz), with Ne,μ being the
electron (muon) neutrino populations. In (2.1),

Ω(t) = ω0(cos 2θ0 − ξ(t)) , Ω0 = ω0 sin 2θ0 , (2.3)

where we have introduced the characteristic oscillation
frequency ω0 = Δm2/2E, with Δm2 = m2

2 − m2
1 being the

square mass difference between mass eigenstates and E

the energy associated with the neutrino Dirac spinor,
while θ0 is the pertinent mixing angle. Finally, we have
ξ(t) =

√
2GFne/ω0 being the coupling function between

the neutrino and the embedding plasma medium, where
GF is the Fermi constant and ne is the electron plasma
density. In our analysis, it is important to keep in mind
that P3 = (Ne − Nμ)/N0.

From the first and the last equations in (2.1), we get

Ω = − Ṗ1

P2
, P2 =

Ṗ3

Ω0
. (2.4)

Substituting the results shown in (2.4) into the mid
equality in (2.1) and integrating, once yields

I = Ṗ 2
3 + Ω2

0

(
P 2

3 + P 2
1

)
= Ω2

0 , (2.5)

where I is a constant of motion, dI/dt = 0. The last
equality in (2.5) follows from Ṗ3 = Ω0P2 and the nor-
malization condition, |P| = 1. Our central result comes
from the fact that (2.5) can be solved up to a sign choice
for P1 in terms of P3, or

P1 = ± (Ω2
0 − Ṗ 2

3 − Ω2
0P

2
3 )1/2

Ω0
. (2.6)

Correspondingly, using (2.4) and (2.6), we find

Ω = ± P̈3 + Ω2
0P3

(Ω2
0 − Ṗ 2

3 − Ω2
0P

2
3 )1/2

. (2.7)

Therefore, we have a very simple recipe to gener-
ate exact solutions for the two-flavor neutrino-plasma
oscillation equations. Instead of prescribing a given
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plasma density ne as usual, one can start choosing P3,
which is interpreted as the normalized difference between
neutrino flavor populations. Afterward, (2.6) and the last
in (2.4) give resp. the coherences P1 and P2. Finally, (2.7)
gives the corresponding Ω, which is linked to the plasma
medium properties. To have meaningful solutions, at
least some requirements should be taken into account,
namely |P3| � 1, otherwise one would eventually get
negative flavor populations. In addition, P3 should be a
double-differentiable function of time.

Alternatively, we can use P3 = 2Ne/N0 − 1 to express
the results in terms of the electron neutrino population.
From (2.4), (2.6) and (2.7), we get

P1 = ±2

(
N̄e − N̄2

e −
˙̄N2
e

Ω2
0

)1/2

, P2 =
2 ˙̄Ne

Ω0
,

Ω = ±
¨̄Ne + Ω2

0(N̄e − 1/2)

Ω0

(
N̄e − N̄2

e − ˙̄N2
e /Ω

2
0

)1/2
, (2.8)

where N̄e ≡ Ne/N0. The results in (2.8) compactly
represent the basic findings of this work.

3. Applications
3.1. Exponentially decaying electron neutrino population

As a first example, consider the case of an exponentially
decaying electron neutrino population,

N̄e = N̄e(t0) exp

(
− t − t0

r0

)
, (3.1)

which models the change of the electron number density
along the path of the solar neutrinos moving radially
from the central region to the surface of the Sun (Petkov
1988, 1997). In this context, r0 is the scale height and
t − t0 is the distance traveled by the neutrinos. To
have meaningful solutions from (2.8) (or, real P1,2,3),
one should have N̄e(t0) exp(t0/r0) > (1 + 1/Ω2

0r
2
0)

−1, as
can be readily verified. We use stretched time and space
variables so that ω0 = 1, r0 = 1. Moreover, the mixing
angle satisfies sin2 2θ0 = 0.15, so that Ω0 = 0.39. Finally,
we chose N̄e(t0) exp(t0/r0) = 0.13, which assures the
produced solutions to be non-complex. The resulting
polarization vector components are shown in Fig. 1,
while Ω(t) is shown in Fig. 2, with the plus sign chosen
in (2.8). It can be shown that in this case, one has
the asymptotic dependence Ω ∝ −Ω0 exp(t/2r0) when
t → ∞. Evidently, an infinite class of profiles can be
generated via the same procedure. One can, e.g., consider
the case of an oscillating electron neutrino population,
discussed in the following.

3.2. Periodic electron density

Now, consider an initially unpolarized electron neutrino
beam,

N̄e =
1

2
+

ε

2
sin Ω̃t , (3.2)
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Figure 1. (Colour online) Polarization vector components
for an exponentially decaying electron neutrino population,
according to (2.8) and (3.1). Parameters, ω0 = 1, r0 = 1,
sin2 2θ0 = 0.15, N̄e(t0) exp(t0/r0) = 0.13.
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Figure 2. (Colour online) Function Ω(t) for an exponentially
decaying electron neutrino population, according to (2.8) and
(3.1) and the same parameters as in Fig. 1.

including an amplitude parameter ε � 0 and an arbit-
rary frequency Ω̃. A simple analysis shows that ε <

Inf(1, Ω0/Ω̃) is the condition to avoid singularities. The
corresponding polarization vector components and Ω(t)
function are shown resp. in Figs. 3 and 4, for Ω0 = 0.39
as before and for ε = 0.39, Ω̃ = 1.0.
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Figure 3. (Colour online) Polarization vector components for
an oscillating electron neutrino population, according to (2.8)
and (3.2). Parameters, Ω0 = 0.39, ε = 0.39, Ω̃ = 1.0.
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Figure 4. (Colour online) Function Ω(t) for an oscillating
electron neutrino population, according to (2.8) and (3.2) and
the same parameters as in Fig. 3.
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4. Conclusion
In this work, the usual route for solving the two-
flavor neutrino-plasma oscillation equations has been
subverted. Namely, instead of setting a certain electron
plasma density and then looking for the polarization
vector components, here the third component P3(t) and
equivalently the electron neutrino population Ne(t) are
chosen ab initio. Consequently, simple formulas for the
coherences P1,2(t) are readily found. The necessary con-
dition for the recipe to work is to adjust the function
Ω(t) and hence the electron plasma density ne(t) so that
(2.7) holds. The results can be expressed in terms of the
electron neutrino population only, see (2.8). In a sense,
our exact neutrino flavor solution has similarities with
the celebrated Bernstein–Greene–Kruskal equilibria for
the Vlasov–Poisson system (Bernstein et al. 1957), where
arbitrarily chosen electrostatic potentials can be con-
structed provided specific trapped electron distributions
are set.
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