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An integrated GPS}INS navigation system can employ inertial velocity information to

produce a more robust system. For a stand-alone GPS receiver, decreasing the receiver

tracking loop bandwidth reduces the probability of losing lock in a jamming or interference

environment if vehicle dynamics are low. However, reduced bandwidth increases tracking

errors when dynamics are present. Beyond a certain limit, it causes a serious degradation in

the dynamic tracking loop performance. Providing inertial velocity aiding to the receiver

tracking loops is an effective and popular treatment to help resolve this problem. In this

paper, performance of the GPS receiver tracking loops using inertial velocity aiding will be

investigated. Different types of tracking loops, from 1st to 3rd order, are covered. Following

the discussion of the system architecture and derivation of the related transfer functions for

the tracking loops, both with and without aiding, the system performance, including

transient response, steady-state error, and noise bandwidth is evaluated.
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1. INTRODUCTION. Inertial navigation methods have been used in a wide

variety of navigation applications in the field of marine, aerospace and spacecraft

technology. Global Positioning System (GPS) and inertial navigation systems (INS)

have complementary operational characteristics, and the synergy of the systems is

well known. The GPS receiver provides low frequency data (long-term) to the INS to

allow INS errors, which drift at a slow rate, to be estimated. On the other hand, the

INS provides high frequency data to the GPS for error mitigation. The goal of

GPS}INS integration is to combine the features of both systems and so improve

overall system performance and therefore safety.

The advantages of integration include: continued navigation during periods of GPS

outage, and acquisition and re-acquisition of satellites as they come into view or re-

appear after wing or tail shadowing, or masking by foliage or other natural or man-

made obstructions. In highly dynamic manoeuvres, inertial velocity provides the GPS

tracking loops with additional information not available to a stand-alone receiver.

There are several options for integrating the GPS and INS sensors. Essentially,

there are two mechanisms of integration: open loop (feed-forward) versus closed loop

(feed-back), one filter (tightly-coupled) versus two filters (loosely-coupled). Figure 1

shows the system architecture of a tightly-coupled GPS}INS integrated system that

offers a single navigation solution. The integrated navigation filter supplies a Kalman

filter estimate of a combined set of GPS}INS error parameters ; that is : three position
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Figure 1. Tightly coupled GPS}INS integrated systems.

errors, three velocity errors, three attitude errors, three accelerometers biases, three

gyro biases, one clock error, one clock rate error, and so on. More detailed

information can be found in Phillips and Schmidt (1996). Useful GPS data are

obtained only while the carrier-tracking and}or code-tracking loops are locked onto

the desired signals. Loops with narrow bandwidths can improve the SNR (signal-to-

noise ratio) tolerance and enhance resistance to jamming or interference but can also

lead to loss of tracking under highly dynamic manoeuvres. The use of inertially

derived velocity to aid tracking loops can substantially reduce loop bandwidths

required without the penalty of increased dynamic tracking errors. In general, inertial

aiding enhances fast acquisition of initial tracking, provides propagation of the

navigation solution, replaces a satellite measurement, and assists continuous tracking

of a satellite.

The receiver performance when using a specific second-order tracking loop has

been preliminarily addressed by He and Chen (1998). In this paper, complete

mathematical derivation is implemented and performance enhancement is evaluated

for the velocity-aided GPS receiver tracking loops.

2. SYSTEM ARCHITECTURE OF THE TRACKING LOOPS. A

typical GPS receiver contains two tracking loops simultaneously. A carrier-tracking

loop tracks the carrier phase and the code-tracking loop tracks the signal code to

within a small fraction of the chip duration. Most GPS receiver designs have a mode

of operation that employs a non-coherent delay-locked loop (DLL) for code tracking

and a Costas phase-locked loop (PLL) for tracking the Doppler-shifted carrier (the

frequency change due to vehicle dynamics). The pseudo-ranges obtained from the

code tracking provide a position fix, while the pseudo-range rate (or delta range)

estimates obtained from the Costas loop provide a velocity fix, which is accomplished

by counting the number of Doppler frequency shifts of carrier cycles that occur over

a finite time interval.

The carrier-tracking loop will be more sensitive to dynamics due to the fact that it

tracks a much higher frequency signal than the code-tracking loop. If the carrier-

tracking loop loses lock during a highly dynamic manoeuvre, the other receiver loops

will subsequently lose lock. The other receiver loops will not see the full dynamics,

and they typically will be aided from either the carrier loop or an external navigation

source. When the vehicle is in a low jamming}interference environment, the carrier

loop can provide aiding to the code loop; when the vehicle is in a medium or high
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Figure 2. Simplified GPS receiver tracking loops (Bye, et al., 1998).

Figure 3. Inertial velocity aiding to the tracking loop for a tightly coupled GPS}INS

integrated system (Sennott, 1995).

jamming}interference environment, or undertakes a highly dynamic movement, the

carrier loop may not be able to function properly. If the GPS receiver is unable to

maintain lock with the carrier loop, code loop tracking can be maintained by

replacing the carrier-based velocity information with the inertial aiding signal to

prevent loss of signal lock. This system architecture is shown as in Figure 2.
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The sections of Figure 1 and 2 showing inertial velocity aiding of receiver tracking

loops from the navigation Kalman filter are expanded in Figure 3.

3. TRANSFER FUNCTIONS. A generalised block diagram of an inertial

aided tracking loop that is applicable for analysis of either carrier or code loops is

shown in Figure 4. This figure shows how inertial velocity aiding influences the

Figure 4. Block diagram for the receiver tracking loop with inertial velocity aiding

(He and Chen, 1998).

tracking loop. Notice that if θ represents the position, then the aiding originates from

the integrated acceleration or velocity. The closed-loop loop transfer function of the

tracking loop without aiding can be obtained from

H(s)¯
θ# (s)
θ
i
(s)

¯
K

;
K

d
F(s)

sK
;
K

d
F(s)

¯
G(s)

sG(s)
, (1)

and the transfer function of the inertial aided tracking loop becomes:

H(s)¯
θ# (s)
θ
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(s)
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τs11sK
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d
F(s)
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;
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τs11sG(s)
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where: G(s)¯K
;
K

d
F(s), K

;
represents the gain factor of the voltage-controlled

oscillator (VCO) and K
d
is the phase-detector}delay discriminator gain factor. From

Equation (2), it can be seen that the output signal of an inertial aided loop is a

combined signal from the low-pass filter
G(s)

sG(s)
and the high-pass filter,

s

sG(s)

1®b

τs1
, where: b is the velocity scale factor error and τ is sensor or processing

lags}delayed time. The additional term in the closed-loop transfer function,

i.e.(1®b)}(τs1), represents the imperfections in the measurement process. In the

case of b¯ 1, aiding information cancels out and it becomes an unaided case.

The transfer function F(s) represents the loop filter of a tracking loop. The loop

filter is a low-pass filter used to suppress the noise and high-frequency signal

components from the phase-detector}delay discriminator and provide a dc-controlled

signal for the VCO. A first-order tracking loop is obtained if F(s)¯ 1, that is, if the

loop filter is omitted. The loop gain is then simply K¯K
;
K

d
. The second-order loops

are widely applied because of their simplicity and good performance. There are
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Table 1. Loop filters for different orders of receiver tracking loops.

usually three options for selecting the loop filters for a second-order loop, a (simple)

lag filter, an active (lag-lead) filter or a passive (lag-lead) filter. The addition of a

simple lag filter to a first-order loop does not affect the noise bandwidth and,

therefore, the second-order loop with lag filter is sometimes referred to a modified

first-order loop rather than a genuine second-order loop. The two second-order

tracking loops will be nearly the same if τ
=
K( 1 (or 1}K' τ

=
) in the passive filter.

There are applications in which a higher order loop is necessary. Third order loops

are insensitive to acceleration and fourth order loops are insensitive to jerk (rate of

change of acceleration). It is rare that a loop is constructed with an order higher than

third (Gardner, 1979) and therefore these will not be covered in the present work. To

ensure stable tracking, it is common practice to build loop filters with equal numbers

of poles and zeros. An nth-order loop with all-loop poles at s¯ 0 and n®1 arbitrary

zeros uses (Gardner, 1979) :

G(s)¯
K

s 01
a
=

s


a
>

s=
…

a
n

sn−<
1 (3)

H(s)¯
K(sn−<a

=
sn−=…a

n
)

snK(sn−<a
=
sn−=…a

n
)
.

Table 1 shows the loop filters of interest in this paper, including a first-order filter,

a third-order filter and three second-order filters. The closed-loop transfer functions

for different types of tracking loops can be obtained when substituting the loop filters

into Equations (1) and (2). The results are summarised in Table 2. By checking the

characteristic polynomials, the case with velocity aiding simply has one more

multiplier term (τs1) compared to that of un-aided case. Therefore, stability regions

of the tracking loop are identical for systems with and without aiding (τ" 0).

4. TRANSIENT RESPONSE. Different approaches can be performed for

obtaining the transient response. Here, the closed-loop transfer functions in Table 2

will be expressed in forms of ordinary differential equations (ODE), which can be

numerically solved by the fourth-order Runge–Kutta method.

The transfer functions in Table 2 can be rewritten in the following form:

H(s)¯
c
n−<

sn−<c
n−=

sn−=…c
;

sna
n−<

sn−<…a
;

, (4)
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Table 2. Closed-loop transfer functions of the tracking loops.

which can be described by the following nth-order linear ordinary differential

equation:

dn x

dtn
a

n−<

dn−<x

dtn−<

a
n−=

dn−=x

dtn−=

…a
;
x¯ c

n−<

dn−< u

dtn−<

c
n−=

dn−= u

dtn−=

…c
;
u. (5)

The above ODE can also be equivalently rewritten as a set of n first-order equations

and then expressed in state-space representation

x0 ¯AxBu
, (6)

y¯CxDu

where:

A¯

A

B

0 1 I I 0

0 0 1 I 0

] ] ] ] ]
0 0 I I 1

®a
;
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<

I ®a
n−=

®a
n−<

C
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; B¯

A

B

0

0

]
0

1

C

D

(7a)

C¯ [c
;

c
<

I c
n−=

c
n−<

] ; D¯ 0, (7b)

if the state vector is defined as:

x¯ [x xd I x(n−=) x(n−<)]T.

The unit step response is employed for testing the transient behaviour. There are

several parameters open to the designers. The total number of parameters depends on

the loop filters to be selected. Two of the parameters are in the inertial information

(b and τ) ; one in the first-order loop (K) ; two in the second-order loop with lag filter

(K and τ
<
) ; three in the other two second-order loops and the third-order loop (K, τ

<
,

and τ
=
). What we are concerned with here is the influence of inertial velocity aiding,
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hence, adjusting b and τ while fixing all the other parameters will be investigated in

the present work. Select K¯K
;
K

d
¯ 20 and τ

<
¯ τ

=
¯ 0±1, so that the system

transient performance is governed by τ and b. Five curves, including four for the

aided case and one for the un-aided case, are shown in each plot of Figure 5.

Figure 5. Influence of b and τ on transient responses for velocity aided loops.
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In Figure 5, parameters τ and b, will be selected fixed in turn, while varying the

other one by four different values. It can be seen that the inertial aiding reduces the

rise time and maximum overshoot for all types of filters when fixing τ¯ 0±001 and

varying b. The scale factor error b represents the quality of an inertial navigation

system. A small b value represents a good quality inertial system. A system with b

¯ 0±001 represents roughly the level of CEP performance of today’s one nautical mile

per hour inertial systems without special calibration (Hemesath, 1980). Even when b

is very large, e.g. b¯ 0±8, inertial information still improves the transient response

performance to some extent.

Caution should be paid on the selection of τ. Aided velocity will move the system

from under-damped to over-damped. The maximum overshoot increases when τ

increases up to a certain value (approximately 0±05 for the first-order loop and 0±1 for

the second-order loop with active filter in the present example) and starts to decrease

after that. Therefore, velocity aiding reduces the rise time but could result in a larger

maximum overshoot than the un-aided case. In general, selecting τ no more than

0±001 will provide a satisfactory result.

5. STEADY-STATE ERROR. A small steady-state error is usually desired

and is considered to be the criterion of good tracking performance. If the error should

become so large that the VCO skips cycles, the loop is considered to have lost lock.

The transfer functions for the tracking errors are

(a) for un-aided case

E(s)¯
θ
e
(s)

θ
i
(s)

¯1®H(s)¯
s

sG(s)
, (8)

(b) for velocity-aided case

E(s)¯
θ
e
(s)

θ
i
(s)

¯1®H(s)¯
s

sG(s)

τsb

τs1
. (9)

It can be seen that the effect of aiding is to modify the loop transfer function by the

attenuation factor

A(s)¯
τsb

τs1
(10)

This factor represents the imperfections in the measurement process.

The steady-state errors can be evaluated by means of the final value theorem of the

Laplace transforms

lim
tU¢

e(t)¯ lim
sU;

sE(s)¯ lim
sU;

s[1®H(s)], (11)

and the results are :

(a) for unaided case

lim
tU¢

θ
e
(t)¯ lim

sU;

s= θ
i
(s)

sG(s)
, (12)

(b) for velocity-aided case

lim
tU¢

θ
e
(t)¯ lim

sU;

s= θ
i
(s)

sG(s)
A(s). (13)
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When sU 0, the transfer function for the attenuation factor becomes

A(0)¯ b. (14)

Since the scale factor error b is usually relatively small compared to 1, the steady-state

errors for those without aiding are 1}b (usually much larger than 1) times those with

inertial velocity aiding. We conclude that the velocity aiding facilitates reduction of

steady-state error. With perfect aiding (i.e. τ¯ b¯ 0, which implies the attenuation

factor is zero), the loop tracks all dynamics without error thereby implying

theoretically that the bandwidth can be arbitrarily narrow. For a system with b¯
0±001 (which represents roughly the level of CEP performance of today’s one nautical

mile per hour inertial systems without special calibration) the steady-state error will

be 0±001 times of that without aiding. The worst case is set as b¯ 1, for which the

system becomes an unaided case.

Table 3. Error-response transfer functions.

Loop description Un-aided Velocity aided

1st order s

sK

s

sK

τsb

τs1

2nd order (lag) τ
<
s=s

τ
<
s=sK

τ
<
s=s

τ
<
s=sK

τsb

τs1

2nd order (active) τ
<
s=

τ
<
s=τ

=
KsK

τ
<
s=

τ
<
s=τ

=
KsK

τsb

τs1

2nd order (passive) τ
<
s=s

τ
<
s=(τ

=
K1) sK

τ
<
s=s

τ
<
s=(τ

=
K1) sK

τsb

τs1

3rd order τ=
<
s>

τ=
<
s>τ=

=
Ks=2τ

=
KsK

τ=
<
s>

τ=
<
s>τ=

=
Ks=2τ

=
KsK

τsb

τs1

6. EQUIVALENT NOISE BANDWIDTH. The design procedure for either the

carrier loop or the code loop is to select a bandwidth that produces tracking errors

under maximum dynamics approximately equal to the lock limit of the loop. If

inertial information is delivered into the tracking loops, the required minimum

bandwidth can be reduced without the penalty of increasing dynamic errors. The

single-side equivalent noise bandwidth, in Hz, for a tracking loop with transfer

function is expressed as:

B
n
¯

1

rH(0)r=&
¢

;

rH( jω)r= df, (15)

where: ω¯ 2πf and the magnitude of the frequency response is

rH( jω)r¯ [H( jω)H(®jω)]. (16)

Calculation of the type of integration given by Equation (15) may be complicated.

R. S. Philips’ table of integrals for definite integrals can be employed (Brown and

Hwang, 1997)

I
n
¯

1

2πj&
j¢

−j¢

c(s)c(®s)

a(s)a(®s)
ds , (17)
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Table 4. Table of Integrals.
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where:

c(s)¯ c
n−<

sn−<c
n−=

sn−=…c
;
,

a(s)¯ a
n
sna

n−<
sn−<…a

;
.

Table 4 provides description for such type of integration up to fourth order in more

detail. Using the transfer functions in Table 2 and implementing calculation of

Equations (15) and (17), analytical solutions of tracking loop bandwidths can be

obtained, for both with and without velocity aiding. After calculation, the results are

summarized in Table 5. The analytical solutions are complicated but, from another

viewpoint, very general, too. Abundant information can be gained for the analysis of

noise bandwidth based on these analytical solutions.

Parameters K¯K
;
K

d
¯ 10 and τ

<
¯ τ

=
¯ 0±1 are selected for investigation to

compare the bandwidths of un-aided and aided loops. When these three parameters

are fixed, the bandwidths of un-aided loops are obtained, which are 2±5 Hz, 5 Hz and

12±5 Hz for the first-, second- (active), and third-order tracking loops, respectively.

For the aided loops, the bandwidths are now governed by the quality of inertial

aiding, that is, two aiding parameters : the velocity scale factor error b and processing

lags}delayed time τ. With one of these two values reduced, the bandwidth increases.

The bandwidth is reduced at a relatively smooth rate, with b increasing from 0 to 1

and is very sensitive when τ is small, where a small increase in τ results in large

reduction of bandwidth. This information tells us that a small τ (! 0±001) needs to

be selected for obtaining a sufficient large bandwidth. When b¯ 1, it becomes an un-

aided case, and the bandwidth is equal to that of an un-aided loop. We have seen that

the external velocity aiding helps widen the bandwidth. A second-order loop with

active filter is presented as an example for illustration. The bandwidths varying with

b and τ for the aided loops are shown in Figure 6, which is a three-dimensional plot

for better illustration of the influence of parameters b and τ. When the two aiding

parameters are both small, b¯ τ¯ 0±001, the bandwidths will extend up to

approximately 255 Hz, which is a much larger extension than the un-aided loops.

Therefore, the tracking loops can be operated with very narrow bandwidths to

improve SNR and so enhancing resistance to jamming or interference.
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Table 5. Equivalent noise bandwidths, B
n
(Hz).

Loop description Un-aided Velocity aided

1st order K
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<

4τ(Kτ=ττ
<
)

2nd order (active) τ=
=
Kτ

<

4τ
<
τ
=

(τ
<
τ=

=
K)Kτ>[(3®2b) τ

<
τ
=
τ>

=
K]Kτ=[τ=

<
b=(3®2b)Kτ

<
τ=
=
] τ[τ=

<
τ
=
(1®b)=]

4ττ
<
τ
=
(Kτ=Kτ

=
ττ

<
)

2nd order (passive) K(τ=
=
Kτ

<
)

4τ
<
(τ

=
K1)

(τ
<
τ=

=
K)K= τ>(1τ

=
K)[(3®2b) τ

<
Kτ=

=
K=] τ=

4ττ
<
(1τ

=
K)[Kτ=(1τ

=
K) ττ

<
]


[τ

<
(1®b)=τ=

<
Kb=4τ

<
τ
=
K(1®b)(3®2b)(τ

<
τ=
=
K=)] τ(1®b)= τ=

<
(1τ

=
K)

4ττ
<
(1τ

=
K)[Kτ=(1τ

=
K) ττ

<
]

3rd order τ=
=
K(2τ>

=
K3τ=

<
)

4τ=
<
(2τ>

=
K®τ=

<
)

(2τ>
=
K3τ=

<
) τ=

=
K= τ?[4τA

=
K>τ=

<
K= τ>

=
(10®4b)®2τ?

<
K(1®b)] τ>

4ττ=
<
(2τ>

=
K®τ=

<
)[Kτ>2τ

=
Kτ=τ=

=
Kττ=

<
]


[2τB

=
K>(11®8b) τ=

<
τ?
=
K=(4b2b=®6) τ?

<
τ
=
K] τ=

4ττ=
<
(2τ>

=
K®τ=

<
)[Kτ>2τ

=
Kτ=τ=

=
Kττ=

<
]


[2τ>

=
K(3®2b)τ=

<
(4b=2b®3)] τ=

<
τ=
=
Kτ

4ττ=
<
(2τ>

=
K®τ=

<
)[Kτ>2τ

=
Kτ=τ=

=
Kττ=

<
]


(2τ>

=
K®τ=

<
) τ?

<
(1®b)=

4ττ=
<
(2τ>

=
K®τ=

<
)[Kτ>2τ

=
Kτ=τ=

=
Kττ=

<
]

https://doi.org/10.1017/S0373463300001260 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0373463300001260


116 D-J. JWO VOL. 54

Figure 6. Bandwidth wideness due to inertial velocity aiding for a second-order tracking loop

with active filter.

7. CONCLUSIONS. The performance enhancement of a GPS receiver created by

external velocity aiding has been investigated. The tracking loops from first through

third order have been covered in this discussion. The system architecture of the

tracking loop under external velocity aiding has been established, and the

mathematical derivation for the closed-loop transfer functions, error transfer

functions, and noise bandwidths, has been performed and analytical solutions

provided. Several numerical examples, including the transient response and noise

bandwidth, are provided for illustrating the benefits of aiding the GPS tracking loop

with inertial sensors. Substantial performance improvements, such as steady-state

error reduction, faster transient response and bandwidth extension, are obtained

through inertial velocity aiding to the GPS receiver.
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