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We investigate the instability of finite-amplitude progressive ring waves in deep water,
which are radiated by the time-periodic oscillation of a half-submerged sphere (with
radius r1), under the influence of gravity and surface tension. We use direct numerical
simulations of fully nonlinear wave–body interactions to quantify the temporal–spatial
evolution of the base and perturbed outgoing ring wave fields, from which the
stability of ring waves is analysed. The numerical simulation is based on a mixed
Euler–Lagrangian quadratic boundary-element method and accounts for fully nonlinear
wave–wave and wave–body interactions in the context of potential flow. We find that
the progressive gravity–capillary ring waves (with frequency 2ω0) become unstable to
(small-amplitude) radial cross-wave disturbances when the body-motion parameter k0a
exceeds the threshold value εc, where a is the amplitude of body oscillation and k0
is the wavenumber of the ring wave at subharmonic frequency ω0. The predicted εc
from nonlinear simulations under the assumption of ideal fluid, which decreases with
increasing k0r1, is generally smaller than the experimental measurement of Tatsuno
et al. (Rep. Res. Inst. Appl. Mech. Kyushu University, vol. 17, 1969, pp. 195–215)
by approximately 50 %. When the viscous effects in body-surface and free-surface
boundary layers are taken into account, the predicted εc matches the experimental
data excellently. The unstable modes are characterized as the progressive radial
cross-waves at the subharmonic frequency (ω0) with the growth rates generally
increasing with k0a. The maximum growth rate is achieved for the cross-wave mode
with the azimuthal wavenumber m∗ ∼ 1.2k0r1. These distinctive features of instability
obtained in numerical simulations are consistent with the experimental observations.
From the comparison with the weakly nonlinear analysis of Shen & Liu (J. Fluid
Mech., vol. 869, 2019, pp. 439–467), it is found that inclusion of finite-amplitude
ring wave effects generally reduces the growth rate of unstable modes but has an
insignificant influence on the shape of unstable modes and the value of εc. Moreover,
for moderately steep ring waves, nonlinear interactions of a few unstable modes
can excite broadbanded unstable subharmonic cross-wave modes, leading to the
formation/observation of distinctive non-axisymmetric wave patterns during long-time
evolutions.
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1. Introduction
Understanding of the instability mechanisms of surface waves with or without

the presence of a floating/stationary body is of fundamental interest and practical
importance in ocean science and marine engineering. A practical example is the
observation of stochastic behaviours of the impact pressure on the tank wall caused
by steep or overturning sloshing waves in a regularly oscillating tank (e.g. Yung et al.
2010). Characterization and quantification of the sloshing-wave impact pressure in
an oscillating tank requires the understanding of the stability of nonlinear sloshing
surface waves generated by an oscillating solid boundary including the presence of
surface tension. The main objective of this paper is to numerically investigate the
instability of progressive surface ring waves generated by vertical oscillation of a
surface-piercing axially symmetric body under the influence of gravity and surface
tension.

There are extensive studies on the dynamics of free capillary waves (e.g. Milewski,
Vanden-Broeck & Wang 2010; Wang, Vanden-Broeck & Milewski 2014; Pan &
Yue 2014; Wang 2016) and those generated by a pressure source (Diorio et al.
2009, 2011; Cho et al. 2011; Park & Cho 2017) in the absence of floating bodies.
The present work studies the dynamics of surface gravity–capillary waves radiated
by an oscillating body in an infinite domain. It is motivated by the laboratory
experiments of Tatsuno, Inoue & Okabe (1969), hereinafter TIO, and Taneda
(1991) who observed that the free-surface pattern of surface waves generated by
vertical oscillation of a half-submerged sphere varies distinctively as the amplitude
or frequency of the oscillation increases beyond a threshold value. Specifically,
axisymmetric (or non-axisymmetric) outgoing progressive waves are radiated when
the oscillation amplitude/frequency is small (or large). A similar phenomenon was
first reported by Faraday (1831), which was caused by a vertical oscillation of a
surface-piercing cylindrical cork in a water basin. Faraday found that the wave field
is not axial-symmetric but with ‘ridges’ around the cork. The mechanism governing
the pattern change of the radiated progressive waves has not been fully understood
yet despite the existence of a substantial amount of research on the stability of wave
motions.

There are typically two categories of instability problems of nonlinear waves, for
which fundamentally different approaches need to be used in the analysis. In the
first category, the base flow can be converted into a steady system by the use of a
coordinate system transformation. The instability of Stokes waves is an example of
this category. In the second category, the base flow is time-periodic, which cannot
be converted into a steady system through coordinate system transformation. The
instability of standing waves or progressive waves radiated by body motions belongs
to the latter. There has been a great deal of study of the former while the study of
the latter is limited. The instability problem addressed in this work belongs to the
latter.

The instability analysis of plane propagating waves was first carried out by
Benjamin & Feir (1967). They showed that a second-order Stokes wave train is
unstable to a small sideband disturbance. By accounting for higher-order effects,
Longuet-Higgins (1978a, 1978b) extended the instability analysis to a finite-amplitude
Stokes wave train. The growth rate of unstable modes obtained by Longuet-Higgins
agrees with that of Benjamin & Feir at small wave steepness. When the disturbance
is extended to three dimensions, the Stokes wave train is found to be unstable to
oblique sideband disturbances (Benney & Roskes 1969). McLean (1982) generalized
the instability analysis of a travelling wave to include broadband disturbances by
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Instability of progressive ring waves 887 A16-3

converting the travelling wave into a steady wave shape in a moving frame. A
general form of disturbances is applied to the steady base wave, leading to an
eigenvalue problem. The unstable disturbance modes are determined to correspond
to the eigenvalues with positive imaginary part. A stability diagram is obtained by
varying the disturbance wavenumber and base wave steepness. Two distinguishable
unstable regions are found, which are defined as type I and II instabilities. The type I
instability is the two-dimensional instability that is dominant in small wave steepness,
causing strong wave package modulation during the time evolution. Benjamin–Feir
instability belongs to this type. The type II instability is the three-dimensional
instability for which unstable three-dimensional disturbances move with the base
wave causing the development of distinctive three-dimensional wave patterns during
the evolution of a two-dimensional base wave train. These predictions agree well
with the experiments in wave basins (Su 1982) and the direct nonlinear numerical
simulations (Xue et al. 2001).

For unsteady base waves, such as a standing wave, McLean’s approach becomes
invalid. Becker & Miles (1991) carried out a weakly nonlinear theoretical analysis
of the stability of standing waves in an annular tank. For general time-periodic base
flows, the so-called transition matrix method can be employed for the instability
analysis (Coddington & Levinson 1955; von Kerczek & Davis 1976) under the
assumption that the disturbance can be expanded into the summation of normal
modes at any time. The Floquet theory is then adopted to determine the growth rates,
frequencies and shapes of the unstable modes. Mercer & Roberts (1992) used the
transition matrix method to analyse the instability of deep water two-dimensional
standing waves. Similarly to Stokes waves, the sideband instability is found to be
dominant for two-dimensional standing waves. Zhu, Liu & Yue (2003) combined
the transition matrix method with a high-order spectral element method to study the
instability of standing waves in a rectangular tank to three-dimensional disturbances.
They found that the two-dimensional standing wave is generally unstable to
three-dimensional disturbances as long as the disturbance wave frequency is close
to the base standing wave frequency. Moreover, Zhu et al. (2003) also carried out
the instability analysis for three-dimensional standing waves in a circular tank. The
dominant instability is found to be due to the sideband instability in which the
summation of two frequencies of disturbance waves is close to twice the frequency
of the base standing wave.

In the instability analysis of progressive waves that are generated by an oscillating
object, a main challenge lies in the determination of homogenous modes required
to represent the general disturbances in addition to the computation of nonlinear
outgoing base waves. In the context of gravity waves, there does not exist any
non-trial homogeneous solution for the wave–body interaction problem involving a
body like a surface-piercing sphere (John 1950). When the surface tension effect is
accounted for, Shen & Liu (2019) recently showed through a theoretical analysis
the existence of non-trivial solutions of the linearized homogeneous boundary value
problem at any frequency. The homogeneous solution is completely determined by
the mean free-surface slope at the waterline of the body and physically represents
progressive radial cross-waves. For a vertical circular cylinder in deep water,
they derived the analytic solution of the cross-wave modes. When the cylinder
undergoes a radial expansion–contraction motion in the horizontal plane, they derived
an evolution equation governing energy transfer from the radiated progressive
ring wave to the subharmonic radial cross-wave due to their triadic resonant
interactions, based on a weakly nonlinear analysis by the averaged Lagrangian
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887 A16-4 M. Shen and Y. Liu

method. The analysis was applied approximately to the case of high-frequency
vertical oscillation of a sphere. The prediction of the threshold value of oscillation
amplitude and characteristic features of radial cross-waves agrees qualitatively with
TIO’s experimental observation.

Despite these, we point out that in the theoretical analysis of Shen & Liu (2019),
the cross-waves for the case of a half-submerged sphere are obtained by an asymptotic
extension of the solution for the vertical circular cylinder case. Furthermore, the
analysis uses the linearized ring wave solution that does not include the nonlinear
free-surface and body boundary effects. In addition, the analysis does not consider
the viscous effect. All of these may contribute to the discrepancies between the
theoretical prediction of Shen & Liu (2019) and TIO’s experimental observations,
which will be addressed in this paper. Moreover, the weakly nonlinear analysis shows
that the unstable mode shape is given by the linear homogeneous cross-wave solution
multiplied by a slowly varying amplitude envelope. This implies that we are unable
to expand the unstable modes in terms of linear homogeneous modes only, because
the envelope is also a part of the solution that is unknown. As a result, the transition
matrix method cannot be applied in the present case. We thus have to rely on the
use of direct numerical simulations to examine the instability of finite-amplitude
progressive ring waves by a surface-piercing oscillating body.

In this work, we employ direct numerical simulations of nonlinear wave–body
interactions by the use of a mixed Euler–Lagrangian (MEL) quadratic boundary-
element method (QBEM) in the context of potential flow formulation to study the
instability of finite-amplitude progressive ring waves. The ring waves are radiated
by a forced vertical harmonic oscillation of a half-submerged sphere in deep water.
Both gravity and surface tension effects are included in the simulations. In § 2,
we first summarize the mathematical formulation of the nonlinear wave-making
problem by an oscillating body. We then describe the direct numerical simulation
approach to analyse the instability of general nonlinear time-periodic flows. In
§ 3, we provide a brief summary of the extension of MEL-QBEM, originally
developed for the computation of fully nonlinear gravity wave interaction with
a floating three-dimensional body, to include the surface tension effect and the
implementation of the far-field Orlanski–Sommerfeld radiation condition. These
developments enable us to achieve high-fidelity computation of nonlinear evolution
of outgoing gravity–capillary waves produced by an oscillating surface-piercing body.
Section 4 contains the convergence tests and validations of the QBEM computations
of base ring waves and radial cross-waves. Section 5 presents some basic properties
of instability and characteristic features of the unstable cross-waves. We compare
the present nonlinear simulation result with the weakly nonlinear theory prediction
of Shen & Liu (2019) in § 6 and the experimental data of TIO in § 7 to illustrate
the nonlinear effects of base flow and the viscous effect on the threshold value of
sphere oscillation amplitude/frequency beyond which the instability of ring waves
occurs. Section 8 shows the dependence of instability on physical parameters such
as the initial disturbance phase and shape. The influence of nonlinear interactions of
multiple unstable cross-wave modes on the development of distinctive free-surface
patterns during long-time evolution of the wave field is investigated in § 9. We finally
draw conclusions in § 10.

2. Mathematical formulation
2.1. Problem statement

We consider the hydrodynamic problem of nonlinear capillary–gravity wave interaction
with a floating sphere in deep water in the context of potential flow. The problem is
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FIGURE 1. Definition sketch of the wave radiation problem by a half-submerged sphere
of radius r1 which oscillates vertically with an amplitude of a at a frequency of 2ω0 in
deep water. A circular cylindrical coordinate (r, ψ , z) system is defined to describe the
problem. The fluid domain is represented as D that is encircled by the body surface SB,
the free surface SF, the far-field vertical cylindrical surface S∞ at r = r2 � r1, and the
fictitious deep-water surface S0.

depicted in figure 1. The sphere with radius r1 is half-submerged and undergoes a
periodic vertical oscillation with amplitude a and frequency 2ω0. At any time t, the
velocity potential φ(r, ψ, z, t) that is used to describe the fluid motion satisfies the
Laplace equation in the fluid D(t),

∇
2φ = 0 in D(t), (2.1)

where ∇ ≡ (∂/∂r, ∂/r∂ψ, ∂/∂z) and t represents time. The kinematic and dynamic
boundary conditions on the instantaneous free surface SF(t) are

ζt +∇ζ · ∇φ = φz on SF(t) (2.2)

and
φt +

1
2
∇φ · ∇φ + gζ +

Ts

ρw
∇ · n= 0 on SF(t), (2.3)

where ζ (r, ψ, t) denotes the instantaneous elevation of the free surface, g is the
gravitational acceleration, n is the unit normal vector of the free surface pointing out
of the fluid, Ts is the coefficient of surface tension of water (in contact with air) and
ρw is the water density. The boundary condition on the instantaneous sphere surface
SB(t) is

φn = ξtnz on SB(t), (2.4)

where ξ(t) represents the vertical displacement of the sphere centre, and nz is the
vertical component of the unit normal of the body surface. In the present study, the
sphere is forced in harmonic motion with ξ given by

ξ(t)= a sin 2ω0t. (2.5)
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887 A16-6 M. Shen and Y. Liu

In deep water, the fluid motion vanishes

∇φ = 0 on S0. (2.6)

The radiation condition is imposed at the far-field surface S∞(t), which requires that
the generated waves due to body oscillation propagate outwards. In addition, the initial
conditions of φ(r, ψ, z, t = 0) on the free surface ζ (r, ψ, t = 0) and the position
ξ(t= 0) and velocity ξ̇ (t= 0) of the sphere need to be specified.

In the context of gravity waves, the above stated initial boundary value problem is
complete, for which a unique solution exists (John 1950) because the homogeneous
problem (with linearized free-surface boundary conditions) has a trivial solution
only. In the context of gravity–capillary waves, the solution of the stated problem is
non-unique because the homogeneous problem (with linearized free-surface boundary
conditions) possesses a non-trivial solution which is dependent on the radial slope
of the free-surface at the intersection line (often known as the waterline) of the
sphere with the free surface (Shen & Liu 2019). A unique solution of the stated
problem, which represents outgoing progressive ring waves due to forced vertical
sphere oscillation, can be achieved only under the condition of zero radial slope of
the free surface on the waterline

ζr(r, ψ, t)= 0 (2.7)

for 0 6 ψ < 2π at any time (Rhodes-Robinson 1971; Shen & Liu 2019). In general,
the position of the waterline varies with time in the time domain simulation. For
small body oscillation amplitude a, the waterline can be approximated to be
fixed at the position r = r1. For large body oscillation amplitude a, a numerical
procedure described in § 3.2 is employed to determine the waterline position in the
nonlinear time-domain simulation. Appendix C describes a numerical approach for
the determination of the solution of the linearized homogeneous problem (with φn= 0
on the body surface, but ζr 6= 0 on the waterline r= r1) in the frequency domain. The
homogeneous solution represents the progressive radial cross-waves.

The purpose of this work is to investigate the stability of the finite-amplitude
progressive ring waves (forced by a harmonic vertical sphere oscillation) subject to
the small disturbance given in terms of the progressive radial cross-waves including
both gravity and surface tension effects.

2.2. Instability-analysis method
We write the governing equation of the above stated nonlinear wave–body interaction
problem in symbolic form,

∂u
∂t
=N (u), (2.8)

where N is the nonlinear operator of the problem and u≡ (ζ (r, ψ, t), φs(r, ψ, t)) is
the solution of the nonlinear problem in which φs

≡φ(r, ψ, z= ζ (r, ψ, t), t) represents
the velocity potential on the free surface.

In a linear stability analysis, we write u as the sum of a nonlinear base flow u0
(corresponding to finite-amplitude propagating ring waves) and a small disturbance u′,

u(r, ψ, t)= u0(r, t)+ u′(r, ψ, t), (2.9)

where u0 satisfies the inhomogeneous body-boundary condition (2.4) with the zero
radial-slope condition (2.7) while u′ satisfies the homogeneous body-boundary
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Instability of progressive ring waves 887 A16-7

condition φn = 0 but with ζr 6= 0 on the waterline. Substituting (2.9) into (2.8)
then leads to the linearized equation governing the temporal-spatial evolution of the
disturbance,

∂u′

∂t
=L(u′), (2.10)

where L is a linearized time-periodic (variable-coefficient) operator given by the
Jacobian of N with respect to u (evaluated at u0). For the present problem, L has
a frequency of 2ω0 and a period of T0/2, where T0 = 2π/ω0 is the period of the
subharmonic.

Since u′ is periodic in ψ , we expand u′ in a Fourier series

u′(r, ψ, t)=
∞∑

m=0

u′m(r, t) cos(mψ), (2.11)

where, without loss of generality, we consider the cosine series in ψ , and u′m(r, t)
represents the amplitude of the mth cosine mode. In practice, the infinite series in
(2.11) is truncated at a suitable large number M. Substituting (2.11) into (2.10) gives
the evolution equation for the amplitude of each cosine mode,

∂u′m
∂t
=L(u′m), m= 0, 1, . . . ,M. (2.12)

The purpose of instability analysis is to solve (2.12) to obtain the frequency,
growth rate and spatial shape of unstable modes for given azimuthal wavenumber
m= 0, 1, . . . ,M.

In the present study, the base flow u0 is a finite-amplitude progressive ring
wave propagating outwards in the radial direction, which cannot be made a steady
flow through a coordinate-system transform as in the case of Stokes waves. The
conventional instability-analysis for steady base flows (e.g. McLean 1982) cannot be
applied here. Since the base flow is time periodic, we analyse the instability of the
present problem based on Floquet theory (e.g. Coddington & Levinson 1955; von
Kerczek & Davis 1976).

For a disturbance with N degrees of freedom, we express the solution of (2.12) as
a combination of N linearly independent solutions u′mn, n= 1, 2, . . . ,N

u′m(r, t)=
N∑

n=1

γmnu′mn(r, t), (2.13)

where the coefficients γmn are obtained from the initial condition for u′m. Upon
substituting (2.13) into (2.12), we obtain from Floquet theory (Coddington & Levinson
1955) the general solution of (2.12) in the form

Um(r, t)=Pm(r, t) exp(Rmt), m= 0, 1, . . . ,M, (2.14)

where Um(r, t)=[u′mn(r, t)] is an N-column matrix, Pm(r, t) is also an N-column matrix
which is real and time-periodic with the (subharmonic) frequency of ω0 (i.e. Pm(r, t)=
Pm(r, t + T0)), and Rm is an N × N real number constant matrix. The stability of
the flow depends on the eigenvalues λmj ( j = 1, . . . , N) of Rm. The flow is stable
if Re{λmj}6 0, for all j= 1, . . . ,N; and unstable if Re{λmj}> 0 for any j= 1, . . . ,N.
The unstable mode is the eigenvector corresponding to λmj with frequency Im{λmj}.
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887 A16-8 M. Shen and Y. Liu

One must note that in the instability analysis of standing waves in a rectangular
tank (e.g. Mercer & Roberts 1992) or in a cylindrical circular basin (Zhu et al.
2003), the time and space dependence of u′mn in (2.13) can be separated by the use
of orthogonal normal mode expansions. (The normal modes, which satisfy the field
equation with the homogeneous boundary condition, can be found in a straightforward
way in these problems with simple domain boundaries). This leads to the so-called
transition-matrix method, in which the eigenvalues of Rm are directly related to those
of the transition matrix. For the present problem, we are unable to separate the time
and space dependence of u′mn since it is difficult to obtain a closed-form solution of
normal modes for the problem with the presence of a surface-piercing sphere in an
unbound domain. The traditional transition matrix method for the stability analysis of
unsteady flow cannot be adopted here. We thus apply direct numerical computation
to solve (2.12) for the solution of u′m(r, t) from which we examine the stability of
ring waves.

For a flat free surface (i.e. the base ring wave has a zero amplitude), equation
(2.12) represents the linearized homogeneous (wave–body interaction) problem for
which there exists a non-trivial solution in the context of gravity–capillary waves
(Shen & Liu 2019). The homogeneous solution can be written in symbolic form
Gm(r, ω) ≡ (ηm, ϕm) which represents the linear progressive radial cross-wave mode
with azimuthal wavenumber m = 0, 1, . . . , M, for any frequency ω ∈ (0, ∞). In
the case of a half-submerged sphere, appendix C provides a brief description of a
numerical method for the determination of Gm(r, ω), m= 0, 1, . . . ,M. In this limiting
case of zero-amplitude ring waves, we have pmn(r, t)=Gm(r, ω) exp(iωt) , which can
be seen as a column vector of matrix Pm, and Rm= 0. This means that a flat surface
is neutrally stable to the propagating cross-wave perturbations of any frequency.

In the presence of a small-amplitude base ring wave, the multiple-scale perturbation
analysis of resonant interactions between the ring wave (with frequency 2ω0) and a
subharmonic cross-wave (with frequency ω0) shows that the subharmonic cross-wave
amplitude grows with time (with Re{λm1} > 0 and Im{λm1} = 0) by taking energy
from the ring wave when the ring wave steepness (measured by the dimensionless
sphere oscillation amplitude) exceeds the threshold value (Shen & Liu 2019). The
time-evolution solution of the mth subharmonic cross-wave mode, which is the first
column vector of matrix Um(r, t), is given by

pm1(r, t)=Πm1(r)Gm(r, ω0)eiω0teλm1t, (2.15)

where Πm1(r) is a slowly varying function of r representing the envelope of the
relatively fast-varying function Gm(r, ω0). This indicates that the base ring wave is
unstable to the sub-harmonic cross-wave perturbation. The interactions of the ring
wave with other harmonic (i.e. higher and lower than subharmonic) cross-waves are
not analysed, and the stability of the small-amplitude ring waves to these cross-wave
perturbations remains unknown. In the general case of finite-amplitude ring waves,
we would expect the time-evolution solution pm1(r, t) for the sub-harmonic cross-wave
mode to take the same form as (2.15) with the envelope Πm1(r), growth rate Re{λm1}

and frequency Im{λm1} influenced by the base ring wave conditions. In this work,
direct numerical simulations are used to quantify the stability of finite-amplitude
progressive ring waves subject to general cross-wave perturbations.

In the direct computation approach, we numerically integrate (2.12) in time starting
from specified initial conditions to obtain the solution of u′m(r, t) from which we
determine the (complex) growth rate λmn and mode shape Πmn(r) based on (2.14) and
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(2.15). In practice, two steps of computations are involved. In the first step, we use
the direct numerical simulation to solve the nonlinear initial boundary value problem
to obtain the (steady state) time-periodic fully nonlinear base flow solution u0 in the
computational domain. In the second step, we add a small initial disturbance, which is
chosen to correspond to the mth cross-wave of arbitrary frequency ω, into the steady
state base flow at a certain time instant, say, t= t0

um(r, ψ, t0)= u0(r, t0)+ s0Gm(r, ω) cos(mψ)eiωt0, m= 0, 1, . . . ,M (2.16)

where s0� 1 is the initial amplitude of the mth cross-wave disturbance. This choice
of the initial disturbance provides a best initial guess of the unstable mode shape.
The time simulation of the nonlinear evolution of the disturbed wave field gives the
solution of u(r, ψ, t) for a sufficiently long time period of t ∈ [t0, t0+ t1] with t1� T0.
Subtracting u0 from u(r, ψ, t), we obtain the temporal-spatial evolution solution of
the disturbance u′(r, ψ, t) from which we get u′m(r, t), m= 0, 1, . . . ,M, by the use of
a Fourier transform in ψ . Upon applying the moving window time-harmonic analysis
to u′m(r, t), we can express u′m(r, t) in the form

u′m(r, t)=
N∑

n=0

Cmn(r, ts)einω0teλmn(r,ts)t, t ∈ [ts, ts + Tw] (2.17)

for ts ∈ [t0, t0 + t1 − Tw], where ts is the start of the time window, Tw is the span of
the moving time window, N is the truncated number of the time harmonics. Based
on (2.17), we can determine the complex growth rate λmn(r, ts) and mode amplitude
Cmn(r, ts) for n= 0, 1, . . . ,N by the use of nonlinear least squares with the Marquardt
(1963) algorithm. Once λmn(r, ts) and Cmn(r, ts) reach their steady state (i.e. with
λmn(r, ts) being independent of r and ts, and Cmn(r, ts) being independent of ts), we
obtain the final solution of the growth rate Re{λmn} and mode shape

Πmn(r)Gm(r, nω0)=Cmn(r)/γmn (2.18)

for m = 0, 1, . . . ,M and n = 0, 1, . . . , N, where γmn is the normalization factor for
mode shape. The frequency of the mnth mode is given by nω0 + Im{λmn}.

We remark that the second step of the computation is similar to the application
of ‘power iteration’ to finding the largest eigenvalue of a constant matrix and the
corresponding eigenvector. In this case, the eigenvalue is λmn + inω0, and eigenvector
is Πmn(r)Gm(r, nω0). The unique part of the present problem is that the matrix L in
(2.12) is not constant, but varying with time.

3. Numerical simulation of fully nonlinear wave–body interactions
3.1. Mixed Eulerian–Lagrangian quadratic boundary integral equation method

The nonlinear wave–body interaction problem described in § 2.1 is a generalized
Cauchy problem whose solution at any time is completely determined in terms
of values on the boundary of the fluid domain. We employ a mixed Eulerian–
Lagrangian (MEL) boundary integral equation (BIE) method to solve the initial
boundary value problem in the time domain by accounting for fully nonlinear
wave–wave and wave–body interactions. This method is commonly used in solving
the fully nonlinear marine hydrodynamic problems (Mei, Stiassnie & Yue 2005).
In this approach, there are two main steps of computations at each time step: (I)
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for given φ(t) on the free surface SF(t) and φn(t) on the body surface SB(t), solve
the (linear) boundary value problem for unknown φn on SF(t) and unknown φ on
SB(t); and (II) integrate the (nonlinear) evolution equations with time to update the
free surface and body positions, SF(t +1t) and SB(t +1t), and to obtain φ(t +1t)
on SF(t + 1t) and φn(t + 1t) on SB(t + 1t), where 1t is the time step. The initial
boundary value problem can be solved for any specified duration of time by repeating
the two computational processes starting from the initial conditions. Among these
two, operation I demands the most of the computational cost while II is relatively
straightforward.

In operation I, we apply Green’s second identity to reformulate the boundary value
problem as the following BIE:

α(r)φ(r)+
∫∫

∂D
[φ(r′)Gn(r; r′)− φn(r′)G(r; r′)] dS(r′)= 0, r ∈ ∂D, (3.1)

where the position vector r≡ (r cosψ, r sinψ, z), ∂D= SB(t)
⋃

SF(t),G(r; r′)=|r− r′|−1

is the Rankine source Green function, and α(r) is the interior solid angle. In (3.1),
the Cauchy principal part of the singular integral is assumed, and the integrals over
the deep water boundary S0 and far-field boundary S∞ vanish after the imposition of
the deep water condition and far-field radiation condition. The BIE is the Fredholm
integral equation of the second (or first) kind for r ∈ SB(t) (or SF(t)).

We apply the quadratic boundary-element method (QBEM) to solve the BIE (3.1).
We employ a piecewise bi-quadratic representation of both boundary SB

⋃
SF and the

quantities φ and φn on SB
⋃

SF. The boundary panels are curvilinear quadrilaterals
(or degenerate curvilinear triangles) with nine (or seven) nodes where boundary
positions, and φ and φn are collocated. Upon discretization/collocation of (3.1), we
obtain a linear algebraic system that is in general dense, non-symmetric and, because
of the first-kind equations on free surface, not diagonally dominant. This algebraic
system is solved iteratively using a generalized minimal residual algorithm with
symmetric successive over-relaxation pre-conditioning. The requisite computational
effort for the QBEM equations is approximately O(N2) where N is the total number
of nodal points. The QBEM obtains quadratic convergence with the boundary-element
size even in the presence of body and free surface intersections with discontinuous
boundary slopes (Liu, Xue & Yue 2001; Yan & Liu 2011).

In the MEL approach to track the fully nonlinear free surface motion, we rewrite
the kinematic and dynamic free-surface boundary conditions (2.2) and (2.3) in a
Lagrangian form (Mei et al. 2005) and use them as the time evolution equations for
SF and φ on SF. In operation II, we integrate these evolution equations forward with
time to update SF and φ on SF by the use of the standard fourth-order Runge–Kutta
scheme. For the present forced body motion problem, the body surface position SB(t)
is specified (cf. (2.5)). In the computation of a steady state finite-amplitude ring wave,
we start the simulation from a flat free-surface by smoothly increasing the amplitude
of the sphere oscillation from zero to the targeted amplitude over a ramp-up period of
3T0 for the purpose of minimizing the transient effects associated with the impulsive
start of sphere motion.

Details of the mathematic formulation, numerical implementation and systematic
convergence tests of the QBEM for the study of nonlinear wave dynamics and
nonlinear wave–body interactions can be found in Mei et al. (2005) and Yan &
Liu (2011). In the present work, all high-resolution computations of fully nonlinear
evolution of the gravity–capillary wave-field by the oscillating sphere are performed
on the high-performance computing platforms with the MEL-QBEM code parallelized
with message passing interface.
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3.2. Numerical issues in gravity–capillary wave–body interaction simulation
From theory it is known that when the surface tension is considered, the boundary
value problem of wave interaction with a floating body possesses homogeneous
solutions that are dependent on the free-surface slope at the waterline (Rhodes-
Robinson 1971; Shen & Liu 2019). In the simulation of gravity–capillary wave
interaction with a floating body, it is thus important to limit the numerical error at
the waterline since it may introduce unneeded homogeneous-solution contributions
to the total solution of the problem. To minimize this effect in the time-domain
simulation, after the boundary value problem is solved at each time step, we replace
the free surface elevation at the waterline ζ (r = rw, ψ, t) with the elevation at
its closest neighbouring grid ζ (r = rw + 1r, ψ, t), where rw represents the radial
position of the waterline and 1r is the small radial distance from the waterline. The
corresponding φ value at the waterline position is computed by using φr (which is
approximately equal to φn at the waterline of the sphere) and the φ value at its
closest neighbouring grid (in the radial direction). This treatment is shown to be
effective in eliminating arbitrary homogeneous solutions being added into the system
from the waterline with negligibly small effects on the wave-making solution by the
body oscillation.

In practical simulations, a computational domain with a finite SF is used. In
principle, the satisfaction of the radiation condition at the far-field can be ensured by
matching the QBEM solution in the near-field domain of interest to a general linear
analytic wave-field in the far-field over a matching boundary S∞. The latter solution
can be made to satisfy the requisite radiation condition at infinity (Dommermuth &
Yue 1987). In many applications, the cost of the far-field matching approach can be
reduced (decreasing the size of S∞) by the use of a sponge layer (or damping zone)
in the QBEM domain to absorb the reflecting waves along S∞ (Liu et al. 2001) or by
the implementation of the Orlanski–Sommerfeld radiation condition at S∞ (Orlanski
1975). For the present study that is concerned with the radiation problem with a
single forcing frequency, the Orlanski scheme is expected to perform more effectively.
In the implementation of this scheme, we set S∞ to be a vertical cylindrical surface
with radius r= r2� r1, on which the following radiation condition is imposed:

φt + cφr = 0, r= r2, z 6 ζ , (3.2)

and
ζt + cζr = 0, r= r2, z= ζ , (3.3)

where c is the phase speed of the outgoing wave and can be determined numerically at
each time step (Orlanski 1975). We point out that in the context of gravity–capillary
waves, owing to the presence of second-order differential terms associated with
surface tension in the dynamic free-surface boundary conditions, both φ and ζ

Orlanski–Sommerfeld conditions need to be imposed at the intersection of S∞ and SF

while only the φ condition is needed for the gravity wave problem. To close the fluid
domain with a finite depth of S∞, a horizontal bottom S0 (at deep depth z=−H) on
which φn = 0 is imposed, is added.

In the numerical implementation, φ on S∞ at any time is considered to be known
from the time integration of (3.2). Thus, in solving the boundary value problem, S∞
is a Dirichlet surface on which φn is the unknown to be solved for. Note that at the
intersection of S∞ with SF, the φn values on S∞ and SF are not independent and they
are related in terms of the orientations of S∞ and SF as well as the φ values on S∞
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and SF (Ingham, Ritchie & Tayler 1991). In solving the boundary value problem, only
one of them is considered as an independent unknown.

The free surface particle velocity is needed to update the free surface position
and the potential on the free surface. In QBEM, these velocities are evaluated using
the finite difference method at parametric space in the curvilinear surface. When
surface tension is accounted for, the second derivatives of the free surface need to be
evaluated in order to determine the gradient of the unit normal of the free surface in
the free-surface dynamic boundary condition (cf. (2.3)). Similarly to the velocities, we
evaluate the second spatial derivatives of the free surface using the finite-difference
method at parametric space in the curvilinear surface. The detailed formula is given
in appendix A.

In MEL simulations for gravity waves, ‘sawtooth’ instabilities eventually develop
on the free surface as nonlinearity increases (Longuet-Higgins & Cokelet 1976). A
variety of smooth algorithms have been developed to remove this instability (Xue et al.
2001). In the present study, regridding is used to avoid clustering of grids on the free
surface as nonlinearity increases (Dommermuth & Yue 1987). We do not observe the
development of ‘sawtooth’ instabilities, which may be due to the effect of surface
tension. Thus, no smoothing is applied.

4. Validation of direct numerical simulation
4.1. Ring wave and radial cross-waves by a vertical circular cylinder

To validate the accuracy of direct numerical simulations, we first consider the wave
radiation by a (fictitious) vertical circular cylinder whose vertical side undergoes
a forced harmonic swelling–contraction motion in the horizontal plane. For this
problem, there exists an analytic solution in the case of small-amplitude oscillations
(Rhodes-Robinson 1971). As a numerical example, we choose the oscillation
frequency 2ω0=40π rad s−1 (corresponding to 20 Hz), the cylinder radius k0r1=3.98
(with r1 = 15 mm), and the cylinder draft k0H = 16π. The cylinder spans the water
column with −H 6 z 6 ζ . The amplitude of swelling–contraction oscillation is
a[0.25 cos(0.5k0z)+ sin(0.5k0z)], with which only evanescent waves are generated at
this oscillation frequency (Rhodes-Robinson 1971; Shen & Liu 2019). The oscillation
amplitude a = 0.01 mm (corresponding to k0a = 0.0027) is used in the direct
(time-domain) numerical computation.

In the numerical simulation, we place the far-field radiation boundary S∞ at
r2− r1= 8.5λ0, and use grid sizes 1z= λ0/20 in the vertical direction on SB and S∞,
1r= λ0/10 in the radial direction on S0, and 1ψ = 2π/50 in the azimuthal direction
on S0 and SF where λ0 = 2π/k0. Two grid sizes in the radial direction 1r = λ0/30,
λ0/60 on SF are used to show the convergence of the numerical solution. Figure 2
displays the comparison of the linearized radiated evanescent wave amplitude as
a function of r between the direct numerical simulation results and the analytic
solution (Rhodes-Robinson 1971). The agreement between the numerical results and
the analytic solution is excellent with the normalized root mean square (r.m.s.) error
being less than 2 %. The two numerical solutions (with 1r= λ0/30 and λ0/60 on SF)
are graphically indistinguishable with the normalized r.m.s. error between them being
less than 1 %.

The analytic homogeneous cross-wave solution (Shen & Liu 2019) is also used
to validate the direct numerical simulation. Figures 3(a) and 3(b) compare sample
(normalized) radial cross-wave profiles obtained from the time-domain numerical
simulation and the analytic solution for the azimuthal wavenumber m = 0 and 5,
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FIGURE 2. Comparison of the linearized radiated (evanescent) wave amplitude (η(r)) by a
vertical circular cylinder, normalized by the oscillation amplitude a, between the numerical
results with grid size 1r= λ0/60 (——) and 1r= λ0/30 (– – –) and the analytic solution
(— · —) (Rhodes-Robinson 1971).
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FIGURE 3. Comparison of the normalized linear radial cross-wave profile (η(r, ψ = 0))
of a vertical circular cylinder with the azimuthal wavenumber (a) m = 0 and (b) m = 5
between the numerical results with grid size 1r = λ0/60 (——) and 1r = λ0/30 (– – –)
and the analytic solution (— · —) (Shen & Liu 2019).

respectively. For these results, the cylinder parameter, oscillation frequency, and
numerical parameters are the same as those used in figure 2. In the numerical
simulation, as an example, a small radial free-surface slope, s0= 0.01, at the waterline
is used. Excellent agreement between the direct numerical simulation result and the
analytic solution is again obtained with the normalized r.m.s. error being less than 2 %.

4.2. Ring wave and radial cross-waves by a floating sphere
In order to study TIO’s experiments, we need to numerically mimic the problem of
wave radiation by vertical oscillation of a half-submerged sphere. For this problem,
there exists no analytic solution even in the linearized case. For validation of the
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FIGURE 4. Comparison of the normalized linearized ring wave profile (η(r)/a) radiated
by vertical oscillation of a half-submerged sphere between the direct numerical simulation
results with grid size 1r = λ0/40 (——) and 1r = λ0/30 (— · —) and the asymptotic
far-field solution (– – –).

numerical simulation, we derive an asymptotic far-field solution of the radiated ring
waves at high frequency by extending the analysis of Hulme (1982) for gravity
wave radiation to include the effect of surface tension. The detailed derivation of the
asymptotic solution is included in appendix B.

To mimic TIO’s experiments, we choose the radius of the sphere k0r1 = 3.98
(corresponding to r1 = 15 mm) and consider oscillation frequency 2ω0 = 40π rad s−1.
The numerical parameters used in the simulation are oscillation amplitude k0a =
0.0027, domain size r2 − r1 = 8.5λ0 and H/λ0 = 8, and grid sizes 1z = λ0/20 on
S∞, 1r = λ0/10 on S0, 1ψ = 2π/50 on SF, S∞ and S0. On SB, 50 and 20 uniform
discretizations are used in the azimuth and polar angles, respectively. Two grid sizes
1r = λ0/30 and λ0/40 on SF are tested for convergence purposes. Figure 4 shows
the comparison of the ring wave profile between the asymptotic solution and the
numerical simulation result. The numerical simulation result compares well with
the asymptotic solution at the far-field of the body. The discrepancy between them
is apparent in the near field of the body since the asymptotic solution does not
include evanescent waves while the direct simulation accounts for both propagating
and evanescent waves. The discrepancy between them decreases as the radius k0r1
increases and the evanescent wave effect vanishes.

In order to specify the initial disturbance of radial cross-waves (that varies in
r and ψ) for the stability study of ring waves, we develop a frequency-domain
solver using the boundary integral equation method for the determination of linear
cross-waves of a general floating body. The details of the method are described in
appendix C. The frequency-domain solution can be used to validate the accuracy
of direct QBEM time-domain simulations of the radial cross-waves of a floating
sphere. For the same physical and numerical parameters as in figure 4, we use the
time-domain simulations to obtain (limit cycle) steady state linearized solutions of
cross-waves with a small specified free-surface radial slope s0= 0.01 at the waterline.
Figures 5(a) and 5(b) compare the cross-wave profiles between the time-domain
simulation result and the frequency-domain solution for the azimuthal wavenumbers
m = 0 and 5, respectively. The time-domain simulation results with two different
free-surface discretizations converge well and match the frequency-domain solution
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FIGURE 5. Comparison of normalized linear radial cross-wave profiles (η(r, ψ = 0)) of a
half-submerged sphere for the azimuthal wavenumbers (a) m= 0 and (b) m= 5 between
the direct time-domain simulation result with free-surface radial grid size 1r = λ0/40
(– – –) and 1r= λ0/30 (— · —) and the frequency-domain solution (——). (Here 2ω0 =

40π rad s−1, k0r1 = 3.98.)

excellently. The convergence with respect to the body surface grids, Orlanski boundary
grids, and basin bottom grids is also tested. The detailed results are not presented
here, but can be found in Shen (2019). Unless otherwise stated, we shall use the
radial discretization of 1r = λ0/40 on SF and other numerical parameters specified
above for all following simulations in the study of ring wave instability. We note that
the deep water boundary S0 is placed at H/λ0 = 8. Further increasing the value of H
won’t affect the instability results presented in this text.

5. Basic properties of the instability
In this section, we show by direct time-domain simulations that the ring wave

generated by a vertically oscillating sphere could be unstable to small radial
cross-wave disturbances, as observed in TIO’s experiments. We discuss characteristic
behaviours and fundamental properties of the instability development based on the
numerical simulation results.

To mimic TIO’s laboratory experiment, we choose a sphere of radius r1 = 15 mm
in the numerical simulation. When the sphere has an oscillation frequency of
2ω0= 40π rad s−1, the dimensionless radius of the sphere is k0r1= 3.98. The radiated
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FIGURE 6. Contour snapshots of the surface wave fields from direct numerical simulations,
which are radiated by vertical harmonic oscillations of a floating sphere (located at the
centre of the domain). (a) Steady state base ring wave at t1/T0 = 0 (2ω0 = 40π rad s−1,
k0r1 = 3.98, a/r1 = 0.12); (b) total disturbed wave field at t1/T0 = 10 (composed of
base ring wave in (a) and initial subharmonic cross-wave disturbance with azimuthal
wavenumber m= 5 and free-surface slope at waterline s0 = 0.1); (c) total disturbed wave
field at t1/T0 = 6 (composed of ring wave with 2ω0 = 35π rad s−1 and a/r1 = 0.2,
and initial subharmonic cross-wave disturbance with m = 4 and s0 = 0.1); and (d) total
disturbed wave field at t1/T0 = 6 (composed of ring wave with 2ω0 = 30π rad s−1 and
a/r1 = 0.3, and initial subharmonic cross-wave disturbance with m= 3 and s0 = 0.1).

axial-symmetric ring wave reaches the steady state in the computational domain after
a simulation time t/T0 ∼ 10. Figure 6(a) shows a snapshot of the free-surface
elevation contour of the ring wave at t/T0= 10 for the case of the sphere’s oscillation
amplitude a/r1 = 0.12. We then add a small-amplitude subharmonic cross-wave
disturbance (with corresponding frequency ω0, azimuthal wavenumber m = 5, and
slope amplitude s0= 0.1) into the ring wave field at t/T0= 10 (with the corresponding
initial disturbance time t1/T0 = 0). The simulation of subsequent nonlinear wave-field
evolution indicates that the original ring wave field becomes unstable with the
cross-wave disturbance growing significantly during the evolution. Figure 6(b)
displays the elevation contour of the instantaneous free surface at t1/T0 = 10, from
which it is seen that the cross-wave in the near field of the body becomes comparable
to the base ring wave in amplitude. Similar instability phenomena are observed in
the simulations with different base ring wave and cross-wave disturbance parameters.
Figure 6(c) (or figure 6d) shows a snapshot of the disturbed wave-field after the
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FIGURE 7. Waterfall plots of wave profiles in the radial and azimuthal directions during
the nonlinear evolution of a disturbed ring wave by an oscillating sphere. (a), (c) and (e)
show the time evolution of the radial wave profiles (at ψ = 0) of base ring wave (ζ0), total
disturbed wave field (ζ ) and disturbance wave (ζ ′), respectively; (b), (d) and ( f ) display
the evolution of the wave profiles, in the azimuthal direction at the waterline, of base ring
wave (ζ0), total disturbed wave field (ζ ) and disturbance wave (ζ ′), respectively. Small
subharmonic cross-wave disturbance (ω0 = 20π rad s−1, m= 5 and s0 = 0.1) is added to
the steady state ring wave (2ω0 = 40π rad s−1, k0r1 = 3.98 and a/r1 = 0.12) at t1/T0 = 0.
The profiles shown in the figures are T0/20 apart in time.

simulation time t1/T0 = 6 with 2ω0 = 35π (or 30π) rad s−1, a/r1 = 0.2 (or 0.3)
and subharmonic cross-wave azimuthal wavenumber m = 4 (or 3). Consistent with
TIO’s experimental observations, distinctive non-axial-symmetric wave patterns are
developed from the initial axial-symmetric ring waves, indicating that the base ring
wave is unstable to small radial cross-wave disturbances.

To further illustrate how the instability is developed during the evolution, for the
same case, figures 6(b), 7(a), 7(c) and 7(e), respectively, display the waterfall plots
of the base ring wave profile (ζ0(r, ψ, t)), total disturbed wave profile (ζ (r, ψ, t)) and
disturbance wave profile (ζ ′(r, ψ, t)) at the line ψ = 0, showing their spatial-temporal
evolution for r/r1 = [1, 15] and t1/T0 = [0, 5]. Figure 7(e) apparently indicates
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FIGURE 8. The time histories of the free-surface elevations at a fixed point near the water
line of a vertically oscillating sphere for (a) total wave field and (b) disturbance wave
only. Small subharmonic cross-wave disturbance (ω0 = 20π rad s−1, m= 5 and s0 = 0.1)
is added to the steady state ring wave (2ω0 = 40π rad s−1, k0r1 = 3.98 and a/r1 = 0.12)
at t1/T0 = 0. The plotted curves are for the numerical simulation results obtained with
different free-surface radial grids: 1r=λ0/20 (— · —), 1r=λ0/30 (– – –) and 1r=λ0/40
(——).

the growth of the cross-wave mode with time, which propagates outwards in the
radial direction. Figures 7(b), 7(d) and 7( f ) present the time evolution of the ring
wave profile (ζ0), total wave profile (ζ ) and disturbance profile (ζ ′) at the water
line, respectively. The unstable cross-wave disturbance in the ψ direction behaves
as a standing wave. Therefore, the unstable (cross-wave) disturbance behaves like
a standing wave in the azimuthal direction and a propagating wave in the radial
direction.

Figures 8(a) and 8(b) present the time histories of the total wave elevation (ζ ) and
disturbance elevation (ζ ′) at a fixed location (r/r1 = 1, ψ = 0) in the neighbourhood
of the waterline, respectively. The results in these figures indicate that the dominant
disturbance wave has a subharmonic frequency (i.e. period T0) and its amplitude
grows with time during the nonlinear evolution of the wave field. To show the
convergence of the numerical simulation results with the discretization in the radial
direction on SF, the results obtained with 1r= λ0/20, λ0/30 and λ0/40 are compared.
The convergence of the solutions for ζ and ζ ′ with 1r= λ0/40 is obtained. We point
out that although apparent discrepancies in the crest/trough of ζ ′ at large time can be
seen, the numerical solution with 1r= λ0/40 converges to within 1 % for the growth
rate of ζ ′, which is the main interest of the study.
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FIGURE 9. The time histories of the normalized amplitudes of different harmonic
components of the disturbance wave elevation at r/r1 = 1. The plotted curves are for
n = 0 (· · · · · ·), n = 1 (subharmonic frequency) (——), n = 2 (oscillation frequency)
(– – –), n= 3 (— · —) and n= 4 (— · · —). Small subharmonic cross-wave disturbance
(ω0 = 20π rad s−1, m = 5 and s0 = 0.1) is added to the steady state ring wave (2ω0 =

40π rad s−1, k0r1 = 3.98 and a/r1 = 0.12) at t1/T0 = 0.

The time dependence of the disturbance wave during the nonlinear evolution of the
wave field can be analysed in terms of (2.17). For illustration, we consider the case
in figure 8(b) as an example. For this case, the initial disturbance is the subharmonic
cross-wave mode with m = 5 and slope amplitude s0 = 0.1. Figure 9 plots the time
variations of the harmonic amplitudes C5n(r, t) of the disturbance wave elevation
ζ ′(r, t) at r/r1 = 1 for n= 0, 1, . . . , 4, which are obtained with the span of moving
time window Tw/T0 = 2. (We note that the results obtained with larger values of
Tw/T0 remain nearly unchanged.) It is seen that the amplitude of the subharmonic
component (n= 1 with period T0) approaches to a steady value quickly and is much
larger than that of all other harmonics which are negligibly small. Furthermore, the
growth rate of the subharmonic component is a positive real value, which is shown
in figure 10, while the growth rates of all other harmonics (except for n= 3) are near
zero. These indicate that the unstable disturbance is dominated by the subharmonic
cross-wave mode (with m = 5 and n = 1). We remark that due to the fact that the
quadratic (sum-frequency) interaction of subharmonic (n= 1) cross-wave with the base
ring wave (n = 2) would generates the third-harmonic (n = 3), the third-harmonic is
observed to have the same growth rate as the subharmonic but with C53 being at least
two orders of magnitude smaller than C51 as shown in figure 9. Figure 10 compares
the growth rates of the unstable subharmonic cross-wave λ51(r, t) at different radial
positions with r/r1 = 1, 2, 3 and 4 (ψ = 0). The results in the figure show that the
growth rates at different positions all approach the same steady value after the initial
transient effects propagate away. Specifically, the steady state value is reached earlier
at the locations closer to the body.

An interesting and important question is whether the instability observed in
numerical simulations depends on the size of the computational domain. Physically,
this is related to the question of whether the instability observed in TIO’s experiment
that was conducted with a relatively small basin can occur in a larger or an
infinite domain. To understand the domain size effect, we consider two base ring
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FIGURE 10. The time histories of growth rate λ51(r, t) of subharmonic cross-wave
disturbance at different radical locations: r/r1=1 (——), r/r1=2 (– – –), r/r1=3 (— · —)
and r/r1=4 (· · · · · ·). Small subharmonic cross-wave disturbance (ω0=20π rad s−1, m=5
and s0 = 0.1) is added to the steady state ring wave (2ω0 = 40π rad s−1, k0r1 = 3.98 and
a/r1 = 0.12) at t1/T0 = 0.

waves generated by vertical oscillations of the sphere with the same oscillation
frequency 2ω0 = 40π rad s−1 but different oscillation amplitudes a/r1 = 0.12 and
0.15. Small initial cross-wave disturbances with azimuthal wavenumber m = 5 are
3 are, respectively, added to the two ring wave fields to examine the stability. The
numerical simulations are performed with four domain sizes (r2 − r1)/λ0 = 3, 5.75,
8.5 and 11.25. Figure 11 shows the variation of the growth rate of the subharmonic
cross-wave disturbances as a function of the domain size. The growth rate is seen
to become independent of the domain size for (r2 − r1)/λ0 > 8.5, beyond which
the domain size has a negligible effect on the growth rate of unstable subharmonic
cross-wave disturbances.

6. Comparison with the weakly nonlinear theory prediction for a vertically
oscillating half-submerged sphere

Shen & Liu (2019) derived a weakly nonlinear theory for the subharmonic resonant
interaction of an axial-symmetric base ring wave (by a vertical circular cylinder
or a floating sphere) with its subharmonic radial cross-waves using the averaged
Lagrangian method. The theory predicts that the subharmonic cross-wave grows
exponentially with time by taking energy from the base ring wave when the oscillation
amplitude of the body exceeds a (dimensionless) threshold value. The theory provides
a basic understanding of the cross-wave instability behaviours and dependence on
key physical parameters. The theory is, however, limited to small base ring waves.
By comparing the results from fully nonlinear numerical simulations and the weakly
nonlinear theory, we can examine the finite-amplitude effects of ring waves on the
cross-wave instability.

Figure 12 shows the comparison of the growth rates of subharmonic cross-wave
disturbances obtained by the fully nonlinear numerical simulations and the weakly
nonlinear theory. The result displayed in figure 12 is the variation of the normalized
growth rate σm = λm1/(ω0ε) of the unstable subharmonic mth cross-wave mode
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FIGURE 11. The variation of the growth rate of subharmonic cross-wave disturbance
in the ring waves (of frequency 2ω0 = 40π rad s−1) on the computational domain size
k0r2. The plotted curves are for subharmonic cross-wave disturbance with azimuthal
wavenumber m=5 in base ring wave with a/r1=0.12 (—p—), and m=3 and a/r1=0.15
(—u—).

with the dimensionless oscillation amplitude ε ≡ k0a. Two ring-wave frequencies
of 2ω0 = 40π rad s−1 and 35π rad s−1 and three subharmonic cross-wave modes
with m = 3, 4 and 5 are considered. It is seen that the weakly nonlinear theory
generally over-predicts σm in comparison to the fully nonlinear simulation results.
The over-prediction becomes considerable for larger values of ε (corresponding to
steeper ring waves). One main reason for the over-prediction by the weakly nonlinear
theory is that compared to the linearized ring wave solution (used in weakly nonlinear
analysis) for the same forced sphere oscillation, the amplitude of the first harmonic
of the finite-amplitude ring wave is generally smaller owing to nonlinear effects that
cause energy transfer to the higher harmonics.

Figure 13 compares the envelopes of the unstable subharmonic cross-wave mode
Πm1(r) (cf. (2.18)) from the fully nonlinear simulation and the weakly nonlinear
theory. Two representative results are presented. The envelope Πm1(r) has a relatively
complicated varying shape in the near-field of the body and exhibits a simple decaying
shape along the radial direction in the far field of the body. Good agreement between
the nonlinear numerical simulation result and the theoretical prediction is seen. This
indicates that the nonlinearity of the ring wave does not significantly affect the
envelope of the unstable cross-wave modes.

The comparison of the threshold value of the (dimensionless) sphere oscillation
amplitude εc, beyond which the ring wave is unstable, to subharmonic cross-wave
disturbances for different cross-wave modes, is presented in figure 14 over a range
of oscillation frequencies. The agreement between the nonlinear simulation and
the weakly nonlinear theory is quite good. This is not surprising since the ring
wave steepness is relatively small at the threshold value. We remark that in TIO’s
experiment, the azimuthal wavenumber of the most unstable cross-wave mode is
observed to be m∗≈ 1.2k0r1. With the understanding that the most unstable mode has
the lowest value of εc, the results in figure 14 from both fully nonlinear simulations
and weakly nonlinear theory match this characteristic feature well. Specifically, it
seen from figure 14 that in the region around k0r1 = 2.5, the lowest value of εc is
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FIGURE 12. Comparison of the normalized growth rate (σm) of subharmonic cross-wave
disturbances in base ring waves by vertical oscillations of a floating sphere, which are
obtained from direct numerical simulations and the weakly nonlinear theory of Shen & Liu
(2019), as a function of sphere oscillation amplitude ε. (a), (b) and (c) are for the ring
wave with oscillation frequency 2ω0 = 40π rad s−1 and sphere radius k0r1 = 3.98 while
(d) is for the ring wave with 2ω0 = 35π rad s−1 and k0r1 = 3.37. The symbols represent
the results from fully nonlinear simulations for the cross-wave disturbance with azimuthal
wavenumber m = 3 (—u—), m = 4 (—q—) and m = 5 (—p—). The solid line (——)
denotes the corresponding theoretical prediction.

achieved by m= 3; in the region around k0r1= 3.5, the lowest value of εc is achieved
by m= 4; and in the region around k0r1 = 4.5, the lowest value of εc is achieved by
m= 5. This matches the approximate relation m∗ ≈ 1.2k0r1.

7. Comparison with experimental data
In figure 15, we compare the fully nonlinear simulation result with TIO’s

experimental data for the overall threshold value of sphere oscillation amplitude
εc, beyond which the ring wave is unstable, over a range of oscillation frequencies.
It is seen that εc from the fully nonlinear simulation in the context of potential flow
is approximately 50 % smaller than TIO’s experimental data.

To examine the non-potential flow effects on εc, we include the viscous effects
into our fully nonlinear simulation. For wave radiation in a tank/basin, the viscous
damping on surface wave motion is predominantly from the viscous boundary layer
effects on the body/tank surface and free surface (Miles 1967; Mei & Liu 1973). To
account for these viscous effects in the potential-flow-based simulation, we include a
viscous damping layer on the free surface (e.g. Liu et al. 2001) with an equivalent
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FIGURE 13. Comparison of the envelopes of subharmonic cross-wave modes Πm1(r) from
fully nonlinear simulations (——) and the weakly nonlinear theory (– – –) of Shen & Liu
(2019). (a) is for the ring wave with frequency 2ω0 = 40π rad s−1 and sphere oscillation
amplitude a/r1 = 0.12 and cross-wave with azimuthal wavenumber m= 5; and (b) is for
2ω0 = 40π rad s−1, a/r1 = 0.133, and m= 4.
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FIGURE 14. Comparison of the threshold value of sphere oscillation amplitude (εc) from
fully nonlinear simulations and the weakly nonlinear theory of Shen & Liu (2019) for
different subharmonic cross-wave modes as a function of sphere oscillation frequency
(k0r1). The plotted curves are the theoretical predictions for azimuthal wavenumber of
cross-waves m= 3 (——), m= 4 (– – –), m= 5 (— · —) and m= 6 (· · · · · ·). The symbols
represent the results from fully nonlinear simulations for m= 3 (u), m= 4 (q), m= 5 (p)
and m= 6 (f).

damping coefficient νq. For gravity–capillary waves, the contributions to νq from the
sphere-surface and free-surface boundary layers are of the same order of magnitude,
O(εv), where εv = k0

√
ν/ω0 and ν is the kinematic viscosity of water. The details of

estimating the distribution and value of νq from the sphere-surface and free-surface
boundaries are described in appendix D.

Once the viscous effects are taken into account, the threshold value εc predicted
by the nonlinear simulation matches TIO’s experimental data excellently, as shown in
figure 15. The comparison of εc in figure 15 is consistent with the general expectation
that inclusion of viscosity to the wave making system reduces the amplitude of the
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FIGURE 15. Comparison of the overall threshold value of the (dimensionless) sphere
oscillation amplitude (εc) over a range of oscillation frequencies (k0r1), obtained from fully
nonlinear simulations without viscous effects (– – –) and with viscous effects (——) and
TIO’s experimental data (— · —). The symbols represent that the ring wave is stable (E)
and unstable (u) from fully nonlinear simulations without the inclusion of viscous effects.

ring wave (with the same sphere oscillation amplitude), and thus increases the value
of εc for the occurrence of instability. We point out that the inclusion of viscous
effects would also generally reduce the growth rate of unstable modes. This effect is
of particular importance near the neutral instability as it may change the characteristic
behaviour of the wave/flow stability (i.e. from being unstable to stable). The inclusion
of viscous effects is known to be less important to the mode shape and frequency of
unstable modes (e.g. Wu, Liu & Yue 2006). We thus do not include the viscous effect
in our study in the following two sections (§§ 8, 9).

8. Dependence of instability on other physical parameters
8.1. Initial disturbance phase effect

To understand the effect of the phase of the initial distance upon the instability, we
consider the initial cross-wave disturbance with an arbitrary initial phase Ω0 with free-
surface potential and elevation of the disturbance given by

(k2
0/ω0)φ

′

m =Re(ϕme−iω0teiΩ0); k0ζ
′

m =Re(ηme−iω0teiΩ0), (8.1)

where ϕm(r, ω0) and ηm(r, ω0) are obtained from appendix C. At the initial time t= 0,
we add small cross-wave (with m = 5) disturbances with Ω0 = π/4, π/2, 3π/4 and
π to the ring wave field (with 2ω0 = 40π rad s−1 and a/r1 = 0.12) to investigate the
initial disturbance phase effect on the instability development. Figure 16 compares the
time evolution of the growth rate λ51(r= r1) of unstable subharmonic (ω0) component
of azimuthal wavenumber m= 5 for different Ω0 values. It is seen that Ω0 apparently
influences the initial evolution of λ51, but does not alter its steady state value after the
initial transient effect vanishes.

This phenomenon bears a resemblance to the ‘phase-locks’ in subharmonic
resonance of a simple pendulum (Bogoliubonv & Mitropolsryy 1961; Minorsky 1974).
In the pendulum case, both the amplitude and phase of the disturbance initially
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FIGURE 16. The time history of the growth rate λ51 of unstable subharmonic cross-wave
(m = 5) with different initial phases: Ω0 = π/4 (——), Ω0 = π/2 (– – –), Ω0 = 3π/4
(— · —) and Ω0=π (— · · —). For the base ring wave, 2ω0= 40π rad s−1, k0r1= 3.98
and a/r1 = 0.12.

vary with time and depend on each other in a complicated way. The phase will
eventually diminish/increase to the locked phase, and the amplitude will exponentially
grow/decay with time. In the present case, the cross-wave’s locked phase is seen to
be around Ω0=π/4. The locked phase value, however, may depend on the base ring
wave and disturbance cross-wave parameters.

8.2. Initial disturbance wavenumber (shape) effect
It is of interest to see whether the wavenumber (related to the spatial shape) of the
initial disturbance influences the formation of unstable modes of the ring wave. To
study this, we consider the base ring wave with 2ω0 = 40π rad s−1, k0r1 = 3.98 and
a/r1 = 0.12. The initial disturbance corresponding to cross-wave modes (m= 5) with
frequency 0.5ω0, 2ω0 and 3ω0 is added into the base ring wave, separately. Figure 17
shows the time evolution of the harmonic amplitudes of disturbance elevation at
r = r1 (near the waterline) during the nonlinear evolution of the disturbed ring wave
field, obtained with initial disturbances of a different shape. It can be seen that, even
though the initial cross-wave disturbance possesses a different shape (wavenumber
or frequency), the ω0 component (that is a subharmonic to the base ring wave) is
always excited, due to the non-orthogonality of the ω0 cross-wave mode with all
other modes of different frequencies, and grows exponentially with time, eventually
becoming a significant component comparable to the base ring wave component in
the wave field. This result indicates that the (unstable) subharmonic cross-waves will
be predominantly developed in the ring wave field for any initial disturbance.

We remark that without the addition of initial seeded cross-wave perturbations, the
small numerical noise in the simulation would also lead to the apparent development
of sub-harmonic unstable modes, but with a much longer time of simulation due
to the small amplitude of the numerical noise. To reduce the computational cost
associated with the long-time simulation, in this work, we choose to add seeded
perturbations (with their amplitudes much larger than the numerical noise) to examine
the development of dominant unstable modes of the ring wave.
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FIGURE 17. The time history of the harmonic amplitudes of disturbance elevation near
the waterline with the initial cross-wave (m= 5) disturbance frequency equal to (a) 0.5ω0,
(b) 2ω0 and (c) 3ω0. For the base ring wave, 2ω0 = 40π rad s−1, k0r1 = 3.98 and a/r1 =

0.12. The plotted curves represent the amplitudes of harmonic components with frequency
equal to 0ω0 (· · · · · ·), 0.5ω0 (— —), ω0 (——), 2ω0 (– – –), 3ω0 (— · —) and 4ω0
(— · · —).

9. Interactions of multiple unstable modes
In the case of a steep ring wave, nonlinear interactions among unstable cross-wave

modes can cause the generation of new multiple unstable cross-waves that can
be further developed due to the instability effect of the ring wave, leading to the
formation of complex wave patterns observed in experiments. For illustration, we
choose a relatively large-amplitude ring wave with frequency 2ω0 = 35π rad s−1,
radiated by the vertical oscillation of the sphere of radius k0r1= 3.37 with oscillation
amplitude a/r1 = 0.20 (corresponding ε ≡ k0a= 0.67). This ring wave is unstable to
subharmonic cross-wave modes with azimuthal wavenumber m = 2, 3, 4 and 5. We
add a small initial disturbance, which is composed of two subharmonic cross-wave
modes (m = 2 and 5) with the slopes s02 = s05 = 0.04, into the ring wave field to
investigate nonlinear evolution features of the disturbed wave field.

Figure 18 displays the time history of the azimuthal mode amplitudes (m= 2, 3, 4
and 5) of the disturbance elevation at the waterline of the sphere during the evolution
of the disturbed ring wave field. The m= 3 and 4 cross-wave modes are generated by
the quadratic interaction of the m= 5 and 2 modes and quadratic self-interaction of
the m= 2 mode. As shown in figure 18, the amplitudes of the m= 3 and 4 cross-wave
modes are initially negligibly small and start to be noticeable after the evolution of
approximately 10T0, and become dominant after the evolution of approximately 20T0
due to their growth rates being much larger than those of the m= 2 and 5 cross-wave
modes. The simulation then soon breaks down due to the rapid growth of the m= 3
and 4 modes.

Figures 19(a), 19(b), 19(c) and 19(d) show the time evolution of the modules of
harmonic components (n= 1, 2) for azimuthal modes m= 2, 5 (initially added) and
m=3, 4 (generated by nonlinear interactions), respectively. The results in figures 19(c)
and 19(d) show the subharmonic components (n = 1) of the m = 3 and 4 modes
grow rapidly from very small initial values resulting from nonlinear interactions of
the added m = 2 and 5 cross-wave modes. We note that for the m = 3 mode, the
harmonic component (i.e. n = 2 with frequency 2ω0) is also seen to grow, but at a
much slower rate than the subharmonic component. The growth of this n=2 harmonic
component is a direct result of the (sum-frequency) quadratic interaction of unstable
subharmonic m= 2 and 5 cross-wave modes. For the m= 4 mode, the growth of the
n= 2 harmonic component resulting from the double-frequency self-interaction of the
unstable subharmonic m= 2 cross-wave mode is seen to be negligibly slow.
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FIGURE 18. The time history of azimuthal mode amplitude of the disturbance wave
elevation ζ

′

m at the waterline of the sphere. For the base ring wave, 2ω0 = 35π rad s−1,
k0r1 = 3.37 and a/r1 = 0.2. The initial disturbance consists of two cross-wave modes of
m= 2 and 5 with frequency ω0 and initial slope s02= s05= 0.5s0= 0.04. The time shown
here is recounted from the moment when the disturbance is added. The plotted curves
are for cross-wave modes with m= 2 (— · —), m= 3 (——), m= 4 (– – –) and m= 5
(— · · —).
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FIGURE 19. The time variation of the harmonic component amplitudes (n= 1, 2) of the
mth azimuthal mode amplitude of the disturbance wave elevation at the waterline of the
sphere for the same case in figure 18. The results are for azimuthal modes with (a) m= 2,
(b) m= 5, (c) m= 3 and (d) m= 4. The plotted curves are for harmonic components of
n= 1 (——) and n= 2 (– – –).
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FIGURE 20. The contour snapshots of the total wave field in the presence of multiple
unstable modes at the instant (a) t1= 0, (b) t1/T0= 19.3, (c) t1/T0= 21.8 and (d) t1/T0=

22.3 in the evolution. The case is the same as in figure 18.

Figure 20 displays the wave-field contour snapshots at four instants. The small
disturbance composed of m= 2 and 5 cross-wave modes is added into the base ring
wave at the initial time t1 = 0. Initially the amplitudes of cross-waves are very small
and it is hard to distinguish them from the ring wave, as shown in figure 20(a). At
t1/T0 = 19.3, the m = 5 mode can be observed clearly, as shown in figure 20(b).
As evolution continues, at t1/T0 = 21.8, the cross-wave field looks more like the
combination of m= 3, 4, 5 modes, as shown in figure 20(c), due to the fast growth
of the m= 3 and m= 4 modes. At t1/T0= 22.3, the cross-wave field looks to be more
dominated by the m = 4 mode since it has the largest growth rate (cf. figure 19d),
as shown in figure 20(d). This illustrates that for a large-amplitude ring wave, the
wave field can evolve to become irregular due to nonlinear interactions of multiple
unstable subharmonic cross-wave modes.

10. Conclusions
We apply direct numerical simulations of fully nonlinear gravity–capillary wave–

body interactions to investigate the instability of finite-amplitude progressive
(axial-symmetric) ring waves radiated by the vertical harmonic oscillation of a
half-submerged sphere (of radius r1) in deep water. The numerical simulation is based
on the potential flow formulation with the use of a mixed Euler–Lagrangian quadratic
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boundary-element method. The MEL-QBEM, which was originally developed for the
simulation of fully nonlinear gravity wave dynamics and interactions with floating
bodies, is extended to include the surface tension effect in the present study. The
numerical simulations are validated against the analytic solutions of linearized ring
waves and radial cross-waves of a vertical circular cylinder (with swelling–contraction
motion) and a floating sphere (with high frequency oscillation).

Through numerical nonlinear simulations, we observe that the outgoing progressive
ring waves become unstable to small cross-wave disturbances when the dimensionless
oscillation amplitude (k0a) of the sphere exceeds the threshold value εc, where k0

is the ring wave wavenumber at subharmonic frequency (ω0) and a is dimensional
oscillation amplitude. The (steady state) unstable modes are associated with the
subharmonic radial cross-waves and are independent of the wavenumber (shape) and
phase of the initial disturbance. The unstable mode shape is given by the linearized
cross-wave profile multiplied by a slowly space-varying amplitude envelope. The
growth rate generally increases with k0a for given frequency k0r1. The maximum
growth rate is achieved for the cross-wave mode with azimuthal wavenumber
m∗ ∼ 1.2k0r1. These characteristic features of the instability of ring waves obtained
from direct numerical simulations are consistent with TIO’s experimental observations.
Significantly, the threshold value εc predicted by nonlinear simulations with the
inclusion of viscous effects in the body and free-surface boundary layers matches
TIO’s experimental data well. Moreover, comparisons of nonlinear simulation results
with the weakly nonlinear theoretical predictions indicate that viscous and nonlinear
effects of finite-amplitude ring waves generally reduce the growth rates but have
a negligible influence on the shapes of unstable modes. Furthermore, numerical
simulations also show that peculiar free surface patterns, as observed in TIO’s
experiments, can be developed through the excitation of broadbanded subharmonic
unstable cross-waves by nonlinear interactions of multiple unstable modes during
long-time evolution of steep ring waves.
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Appendix A. Numerical evaluation of ∇ · n on the surface

In the numerical simulation of gravity–capillary wave dynamics, it is necessary to
evaluate the second-derivative term ∇ · n on the free surface, z = ζ (r, ψ, t), at any
time (cf. (2.3)). In terms of two curvilinear coordinates α and β on the free surface,
the normal direction of the free surface n can be expressed as,

n=
rα × rβ
|rα × rβ |

, (A 1)

where r = (r cos ψ, r sin ψ, y, z) is the position vector, and rα and rβ represent the
derivative with respect to the curvilinear coordinates α and β. Using the expression
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for the divergent operator in curvilinear space (Thompson, Warsi & Mastin 1985), we
have

∇ · n=
1

(rα × rβ) · n

[
∂n
∂α
· (rβ × n)+

∂n
∂β
· (n× rα)

]
. (A 2)

Using n in (A 1) and with some simplifications based on vector identities, we have

∂n
∂α
· (rβ × n)=

−(rαα · n)(rβ · rβ)+ (rαβ · n)(rα · rβ)
|rα × rβ |

(A 3)

and
∂n
∂β
· (rα × n)=

−(rββ · n)(rα · rα)+ (rαβ · n)(rα · rβ)
|rα × rβ |

. (A 4)

Substitution of (A 1), (A 3) and (A 4) into (A 2) leads to

∇ · n=
−(rββ · n)(rα · rα)+ 2(rαβ · n)(rα · rβ)− (rαα · n)(rβ · rβ)

|rα × rβ |2
. (A 5)

This form of ∇ · n contains the first- and second-derivatives of r with respect to α

and β only, which can be effectively evaluated using the finite difference method in
the parametric space in QBEM.

Appendix B. High-frequency asymptotic ring wave solution

We derive the high-frequency asymptotic linear solution of ring waves by vertical
oscillation of a half-submerged sphere of radius r1. Let the oscillation frequency be
2ω0 and the oscillation amplitude be a. The wavenumber of the ring wave is denoted
as k2. At high frequency, k2r1� 1, the generated ring wave is confined to a thin free
surface layer and is asymptotically equivalent to the ring wave radiated by the radial
oscillation of a vertical circular cylinder of radius r1 in the horizontal plane with
oscillation velocity amplitude equal to 3ω0a/k2r1 (Hulme 1982). The cylinder wave
maker problem in the context of gravity waves has been solved by Havelock (1929)
and extended by Rhodes-Robinson (1971) to include the surface tension effect. From
Rhodes-Robinson (1971), we thus obtain the high-frequency asymptotic ring wave
solution for the case of a sphere. The solution of the velocity potential and ring wave
profile can be expressed as φ(r, z, t)= Re{ϕ(r, z)e−i2ω0t

} and ζ (r, t)= Re{η(r)e−i2ω0t
}

with the amplitudes given by

ϕ(r, z)'
6ω0a
k2

2r1
ek2z 1+M0k2

2

1+ 3M0k2
2

H(1)
0 (k2r)

H(1)′
0 (k2r1)

, k2r� 1 (B 1)

and

η(r)'
3a

k2r1

1+M0k2
2

1+ 3M0k2
2

√
r1

r
eik2(r−r1), k2r� 1, (B 2)

where M0= Ts/ρwg, H(1)
0 is the zeroth-order Hankel function of the first kind, and the

prime denotes the derivative of the function with respect to the argument.
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Appendix C. Numerical solution of radial cross-waves of a half-submerged sphere
We describe a boundary-element method for solving the linearized frequency-

domain boundary value problem of radial cross-waves of a half-submerged sphere
under the influence of gravity and surface tension. For harmonic motion with
frequency ω0, the velocity potential and free-surface elevation of cross-waves takes
the form

φ(r, ψ, z, t)=Re{ϕ(r, ψ, z)e−iω0t
}; ζ =Re{η(r, ψ)e−iω0t

}. (C 1)

The time-independent potential ϕ satisfies the Laplace equation inside the fluid domain

∂2ϕ

∂r2
+

1
r
∂ϕ

∂r
+

1
r2

∂2ϕ

∂ψ2
+
∂2ϕ

∂z2
= 0. (C 2)

By combining the linearized kinematic and dynamic free-surface boundary conditions,
we obtain the boundary condition for ϕ on the mean free surface S̄F (i.e. z= 0)

−Kϕ + ϕz +M0ϕzzz = 0, on S̄F, (C 3)

where K = ω2
0/g. On the mean body surface S̄B, a homogeneous boundary condition

is imposed
ϕn = 0 on S̄B. (C 4)

On deep bottom S0,
ϕn = 0, on S0. (C 5)

At the far field of the body S∞, the radiation condition needs to be satisfied
√

r(−ik0ϕ + ϕr)→ 0, r→∞, (C 6)

where k0 is the radial wavenumber given by the real, positive root of K= k0(1+M0k2
0).

For the mth cross-wave mode, the free-surface slope ηr at the waterline of the sphere
(r= r1) is specified, which gives the forcing condition for ϕ

ϕzr =−iω0ηr =−iω0 cos mψ, r= r1, z= 0 (C 7)

in which ηr is specified to have unit amplitude. Once ϕ is known, η can be obtained
in terms of ϕ from the dynamic free-surface boundary condition (cf. (2.3)).

In the case of a vertical circular cylinder, the above boundary value problem can
be solved analytically (Shen & Liu 2019). In the case of a sphere, a numerical
method must be employed. We apply a boundary-element method to solve the above
boundary value problem. By the use of Green’s second identity, we can reformulate
the boundary value problem as the boundary integral equation

α(r)ϕ(r)+
∫∫

S̄B+S̄F+S∞+S0

[ϕ(r′)Gn(r; r′)− ϕn(r′)G(r; r′)] dS(r′)= 0 (C 8)

for any r in the fluid domain bounded by S̄B, S̄B, S∞ and S0. Equation (C 8) indicates
that ϕ anywhere inside the fluid is completely determined by ϕ and ϕn on the
boundaries. Letting r approach the boundaries in (C 8), we obtain a boundary integral
equation for unknown boundary quantities (ϕ or ϕn). We employ the quadratic
boundary-element method (Liu et al. 2001; Mei et al. 2005) to solve this boundary
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FIGURE 21. (a) Real part and (b) imaginary part of radial cross-wave profiles at frequency
ω0= 20π rad s−1 for a half-submerged sphere with radius k0r1= 3.98. The plotted curves
are for azimuthal wavenumber m = 1 (——), m = 3 (– – –), m = 5 (— · —) and m = 7
(· · · · · ·).

integral equation, as in the time domain simulation. The details on the implementation
and verification of the method can be found in Shen (2019).

Because of (C 7), we can factor out the ψ dependence and express the solution of
ϕ and η in the non-dimensional form

(k2
0/ω0)ϕ(r, ψ, z)= ϕm(r, z) cos mψ; k0η(r, ψ)= ηm(r) cos mψ. (C 9)

As an example, figures 21(a) and 21(b), respectively, display the real and imaginary
parts of the mth cross-wave profile ηm for m= 1, 3, 5 and 7 with ω0 = 20π rad s−1

for the case of a half-submerged sphere with radius k0r1 = 3.98.

Appendix D. Estimation of equivalent viscous damping coefficient in numerical
simulation

To account for the viscous damping effect in TIO’s experiments, we add an
artificial damping layer on the free surface in the numerical simulation. We here
estimate the equivalent damping coefficient νq, to the leading order εv, to be applied
in the numerical simulation. For the linear boundary layer analysis, we separate the
total flow velocity u into the wave part (∇ϕ) and the rotational part (U): u=∇φ+U.
From Mei & Liu (1973), the rate of viscous dissipation in the body boundary layer
is given by

〈D〉B =
1
2
ρwν

〈∫
RB

e2
ij dV

〉
, (D 1)

where 〈〉 denotes a time average over one period of the oscillation, RB is the boundary
layer region and eij= ui,j+ uj,i is the strain rate. Since the interest of the present study
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is on the high frequency wave by an oscillation sphere, the active boundary layer on
the sphere is within the thin layer near the free surface. The sphere can be equivalently
considered as a vertical circular cylinder of the same radius r1 in the estimation of the
viscous dissipation effect on the wave motion. Since u= 0 on the body surface, the
rotational velocity components UB ≡ (UB, VB,WB) in the (r, ψ, z) directions are

UB = 0, VB =−
1
r1
ϕψΓ (ξ), WB =−ϕzΓ (ξ), (D 2)

where Γ (ξ)= exp{−(1− i)/
√

2ξ} and ξ = k0r/εv (Mei & Liu 1973). As a result, we
obtain

〈D〉B =
1
2
ρwεv

ω0

k0

∫ 0

−∞

∫ 2π

0

∫
∞

0

(∣∣∣∣∂VB

∂r

∣∣∣∣2 + ∣∣∣∣∂WB

∂r

∣∣∣∣2
)

r1 dr dψ dz

=

√
2

4
ρwεv

ω0

k0
r1

∫ 0

−∞

∫ 2π

0

(
|ϕz|

2
+

∣∣∣∣ 1
r1
ϕψ

∣∣∣∣2
)∣∣∣∣∣

r=r1

dψ dz. (D 3)

From Miles (1967), the dissipation rate in the free surface in the presence of surface
tension can also be O(εv) for a contaminated water surface. The maximum possible
value of the rotational velocity for a fully contaminated water surface can be |UF|

2
=

2|∇ϕ|2. We thus have the dissipation rate in the free surface

〈D〉F =

√
2

2
ρwεv

ω0

k0

∫ 2π

0

{∫ r1+Le

r1

+

∫
∞

r1+Le

}(
|ϕr|

2
+

∣∣∣∣1r ϕψ
∣∣∣∣2
)

z=0

r dr dψ, (D 4)

where Le is the length used to separate the near- and far-fields of the body for wave
motion. For the near-field contribution, the integral needs to be evaluated numerically
while the integral for the far-field contribution can be carried out analytically with the
use of the asymptotic wave solution of ϕ.

In direct numerical simulation, we add a damping layer on the free surface with
the kinematic and dynamic boundary conditions modified in the form (e.g. Mei et al.
2005)

ζt +∇ζ · ∇φ − φz =−νqω0ζ , z= ζ , (D 5)

φt +
1
2
∇φ · ∇φ + gζ +

Ts

ρw
∇ · n=−

νqω0

k0
φn, z= ζ , (D 6)

where the numerical damping coefficient νq is determined from the requirement that
the numerical simulation achieves the equivalent total dissipation rate in the physical
experiments.

For simplicity, we use the far-field asymptotic wave solution to estimate the energy
dissipation by νq in both near-body and far-field regions in the numerical simulation.
The energy in a circular strip of unit radial length of the wave field decays as

〈Er〉 = 〈Er0〉e−2νqω0t, (D 7)

where 〈Er0〉 is the corresponding energy of the undamped wave field, which is given
by

〈Er0〉 =
ρw

2λ0

∫ 2π

0

∫ r+λ0

r
Re{ϕ∗ϕz}|z=0r dr dψ. (D 8)
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The numerical dissipation rate per unit radial length of the wave field is

〈Dr〉q =−
d〈Er〉

dt
= (2νqω0)〈Er0〉[1+O(νq)]. (D 9)

Since the viscous body boundary layer mainly influences the wave motion close to
the waterline of the body, we add the effect of 〈D〉B to νq in the near-body region
r1 6 r 6 r1 + Le. In order for νq to be continuous over r on the free surface, νq is
assumed to vary linearly from the maximum value at r = r1 to the far-field value at
r= r1 + Le. From the equivalent damping condition, we obtain

νq|r=r1 =
〈D〉B + 〈D〉F1

〈Er0〉ω0Le
, (D 10)

where 〈D〉F1 is given by the near-field integral in (D 4). In the present study, we
choose to use Le/r1 = 1 in the computations. The value of νq in the waterline of the
body is found to be O(5εv). In the far field, by using ϕ ∼ ek0(ir+z)/

√
r, we obtain

νq|r>r1+Le =
|ϕr|

2/
√

2
k0Re{ϕ∗ϕz}

εv =
εv
√

2
(D 11)

for a fully contaminated water surface. We remark that the threshold value εc is found
to be insensitive to the value of Le used in the simulation. Our numerical tests show
that εc varies within a few per cent for Le/r1 in the range of 0.5–2.0.
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