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Computational methods and a program to obtain crystal structures that have the perfectly identical dif-
fraction patterns, i.e. structure factors with the same absolute values and the same lattice symmetry are
discussed. This is directly related to the uniqueness of solutions in crystal structure determination of
single-crystal/powder-crystal samples from diffraction data. In order to solve the problem, it is neces-
sary to solve a system of quadratic equations. The framework of positive-semidefinite programming is
used herein to solve the system efficiently. © 2017 International Centre for Diffraction Data.
[doi:10.1017/S0885715616000804]
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I. INTRODUCTION

Howmany different crystal structures can have the identical
single (powder) diffraction pattern?When a crystal structure fits
well to an observed pattern, how one can check whether or not
there exist similarly good solutions? Although these problems
have been pointed out [e.g., Engel (1988)], they have not
been studied so rigorously. In powder indexing, although the
problem to be solved is different, the problem about the unique-
ness of solutions known as geometrical ambiguities was
rigorously studied in Mighell and Santoro (1975). Recently,
much progress was also made in the author’s two papers
(Oishi-Tomiyasu, 2014, 2016). In particular, the developed
method can be used to check results of powder indexing.

For the same purpose, the uniqueness of solutions in crys-
tal structure analysis from single-crystal diffraction patterns is
investigated herein. Mathematically, crystal structures that
have the same diffraction patterns as the input crystal structure
are generated by: (a) enumerating all the sets of atomic coor-
dinates with the identical set of difference vectors, and (b)
determining the atomic species of every coordinates from
the diffraction pattern of the original crystal structure. Both
of (a) and (b) are not straightforward, considering combinato-
rial explosion that may occur in (a), and the necessity to solve
a system of quadratic equations in (b).

Our new software succeeded in: (a) avoiding combinatorial
explosion when medium-sized unit cells containing several tens
atoms are input, and (b) solving the system of quadratic equa-
tions generally and efficiently by using the positive semidefinite
programming (SDP) solver SDPA (Yamashita et al., 2010). In
this paper, the theory and some computational results are
introduced.

By using the software, it is now possible to computation-
ally answer the two questions posed in the first paragraph. The
introduced results indicate that another plausible solution will

not exist for ten crystal structures randomly chosen. We are
now proceeding the exhaustive search for crystal structures
that may have the same diffraction pattern with another crystal
structure, by using crystal-structure database (see the acknowl-
edgments for the information about the database, which cur-
rently contains more than 4000 CIF files). The results will
be reported in the author’s subsequent articles.

If two single crystals are judged to have the perfectly iden-
tical diffraction patterns (i.e., crystal lattice and set of structure
factors), their powder samples also have the identical powder
diffraction pattern. It should be noted that it is more complex
mathematically to similarly check the uniqueness of solutions
for powder crystal structure analysis. However, the frame-
works introduced in this paper can be used for it.

II. PROBLEM TO BE SOLVED

The problem considered herein is how to generate crystal
structures having structure factors with the perfectly identical
absolute values as a given crystal structure. This is different
from the problem normally solved in ab initio crystal structure
analysis, in the sense that influence of observational errors can
be largely ignored. This simplification drastically reduces the
difficulty of the problem. Nevertheless, our problem is also
useful for ab initio crystal structure analysis, because it can
be used to check results, and understand the mathematics hid-
den in the phase-retrieval problems.

Throughout this article, the following ρ is used as a simple
model of electron/nucleus distributions in a crystal:

r(x) =
∑
l[L

∑n
i=1

Cid(x− xi − l), (1)

where L is the lattice of a crystal, xi (1≤ i≤ n) are positions of
atoms in the unit cell. In the neutron case, Ci is the scattering
factor of each atom. In the X-ray case, the scattering factors are
normally approximated by the sum of exponential functions
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depending on the d-spacings:

Ci(d) =
∑4
k=1

aik exp(−bik/2d) + ci, (2)

which is the Fourier transform of the sum of the modified
Lorenzian function:

SX(x) = (4/p)
∑4
k=1

aikbik(b2ik + 16 p2 x| |2)−2 + cid(x),

where aik and bik are real numbers, and ci can be a complex, if
anomalous dispersion is considered. From the integral

∫
R3

SX(x)dx = (8 p2)−1
∑4
k=1

aik + ci,

it is seen that in the X-ray case, Ci can be approximated by

(8p2)−1
∑4
k=1

aik + Real (ci),

which enables us to use formula (1), in common to the neutron
case. The Patterson function, i.e. the Fourier transform of the
diffraction pattern of ρ(x) is given by:

∑
l[L

∑n
i=1

∑n
j=1

CiCjd x− xi + xj − l
( )

, (3)

where Cj is the complex conjugate of Cj, thus Cj = Cj, since
the scattering factors are now assumed to be real.

As a consequence, two crystal structures have the same
diffraction pattern if and only if:

(i) their lattices are congruent in R3,
(ii) they have the identical set (denoted by Λ) of difference

vectors xi− xj (1 ≤ i, j ≤ n), and
(iii) For each Δ in Λ, the values of

∑
xi−xj=D CiCj (integrated

intensity of the peak of the Patterson function corre-
sponding to Δ) are the same.

In the following computation, information about chemical
formula is also used.

What follows, for precise, the primitive cell of L (not the
conventional cell depending on the centring type) is always
used as the unit cell for simplicity. A finite set {x1, . . ., xn} pro-
vided by all the coordinates in the unit cell is called a config-
uration, in order to mean that a configuration is the crystal
structure without information about atomic species. With
regard to (ii), our judgment whether xi− xj = xk− xl always
allows a small difference in their values.

In this situation, the following two stages are required for
the computation:

(1) Enumerate all the configurations with the set of difference
vectors perfectly same as that of the input crystal structure.
(Let Δ0 = 0, ±Δ1, . . ., ±ΔN be all the elements of the set.)

(2) For each configuration enumerated in (1), determine
atomic species at every coordinate, by estimating the scat-
tering factors. More concretely, the following system of

equations is solved:

∑n
i=1

xi =
∑m
j=1

Ci,

∑
vi− vj=Dk

xixj =
∑

ui− uj=Dk

CiCj 0 ≤ k ≤ N( ),

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(4)

where Cj, uj (1 ≤ j≤m) are the scattering factors and the coor-
dinates of the input crystal structure, and xi, vi (1≤ i≤ n) are
those of the considered configuration. If the determined xi is
close to some Cj, then the atomic specie at uj is also disposed
at vi.

It is straightforward to solve the system of Eq. (4), if the
peaks of the Patterson function are not overlapping, i.e. all
the vi− vj (1≤ i, j≤ n) are distinct to each other. However,
overlapping peaks seems to appear more frequently than
expected, owing to the symmetry of the crystal structure
(see Table I). In order to generally solve the system, the
method provided by the Gröbner basis will be a candidate,
if the coefficients of the equations are exact. If the errors con-
tained in the positions of the input crystal structure and coef-
ficients of scattering factor formula (2) are ignored, this may
be considered to hold in our situation. However, the following
formulation based on optimization is preferable, in order to
fully consider the propagated errors contained in the atom
positions determined from observational data. Therefore, the
following minimization is adopted in this paper:

Minimize
∑N
k=0

∑
vi− vj=Dk

xixj −
∑

ui− uj=Dk

cicj

∣∣∣∣∣∣
∣∣∣∣∣∣,

subject to
∑n
i=1

xi =
∑m
j=1

cj.

(5)

In the next section, the above minimization will be solved
by using the method called SDP relaxation. Minimization of∑N−1

k=0

∣∣∑
vi− vj=Dk

xixj−
∑

ui− uj=Dk
cicj

∣∣2 is not considered
herein, because a polynomial of less degrees is preferable, in
order to apply the SDP relaxation in the following. This is
why the sum of absolute values is minimized in (5).

III. ALGORITHMS

A. Method to enumerate configurations with an

identical set of difference vectors.

The following is the algorithm implemented in the new
software:
Input: Λ = {±Δ1, . . ., ±ΔN}: set of all the difference vectors of a
given crystal structure, not including the vector 0, and
assumed to be sorted in the descending order of lengths.
Output: all the configurations in R3/Z3 that have Λ as the set
of difference vectors.
Algorithm:

(i) Set the stage number s = 1, which is incremented, while
the algorithm is carried out.

(ii) As the initial step of the stage s = 1, make the following
configuration:
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(iii) At the stage s = k, for each node (denoted by v) taken
from each configuration that has been constructed,
make new configurations, by repeating the following
procedures (a), (b):
(a) form a configuration by adjoining v and an end point

of Δk as in Figure 3,
(b) form a configuration by connecting the v and an end

point of Δk by some Δl with k < l as in Figure 3.

The formed configurations are saved, as long as they are
distinct from the others, and all of their difference vectors
are in Λ. Proceed to the next stage s = k + 1, if it becomes
impossible to add another Δk, without violating the rule that
all difference vectors are in Λ.

A graph is called a complete graph, if every pair of
distinct nodes is connected by a unique edge. If C1,
. . ., Cm are all the configurations that have Λ as the set

of difference vectors, each Ci can be identified with a
complete graph G with the edges assigned to one of
±Δ1, . . ., ±ΔN. A complete subgraph Hk,G is obtained,
by connecting all the points in G that are endpoints of
±Δ1, . . ., ±Δk in G.

In short, in the stage k, the above algorithm aims to gen-
erate the Hk that is uniquely determined for each Ci. This is in
order to avoid combinatorial explosion; distinct subgraphs of
Gi should not be simultaneously saved in each stage. This use
of Hk succeeded in suppressing the memory usage for
medium-sized unit cells containing not more than several
tens of atoms.

B. Method to solve quadratic optimization

problem (QP)

What follows, the set of all the difference vectors of a
given crystal structure Λ = {Δ0, ±Δ1, . . ., ±ΔN} is assumed to
include Δ0 = 0. It is straightforward to verify that the following
optimization problem is equivalent to (5):

Minimize
∑N
k=0

1k

subject to

∑n
i=1

xi=
∑m
j=1

cj

−1k≤
∑

vi− vj=Dk

xixj−
∑

ui−uj=Dk

cicj≤1k 1≤ k≤N( ).

⎧⎪⎪⎨
⎪⎪⎩

(6)

If we put 11,k = 1k +
∑

vi− vj=Dk
xixj−

∑
ui− uj=Dk

cicj and
12,k = 1k −

∑
vi− vj=Dk

xixj +
∑

ui− uj=Dk
cicj, the problem (6)

Figure 1. Difference vectors of a configuration of atoms.

Figure 2. Configuration consisting of two atoms with the different vector Δ1.

Figure 3. New configuration formed in the stage k.

S181 Powder Diffr., Vol. 32, No. S1, September 2017 Application of convex optimization to identification of atomic species S181

https://doi.org/10.1017/S0885715616000804 Published online by Cambridge University Press

https://doi.org/10.1017/S0885715616000804


is also equivalent to:

Minimize
∑N
k=0

11,k + 12,k
2

Subject to

∑n
i=1

xi =
∑m
j=1

cj

∑
vi−vj=Dk

xixj −
∑

ui−uj=Dk

cicj = 11,k − 12,k
2

11,k ≥ 0, 12,k ≥ 0 1 ≤ k ≤ N( ).

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(7)

The problems (6) and (7) belong to the category of
QPs, because the objective function and the constraints are
polynomials of degree ≤2. The SDP relaxation is one of the
standard methods to solve QP problems. According to the
notation of SDP, the symbol • is used to represent the inner
product of symmetric matrices X = (Xij) and Y = (Yij) of the
same size n:

X·Ydef Trace XY( ) =
∑n
i=1

∑n
j=1

xijyij (8)

What follows, X≥ 0 is used to mean that the symmetric
matrices X is positive semidefinite.

An optimization problem is classified in the category of
positive SDP, if it can be represented as either of the following
forms:

(i) Minimize C˙X subject to

Ak·X = bk k = 1, . . . ,N( )
X ≥ 0.

{
(9)

(ii) Maximize
∑N

k=1 bkyk subject to

Y + ∑N
k=1

yiAi = C

Y ≥ 0.

⎧⎨
⎩ (10)

If the symmetric matrices Ak (k = 1, . . ., N ), C and the vec-
tor (b1,. . ., bN) are common in (i), (ii), the problem (i) [resp.
(ii)] is called the primal problem, when (ii) [resp. (i)] is called

the dual problem. This is owing to the following facts known
as the duality theorems:
Theorem 1 (weak duality theorem)

If some X, (Y, y1,. . ., yN) satisfies (9), (10), respectively,
C·X ≥ ∑N

k=1 bkyk always hold.
Theorem 2 (strong duality theorem)

Suppose that some X, (Y, y1,. . ., yN) satisfies (9), (10),
respectively. In this case:

• If X is positive-definite, there exists an optimum solution
(Y*, y1*,. . ., yN*) of (ii), and the optimum value coincides
with the lower limit of C ˙ X under the constraint (9).

• If Y is positive-definite, there exists an optimum solution X*
of (i), and the optimum value coincides with the upper limit
of

∑N
k=1 bkyk under the constraint (10).

• If both X and Y are positive-definite, then there exist optimum
solutions X*, (Y*, y1*,. . .,yN*), and C·X∗ = ∑N

k=1 bky
∗
k

holds.

In general, positive SDP belongs to the category of con-
vex optimization. It is known that interior point methods can
efficiently find the global optimum solution.

According to the following steps, a SDP relaxation of (7)
is obtained as a result:

1. By using the constraint
∑n
i=1

xi =
∑m
j=1

cj, remove the variable
xn from the problem.

2. Now the problem has the variables x1, . . ., xN-1 and ε1,k≥ 0,
ε2,k≥ 0 (1≤ k≤ N ). The variable set can be identified with
the following matrix X, by putting x = (1, x1, . . ., xN-1) and
X̃ = xTx (xT is the transposition of x):

X =

X̃
11,1

. .
.

11,N
12,1

. .
.

12,N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥ 0,

X̃11 = 1, X̃ is rank 1, (11)

where X̃ij is the (i, j)-entry of X̃, and all the empty entries of X
are assumed to be zero.

TABLE I. Result of Algorithm III.A; the input parameter ε used for judgment whether any vectors (v1, v2, v3) in R3/Z3 equal 0 (i.e., if∑3
i=1 exp(2p ����−1

√
vi) − 1

∣∣ ∣∣2 , 12) is set to 0.001.

No. Materials (space group) Number N of atoms in a cell (N (N− 1)/2) Number of difference vectors Number of enumerated configuration

1 NaCl (F m -3 m) 2 (1) 1 1
2 BaFBr (P4/n m m) 6 (15) 9 1
3 SrFCl (P4/n m m) 6 (15) 9 1
4 TaCl4 (C 1 2/m 1) 10 (45) 25 1
5 NiAs (C m c 21) 12 (66) 54 1
6 Y(PO4) (I 41/a m d) 12 (66) 34 3
7 CsI3 (P m c n) 16 (120) 64 1
8 BaCrO4 (P n m a) 24 (276) 141 1
9 Be2 (SiO4) (R -3) 42 (861) 441 1
10 Co2V2O7 (P 21/c) 44 (946) 484 1
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As a result, (7) is equivalent to the following problem:

Minimize C·X

subject to

Ak·X = bk k = 1, . . . ,N( ), Z·X = 1

X is the block-diagonalized matrix :

X̃
11,1

. .
.

11,N
12,1

. .
.

12,N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

X ≥ 0, X̃ is rank1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (12)

where C is the following symmetric matrix:

O
1/2

. .
.

1/2
1/2

. .
.

1/2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (13)

Ak, bk are the symmetric matrix and the real number uniquely
determined from the constraint:

∑
vi−vj=Dk

xixj −
∑

ui−uj=Dk

cicj = 11,k − 12,k
2

. (14)

Z is the matrix with 1 in the (1, 1)-entry and 0 in the others;
hence, Z˙X = 1 means X̃11 = 1.

If the rank-1 condition is removed from (12), the obtained
problem is a SDP problem, because it is represented as in (9).
Owing to the convexity, it is not necessary to worry about
“local minimums” when the SDP problem is solved. If the
objective functions of P and P* converge to a value larger
than zero, it is computationally proved that the original prob-
lem (5) has no solutions. Otherwise, if the objective function
converges to a value close to 0, and X converges to a rank-1
matrix X̃, it is proved that the vector x = (1, x1, . . ., xN−1) sat-
isfying X̃ = Txx is the “unique” solution of (5).

In general, one of the obstacles in utilizing the SDP relax-
ation is that the size n of the variables X, Y and the number N of
constraints have a tendency to increase to a large number,
although the numbers must be under practical limits. For
example, SDPARA-C can handle the cases of n < 20 000
and N < 20 000. In the considered situation, n and N are nor-
mally <60 and <2000; hence, public SDPA solvers can effi-
ciently solve the problem on a home PC. Another difficulty
is that it is sometimes not straightforward to evaluate results,
when the objective function converges to a value close to 0
and X converges to a matrix of rank >1. If influence of the
errors is now assumed to be little, it is normally possible to
obtain a finite set containing all the solutions from X̃ and Ak

by using the Gröbner basis or some other methods.

IV. IMPLEMENTATION AND RESULTS

The methods described in III.A and III.B were imple-
mented into programs with C++. The program for the latter
calls SDPA (Yamashita et al., 2010) as a solver of the SDP
problem. Although the software was able to deal with only
unit cells of primitive centring as of June, 2016 when
EPDIC-15 was held, it can now handle all the centring
types.

In addition to the NaCl sample (case of two atoms in
a unit cell), the test data were randomly chosen from a
database including more than 2000 CIF files. In Table I,
results of Algorithm III.A are presented. It is seen that the
Patterson functions have a number of overlapping peaks; oth-
erwise, the value of N (N−1)/2 in the table equals the number
of difference vectors.

On the computer with i7-6500 CPU@2.50 GHz, 8 GB
memory, the computation times did not exceed 5 s for all
the test data. Although memory allocation error did not hap-
pen for the unit cells in the tables, the memory usage becomes
rather severe, as the number of atoms becomes more than sev-
eral tens. Except for sample 6, the results indicate that the crys-
tal structures do not have the same set of difference vectors as
distinct configurations.

The program outputs the generated configurations in an
html file, so that users can see the results with the 3D viewer
of web browsers (Figure 4).

With regard to sample 6, newly obtained configurations are
subsets of the original configuration, which indicates that their
chemical formula must be different from the original one.
Therefore, they will not be judged as good candidates
experimentally.

Subsequently, Algorithm III.B was applied to the data 1–
10 by using original crystal structures as the configuration to
determine the atomic species. In this setting, the scattering fac-
tors should be the same as those of the original structure. In
addition, with regard to the NaCl sample, at least two solutions
should be found, because, if a good solution exists, another
good solution is generated just by switching the two scattering
factors x1, x2.

The results of our numerical test are presented in Table II.
In all the cases, SDPA carried out its global search very
quickly. Except for the NaCl sample, a rank-1 matrix was
returned as the optimum solution X̃ in (11), and the scattering
factors obtained as a result were very close to those of
the atoms assigned in the original crystal structure, which
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indicates that the diffraction patterns will not be the
same, if the atomic species of the input crystal structures are
replaced.

Although the solution was not uniquely determined for
Sample 1, nothing more difficult than solving quadratic equa-
tions is necessary for this case. For further investigation, it will

be also necessary to find crystal structures that provide cases
of rank >1.

Overall, it may be concluded that our project to develop
programs to check the uniqueness of solutions in crystal struc-
ture analysis from diffraction patterns, has gained satisfactory
results and software. As applications of the methods devel-
oped herein, the following researches are planned:

• Exhaustive search for distinct crystal structures with the
identical diffraction patterns, using crystal-structure database.

• Extension of the methods and the programs to the cases of
powder diffraction.

• Implementation of a new method to handle the cases when
the objective function of the SDP problem converges to 0,
and the optimum solution a tilde should be on top of the
X̃ as in equation 11 is rank >1.

V. CONCLUSION

Methods to check the uniqueness of the solution in single-
crystal structure analysis was provided. The developed pro-
gram works well for unit cells containing not more than
several tens of atoms, and was able to provide a check that
the crystal structure is the only possible solution. The theory

Figure 4. Results for sample 6 (the output displayed on a web browser); No. 1 is the configuration of the original crystal structure and confirmed to have the same
set of difference vectors as its two subsets Nos 2 and 3.

TABLE II. Result of Algorithm III.B.

No. Materials
(space group)

Optimum value of
primal problem (9)
[Optimum value of
dual problem (10)]

Rank of the
optimum
solution X

1 NaCl (F m -3 m) 5.11 × 10−9 (−6.64 × 10−9) 2
2 BaFBr (P4/n m m) 2.08 × 10−8 (−6.03 × 10−8) 1
3 SrFCl (P4/n m m) 2.72 × 10−9 (−7.91 × 10−9) 1
4 TaCl4 (C 1 2/m 1) 5.15 × 10−9 (−1.91 × 10−8) 1
5 NiAs (C m c 21) 9.01 × 10−8 (−4.98 × 10−7) 1
6 Y(PO4) (I 41/a m d) 5.34 × 10−8 (−2.42 × 10−7) 1
7 CsI3 (P m c n) 8.03e × 10−8 (−4.76 × 10−7) 1
8 BaCrO4 (P n m a) 1.76 × 10−7 (−1.62 × 10−6) 1
9 Be2 (SiO4) (R -3) 6.95 × 10−7 (−8.04 × 10−6) 1
10 Co2V2O7 (P21/c) 1.01 × 10−6 (−1.18 × 10−5) 1
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of positive-semidefinite programming and the solver SDPA
were used to solve the systems of quadratic equations required
for the computation.
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