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Abstract

Let H be a compact subgroup of a locally compact group G. We first investigate some (operator)

(co)homological properties of the Fourier algebra A(G/H) of the homogeneous space G/H such as

(operator) approximate biprojectivity and pseudo-contractibility. In particular, we show that A(G/H)

is operator approximately biprojective if and only if G/H is discrete. We also show that A(G/H)∗∗ is

boundedly approximately amenable if and only if G is compact and H is open. Finally, we consider the

question of existence of weakly compact multipliers on A(G/H).
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1. Introduction

The foundation stone of the (co)homology theory of Banach algebras was laid by

Helemskii and Johnson from distinctly different viewpoints. The problems that arise

in this subject have been studied by many other mathematicians in the setting of the

Fourier algebra A(G) of a locally compact group G. The notion of Fourier algebra on

homogeneous spaces of a locally compact group was first introduced and investigated

by Forrest [7]. Let G be a locally compact group, H a compact subgroup of G and

A(G/H) the Fourier algebra of the homogeneous space G/H, which is the subalgebra

consisting of the functions in A(G) that are constant on the left cosets modulo H. It was

shown in [8, 17] that many properties of A(G/H) associated with amenability, such as

biprojectivity and operator amenability, are closely linked to such properties of A(G).

Thus, we are naturally motivated to study approximate (co)homological properties of

A(G/H).

Our study of (weakly) compact multipliers of A(G/H) is motivated by the question,

if A(G/H) has a non-zero (weakly) compact multiplier, must G/H be discrete? An

affirmative answer to this question will provide some characterisations of discreteness

of G/H in terms of finite-dimensional ideals of A(G/H).
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The organisation of the paper is as follows. In Section 3 we study operator

approximate biprojectivity and pseudo-contractiblity of Fourier algebras on homo-

geneous spaces. In particular, we show that the Banach algebra A(G/H) is operator

approximately biprojective if and only if H is open. We also show that in the presence

of approximate identities, discreteness of G/H is a necessary and sufficient condition

for A(G/H) to be (operator) pseudo-contractible. The purpose of Section 4 is to

investigate the relation between the existence of weakly compact multipliers of A(G/H)

and discreteness of G/H. This work generalises the corresponding result of [15].

2. Preliminaries

Let G be a locally compact group with fixed left Haar measure dx. Let B(G) denote

the Fourier–Stieltjes algebra of G consisting of all coefficient functions arising from

all the weakly continuous unitary representations of G. The Fourier algebra A(G) is

a closed ideal of B(G), consisting of coefficient functions u(·) = 〈λ(·) f , g〉 where λ is

the left regular representation of G on the Hilbert space L2(G) defined by λ(t) f (x) =

f (t−1x) for all x, t ∈ G and f ∈ L2(G). The dual of A(G) is isometrically isomorphic

to VN(G), the group von Neumann algebra which is generated by λ in the operator

algebra B(L2(G)). See [6, 12] for more information on B(G), A(G) and VN(G).

Let H be a compact subgroup of a locally compact group G and let G/H be the

homogeneous space of left cosets of H. Suppose that p : G→ G/H is the canonical

quotient map. We write x̃ for the left coset xH = p(x). As in [7], we define the sets

B(G : H) ={u ∈ B(G) : u is constant on the left cosets of H},

A(G : H) ={u ∈ B(G : H) : p(supp u) is compact in G/H} ‖.‖B(G) .

It was shown by Forrest in [7] that B(G : H) is a closed subalgebra of B(G) and

is the range of the projection map PH defined on B(G) by PHu(x) =
∫

H
u(xh) dh

for x ∈ G. When PH is restricted to A(G), it is a projection onto A(G : H). Since

the elements of B(G : H) are constant on cosets of H, it is also identified as an

algebra of functions on G/H. We denote by A(G/H) and B(G/H) the corresponding

Fourier and Fourier–Stieltjes algebras on the homogeneous space G/H. Here we

recall some of the well-known properties of the Fourier algebra A(G/H) that we

shall need. The algebra A(G/H) is a commutative, semisimple and regular Banach

algebra with A(G/H) ⊆ C0(G/H), the space of continuous functions on G/H that

vanish at infinity. The Gelfand structure space of A(G/H) is G/H. Finally, the dual

of A(G/H) is isometrically isomorphic to VN(G/H) and this space is the closure of

{λ( f ) : f ∈ L1(G), f constant on the left cosets of H} in VN(G), with respect to the

weak∗ topology. Note that in general, VN(G/H) need not be a von Neumann algebra.

Let A be a Banach algebra. The first Arens product � on A∗∗ is defined by the

following three steps. For a, b in A, T in A∗ and m, n ∈ A∗∗, define T · a, m · T ∈ A∗

and m�n ∈ A∗∗ by

〈T · a, b〉 = 〈T , ab〉, 〈m · T , a〉 = 〈m, T · a〉, 〈m�n, T〉 = 〈m, n · T〉.
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As is well known, this multiplication naturally induces a Banach algebra multiplica-

tion onA∗∗ which extends that onA.

By analogy with the case of topological groups, we define

UCB(Ĝ/H) = span{ũ · T : ũ ∈ A(G/H), T ∈ VN(G/H)} ‖.‖VN(G/H)

The dual of the space UCB(Ĝ/H) equipped with the multiplication induced by that

on VN(G/H)∗ is also a Banach algebra. A linear functional m ∈ VN(G/H)∗ is called

a topologically invariant mean on VN(G/H) if ‖m‖ = 〈m, λ(ẽ)〉 = 1 and 〈m, ũ · Φ〉 =

ũ(ẽ)〈m,Φ〉 for all Φ ∈ VN(G/H) and ũ ∈ A(G/H), where λ(ẽ) is the multiplicative

linear functional on A(G/H) defined by λ(ẽ)(ũ) = ũ(ẽ). We denote by TIM(Ĝ/H) the

set of all topologically invariant means on VN(G/H). It was shown by Chu and Lau

[3] that VN(G/H) always admits a topologically invariant mean. Throughout, H will

denote a compact subgroup of a locally compact group G.

3. Some (co)homological properties of A(G/H)

A derivation from a Banach algebraA into a BanachA-bimodule X is a linear map

D : A → X such that

D(ab) = a · D(b) + D(a) · b

for all a, b ∈ A. For each x ∈ X, the map adx : A → X defined by

adx(a) = a · x − x · a, a ∈ A,

is a derivation, which is called the inner derivation induced by x.

A Banach algebra A is called boundedly approximately amenable if for every

Banach A-bimodule X, every bounded derivation D from A into X∗ is bounded

approximately inner, that is, there is a bounded net (Dα) of inner derivations such

that

D(a) = lim
α

Dα(a),

for all a ∈ A.

A (completely contractive) Banach algebra A is called (operator) approximately

biprojective if there is a net (ρα) of (completely) bounded A-bimodule morphisms

fromA intoA⊗̂A (respectively,A⊗̂opA) such that π ◦ ρα(a)→ a for all a ∈ A, where

π : A⊗̂A → A (respectively, π : A⊗̂opA → A) is the product morphism and ⊗̂ (⊗̂op)

is the (operator) projective tensor product of (completely contractive) Banach algebras.

The fact that A(G) is the predual of a von Neumann algebra allows us to equip A(G)

with a natural operator space structure. We know that a closed subspace of an operator

space is also an operator space, hence A(G/H) and VN(G/H) are operator spaces. A

Banach algebra which is also an operator space is said to be completely contractive if

the multiplication is a complete contraction (see [5] for more details). In this section

we characterise some operator (co)homological properties of A(G/H).
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THEOREM 3.1. The following conditions are equivalent:

(i) H is open;

(ii) A(G/H) is operator biprojective;

(iii) A(G/H) is operator approximately biprojective.

PROOF. (i)⇒(ii) follows from [17, Theorem 4.6] and (ii)⇒(iii) is obvious.

(iii)⇒(i). Suppose that A(G/H) is operator approximately biprojective and let

ρα : A(G/H)→ A(G/H)⊗̂opA(G/H)

be a net of completely bounded A(G/H)-bimodule morphisms such that π ◦ ρα(ũ)→ ũ

for all ũ ∈ A(G/H). Let ι : A(G/H)→ A(G/H) be the identity map and λ(ẽ) the

(completely) bounded functional on A(G/H) defined by λ(ẽ)(ũ) = ũ(ẽ). Put

S = ι ⊗ λ(ẽ) : A(G/H)⊗̂opA(G/H)→ A(G/H).

By checking with elementary tensors, one can see that S satisfies

S(ũ · ϕ) = ũS(ϕ), S(ϕ · ũ) = ũ(ẽ)S(ϕ) and S(ϕ)(ẽ) = π(ϕ)(ẽ)

for all ũ ∈ A(G/H) and ϕ ∈ A(G/H)⊗̂opA(G/H). Let Sα : A(G/H)→ A(G/H) be the

net of completely bounded left A(G/H)-module maps defined by

Sα := S ◦ ρα.

It easy to see that

Sα(ũṽ) = ṽ(ẽ)Sα(ũ)

for all ũ, ṽ ∈ A(G/H). Given ũ0 ∈ A(G/H) with u0(ẽ) = 1, we can find α0 such that

π ◦ ρα0
(ũ0)(ẽ) , 0. Putting ṽ0 = Sα0

(ũ0) ∈ A(G/H), we have

ṽ0(ẽ) = Sα0
(ũ0)(ẽ) = S(ρα0

(ũ0))(ẽ) = π(ρα0
(ũ0))(ẽ) , 0.

Moreover, for each ũ ∈ A(G/H),

ũṽ0 = ũSα0
(ũ0) = Sα0

(ũũ0) = Sα0
(ũ0ũ) = Sα0

(ũ0)ũ(ẽ) = ũ(ẽ)ṽ0.

Since A(G/H) separates points in G/H, we conclude that ṽ0/ṽ0(ẽ) = 1ẽ, the character-

istic function at {ẽ}. Hence, H is open. �

It follows from [17, Theorem 3.3] that if G has an abelian subgroup of finite index,

then the maximal structure in A(G/H) coincides with the operator space structure.

In this case, the operator approximate biprojectivity of A(G/H) is equivalent to its

approximate biprojectivity. Therefore, we obtain the following result as a consequence

of Theorem 3.1.

COROLLARY 3.2. Suppose that G has an abelian subgroup of finite index. Then

A(G/H) is approximately biprojective if and only if H is open.

Following [10], a (completely contractive) Banach algebra A is (operator)

pseudo-contractible if there is a net (ϕα) inA⊗̂A (respectively,A⊗̂opA) such that for
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each a ∈ A,

a · ϕα = ϕα · a, π(ϕα)a→ a.

THEOREM 3.3. The following conditions are equivalent:

(i) A(G/H) has an approximate identity and H is open;

(ii) A(G/H) has an approximate identity and is (operator) approximately

biprojective;

(iii) A(G/H) is (operator) pseudo-contractible.

PROOF. We will prove the operator space version of the theorem. The other case

follows from similar arguments and [10, Proposition 3.8].

(ii)⇔ (i) follows from Theorem 3.1.

(i)⇒ (iii). Let (ũα) be an approximate identity for A(G/H) and let H be open. Since the

elements with compact support are dense in A(G/H), we can assume that each ũα has

compact, and hence finite, support Fα. For every α, define ϕα ∈ A(G/H)⊗̂opA(G/H) by

ϕα =
∑

x̃∈Fα

ũα(x̃)( 1x̃ ⊗ 1x̃).

It is not hard to see that π(ϕα) = ũα and ṽ · ϕα = ϕα · ṽ for all ṽ ∈ A(G/H). Therefore,

A(G/H) is operator pseudo-contractible.

(iii)⇒ (i). Let (ϕα) be an operator approximate diagonal for A(G/H) such that ṽ · ϕα =

ϕα · ṽ for all ṽ ∈ A(G/H). Let S = ι ⊗ λ(ẽ) be as in the proof of Theorem 3.1. Arguing

as in the proof of Theorem 3.1, there is ũ0 = S(ϕα0
) such that ũ0/ũ0(ẽ) = 1ẽ. Hence, H

is open. �

THEOREM 3.4. A(G/H)∗∗ is boundedly approximately amenable if and only if G is

compact and H is open.

PROOF. Let G be compact and H be open. Then, A(G/H) = A(G/H)∗∗ = Cn, for some

positive integer n, so the result is clear.

Conversely, assume that A(G/H)∗∗ is boundedly approximately amenable. Let m ∈

TIM(Ĝ/H). Then it is easy to see that

n�m = 〈n, λ(ẽ)〉m

for all n ∈ A(G/H)∗∗. Therefore, I := m�A(G/H)∗∗ is a closed two-sided ideal in

A(G/H)∗∗. The mapping n 7→ m�n from A(G/H)∗∗ onto I is a continuous projection,

which implies that I is complemented. By [9, Corollary 2.4], I admits a right

approximate identity, say (eα). Since for each n ∈ TIM(Ĝ/H), we have n�eα = eα and

n = m�n ∈ I, we conclude that

n = lim
α

n�eα = lim
α

eα.

This implies that TIM(Ĝ/H) is a singleton and so H must be open by [13, Corollary

1.9]. Thus, A(G/H) is an ideal in its bidual by Corollary 4.2 and, from [2, Lemma 5.2],
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A(G/H)∗∗ is unital. Therefore, A(G/H) has a bounded approximate identity. Following

[7], we will identify A(G/H) with A(G : H). Thus, A(G/H) can be viewed as a closed

subspace of A(G). Hence, by [4, page 816], A(G/H) is a weakly sequentially complete

Banach algebra, whence A(G/H) is Arens regular by [1, Theorem 1.6]. Therefore, by

[4, Theorem 2.9.39], A(G/H) has an identity and so H is of finite index. Therefore, G

must be compact. �

4. Weakly compact multipliers of A(G/H)

A bounded linear operator on a Banach algebraA is called a right (respectively, left)

multiplier if it satisfies R(ab) = aR(b) (respectively, L(ab) = L(a)b) for all a, b ∈ A. In

particular, for each a ∈ A the multiplication operators ρa : A → A and ℓa : A → A

defined by ρa(b) = ba and ℓa(b) = ab are a right multiplier and a left multiplier of A,

respectively. For the general theory of multipliers we refer to Larsen [14].

In the group setting Lau in [15] proved that a locally compact group G is discrete

if and only if its Fourier algebra A(G) has a nonzero compact or even weakly compact

multiplier. In this section, we partially extend this result to the setting of homogeneous

spaces. Let H be a compact subgroup of G and let

S(G/H) = {ṽ ∈ A(G/H) : ‖ṽ‖ = ṽ(ẽ) = 1}.

Then S(G/H) is a commutative semigroup with pointwise multiplication.

THEOREM 4.1. The following conditions are equivalent:

(i) H is open;

(ii) ρũ is compact for every ũ ∈ A(G/H);

(iii) there exists ũ ∈ A(G/H) such that ρũ is weakly compact and ũ(ẽ) , 0.

PROOF. (i)⇒ (ii). Suppose that H is open and let ã ∈ G/H. Putting ũ = 1ã, we have

ρũ(A(G/H)) = {λ1ã : λ ∈ C}. This implies that ρũ is compact. Therefore, ρũ is compact

for every ũ ∈ A(G/H) with finite support. Since the set of all ũ ∈ A(G/H) such that ũ

has finite support is dense in A(G/H), a simple approximation argument shows that ρũ

is compact for all ũ ∈ A(G/H).

(ii)⇒ (iii) is obvious.

(iii)⇒ (i). Let K be the norm closure of the set {ũṽ : ṽ ∈ S(G/H)}. Then K is a weakly

compact convex subset of A(G/H). For each ṽ ∈ S(G/H) we can define an affine map

rṽ : K → K by rṽ(ϕ) = ṽϕ for all ϕ ∈ K. By the Markov–Kakutani fixed point theorem,

the commuting family {rṽ : ṽ ∈ S(G/H)} has a fixed point ϕ0 ∈ K, that is, ṽϕ0 = ϕ0 for

all ṽ ∈ S(G/H). Moreover, ϕ0(ẽ) , 0. Now we show that S(G/H) generates A(G/H).

Indeed, let P : A(G)→ A(G/H) be the contractive projection

(Pu)(x) =

∫

H

u(xh) dh
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as defined in [7, Theorem 3.3]. Then it is easy to see that P(A(G) ∩ P1(G)) ⊆ S(G/H),

where P1(G) is the set of all positive definite functions on G having value 1 at e. Since

A(G) ∩ P1(G) generates A(G), it follows that S(G/H) generates A(G/H). Moreover,

A(G/H) separates points in G/H. Therefore, ϕ0/ϕ0(ẽ) = 1ẽ, whence H is open. �

It is known that a Banach algebra A is an ideal in A∗∗ if and only if multiplication

operators in A are weakly compact (see [4, page 248]). The next result generalises

[16, Theorem 3.7].

COROLLARY 4.2. H is open if and only if A(G/H) is an ideal in VN(G/H)∗.

Before we give the next result, recall that λ(ẽ) is a multiplicative linear functional

on A(G/H) defined by λ(ẽ)(ũ) = ũ(ẽ).

COROLLARY 4.3. The following conditions are equivalent:

(i) H is open;

(ii) A(G/H) has a one-dimensional ideal I such that λ(ẽ)|I , 0;

(iii) A(G/H) has a finite-dimensional ideal I such that λ(ẽ)|I , 0.

PROOF. (i) ⇒ (ii). Suppose that H is open. Then for each ã ∈ G/H the set C1ã is a

nonzero one-dimensional ideal in A(G/H).

(ii)⇒ (iii) is clear.

(iii)⇒ (i). Let I be a finite-dimensional ideal in A(G/H) with λ(ẽ)|I , 0. Then there is

ũ ∈ I such that ũ(ẽ) , {0} and ρũ has finite rank. Therefore, Theorem 4.1 implies that

H is open. �

COROLLARY 4.4. H is open if and only if there exists ũ ∈ B(G/H) such that ρũ is

weakly compact on B(G/H) and ũ(ẽ) , 0.

PROOF. Let ṽ ∈ A(G/H) be such that ṽ(ẽ) , 0. Then ρṽũ is weakly compact on A(G/H).

Hence, H is open by Theorem 4.1. For the converse, choose ũ = 1ẽ. �

PROPOSITION 4.5. H is open if and only if there is a weakly compact right multi-

plier R : VN(G/H)∗ → VN(G/H)∗ and m ∈ VN(G/H)∗ such that R(m) ∈ A(G/H) and

〈R(m), λ(ẽ)〉 , 0.

PROOF. Suppose that H is open and consider ũ = 1ẽ ∈ A(G/H). Then the map

Λũ : VN(G/H)∗ → VN(G/H)∗ defined by Λũ(m) = m�ũ, is a weakly compact right

multiplier of VN(G/H)∗ with the desired properties.

Conversely, first note that for each ṽ ∈ A(G/H),

ρR(m)(ṽ) = ṽR(m) = ṽ�R(m) = R(ṽ�m) = R ◦ ρm(ṽ).

Using this and the fact that the restriction of R on A(G/H) is weakly compact, we

conclude that ρR(m) = R ◦ ρm is weakly compact on A(G/H). Since 〈R(m), λ(ẽ)〉 , 0, H

must be discrete by Theorem 4.1. �
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REMARK 4.6. The condition R(m) ∈ A(G/H) cannot be removed in Proposition 4.5.

In fact, let m be a topologically invariant mean on VN(G/H). Then, the map R :

VN(G/H)∗ → VN(G/H)∗ defined by R(n) = n�m = 〈n, λ(ẽ)〉m is a rank-one right

multiplier of VN(G/H)∗ and hence is weakly compact.

Let B(VN(G/H)) denote the space of all bounded linear operators on VN(G/H).

Let BA(G/H)(VN(G/H)) denote the subspace of B(VN(G/H)) consisting of all Λ ∈

B(VN(G/H)) such that Λ(ũ · T) = ũ · Λ(T) for all ũ ∈ A(G/H) and T ∈ VN(G/H). It

is easily verified that the map

τ : UCB(Ĝ/H)∗ → BA(G/H)(VN(G/H)), m 7→ mL

induces a contractive and injective algebra homomorphism, where mL is given by

〈mL(T), ũ〉 = 〈m, ũ · T〉 for all ũ ∈ A(G/H) and T ∈ VN(G/H). Our interest in the

following property of Fourier algebras A(G/H) stemmed from our study of [15], where

it was proved by Lau that if G is an amenable group, then there is an isometric algebra

isomorphism between the space BA(G)(VN(G)) and the space UCB(Ĝ)∗. As pointed out

in [11], the result remains valid if G is replaced by G/H. A natural question is whether

the converse holds. The next theorem shows that this question has an affirmative

answer.

THEOREM 4.7. G is amenable if and only if the map

τ : UCB(Ĝ/H)∗ → BA(G/H)(VN(G/H)), m 7→ mL

is surjective.

PROOF. Suppose that G is amenable. By [11, Theorem 20], the map τ is a linear

isometry and a surjective algebra homomorphism.

For the converse, let τ be surjective. Then since idVN(G/H) ∈ BA(G/H)(VN(G/H)),

there exists E ∈ UCB(Ĝ/H)∗ such that τ(E) = idVN(G/H). We extend E to a functional

m on VN(G/H) with the same norm. By Goldestine’s theorem, there is a net (ũα) in

A(G/H) such that ũα
w∗

−−→ m and ‖ũα‖ ≤ ‖m‖ for all α. Therefore, for each T ∈ VN(G/H)

and ũ ∈ A(G/H),

lim
α
〈ũαũ, T〉 = lim

α
〈ũα, ũ · T〉 = 〈m, ũ · T〉 = 〈E, ũ · T〉

= 〈τ(E)(T), ũ〉 = 〈idVN(G/H)(T), ũ〉 = 〈ũ, T〉.

This shows that (ũα) is a bounded weak approximate identity for A(G/H). Applying

Mazur’s theorem, we obtain a bounded approximate identity for A(G/H). Hence, by

[7, Theorem 4.1], G is amenable. �
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