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Abstract We describe explicitly the Voevodsky’s triangulated category of motives DMeff
gm (and give a

‘differential graded enhancement’ of it). This enables us to able to verify that DMgm Q is (anti)isomorphic
to Hanamura’s D(k).

We obtain a description of all subcategories (including those of Tate motives) and of all localizations
of DMeff

gm. We construct a conservative weight complex functor t : DMeff
gm → Kb(Choweff); t gives an

isomorphism K0(DMeff
gm) → K0(Choweff). A motif is mixed Tate whenever its weight complex is. Over

finite fields the Beilinson–Parshin conjecture holds if and only if tQ is an equivalence.
For a realization D of DMeff

gm we construct a spectral sequence S (the spectral sequence of motivic
descent) converging to the cohomology of an arbitrary motif X. S is ‘motivically functorial’; it gives a
canonical functorial weight filtration on the cohomology of D(X). For the ‘standard’ realizations this
filtration coincides with the usual one (up to a shift of indices). For the motivic cohomology this weight
filtration is non-trivial and appears to be quite new.

We define the (rational) length of a motif M ; modulo certain ‘standard’ conjectures this length coin-
cides with the maximal length of the weight filtration of the singular cohomology of M .
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Differential graded motives 41

Introduction

We give an explicit description of the category of effective geometric motives of Voevodsky
(see [36]). In what follows, DMs is the full triangulated subcategory of the category DMeff

gm
(defined in [36]) generated by motives of smooth varieties (we do not add the kernels of
projectors). It is proved that for any motivic complex M (i.e. an object of Voevodsky’s
DMeff

− that comes from DMs; in particular, the Suslin complex of an arbitrary variety)
there exists a quasi-isomorphic complex M ′ ‘constructed from’ the Suslin complexes of
smooth projective varieties; M ′ is unique up to a homotopy. We prove that Hanamura’s
D(k) is D(k) is (anti)equivalent to Voevodsky’s DMgm Q.

Our main category H is defined as the category of twisted complexes over a certain
differential graded category whose objects are cubical Suslin complexes; we construct an
equivalence m : H → DMs. In terms of [6] our description of DMs gives an enhancement
of this category. One should think of twisted complexes as of the results of repetitive
computation of cones of morphisms in an ‘enhanced’ triangulated category. One can
describe any subcategory of H that is generated by a fixed set of objects; this method
gives a description of the triangulated category of Tate motives similar to the rational
description of [25]. Besides, any localization of H can be described explicitly using the
construction of Drinfeld (see [10]).

As an application we consider the problem of constructing exact functors from DMs

(i.e. realizations) in terms of cubical Suslin motivic complexes. The most simple and
yet quite interesting of functors constructed by our method are the truncation functors
tN that correspond to the canonical filtration of the Suslin complex. The target of t0 is
just the category Kb(Corrrat) (Corrrat is ‘almost’ the category of effective Chow motives,
see § 1.1). t0 extends to a conservative weight complex functor t : DMeff

gm → Kb(Choweff).
We prove that t induces an isomorphism K0(DMeff

gm) → K0(Choweff), thus answering the
question of [14].

We show that if W denotes the weight filtration on Hi(X) for a ‘standard’ realization
H then Wl+NHi(X)/Wl−1H

i(X) factorizes through tN .
We prove that a motif X belongs to a triangulated category M ⊂ H generated by

motives of a given set of smooth projective varieties Pi whenever the same is true for
t(X) (as a complex of Chow motives). In particular, the motif of a smooth variety is a
mixed Tate one if and only if its weight complex (as defined by Gillet and Soulé) is.

For any realization D of motives that belongs to a wide class of ‘enhanceable’ realiza-
tions (i.e. of realizations that admit a differential graded ‘enhancement’) we construct a
family of ‘truncated realizations’. In particular, this could be applied to ‘standard’ real-
izations and motivic cohomology; an interesting new family of realizations is obtained.
This yields a canonical spectral sequence S converging to the cohomology of D(X) of
an arbitrary motif X. S could be called the spectral sequence of motivic descent. The
E1-terms of S are expressed in cohomology of smooth projective varieties, the En-terms
of S have a nice description in terms of t2n−2(X), n � 1. S is canonical (starting from
E1) and ‘motivically functorial’, it is also functorial with respect to transformations of
functors. S gives a canonical non-trivial weight filtration for ‘differential graded’ realiza-
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tions of motives; for the ‘standard’ realizations this filtration coincides with the usual
one (up to a shift of indices).

The simplest case of S for motivic cohomology is the Bloch’s long exact localization
sequence for higher Chow groups (see [4]). Our ‘weight’ filtration on motivic cohomology
is non-trivial and was not mentioned in the literature; it gives a new filtration on the
K-theory of a smooth variety X.

We also study motives with compact support (M c
gm in the notation of Voevodsky). We

give an explicit description of M c
gm for a variety Z and prove that the weight complex

of Gillet and Soulé can be described as t0(m−1(M c
gm(Z))) (with arrows reversed); the

functor h of Guillen and Navarro Aznar is (essentially) t0(m−1(Mgm(Z))).
We define the ‘length’ of a motif (stupid, fine or rational); this is a natural motivic

analogue of the length of weight filtration for a mixed Hodge structure. For a smooth
variety X the length of Mgm(X) lies between the length of the weight filtration of the
singular cohomology of X and the dimension of X. If certain ‘standard’ conjectures are
valid then the rational length of a motif coincides with the (appropriately defined) length
of the weight filtration of its singular realization.

We note that in the current paper we apply several results of [36] that use resolution
of singularities; yet applying de Jong’s alterations one can easily extend (most of) our
results (at least) to motives with rational coefficients over an arbitrary perfect k. For a
finite k the Beilinson–Parshin conjecture (that the only non-zero Hi(X, Q(n)) for smooth
projective X is H2n) holds if and only if tQ : DMeff

gm Q → Kb(Choweff
Q) is an equivalence

(note that here DMeff
gm Q and tQ denote the appropriate idempotent completions). Much

can also be proved with integral coefficients.
The author would like to note that several interesting results of this paper (in partic-

ular, the properties of t0 and t) follow just from the fact that H = Tr(J) for J being
a negative differential graded category (see § 2.4). Hence these results are also valid for
any other example of this situation. Moreover, in [7] a set of axioms of so-called weight
structures for a triangulated category C is introduced (see Remark 7.4.4). This (abstract)
approach allows to extend (most of) the results of the current paper to a wide class of
triangulated categories and realizations that do not necessarily have a differential graded
‘enhancement’; in particular, it can be applied to the stable homotopy category. The
definition of the weight filtration is quite easy in this context. Yet in this abstract setting
it is difficult to define truncation functors (especially the ‘higher’ ones).

Besides, recently Levine (in his very interesting paper [29]) extended some of the
results of the current paper to relative motives (i.e. motives over a regular base S, which
is essentially of finite type over k). This paper also contains a nice exposition of the
yoga of cubical objects (which is essential for the current paper) and of related tensor
products.

Now we list the contents of the paper. More details can be found at the start of each
section.

In the first section we recall some basic notation of [36] (with minor modifications).
Next we describe cubical Suslin complexes and their properties. Most of the proofs are
postponed till § 5 since they are not important for the understanding of main results.
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We start § 2 by recalling the formalism of differential graded categories (§ 2.1) and
twisted complexes (§§ 2.2 and 2.3). Next we use this formalism to construct our main
objects of study: a triangulated category H and a functor h from H into the homotopy
category of complexes of Nisnevich sheaves with transfers (§ 2.4). H as a triangulated
category is generated by motives of smooth projective varieties. We also describe H and
h more explicitly (in § 2.5). We define ‘stupid’ filtration for objects of H that is similar to
the ‘stupid’ filtration for complexes over an additive category (§ 2.6). Note that (similarly
to the case of complexes) the filtration for a motif also depends on the choice of its ‘lift’ to
a certain differential graded category (as the stupid truncation object of K(A) depends
on its lift to C(A)); yet this filtration is ‘functorial enough’ for our purposes. In § 2.7 we
introduce more differential graded definitions; they will be used in § 7.

In § 3 we prove (Theorem 3.1.1) that h composed with the natural functor from the
homotopy category of sheaves with transfers to the derived category gives an equivalence
m : H → DMs.

In § 4 we prove that Voevodsky’s DMgm Q is (anti)isomorphic to Hanamura’s D(k).
In § 5 we verify the properties of cubical Suslin complexes. The reader not interested

in the proofs of auxiliary results of § 1 may skip this section.
In § 6 using the canonical filtration of the (cubical) Suslin complex we define the ‘trun-

cation’ functors tN : H → HN (in § 6.1). H0 (i.e. the target of t0) is just Kb(Corrrat). These
functors are new though their certain restrictions to varieties were (essentially) consid-
ered in [14] and [16] (and were shown to be quite important). We prove that t0 extends to
t : DMeff

gm → Kb(Choweff) (in § 6.3). All tN (see Theorem 6.2.1) and t (Proposition 6.3.1)
are conservative. t induces an isomorphism K0(DMeff

gm) ∼= K0(Choweff) (Theorem 6.4.2).
Certainly, this extends to an isomorphism K0(DMgm) ∼= K0(Chow) (Corollary 6.4.3).

We define the length of a motif (three types); the stupid length (see § 6.2) is not less
than the fine one (see § 6.3), which is not less than the rational length. We prove that
motives of smooth varieties of dimension N have stupid length less than or equal to N

(parts (1) and (2) of Theorem 6.2.1); besides tN (X) contains all information on motives
of stupid length less than or equal to N (see part (3) of Theorem 6.2.1 and § 7.3).

At the end of the section we calculate m−1(M c
gm(X)) for a smooth X explicitly

(in § 6.5). Using this result as well as cdh-descent we prove that the weight complex of
Gillet and Soulé for X/k could be described as t0(m−1(M c

gm(X))) (with arrows reversed;
see § 6.6). Besides, t0(m−1(Mgm(X))) essentially coincides with the functor h described
in Theorem 5.10 of [16].

In § 7 we study realizations of the category of motives and their connections with
(certain) weight filtrations. The differential graded categories formalism yields a general
recipe of constructing realizations (see § 7.1). It is quite easy to determine which of those
enhanceable realizations can be factorized through tN .

We verify that the étale and motivic cohomology are enhanceable realizations (see §§ 7.2
and 7.5, and part (1) of Remark 7.3.1). Very probably, this result could be extended to all
other ‘standard’ realizations. In § 7.3, for any enhanceable realization D we describe an
interesting new family of ‘truncated realizations’; they correspond to ‘forgetting’ cohom-
ology outside a given range of weights. Truncated realizations give a filtration of the
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complex that computes the given ‘enhanced’ realization of a motif Y . We obtain a spec-
tral sequence S converging to Di(Y ) (see (14)). Its En-terms for n � 2 have a nice
description in terms of t2n−2(Y ); in particular, E1-terms are functorial in t0(Y ). S is
the spectral sequence of motivic descent. S gives a canonical integral weight filtration
for ‘enhanced’ realizations of motives; for the ‘standard’ realizations this filtration coin-
cides with the usual one (up to a shift of indices). S is ‘motivically functorial’, it is also
functorial with respect to (‘enhanced’) transformation of functors.

In § 7.4 we prove that for a ‘standard’ H the Nth truncated realization computes
Wl+NH l(X)/Wl−1H

l(X), while W equals the ‘standard’ weight filtration. A morphism
f induces a zero morphism on cohomology if t0(f) is zero. We also prove (modulo certain
‘standard’ conjectures) that the rational length of a motif coincides with the ‘range’ of
difference of l with the weights of H l for all l; see Proposition 7.4.2. We conclude the
section with a discussion of qfh-descent and motives of singular varieties (see § 7.5).

In § 8 we apply the general theory of [6] to describe any subcategory of H that is
generated by a fixed set of objects (see § 8.1). In particular, this method can be used to
obtain the description of the triangulated category of effective Tate motives (i.e. the full
triangulated subcategory of H generated by Z(n) for n > 0).

In § 8.2 we describe the construction of ‘localization of differential graded categories’
(due to Drinfeld). This gives us a description of localizations of H. As an application, we
prove that the motif of a smooth X/k is a mixed Tate one whenever the weight complex
of X (defined in [14]) is.

In § 8.3 we verify that over an arbitrary perfect field one can apply our theory (at least)
with rational coefficients. Moreover, over finite fields the Beilinson–Parshin conjecture
holds if and only if tQ : DMeff

gm Q → Kb(Choweff
Q) is an equivalence. We also describe

an idea for constructing a certain ‘infinite integral’ weight complex functor in finite
characteristic.

In § 8.4 we prove that traces of endomorphisms of cohomology of motives induced by
endomorphisms of motives do not depend on the choice of a Weil cohomology theory. In
particular, this could be applied for the morphisms induced by ‘open correspondences’
(as described in Definition 3.1 of [5]). We obtain a generalization of Theorem 3.3 of [5] to
the case of varieties which are not necessarily complements of smooth projective varieties
by strict normal crossing divisors.

In § 8.5 we note that one can modify the description of DMs so that Z(n) will have
stupid length 0. Lastly we describe certain functors mN : HN → DMeff

− (see § 8.6). tN
and mN could be related to the (yet conjectural) weight filtration on DMeff

gm.

Notation

In this paper all complexes will be cohomological, i.e. the degree of all differentials is
+1.

We recall that for any triangulated T there exists a unique category T ′ ⊃ T that is
obtained from T by ‘adding the kernels of all projectors’; T ′ is called the idempotent
completion of T (see [1]).

https://doi.org/10.1017/S147474800800011X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800800011X


Differential graded motives 45

For an additive category A we will denote by A ⊗ Q its rational hull, i.e. ObjA ⊗ Q =
ObjA while morphisms are tensored by Q. AQ will usually (except for some notation
of § 4) denote the idempotent completion of A ⊗ Q.

We will call a realization of motives (usually of H) enhanceable if it has a differential
graded enhancement (see § 7).

Other notation will be more or less standard. k will denote the ground field; we will
assume (except in § 8.3) that the characteristic of k is zero. pt is a point, An is the
n-dimensional affine space (over k), Pn is the projective space of dimension n.

For an additive category A we denote by C−(A) the category of complexes over A

bounded from above; Cb(A) ⊂ C−(A) is the subcategory of bounded complexes; K−(A)
is the homotopy category of C−(A), i.e. the morphisms of complexes are considered
up to homotopy equivalence; Kb denotes the homotopic category of bounded complexes;
sometimes we will also need the unbounded categories C(A) and K(A); Ab is the category
of abelian groups.

For a category C, A, B ∈ ObjC, we denote by C(A, B) the set of C-morphisms from
A into B.

For categories C, D we write C ⊂ D if C is a full subcategory of D.
We list the main definitions of this paper. Some basic motivic definitions (mostly

coming from [36]) will be given in § 1.1. C(X) will be defined in § 1.2; gl will be defined
in § 1.3; differential graded categories, H(C) for a differential graded category C, S(A),
SN (A), B−(A), Bb(A), B(A), and C(A) for an additive category A will be defined in § 2.1;
the categories of twisted complexes (Pre-Tr(C), Tr(C), Pre-Tr+(C), Tr+(C)), arrows, [P ]
and P [i] for P ∈ ObjC will be defined in §§ 2.2 and 2.3; Tr(F ), Pre-Tr(F ), Tr+(F ), and
Pre-Tr+(F ) for a differential graded functor F will be defined in Remark 2.3.3; J , H, and
h will be defined in § 2.4; H′, h′, j, and J ′ will be defined in § 2.5; C− and different types
of truncations of complexes (τ�b, τ[a,b] and the canonical [a, b]-truncation) will be defined
in § 2.7; m will be defined in § 3.1; DMgm will be described in § 4; CN (P ), HN , and tN
will be defined in § 6.1; t, tQ, and DMeff′

gm
∼= DMeff

gm will be defined in § 6.3; truncated
realizations will be defined in § 7.3.

1. Cubical Suslin complexes

In this paper instead of the simplicial Suslin complex C(L(P )) we consider its cubical
version C(P ). In this section we prepare for the proof of the following fact: there exists
a differential graded category J (it will be defined in § 2) whose objects are the (cubical)
Suslin complexes of smooth projective varieties, while its morphisms are related to the
morphisms between those complexes in DMeff

− .
First we recall basic definitions of Voevodsky (along with some ‘classical’ motivic def-

initions).

1.1. Some definitions of Voevodsky: a reminder

We use much of the notation from [36]. We recall (some of) it here for the convenience of
the reader. Those who remember Voevodsky’s notation well (and agree to identify certain
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equivalent categories) could skip this subsection; note only that DMs is the smallest strict
triangulated subcategory of DMeff

− containing all motives of smooth varieties.
Var ⊃ SmVar ⊃ SmPrVar will denote the class of all varieties over k, respectively of

smooth varieties, respectively of smooth projective varieties.
SmCor is the category of ‘smooth correspondences’, i.e. Obj SmCor = SmVar,

SmCor(X, Y ) =
∑

U Z for all integral closed U ⊂ X × Y that are finite over X and
dominant over a connected component of X.

Shv(SmCor) = Shv(SmCor)Nis is the abelian category of additive cofunctors SmCor →
Ab that are sheaves in the Nisnevich topology (when restricted to the category of smooth
varieties); these sheaves are usually called ‘sheaves with transfers’. Moreover, by default
all sheaves will be sheaves in Nisnevich topology. By an abuse of notation we will also
denote by Shv(SmCor) the set of all Nisnevich sheaves with transfers; D− (Shv(SmCor))
is the derived category of Shv(SmCor).

For Y ∈ SmVar (more generally, for Y ∈ Var, see § 4.1 of [36]) we consider L(Y ) =
SmCor(−, X) ∈ Shv(SmCor). Lc(X)(Y ) ⊃ L(X)(Y ) denotes the group whose generators
are the same as for L(X, Y ) except that U is only required to be quasi-finite over X.
L(X) = Lc(X) for proper X. Note that Lc(X) is also a sheaf.

Mgm(X) = C(L(X)) ∼= C(L(X)) is the Suslin complex of L(X), see § 1.2 below for
details; M c

gm(X) = C(Lc(X)) ∼= C(Lc(X)).
S ∈ Shv(SmCor) is called homotopy invariant if for any X ∈ SmVar the projection

A1 × X → X gives an isomorphism S(X) → S(A1 × X).
DMeff

− ⊂ D−(Shv(SmCor)) is the subcategory of complexes whose cohomology sheaves
are homotopy invariant. It was proved in [36] that for any F ∈ Shv(SmCor) we have
C(F ) ∈ DMeff

− .
The functor RC : D−(Shv(SmCor)) → DMeff

− is given by taking total complexes of the
Suslin bicomplex of a complex of sheaves (see § 3.2 of [36] for details).

DMs will denote the full strict triangulated subcategory of DMeff
− generated by Mgm(X)

for X ∈ SmVar (we do not add the kernels of projectors). DMs has a natural tensor
structure that can be defined using the relation Mgm(X) ⊗ Mgm(Y ) = Mgm(X × Y );
tensor multiplication of morphisms is defined by means of a similar relation.

In [36] Voevodsky defined DMs as a certain localization of Kb(SmCor) (note that he
did not introduce any notation for DMs); then DMeff

gm was defined as the idempotent
completion of DMs. Yet Theorem 3.2.6 of [36] (essentially) states that ‘his’ DMs is
equivalent to those defined here. So we will denote by DMeff

gm the idempotent completion
of ‘our’ DMs.

DMgm in [36] was obtained from DMeff
gm (considered as an abstract category, i.e. not

as a subcategory of DMeff
− ) by the formal inversion of Z(1) with respect to ⊗. We will

use the same definition; see § 4 below for details. DMgm is a rigid tensor triangulated
category. We will also consider the idempotent completion DMgm Q of DMgm ⊗Q.

One can easily check that DMgm Q is the idempotent completion of DMs ⊗Q[Z(−1)].
Corrrat will denote the (homological) category of rational correspondences. Its objects

are smooth projective varieties; the morphisms are morphisms in SmCor up to homotopy
equivalence. The category Choweff is the idempotent completion of Corrrat; it was shown
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in Proposition 2.1.4 of [36] that Choweff is naturally isomorphic to the usual category of
effective homological Chow motives.

Chow will denote the whole category of Chow motives, i.e. Choweff [Z(−1)].
Note (as it is well known already from the works on Tate motives that come from

quadratic forms) that Obj Choweff �= Obj Choweff
Q, i.e. on the rational level one gets

more idempotents in Corrrat. Certainly, the same is true for DMeff
gm and DMeff

gm Q.
We recall also that for categories of geometric origin (for example, for Corrrat and

SmCor) the addition of objects is induced by the disjoint union of varieties operation.

1.2. The definition of the cubical complex

For any P ∈ SmVar we consider the sheaves

C ′i(P )(Y ) = SmCor(A−i × Y, P ), Y ∈ SmVar; Ci = 0 for i > 0.

We will usually consider projective P .
By Yoneda’s lemma,

C ′i(P )(Y ) ∼= Shv(SmCor)(L(Y ), L(P )) = Shv(SmCor)(C ′0(Y ), C ′i(P )).

For all 1 � j � −i, x ∈ k, we define dijx = djx : C ′i → C ′i+1 as djx(f) = f ◦
gjx, where gjx : A−i−1 × Y → A−i × Y is induced by the map (x1, . . . , x−1−i) →
(x1, . . . , xj−1, x, xj , . . . , x−1−i). We define Ci(P )(Y ) as

⋂
1�j�−i Ker dj0. One may say

that Ci(P )(Y ) consists of correspondences that ‘are zero if one of the coordinates is zero’.
The boundary maps δi : Ci → Ci+1 are defined as

∑
1�j�−i(−1)jdj1. Again, Ci = 0 for

positive i.
Since C ′0 = C0, we have Ci(P )(Y ) ∼= Shv(SmCor)(C0(Y ), Ci(P )).

Remark 1.2.1.

(1) The definition of the cubical Suslin complex can be easily extended to an arbitrary
complex D over Shv(SmCor) (or over a slightly different abelian category). One
should consider the total complex of the double complex whose terms are

Dij(X) =
⋂

1�l�−i

Ker g∗
jl0 : Dj(A−i × X) → Dj(A−i−1 × X),

the boundaries are induced by δi.

(2) In the usual (simplicial) Suslin complex one defines Ci(F )(X) = F (D−i×X), where
D−i ⊂ A1−i is given by

∑
1�l�1−i xl = 1; the boundaries come from restrictions to

xl = 0.

It is well known that cubical and simplicial complexes do not differ much; the main
advantage of cubical complexes is that descriptions of (various) products become
much nicer (see § 2.5 of [28]).

We formulate the main property of C.
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Proposition 1.2.2. For any j ∈ Z, Y ∈ SmVar, and P ∈ SmPrVar there is a natural
isomorphism HjC(P )(Y ) ∼= A0,−j(Y, P ) ∼= DMeff

− (C(Y ), C(P )[j]).

Proof. A0,−j(Y, P ) ∼= DMeff
− (C(Y ), Cc(P )) by [36, Proposition 4.2.3]. Since P is pro-

jective, by [36, Proposition 4.1.5] we have Cc(P ) = C(P ).
The first isomorphism will be described in § 5 below.
All isomorphisms are natural. �

In particular the cohomology presheaves of C(P ) are homotopy invariant.
We denote the initial object of SmCor by 0. We define Ci(0) = 0 for all i ∈ Z. We

obtain
p(C(P )) ∈ Obj DMeff

− ⊂ ObjD−(Shv(SmCor)),

where p : K−(Shv(SmCor)) → D−(Shv(SmCor)) is the natural projection.

1.3. The assignment g → (gl)

Let P, Y ∈ SmVar. We construct a family of morphisms C(Y ) → C(P )[i].
For any f ∈ C ′i(P )(Y ), l � 0, we define f l : C ′l(Y ) → C ′l+i(P ) as follows. To the

element h ∈ SmCor(Z × A−l, Y ), Z ∈ SmVar, we assign (−1)lif ◦ (idA−i ⊗h). It is easily
seen that the same formula also defines the maps f l : Cl(Y ) → Cl+i(P ) for f ∈ Ci(P )(Y ).

Proposition 1.3.1.

(1) The assignment g → G = (gl) defines a homomorphism Ker δi(P )(Y ) →
K−(Shv(SmCor))(C(Y ), C(P )[i]).

(2) The assignment g → G = (gl) induces an isomorphism Hi(C(P )(Y )) ∼=
DMeff

− (C(Y ), C(P )[i]).

Proof. (1) For any f ∈ C ′i(P )(Y ), h ∈ C ′l(Y )(Z), Z ∈ SmVar we have an equality

δi+lf l(h) = (−1)if l+1δl(h) + (δif)l(h). (1)

Hence if δig = 0, g ∈ Ci(P )(Y ) then G defines a morphism of complexes C(Y ) → C(P )[i].

(2) Using (1) we obtain that the elements of δi+1(Ci+1(P )(Y )) give homomorphisms
C(Y ) → C(P )[i] that are homotopy equivalent to 0. Hence we obtain a homomorphism
HiC(P )(Y ) → DMeff

− (p(C(Y )), p(C(P )[i])). The bijectivity of this homomorphism will
be proved in § 5 below. �

2. Differential graded categories; the description of H and
h : H → K−(Shv(SmCor))

Categories of twisted complexes (defined in §§ 2.2 and 2.3) were first considered in [6].
Yet our notation differs slightly from that of [6]; some of the signs are also different.

https://doi.org/10.1017/S147474800800011X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800800011X


Differential graded motives 49

In §§ 2.4 and 2.5 we define and describe our main categories: J , H, J ′ and H′.
In § 2.6 we define a natural ‘stupid’ filtration on H′ that is ‘close’ to those on

Cb(Corrrat); we prove its natural properties.
We will not need the formalism of § 2.7 till § 7.

2.1. The definition of differential graded categories

Recall that an additive category C is called graded if for any P, Q ∈ ObjC there is
a canonical decomposition C(P, Q) ∼=

⊕
i Ci(P, Q) defined; this decomposition satisfies

Ci(∗, ∗)◦Cj(∗, ∗) ⊂ Ci+j(∗, ∗). A differential graded category (cf. [6] or [10]) is a graded
category endowed with an additive operator δ : Ci(P, Q) → Ci+1(P, Q) for all i ∈ Z,
P, Q ∈ ObjC. δ should satisfy the equalities δ2 = 0 (so C(P, Q) is a complex of abelian
groups); δ(f◦g) = δf◦g+(−1)if◦δg for any P, Q, R ∈ ObjC, f ∈ Ci(P, Q), g ∈ C(Q, R).
In particular, δ(idP ) = 0.

We denote δ restricted to morphisms of degree i by δi.
For an additive category A one can construct the following differential graded cate-

gories. The notation introduced below will be used throughout the paper.
We denote the first one by S(A). We set Obj S(A) = ObjA; S(A)i(P, Q) = A(P, Q)

for i = 0; S(A)i(P, Q) = 0 for i �= 0. We take δ = 0.
We also consider the category B−(A) whose objects are the same as for C−(A), whereas

for P = (P i), Q = (Qi) we define B−(A)(P, Q)i =
⊕

j∈Z A(P j , Qi+j). Obviously, B−(A)
is a graded category.

We denote by Bb(A) the full subcategory of B−(A) whose objects are bounded com-
plexes. B(A) and C(A) will denote the corresponding categories whose objects are
unbounded complexes.

We set δf = dQ ◦ f − (−1)if ◦ dP , where f ∈ Bi(P, Q), dP and dQ are the differentials
in P and Q. Note that the kernel of δ0(P, Q) coincides with C(A)(P, Q) (the morphisms
of complexes); the image of δ−1 are the morphisms homotopic to 0.

For any N � 0 one can define a full subcategory SN (A) of Bb(A) whose objects are
complexes concentrated in degrees [0, N ]. We have S(A) = S0(A).

Bb(A) can be obtained from S(A) (or any SN (A)) by means of the category functor
Pre-Tr described below.

For any differential graded C we define a category H(C); its objects are the same as
for C; its morphisms are defined as

H(C)(P, Q) = Ker δ0
C(P, Q)/ Im δ−1

C (P, Q).

2.2. Categories of twisted complexes (Pre-Tr(C) and Tr(C))

Having a differential graded category C one can construct two other differential
graded categories Pre-Tr(C) and Pre-Tr+(C) as well as triangulated categories Tr(C)
and Tr+(C). The simplest example of these constructions is Pre-Tr(S(A)) = Bb(A).
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Definition 2.2.1.

(1) The objects of Pre-Tr(C) are

{(P i), P i ∈ ObjC, i ∈ Z, qij ∈ Ci−j+1(P i, P j)};

here almost all P i are 0; for any i, j ∈ Z we have δqij +
∑

l qlj ◦ qil = 0. We call qij

arrows of degree i − j + 1. For P = {(P i), qij}, P ′ = {(P ′i), q′
ij} we set

Pre-Trl(P, P ′) =
⊕
i,j∈Z

Cl+i−j(P i, P ′j).

For f ∈ Cl+i−j(P i, P ′j) (an arrow of degree l + i − j) we define the differential of
the corresponding morphism in Pre-Tr(C) as

δPre-Tr(C)f = δCf +
∑
m

(q′
jm ◦ f − (−1)(i−m)lf ◦ qmi).

(2) Tr(C) = H(Pre-Tr(C)).

It can be easily seen that Pre-Tr(C) is a differential graded category (see [6]). There is
also an obvious translation functor on Pre-Tr(C). Note also that the terms of the complex
Pre-Tr(C)(P, P ′) do not depend on qij and q′

ij , whereas the differentials certainly do.
We denote by Q[j] the object of Pre-Tr(C) that is obtained by putting P i = Q for

i = −j, all other P j = 0, all qij = 0. We will write [Q] instead of Q[0] (i.e. Q[i] is the
translation of [Q] by [i]).

Immediately from definition we have Pre-Tr(S(A)) ∼= Bb(A).
A morphism h ∈ Ker δ0 (a closed morphism of degree 0) is called a twisted morphism.

For a twisted morphism h = (hij) ∈ Pre-Tr((P i, qij), (P ′i, q′
ij)), hij ∈ C(P i, P ′j), we

define Cone(h) = (P ′′i, q′′
ij), where P ′′i = P i+1 ⊕ P ′i,

q′′
ij =

(
qi+1,j+1 0
hi+1,j q′

ij

)
.

We have a natural triangle of twisted morphisms

P
f−→ P ′ → Cone(f) → P [1], (2)

the components of the second map are (0, idP ′i) for i = j and 0 otherwise. This triangle
induces a triangle in the category H(Pre-Tr(C)).

Definition 2.2.2. For distinguished triangles in Tr(C) we take the triangles isomorphic
to those that come from the diagram (2) for any P, P ′ ∈ Pre-Tr(C), f being twisted.

We summarize the properties of Pre-Tr and Tr of [6] that are most relevant for the
current paper. We have to replace bounded complexes by complexes bounded from above.
Part (II) (4) of the following proposition is new.
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Proposition 2.2.3.

(I) Tr(C) is a triangulated category.

(II) For any additive category A there are natural isomorphisms

(1) Pre-Tr(B−(A)) ∼= B−(A);

(2) Tr(B−(A)) ∼= K−(A);

(3) Pre-Tr(B(A)) ∼= B(A);

(4) Tr(SN (A)) ∼= Bb(A).

Proof. (I) See Proposition 1, § 2 of [6].

(II) (1), (3) See Lemma II.II.1.2.10 of [27].

(II) (2) Immediate from assertion (II) (1).

(II) (4) We have natural full embeddings S0(A) ⊂ SN (A) ⊂ Bb(A). Since Tr(S0(A)) ∼=
Tr(Bb(A)) ∼= Bb(A), we obtain the assertion. �

2.3. The categories Pre-Tr+(C) and Tr+(C)

In [6] Pre-Tr+(C) was defined as a full subcategory of Pre-Tr(C̃), where C̃ was obtained
from C by adding formal shifts of objects. Yet it can be easily seen that the category
defined in [6] is canonically equivalent to the category defined below (see also [10]). So
we adopt the notation Pre-Tr+(C) of [6] for the category described below.

The definitions of Pre-Tr+(C) and Tr+(C) could also be found in § 2.4 of [10]; there
these categories were denoted by Cpre-tr and Ctr.

Definition 2.3.1.

(1) Pre-Tr+(C) is defined as a full subcategory of Pre-Tr(C). A = {(P i), qij} ∈
Obj Pre-Tr+(C) if there exist mi ∈ Z such that for all i ∈ Z we have qij = 0
for i + mi � j + mj .

(2) Tr+(C) is defined as H(Pre-Tr+(C)).

The following statement is an easy consequence of the definitions above.

Proposition 2.3.2.

(1) Tr+(C) is a triangulated subcategory of Tr(C).

(2) Tr+(C) as a triangulated category is generated by the image of the natural map
ObjC → Obj Tr+(C) : P → [P ].

(3) There are natural embeddings of categories i : C → Pre-Tr+(C) and H(C) →
Tr+(C) sending P to [P ].

(4) Pre-Tr(i), Tr(i), Pre-Tr+(i), and Tr+(i) are equivalences of categories.
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It can be also easily seen that assertion (2) characterizes Tr+(C) as a full subcategory
of Tr(C)

Proof. (1) It is sufficient to check that the cone of a map in Pre-Tr+(C) belongs to
Pre-Tr+(C). This is easy. Also see § 4 of [6].

(2) See Theorem 1, § 4 of [6].

(3) By definition of Pre-Tr+(C) (respectively of Tr+(C)) there exists a canonical iso-
morphism of bifunctors C(−,−) ∼= Pre-Tr+(C)([−], [−]) (respectively HC(−,−) ∼=
Tr+(C)([−], [−])). In remains to note that both of these isomorphisms respect addition
and composition of morphisms; the first one also respects differentials.

(4) The proof was given in §§ 3 and 4 of [6]. �

Remark 2.3.3.

(1) Since Pre-Tr, Pre-Tr+, Tr, and Tr+ are functors on the category of differential
graded categories, any differential category functor F : C → C ′ naturally induces
functors Pre-TrF , Pre-Tr+ F , Tr F , and Tr+ F . We will use this fact throughout
the paper.

For example, for X = (P i, qij) ∈ Obj Pre-Tr(C) we have Pre-Tr F (X) =
(F (P i), F (qij)); for a morphism h = (hij) of Pre-Tr(C) we have Pre-Tr F (h) =
(F (hij)). Note that the definition of Pre-TrF on morphisms does not involve qij ;
yet Pre-Tr F certainly respects differentials for morphisms.

(2) Let F : Pre-Tr+(C) → D be a differential graded functor. Then the restriction
of F to C ⊂ Pre-Tr+(C) (see part (3) of Proposition 2.3.2) gives a differential
graded functor FC : C → D. Moreover, since FC = F ◦ i, we have Pre-Tr+(FC) =
Pre-Tr+(F ) ◦ Pre-Tr+(i); therefore Pre-Tr+(FC) ∼= Pre-Tr+(F ).

2.4. Definition of H and h

For X, Y, Z ∈ SmPrVar, i, j, l � 0, f ∈ Ci(X)(Y ), g ∈ Cj(Y )(Z) we have the equality

(f j(g))l = f j+l(gl). (3)

Hence we can define a (non-full!) subcategory J of B−(Shv(SmCor)) whose objects
are [P ] = C(P ), P ∈ SmPrVar, the morphisms are defined as

J i(C(P ), C(Q)) =
{ ⊕

l�0

(gl) : g ∈ Ci(Q)(P )
}

,

the composition of morphisms and the boundary operators are the same as for
B−(Shv(SmCor)). There is an obvious addition defined for morphisms; the operation
of disjoint union of varieties gives us the addition on objects. It follows immediately from
(1) that J is a differential graded subcategory of B−(Shv(SmCor)).
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Note that J i(−,−) = 0 for i > 0; this is a very important property! In particular,
for any i < 0, X, Y, Z ∈ ObjJ , it implies that dJ i(Y, Z) ◦ J0(X, Y ) ⊂ dJ i(X, Z) and
J0(Y, Z) ◦ dJ i(X, Y ) ⊂ dJ i(X, Z). This is crucial for the construction of truncation
functors tN (see § 6.1 below). We call categories that have no morphisms of positive
degrees negative differential graded categories; this property will be discussed in § 2.7
below.

We define H as Tr(J). Since Cl = 0 for l > 0, we have H = Tr+(J) (we can take mi = 0
for any object of Tr(J) in Definition 2.3.1). Now Proposition 2.3.2 implies the following
statement immediately.

Proposition 2.4.1. H is generated by [P ], P ∈ SmPrVar, as a triangulated category.
Here [P ] denotes the object of H that corresponds to [P ] = C(P ) ∈ ObjJ .

We consider the functor h : H → K−(Shv(SmCor)) that is induced by the inclusion
J → B−(Shv(SmCor)).

We also note that any differential graded functor J → A induces a functor H → Tr+(A).
The definition of H implies immediately that H([P ], Q[i]) = Hi(C(Q)(P )) for P, Q ∈

SmPrVar.

2.5. An explicit description of H and h

For the convenience of the reader we describe H and h explicitly. Since in this subsection
we just describe the category of twisted complexes over J explicitly, we do not need any
proofs here.

We define J ′ = Pre-Tr+(J). J ′ is an enhancement of H (in the sense of [6]). The idea
is that taking cones of (twisted) morphisms becomes a well-defined operation in J ′ (in
H it is only defined up to a non-canonical isomorphism).

We describe an auxiliary category H′. ObjH′ = ObjJ ′ = ObjH, whereas H′(X, Y ) =
Ker δ0

J′(X, Y ) for X, Y ∈ ObjH′.
Hence the objects of H′ are (P i, i ∈ Z, fij , i < j), where (P i) is a finite sequence

of (not necessarily connected) smooth projective varieties (we assume that almost all P i

are 0), fij ∈ Ci−j+1(P j)(P i) for all m, n ∈ Z satisfy the condition

δm−n+1(Pn)(fmn) +
∑

m<l<n

fm−l+1
ln (fml) = 0. (4)

Morphisms g : A = (P i, fij) → B = (P ′i, f ′
ij) can be described as sets (gij) ∈

Ci−j(P ′j)(P i), i � j, where the gij satisfy

δi−j
P ′j (gij) +

∑
j�l�i

f ′i−l
lj (gil) =

∑
j�l�i

gi−l+1
lj (fil) ∀i, j ∈ Z. (5)

We will assume that gij = 0 for i > j.
Note that gij = 0 if P i = 0 or P j = 0. Hence the morphisms for any pair of objects in

H′ are defined by means of a finite set of equalities.
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The composition of g = (gij) : A → B with h = (hij) : B → C = (P ′i, f ′
ij) is defined

as
lij =

∑
i�r�j

hi−r
rj (gir).

H′ has a natural structure of an additive category. The direct sum of objects is defined
by means of a disjoint union of varieties.

The morphisms g, h : A = (P i, fij) → B = (P ′i, f ′
ij) are called homotopic (g ∼ h) if

there exist lij ∈ Ci−j−1(P ′j)(P i), i − 1 � j, such that

gij − hij = δi−j−1
P ′j lij +

∑
i−1�r�j

f ′i−r−1
rj (lir) +

∑
i�r�j+1

li−r+1
rj (fir). (6)

Now H can be described as a category whose objects are the same as for H′, whereas
H(A, B) = H′(A, B)/∼. The translation on H is defined by shifts of indices (for P i, fij).
For g = (gij) ∈ H′(A, B) its cone is defined as C = Cone(g) ∈ ObjH′, the ith term of C

is equal to P ′′i = P i+1 ⊕ P ′i, whereas

hij ∈ Ci−j+1(P j+1 ⊕ P ′j)(P i+1 ⊕ P ′i) =

(
fi+1,j+1 0
gi+1,j f ′

ij

)
, i < j;

we have obvious natural maps B → C → A[1].
It is easily seen that H coincides with the category defined in § 2.4. We denote the

projection H′ → H by j.
Moreover, as in Theorem 4.6 of [20] one can check (without using the formalism

described above) that H with the structures defined is a triangulated category. One
can also check directly that P [0] for P ∈ SmPrVar generate H as a triangulated category.

For A = (P i, fij) ∈ Obj(H′) we define h′(A) ∈ C−(Shv(SmCor)) as (Cj
A, δj

A : Cj
A →

Cj+1
A )C−(Shv(SmCor)). Here Cj

A =
∑

i�j Ci−j(P j), the component of δj
A that corre-

sponds to the morphism of Ci−j(P j) into Ci−j′+1(P ′j) equals δi−j
P j for j = j′ and equals

f i−j
jj′ for j′ �= j.
Note that the condition (4) implies d2

h′(A) = 0.
Now we define h′ on morphisms. For (lij) : A → B, s ∈ Z, we set h′(l)s =

⊕
i,j ls−i

ij .
One can check explicitly that h′ induces an exact functor h : H → K−(Shv(SmCor)).
By abuse of notation we denote by h′ also the functor J ′ → B−(Shv(SmCor)).

Remark 2.5.1. P i should be thought about as of ‘stratification pieces’ of the motif
A = (P i, fij). In particular, let Z be closed in X, Z, X ∈ SmPrVar, Y = X −Z; suppose
that Z is everywhere of codimension c in X. If we adjoin Z(c)[2c] to ObjJ (see § 8.5), then
Mgm(Y ) could be presented in H as ((X, Z(c)[2c]), gZ), where gZ is the Gysin morphism
(see Proposition 3.5.4 of [36]). See also Proposition 6.5.1 for a nice explicit description
of the motif with compact support of any smooth quasi-projective X.

The main distinction of H from the motivic category D defined by Hanamura (see [17],
[20], and § 4) is that the Bloch cycle complexes (used in the definition of D) are replaced
by the Suslin complexes; we never have to choose distinguished subcomplexes for our
constructions (in contrast with [17]). Note also that our definition works on the integral
level in contrast with those of [17].
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2.6. ‘Stupid filtration’ for motives

As we will see several times below, the category H (hence also DMs, cf. Theorem 3.1.1)
is very close to Kb(Corrrat). In a certain sense, H has ‘stupid filtration’ related to those
of Kb(Corrrat). Certainly, this filtration is only defined on the level of H′ (note that the
stupid truncation of an object of Kb(Corrrat) depends on its lift to Cb(Corrrat)!).

Proposition 2.6.1. Let X = (P i, fij) (as in § 2.5).

(1) For any a � b ∈ Z the set (P i, fij : a � i, j � b) gives an object X[a,b] of H′ (and
so also of H).

(2) If P i = 0 for i < a, then (idP i , i � b) gives a morphism X → X[a,b] (in H′ and H).

(3) If P i = 0 for i > b, then (idP i , i � b) gives a morphism X[a,b] → X.

(4) If P i = 0 for i < a and for i > c, a < b < c, then we have a distinguished triangle
X[a,b] → X → X[b,c]

Proof. (1) We have to check that the equality (4) is valid for X[a,b]. Yet all terms of (4)
are zero unless a � i � j � b. Moreover, in the case a � i � j � b the terms of (4) are
the same as for X. Both of these facts follow immediately from the negativity of J .

(2), (3) We have to check the condition (5) for these cases; again this is obvious by the
negativity of J .

(4) We should check that X → X[b,c] is homotopy equivalent to the second morphism
of the triangle corresponding to X[a,b] → X; this easily follows from (2) (see also the
corresponding part of § 2.5). �

The definition of the stupid filtration and its properties are quite similar to those
described in § 1 of [18] (see property (6) in the end of that section). Note that we only
used the fact that there are no morphisms of positive degrees between objects of J . See [7]
for a vast generalization of this observation.

2.7. Other generalities on differential graded categories

We describe some new differential graded categories and differential graded functors.
We will need them in § 7 below.

2.7.1. Differential graded categories of morphisms

For an additive category A we denote by MS(A) the category of morphisms of S(A).
Its objects are {(X, Y, f) : X, Y ∈ ObjA, f ∈ A(X, Y )};

MS0((X, Y, f), (X ′, Y ′, f ′)) = {(g, h) : g ∈ A(X, X ′), h ∈ A(Y, Y ′), f ′ ◦ g = h ◦ g}.

As for S(A), there are no morphisms of non-zero degrees in MS(A); hence the differential
for morphisms is zero.

We denote Pre-Tr(MS(A)) by MBb(A). We recall that a twisted morphism is a closed
morphism of degree 0, i.e. an element of the kernel of δ0.
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Proposition 2.7.1.

(1) MBb(A) is the category of closed morphisms of Bb(A). That means that its objects
are {(X, Y, f) : X, Y ∈ ObjB(A), f ∈ Ker δ0(B(A)(X, Y ))},

MBbi((X, Y, f), (X ′, Y ′, f ′))

= {(g, h) : g ∈ B(A)i(X, X ′), h ∈ B(A)i(Y, Y ′), f ′ ◦ g = h ◦ f}.

(2) Let MB(A) denote the unbounded analogue of MBb(A). Then Pre-Tr(MB(A)) ∼=
MB(A).

(3) Let Cone : MB(A) → Bb(A) denote the natural cone functor. Then the functor
Pre-Tr(Cone) in naturally isomorphic to Cone.

Proof. (1) Easy direct verification.

(2) The proof is very similar to those of part (II) (1) of Proposition 2.2.3. First we note
that Pre-Tr(MBbB(A)) ∼= MBb(A), then extend this to the unbounded analogue.

(3) Obviously, Cone is a differential graded functor. Hence it remains to apply part (2)
of Remark 2.3.3. �

We have obvious differential graded functors p1, p2 : MB(A) → B(A): p1(X, Y, f) = X,
p2(X, Y, f) = Y .

Corollary 2.7.2. Let F : J → MB(A) be a differential graded functor.

(1) Pre-Tr(F ) gives a functorial system of closed morphisms Pre-Tr(p1 ◦ F )(X) →
Pre-Tr(p2 ◦ F )(X) in B(A) for X ∈ ObjJ ′ = ObjH.

(2) Let A be an abelian category. Suppose that for any P ∈ SmPrVar the complex
F ([P ]) is exact. Then there exists a natural quasi-isomorphism Tr+(p1 ◦ F )(X) ∼
Tr+(p2 ◦ F )(X) for X ∈ ObjH.

Proof. (1) Obvious.

(2) We have to show that Pre-Tr+(Cone(F ))(X) is quasi-isomorphic to 0 for any X ∈
ObjJ ′. We consider the exact functor G = Tr+(Cone(F ))(X); it suffices to show that
G = 0. Recall that [P ], P ∈ SmPrVar, generate H as a triangulated category. Hence
G([P ]) = 0 for any P ∈ SmPrVar implies that G = 0. �

2.7.2. Negative differential graded categories; truncation functors

We recall that a differential graded category C is called negative if Ci(X, Y ) = 0 for
any i > 0, X, Y ∈ ObjC.

Certainly in this case all morphisms of degree 0 are closed (i.e. satisfy δf = 0). This
notion is very important for us since J is negative.

For any differential graded C there exist a unique ‘maximal’ negative subcategory C−
(it is not full unless C is negative itself!). The objects of C− are the same as for C
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whereas C−,i(X, Y ) = 0 for i > 0, C−,i(X, Y ) = Ci(X, Y ) for i < 0, and C−,i(X, Y ) =
Ker δ0(C(X, Y )) for i = 0.

Obviously, if F : D → C is a differential graded functor, D is negative, then F factorizes
through the faithful embedding C− → C.

Suppose that A is an abelian category.
Then zeroth (or any other) cohomology defines a functor B−(A) → S(A).
More generally, we define two versions of the canonical truncation functor for B−(A).

We will need these functors in § 7.3 below.
Let X be a complex over A, a, b ∈ Z, a � b. We define τ�b as the complex

· · · → Xb−2 → Xb−1 → Ker(Xb → Xb+1),

here Ker(Xb → Xb+1) is put in degree b. τ[a,b](X) is defined as τ�b(X)/τ�a−1(X), i.e. it
is the complex

Xa−1/ Ker(Xa−1 → Xa) → Xa → Xa+1 → · · · → Xb−1 → Ker(Xb → Xb+1).

The canonical [a, b]-truncation of X for a < b is defined as

X[a,b] = Xa/dXa−1 → Xa+1 → · · · → Xb−1 → Ker(Xb → Xb+1),

again Ker(Xb → Xb+1) is put in degree b; for a = b we take Ha(X). Recall that trunca-
tions preserve homotopy equivalence of complexes.

Proposition 2.7.3.

(1) τ�b, τ[a,b] and the canonical [a, b]-truncation define differential graded functors
B−(A) → B−(A).

(2) Let F : J → B(A) be a differential graded functor; we can assume that its target
is B−(A). We consider the functors τ[a,b]F and F[a,b] that are obtained from F by
composing it with the corresponding truncations. Then there exists a functorial
family of quasi-isomorphisms Tr+(τ[a,b]F )(X) → Tr+(F[a,b])(X) for X ∈ ObjH.

Proof. (1) Note that all truncations give idempotent endofunctors on C(A).
Hence it suffices extend truncations to all morphisms of B−(A) and prove that trun-

cations respect δ.
The definition of truncations on morphisms of negative degree is very easy. The only

morphisms in B−(A) of degree 0 are twisted ones, i.e. morphisms coming from C(A).
It remains to verify that if a given truncation τ of a morphism f = (fi) : (Xi) → (Y i)

in B−(A) is zero then τ(δf) = 0.
First we check this for τ = τ�b. τ�bf = 0 means that f(τ�bX) = 0 (i.e. the correspond-

ing restrictions of fi are zero). Since the boundary maps τ�bX into itself, the definition
of δ for B(A) gives the result.

Now we consider the case τ = τ[a,b]. τ[a,b](f) = 0 means that f(τ�bX) ⊂ τ�aY . Again
it suffices to note that the boundary maps τ�bX and τ�aY into themselves.

The case of canonical truncation could be treated in the same way.
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(2) The natural morphism m([P ]) : τ[a,b]F ([P ]) → F[a,b]([P ]) gives a functor H : J →
MB(A) such that p1(H) = τ[a,b]F and p1(H) = F[a,b]. It remains to note that m([P ]) is
a quasi-isomorphism for any P ∈ SmPrVar and apply part (2) of Corollary 2.7.2. �

Remark 2.7.4.

(1) Another way to obtain new differential graded categories is to take ‘tensor products’
of differential graded categories. In particular, one can consider the categories J ⊗J

and Tr(J ⊗ J) (which could be denoted by H ⊗ H).

(2) If Hi(C(X, Y )) = 0 for some differential graded category C, any X, Y ∈ ObjC,
i > 0, then Tr+(C−) ∼ Tr+(C). Indeed, the embedding C− → C gives a functor
F : Tr+(C−) → Tr+(C). An easy argument (described in detail in the proof of
Theorem 3.1.1 below) shows then that F is a full embedding. Lastly, since ObjC
generates Tr+(C) is a triangulated category, one can easily prove (by induction)
that F gives an equivalence, i.e. that any X ∈ Obj Tr+(C) is isomorphic to some
Y ∈ F∗(Obj Tr+(C−)).

(3) One can also define positive differential graded categories in a natural way. Positive
differential graded categories seem to be connected with t-structures. Yet we will
not study this issue in the current paper.

3. The main classification result

In this section we prove the equivalence of H and DMs. It follows that the presentation of
a motif as m(X) for X ∈ H could be thought about as of a ‘motivic injective resolution’.

Unfortunately, we do not know how to compare Voevodsky’s DMeff
gm (or just SmVar)

with H ‘directly’.

3.1. The equivalence of categories m : H → DMs

We denote the natural functor K−(Shv(SmCor)) → D−(Shv(SmCor)) by p, denote
p ◦ h by m.

Theorem 3.1.1. m is a full exact embedding of triangulated categories; its essential
image is DMs.

Proof. Since h is an exact functor, so is m. Now we check that m is a full embedding.
By part (2) of Proposition 1.3.1, m induces an isomorphism DMeff

− (m([P ]), m(Q[i])) ∼=
H([P ], Q[i]) for P, Q ∈ SmPrVar, i ∈ Z. Since [R], R ∈ SmPrVar, generate H as a trian-
gulated category (see Proposition 2.4.1), the same is true for any pair of objects of H (cf.
part (2) of Remark 2.7.4).

We explain this argument in more detail.
First we verify that for any smooth projective P/k and arbitrary B ∈ H the functor

m gives an isomorphism

DMeff
− (m([P ]), m(B)) ∼= H([P ], B). (7)
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By Proposition 1.3.1, (7) is fulfilled for B = P ′[j], j ∈ Z, P ′ ∈ SmPrVar. For any
distinguished triangle X → Y → Z → X[1] in H the functor m defines a morphism of
long exact sequences

�� H([P ], Y ) ��

��

H([P ], Z) ��

��

H([P ], X[1]) ��

��
�� DMeff

− (m([P ]), m(Y )) �� DMeff
− (m([P ]), m(Z)) �� DMeff

− (m(P ), m(X)[1]) ��

(8)

Thus if m gives an isomorphism in (7) for B = X[i] and B = Y [i] for i = 0, 1, then m

gives an isomorphism for B = Z. Since objects of the form B = [P ′] generate H as a
triangulated category, (7) is fulfilled for any B ∈ H. Hence for all i ∈ Z, B ∈ H, we have
DMeff

− (m(P [i]), m(B)) ∼= H(P [i], B). For any distinguished triangle X → Y → Z → X[1]
in H the functor m defines a morphism of long exact sequences (· · · → H(Z, B) → · · · ) →
(· · · → DMeff

− (m(Z), m(B)) → · · · ) similar to (8). Now the same argument as above
proves that m is a full embedding.

It remains to calculate the ‘essential image’ M of the map that is induced by m

on Obj(H) (we adjoin to M all objects that are isomorphic to those coming from H).
According to Proposition 5.2.2 below we have m([P ]) = C(P ) ∼= Mgm(P ).

Since H is generated by [P ] for P ∈ SmPrVar as a triangulated category, M is the
strict triangulated subcategory of DMeff

− that is generated by all Mgm(P ). Since the tensor
structure on DMeff

− is defined by means of the relation Mgm(X)⊗Mgm(Y ) = Mgm(X×Y )
for X, Y ∈ SmVar, M is a tensor subcategory of DMeff

− . Since Mgm(P ) ∈ Obj DMs for
any P ∈ SmPrVar, we have M ⊂ DMs. It remains to prove that M contains DMs. By
definition (cf. [36, § 2.1]) Z(1)[2] ∈ DMeff

− can be represented as the cone of the natural
map Mgm(pt) → Mgm(P1) (we will identify Z(1) with Mgm(Z(1))). Hence Z(n) ∈ ObjM
for any n > 0. Since Mgm is a tensor functor, if Mgm(Z) ∈ ObjM for Z ∈ SmVar,
then Z(c)[2c] ∈ ObjM for all c > 0. Now we apply Proposition 3.5.4 of [36] as well as
the Mayer–Vietoris triangle for motives [36, § 2]; similarly to Corollary 3.5.5 of [36] we
conclude that ObjM contains all Mgm(X) for X ∈ SmVar (cf. the remark in [36] that
precedes Definition 2.1.1). A more detailed version of this argument will be used in the
proof of Theorem 6.2.1 below.

Since DMs is the smallest triangulated subcategory of DMeff
− containing motives of all

smooth varieties, we prove the claim. �

Remark 3.1.2.

(1) In order to calculate DMeff
− (M, M ′) for M, M ′ ∈ DMs (using the explicit description

of H given in § 2.5) in terms of cycles one needs to know m−1(M) and m−1(M ′)
(or the preimages of their duals). See § 6.5 for a nice result in this direction.

(2) Note that we do not construct any comparison functor DMs → H (or SmVar →
H) explicitly. Yet if we denote by SmCorpr the full subcategory of SmCor whose
objects are smooth projective varieties, then we have obvious functors SmCorpr →
Kb(SmCorpr) → H. Note that the Voevodsky’s description of DMeff

gm also gives a
canonical functor Kb(SmCorpr) → DMs ⊂ DMeff

gm.
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3.2. On motives of (possibly) singular varieties

Recall (see § 4.1 of [36]) that for any X ∈ Var (not necessarily smooth!) there were
certain objects Mgm(X) and M c

gm(X) of DMeff
− defined. Mgm(X) was called the motif of

X; M c
gm(X) was called the motif of X with compact support.

The following statement follows easily.

Corollary 3.2.1. For any (not necessarily smooth) variety X/k there exist Z, Z ′ ∈ H

such that m(Z) ∼= Mgm(X), m(Z ′) ∼= M c
gm(X).

Proof. It is sufficient to verify that Mgm(X), M c
gm(X) ∈ DMs. The proof of this fact is

the same as for Corollaries 4.1.4 and 4.1.6 in [36]. Indeed, for the proofs in [36] one does
not need to add the kernels of projectors. �

Remark 3.2.2. We obtain that for the Suslin complex of an arbitrary variety X there
exists a quasi-isomorphic complex M ‘constructed from’ the Suslin complexes of smooth
projective varieties; M ∈ h∗(ObjH) ⊂ ObjK−(Shv(SmCor)) is unique up to a homotopy.

Moreover, as we have noted in the proof of Lemma 5.2.1, the cohomology of C(P )
as a complex of presheaves for any P ∈ SmPrVar coincides with its hypercohomology
(the corresponding fact for C(P ) was proved in [36]). Hence the same is true for any
M ∈ h∗(ObjH). Hence for X ∈ SmVar the quasi-isomorphism C(X) → M is given by
an element of H0(M)(X).

This result shows that the presentation of a motif as m(X) for X ∈ H could be
thought about as of a ‘motivic’ analogue of taking an injective resolution; here the Suslin
complexes of smooth projective varieties play the role of injective objects.

4. Comparison of DMgm Q with Hanamura’s category of motives

We prove that DMgm Q is anti-isomorphic to Hanamura’s triangulated category of
motives.

We recall that DMeff
gm is a tensor category and the functor ⊗Z(1) : DMeff

gm → DMeff
gm is

fully faithful. Following Voevodsky we define DMgm as lim−→⊗Z(1)
DMeff

gm: that is, DMgm is
the ‘union’ of DMeff

gm(−i) while each DMeff
gm(−i) is isomorphic to DMeff

gm.
Masaki Hanamura has kindly informed the author that he has (independently)

obtained an alternative proof of the anti-equivalence of motivic categories; his proof
uses the extension of the functor constructed in [19]. Unfortunately, Hanamura’s proof
is not available to the public (in any form).

4.1. The plan

We will not recall Hanamura’s definitions in detail here (they are rather long) so the
reader should consult § 2 of [17] for the definition of Dfin(k) and D(k) (see also § 4 of [20]
and § 4.5 of [28]). One of unpleasant properties of Hanamura’s construction is that it uses
a certain composition operation for Bloch’s complexes (see below) which is only partially
defined. Yet on the target of our comparison functor the composition is always defined.
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Note that Hanamura’s category is cohomological (i.e. the functor SmPrVar → Dfin(k)

is contravariant); so it is natural to consider contravariant functors H → Dfin(k). For that
reason we will consider the categories Dop

fin ⊂ Dop that equal Dfin(k)op ⊂ D(k)op.
Dop

fin could ‘almost’ be described as Tr(I) for a certain differential graded I. The problem
is that composition of morphisms in I is only partially defined; overcoming this difficulty
makes the construction rather complicated.

Moreover, in our definition of H we use not necessarily connected P ∈ SmPrVar. In
Hanamura’s notation P should be replaced by

⊕
P i, where P i are connected components

of P ; yet we will ignore this distinction below.
The proof consists of three parts.

(I) Construction of a functor F : H ⊗ Q → Dop
fin.

(II) Proof that F is a full embedding.

(III) Proof that F extends to an equivalence DMgm Q → Dop.

4.2. Construction of a comparison functor F

First we modify H⊗Q slightly. We define JQ as the category whose objects are the same
as for J while the morphisms are given by rational alternated cubical Suslin complexes.

These are defined similarly to the alternated cubical Bloch complexes.
Let Σn for n � 0 denote the group of permutations of n elements; it acts on An by

permuting coordinates.
We define

JQi([P ], [Q]) = Q ⊗ {ai(f) : f ∈ J i([P ], [Q])} ⊂ Q ⊗ J i([P ], [Q])

for all i ∈ Z, P, Q ∈ SmPrVar. Here ai is the idempotent (
∑

σ∈Σ−i
sgn(σ)σ)/(−i)!,

sgn(σ) is the sign of a permutation. One can easily see that (ai) is an endomorphism of
the complex of Q ⊗ J([P ], [Q]), i.e. we can consider the boundaries of JQ induced by
those of J (note that JQ is both a subcomplex and a factor-complex of J).

We define the composition of morphisms in JQ as in a factor-category of J ⊗ Q. It is
possible since for any i, j ∈ Z, P, Q, R ∈ SmPrVar, f ∈ J i(P, Q), g ∈ Jj(Q, R) we have
ai+j(g ◦ f) = ai+j(aj(g) ◦ ai(f)) (an easy direct verification).

An easy standard argument (see Lemma 2.28 of [28]) shows immediately that the
alteration procedure gives a quasi-isomorphism J([P ], [Q]) ⊗ Q → JQ([P ], [Q]) for any
P, Q ∈ SmPrVar. Hence there exists an equivalence of categories G : H ⊗ Q → HQ where
HQ = Tr(JQ).

Hence for our purposes it suffices to construct a natural embedding H : HQ → Dop
fin.

As we have said above, Dop
fin is ‘almost equal’ to Tr(I) for a certain differential graded

‘almost category’ I. Hence it suffices to define a certain differential graded functor G :
JQ → I and define H = Tr G. Indeed, the ‘image’ of H will be a subcategory of Dop

fin
(not necessarily full) which composition of morphisms is compatible with those of HQ;
we do not have to care of morphisms and object of Dop

fin that do not come from HQ.
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We describe I. Let Zr(X) for X ∈ SmVar, r � 0, denote the Bloch’s alternated cubical
cycle complex (we use the version of the definition described in § 1 of [17]). It is defined
in the following way (note that we consider cohomological complexes; that forces us to
reverse arrows in the usual notation).

One first defines a sequence of groups Z ′r(X) with

Z ′ri(X) =
∑

U⊂X×A−i

Q,

where U runs through all integral closed subschemes of X ×A−i of codimension r−i that
intersect faces properly; here ‘faces’ mean subvarieties of X×A−i defined by putting some
of the last coordinates of X ×A−i equal to 0 or 1. Zr is obtained form Z ′r by alteration,
see the beginning of this subsection.

The boundaries Zri(X) → Zri+1(X) are defined as
∑

0�j�−i(gj0∗ − gj1∗), gjx are
defined as in § 1.2.

We have a natural map Zr(X) ⊗ Zs(Y ) → Zr+s (as complexes) defined by applying
ai+j to the corresponding tensor product of cycles (i, j are the indices of terms; see the
text after Lemma 2.28 in [28]).

The objects of I are pairs (P, r) : P ∈ SmPrVar, r ∈ Z.
Now I((X, r), (Y, s)) = Zdim Y +r−s(X × Y ). Composition of morphisms f ∈ Ii(X, Y ),

g ∈ Ij(Y, Z) is defined by the formula

g ◦ f = prX×Z×A−i−j (X × l(Y ) × Z × A−i−j) ∩ (g ⊗ f),

where l : Y → Y × Y is the diagonal embedding, pr is the natural projection. Note that
the composition is defined only if g ⊗ f intersects l(Y ) × X × Z × A−i−j properly.

A more detailed description of Zr (and the discussion of several other questions relevant
for the results of this section) could be found in [28]. The reader is strongly recommended
to look at §§ 2.5 and 4.3 in [28].

The construction of H uses two facts.

(i) For any connected P, Q ∈ SmPrVar, dimQ = r, we have a natural embedding of
complexes JQ([P ], [Q]) → Zr(P × Q).

This is obvious from the definition of Zr.

(ii) For any connected P, Q, R ∈ SmPrVar, dimR = s, the partially defined com-
position Zr(P, Q) × Zs(Q, R) → Zs(P, R) (cf. Proposition 4.3 of [20]) for Bloch
complexes restricted to JQ(P, Q) × JQ(Q, R) coincides with the map induced by
the composition in JQ. This is very easy since the composition of morphisms in
JQ is exactly the one induced from the composition of Bloch complexes (described
above). Note that the composition of morphisms coming from JQ is always well
defined.

Hence sending [P ] ∈ ObjJQ to (P, 0) ∈ Obj I and embedding JQ([P ], [Q]) → Zr(P ×Q)
we obtain a differential graded functor G : JQ → I. This gives H = Tr G.
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We note that in Hanamura’s construction one often has to choose distinguished sub-
complexes (and modify the choice of elements of Bloch complexes) in order to ‘compute’
compositions of arrows in his categories. Yet in the ‘image’ of H this problem never
occurs.

4.3. F is a full embedding

We check that H (and so also F ) is fully faithful.
We use a standard argument, the same as those used in the proof of Theorem 3.1.1

(see also the proof of Proposition 8.3.1); it can be used for any exact functor that has a
differential graded enhancement. It suffices to check that H induces an isomorphism

HQ([P ], [Q][i]) → Dop
fin((P, 0), (Q, 0)[i])

for all P, Q ∈ SmPrVar, i ∈ Z. Since in D(k) there is Poincaré duality (by definition, see
also (4.5) of [20]), for Q of pure dimension n we have

Dop
fin((P, 0), (Q, 0)[i]) = Dop

fin((P × Q, 0), (pt, n)[i]) = Chr(P × Q,−i).

Here Chr(P × Q,−i) denotes the rational higher Chow group, the last equality follows
from Theorems (4.10) and (1.1) of [20]. Since the same is true in HQ (see Proposi-
tions 4.2.3 and 4.2.9 of [36]; cf. also Proposition 12.1 of [11]), the isomorphism is com-
patible with the maps of corresponding complexes, we get the claim.

Another way to express the same argument is to say that G : JQ → I induces a quasi-
isomorphism on morphisms (considered as complexes of abelian groups). This easily
implies that TrG is a full embedding (even in our situation when I is ‘not quite a
category’).

4.4. Conclusion of the proof

First we check that any object of the full triangulated subcategory Dop+
fin ⊂ Dop

fin whose
objects are ‘positive’ diagrams (i.e. those that contain only symbols of the form (P, r),
r � 0) is equivalent to H ⊗ Q. We should check that any object of Dop+

fin is isomorphic to
an object of the form H(X), X ∈ ObjH ⊗ Q.

We define the ‘zeroth part’ of Dop
fin as the full triangulated subcategory of Dop

fin generated
by (P, 0). We note Dop+

fin is generated by (P, r), r � 0, as a triangulated category. This is
easy to see directly and also follows immediately from property (6) of § 1 of [18]. Hence
it suffices to verify that any (P, r), r � 0, P ∈ SmPrVar is isomorphic to a certain object
of the ‘zeroth part’ of Dop

fin.
In fact, (P, r) belongs to the triangulated subcategory of Dop

fin generated by (Pl)×P for
0 � l � r. It suffices to check that (P, r) is a direct summand of (P×Pr, 0), its complement
is (P ×Pr−1, 0). First we note that morphisms between ‘pure’ objects (i.e. objects of Dop

fin
of the type (P, r)) by definition equal to the morphisms between corresponding Chow
motives. The last statement is just a well-known property of Chow motives; it follows
easily from the fact that Choweff is a tensor category (note that Dop

fin also is and the tensor
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multiplications are compatible) and [Pr] = [Pr−1] ⊕ pt(r) in Choweff (in the covariant
notation).

A similar direct sum statement is verified in § 2.3 of [20]. The main difference is that
Hanamura presented (P, r) as a direct summand of (P ×(P1)r, 0) and does not care about
its complement. Since we will idempotent complete DMgm ⊗Q in the end of the section,
this version also fits our purposes.

Hence we get the equivalence of H ⊗ Q with Dop+
fin .

Note that Q(1) ∈ ObjH ⊗ Q differs from pt(1) in Dop+
fin by a shift by [2]; cf. also the

remark at the bottom of p. 139 of [20].
Now we prove that this equivalence can be extended to DMgm Q.
The definition of morphisms in Dop

fin immediately implies the cancellation theorem,
i.e. Dop

fin(X, Y ) = Dop
fin(X(1), Y (1)). The cancellation theorem is also true in DMs and

DMgm; see Theorem 4.3.1 of [36] (or [37] for the characteristic p case).
Now note that JQ is a DG tensor category (in the natural sense); hence HQ = Tr JQ

is a tensor triangulated category (Proposition 1.13 of [29] yields the proof immediately).
It is also easily seen that H is a tensor functor.

Hence we can extend F to a functor

F ′ : lim−→
⊗Q(1)

H ⊗ Q → lim−→
⊗F (Q(1))

Dop+
fin .

Since F (Q(1)) ∼= (pt, 1)[2] ∈ Dop
fin, we obtain that

lim−→
⊗F (Q(1))

Dop+
fin =

⋃
n>0

Dop+
fin (−n).

Moreover, since all Dop+
fin (−n) are equivalent, F ′ induces an equivalence H ⊗ Q(−n) →

Dop+
fin (−n) for any n. It remains to recall that DMgm Q is isomorphic to the idem-

potent completion of
⋃

n>0 H ⊗ Q(−n), whereas Dop is the idempotent completion of⋃
n>0 Dop+

fin (−n).
The proof is finished.
Another way of the proof is to note that the isomorphisms H ⊗ Q → Dop+

fin (−n) are
compatible for all n (up to an autoequivalence of categories). Hence we obtain again that⋃

n>0 H ⊗ Q(−n) ∼
⋃

n>0 Dop+
fin (−n).

Remark 4.4.1. Hanamura defined D(k) as a triangulated subcategory of a certain
‘infinite’ analogue of Dfin(k). Yet we do not need this definition for the proof of equivalence
(above) since D(k) was defined as the idempotent completion of Dfin(k); recall that the
idempotent completion of a triangulated category is canonical (see [1]).

5. The properties of cubical Suslin complexes

The main result of this section is that the cubical complex C(X) is quasi-isomorphic (as
a complex of presheaves) to the simplicial complex C(X) that was used in [36]. This fact
was mentioned by Levine [28, Theorem 2.25] yet no complete proof was given. One of the
possible methods of the proof (proposed in [28]) is the use of a bicomplex method. Recall
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that this method yielded a similar result for motivic cohomology in § 4 of [26] and could
certainly adjusted to yield the proof of the statement desired. Yet we use another method
here. The reader not interested in the details of the proof should skip this section.

5.1. A certain adjoint functor for the derived category of presheaves

We denote by PreShv(SmCor) the category of presheaves (of abelian groups) on SmCor,
by D−(PreShv(SmCor)) the derived category of PreShv(SmCor) (complexes are bounded
from above), by DPMeff we denote a full subcategory of D−(PreShv(SmCor)) whose
objects are complexes with homotopy invariant cohomology.

Lemma 5.1.1. C(P ) ∈ DPMeff .

Proof. The scheme of the proof is the same as for Proposition 3.6 in [35]. First we
check that for Y ∈ SmVar and P ∈ SmPrVar the maps i∗0, i

∗
1 : C(P )(Y × A) → C(P )(Y )

are homotopic; here i∗0, i∗1 are induced by the embeddings ix : Y × {x} → Y × A, x =
0, 1. We consider the maps pri : C ′(P )i(Y ) → C ′(P )i(Y × A) induced by the projections
Y × A → Y . We consider the maps h′

i : C ′(P )i(Y × A) → C ′(P )i−1(Y ) induced by
isomorphisms Y × A × A−i ∼= Y × A−i+1, and also hi : C(P )i(Y × A) → C(P )i−1(Y ),
hi = h′

i − pri−1 ◦ i∗0. We have

δi−1
∗ hi + hi+1δ

i
∗ = (i∗1 − i∗0)i,

i.e. hi gives the homotopy needed. Then i∗0, i∗1 induce coinciding maps on cohomology.
Let Y = U × A, U ∈ SmVar. We consider the morphism H = idU ×µ : U × A2 → U × A,
where µ is given by multiplication. We proved that the maps induced by µ◦i0 and µ◦i1 on
the cohomology of C(P )(Y ) coincide. Hence the composition U × A → U

idU ×i0−−−−−→ U × A

induces an isomorphism on the cohomology of C(P )(U × A) for any U ∈ SmVar, i.e. the
cohomology presheaves of C(P ) are homotopy invariant. �

Now we formulate an analogue of Proposition 3.2.3 in [36]. By (F ) we denote a complex
concentrated in degree 0 whose non-zero term is F .

Proposition 5.1.2.

(1) There exists an exact functor R : D−(PreShv(SmCor)) → DPMeff right-adjoint to
the embedding DPMeff → D−(PreShv(SmCor)). Besides R((F )) ∼= C(F ) (see the
definition of C(F ) in [36, 3.2]).

(2) In D−(PreShv(SmCor)) we have R(C(L(P ))) ∼= C(P ) ∼= R((L(P ))).

Proof. (1) The proof is similar to the proof of existence of the projection RC :
D−(Shv(SmCor)) → DMeff

− in 3.2 of [36]. We consider the localizing subcategory A
in D−(PreShv(SmCor)) that is generated by all complexes L(X × A) → L(X) for
X ∈ SmVar. As in [36] we have D−(PreShv(SmCor))/A ∼= DPMeff (cf. Theorem 9.32
of [30]).

Now as in the proof of Proposition 3.2.3 in [36] we should verify the following state-
ments.
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(1) For any F ∈ PreShv(SmCor) the natural morphism C(F ) → (F ) is an isomorphism
in D−(PreShv(SmCor))/A.

(2) For all T ∈ DPMeff and B ∈ A we have D−(PreShv(SmCor))(B, T ) = 0.

The proof of the first assertion may be copied word for word from the similar statement
in 3.2.3 of [36]. This was noted in the proof of Theorem 3.2.6 of [36].

As in [36], for the second assertion we should check for any X ∈ SmVar the bijectivity
of the map

D−(PreShv(SmCor))((L(X)), T ) → D−(PreShv(SmCor))((L(X × A)), T )

induced by the projection X × A → X. Since representable presheaves are projective in
PreShv(SmCor) (obvious from Yoneda’s Lemma, cf. [30, 2.7]), this follows immediately
from the homotopy invariance of the cohomology of C(F ).

(2) From part (2) of Lemma 5.1.3 below we obtain that the morphism (L(P )) → C(P )
induces an isomorphism R((L(P ))) ∼= R(C(P )) in the category D−(PreShv(SmCor)).
Using assertion (1) we obtain that the map C(P ) → (L(P )) induces an isomorphism
R((L(P ))) ∼= R(C(P )). Since R is right-adjoint to an embedding of categories, it remains
to note that C(L(P )), C(P ) ∈ DPMeff . �

Lemma 5.1.3.

(1) R(Cj(P )) = 0 for j < 0.

(2) The morphism iP : (L(P )) → C(P ) induces an isomorphism R((L(P ))) ∼= R(C(P ))
in D−(PreShv(SmCor)).

Proof. (1) We consider the same maps hi : C(P )i(Y × A) → C(P )i−1(Y ) as in the proof
of Lemma 5.1.1. Obviously, hi is epimorphic, besides Ker hi

∼= C(P )i(Y ). We obtain an
exact sequence

0 → C(P )i(Y ) → C(P )i(Y × A) → C(P )i−1(Y ) → 0. (9)

We prove the assertion by induction on j. The case j = −1 follows immediately from
(9) applied for the case i = 0. If R(Cj(P )) = 0 for j = m, then R maps C(P )m and
C ′′(P )m to 0, where C ′′(P )m(Y ) = C(P )m(Y × A). Applying (9) for i = m we obtain
R(C(P )m−1) = 0 (recall that R is an exact functor).

(2) Follows from assertion (1) immediately. �

Now we recall [12, Theorem 8.1] that the cohomology groups of C(L(P ))(Y ) are exactly
A0,−i(Y, P ). Hence we completed the proof of Proposition 1.2.2.
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5.2. Proof of Proposition 1.3.1

Lemma 5.2.1. For all i ∈ Z, P, Y ∈ SmPrVar, the obvious homomorphism

K−(Shv(SmCor))((L(Y )), C(P )[i]) → D−(Shv(SmCor))((L(Y )), C(P )[i])

is bijective.

Proof. By definition the homomorphism considered in the map from the cohomology of
C(P ) = Cc(P ) into its hypercohomology. By Theorem 8.1 of [12] for C(P ) (= Cc(P ))
the corresponding map is bijective. Hence the assertion follows from C(P ) ∼= C(P ) in
D−(PreShv(SmCor)). �

Proposition 5.2.2. iP : (L(P )) → C(P ) induces an isomorphism RC((L(P ))) ∼= C(P )
in DMeff

− .

Proof. Literally repeating the argument of the proof of part (1) of Lemma 5.1.3 we
obtain RC(Cj(P )) = 0 for j < 0. Therefore, RC((L(P ))) ∼= RC(C(P )). It remains to
note that C(P ) ∈ Obj DMeff

− . �

Now we finish the proof of Proposition 1.3.1. The assignment g → G = (gl) defines a
homomorphism

K−(Shv(SmCor))((L(Y )), C(P )[i]) → K−(Shv(SmCor))(C(Y ), C(P )[i]).

Hence it is sufficient to verify that the map

DMeff
− (RC((L(Y ))), C(P )[i]) → DMeff

− (C(Y ), C(P )[i])

induced by this homomorphism coincides with the homomorphism induced by the map
iP∗ : RC(L(Y )) ∼= RC((C(Y ))). Since G ◦ iP∗ = g, we are done.

6. Truncation functors, the length of motives, and K0(DMeff
gm)

In § 6.1 using the canonical filtration of the (cubical) Suslin complex we define the trun-
cation functors tN . These functors are new though certain very partial cases were (essen-
tially) considered in [14] and [16] (there another approaches were used).

The target of t0 is just Kb(Corrrat) (complexes of rational correspondences, see § 1.1).
In § 6.3 we prove that t0 extends to t : DMeff

gm → Kb(Choweff). In § 6.4 we prove that
t induces an isomorphism K0(DMeff

gm) ∼= K0(Choweff) thus answering the question of
3.2.4 of [14]. In Corollary 6.4.3 we extend this result to an isomorphism K0(DMgm) ∼=
K0(Chow).

The functors t (Proposition 6.3.1) and all tN (see Theorem 6.2.1) are conservative.
t induces a natural functor tnum : DMeff

gm → Kb(Moteffnum). Over a finite field tnumQ is
(conjecturally) an equivalence, cf. Remark 8.3.2.

We define the length of a motif: stupid length in § 6.2, fine and rational length in § 6.3.
The stupid length is not less than the fine length, the fine length is not less than the
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rational one. We prove (Theorem 6.2.1) that motives of smooth varieties of dimension
N have stupid length less than or equal to N ; besides tN (X) contains all information
on motives of length less than or equal to N . The length of a motif is a natural motivic
analogue of the length of weight filtration for a mixed Hodge structure.

For a smooth quasi-projective variety X we calculate m−1(M c
gm(X)) explicitly (in

§ 6.5). Using this result we prove that the weight complex of Gillet and Soulé for a smooth
quasi-projective variety X can be described as t0(m−1(M c

gm(X))). Next we recall the cdh-
topology of Voevodsky and prove this statement for arbitrary X ∈ Var (see § 6.6). Besides,
t0(m−1(Mgm(X))) essentially coincides with the functor h described in Theorem 5.10
of [16].

In the next section we will verify that the weight filtration of ‘standard’ realizations
is closely related to tN ; the rational length of a motif coincides with the (appropriately
defined) length of the weight filtration of its singular realization.

6.1. Truncation functors of level N

For N � 0 we denote the −Nth canonical filtration of C(P ) as a complex of presheaves
(i.e. C−N (P )/dP C−N−1(P ) → C−N+1(P ) → · · · → C0(P ) → 0) by CN (P ).

We denote by JN the following differential graded category. Its objects are the sym-
bols [P ] for P ∈ SmPrVar whereas JN ([P ], [Q])i = CNi(Q)(P ). The composition
of morphisms is defined similarly to those in J . For morphisms in JN presented by
g ∈ Ci(Q)(P ), h ∈ Cj(R)(Q), we define their composition as the morphism represented
by hi(g) for i + j � −N and 0 for i + j < −N . Note that for i + j = −N we take
the class of hi(g) mod dRC−N−1(R)(P ); for i = −N , j = 0, and vice versa, g is only
defined up to an element of dQC−N−1(Q)(P ) (respectively h is defined up to an element
of dRC−N−1(R)(Q)) yet the composition is well defined. The boundary on morphisms
is also defined as in J , i.e. for g ∈ JN (P, Q) we define δg = dQg. Certainly, all JN are
negative (i.e. there are no morphisms of degree greater than 0).

We have an obvious functor J → JN . As noted in Remark 2.3.3, this gives canonically
a functor tN : H → Tr(JN ). We denote Tr(JN ) = Tr+(JN ) by HN ; note that H0 is
precisely Kb(Corrrat).

For any m � N we also have an obvious functor JN → Jm. It induces a functor
tNm : HN → Hm such that tm = tNm ◦ tN .

Certainly, one can give a description of HN that is similar to the description of
H given in § 2.5. Hence objects of HN could be represented as certain (P i, fij ∈
CNi−j+1(P j)(P i), i < j � i+N +1), the morphisms between (P i, fij) and (P ′i, f ′

ij) are
represented by certain gij ∈ CNi−j(P ′j , P i), i � j � i + N , etc. The functor tN ‘forgets’
all elements of Cm([P ], [Q]) for P, Q ∈ SmPrVar, m < −N , and factorizes C−N ([P ], [Q])
modulo coboundaries. In particular, for N = 0 we get ordinary complexes over Corrrat.

6.2. ‘Stupid’ length of motives (in DMs); conservativity of t0

It was proved in [36] that the functor Mgm gives a full embedding of Corrrat → DMeff
− .

In this subsection we prove a natural generalization of this statement.
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We will say that P = (P i, fij) ∈ ObjH′ is concentrated in degrees [l, m], l, m ∈ Z,
if P i = 0 for i < l and i > m. We denote the corresponding additive set of objects of
H′ by H′

[a,b]. We denote by H[a,b] the objects of H that are isomorphic to those coming
from H′

[a,b].
Obviously (from the description of distinguished triangles in Tr(C) for any differen-

tial graded D), if A → B → C → A[1] is a distinguished triangle, A, C ∈ H[a,b], then
B ∈ H[a,b].

Theorem 6.2.1.

(1) For any smooth variety Y/k of dimension less than or equal to N we have
m−1(Mgm(Y )) ∈ H[0,N ].

(2) For any smooth variety Y/k of dimension less than or equal to N we have
m−1(M c

gm(Y )) ∈ H[−N,0].

(3) If A ∈ H[a,b], B ∈ H[c,d], N � d − a, N � 0, then H(A, B) ∼= HN (tN (A), tN (B)).

(4) If s ∈ H(X, X) for X ∈ ObjH is an idempotent and t0(s) = 0 then s = 0.

(5) t0 is conservative, i.e. for Y ∈ H we have Y = 0 ⇐⇒ t0(Y ) = 0.

(6) f : A → B is an isomorphism whenever t0(f) is.

Proof. (1) Obviously, the statement is valid for smooth projective Y . We prove the
general statement by induction on dimension.

By the projective bundle theorem (see Proposition 3.5.3 of [36]) for any c � 0 we have
a canonical isomorphism Pc ∼=

⊕
0�i�c Z(i)[2i]. Hence Z(c)[2c] can be represented as a

cone of the natural map Mgm(Pc−1) → Mgm(Pc). Therefore, Z(c)[2c] ∈ m(H[−1,0]).
One can easily show that for any X ∈ H[e,f ], e, f ∈ Z, c > 0 we have X(c)[2c] ∈ H[e−1,f ].

This could be done by presenting X(n)[2n] as a cone of the (naturally defined) map
Pn−1 ⊗ X → Pn ⊗ X; cf. Remark 1.14 of [29] and also § 8.5 below.

We recall the Gysin distinguished triangle (see Proposition 3.5.4 of [36]). For a closed
embedding Z → X, Z is everywhere of codimension c, it has the form

Mgm(X − Z) → Mgm(X) → Mgm(Z)(c)[2c] → Mgm(X − Z)[1]. (10)

Suppose that the assertion is always fulfilled for dimY = N ′ < N .
Let X/k be smooth quasi-projective. Since k admits resolution of singularities, X can

be represented as a complement to a P ∈ SmPrVar of a divisor with normal crossings⋃
i�0 Qi. Then using (10) one proves by induction on j that the assertion is valid for all

Y j = P \ (
⊔

0�i�j Qi). To this end we check by the inductive assumption for j � 0 that

Mgm

(
P \

( ⋃
0�i�j

Qi

)
\
(
P \

( ⋃
0�i�j+1

Qi

)))
= Mgm

(
Qi+1\

( ⋃
0�i�j

Qj

))
∈ m(H[0,N−1]).

Hence Mgm(X) ∈ m(H[0,N ]).
If X is not quasi-projective we can still choose closed Z ⊂ X (of codimension greater

than 0) such that X − Z is quasi-projective. Hence the assertion follows from the induc-
tive assumption by applying (10).
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(2) The proof is similar to those of the previous part. The difference is that we do not
have to twist and should use the distinguished triangle of Proposition 4.1.5 of [36]:

M c
gm(Z) → M c

gm(X) → M c
gm(X − Z) → M c

gm(Z)[1] (11)

instead of (10).

(3) We can assume (by increasing d if needed) that N = d − a.
Let A = (P i, fij), B = (P ′i, f ′

ij). As we have seen in § 2.5, any g ∈ H(A, B) is given
by a certain set of gij ∈ Ci−j(P ′j)(P i), i � j. The same is valid for h = (hij) ∈
HN (tN (A), tN (B)); the only difference is that had is given modulo dP ′dC−N−1(P ′d)(P a).
Both (gij) and (hij) should satisfy the conditions

δi−j
P ′j (mij) +

∑
j�l�i

f ′i−l
lj (mil) =

∑
j�l�i

mi−l+1
lj (fil) ∀i, j ∈ Z. (12)

First we check surjectivity. We recall that the conditions (12) for g depend only on gij

for (i, j) �= (a, d) and on dP ′dgad. Hence if (hij) satisfies the conditions (12) then h =
tN (r), where rij = hij for all (i, j) �= (a, d), rad is an arbitrary element of C−N (P ′d)(P a)
satisfying rad mod dP ′dC−N−1(P ′d)(P a) = had.

Now we check injectivity. Let tN (g) = 0 for g = (gij) ∈ H′(A, B). Note that CN (P ) is
a factor-complex of C(P ) for any P ∈ SmPrVar. Hence similarly to § 2.5 one can easily
check that there exist lij ∈ Ci−j−1(P ′j)(P i), i � j, such that

gij = δi−j−1
P ′j lij +

∑
i�r�j

(f ′i−r−1
rj (lir) + li−r+1

rj (fir)) (13)

for all (i, j) �= (a, d), for i = a, j = d the equality (13) is fulfilled modulo dP ′dq for some
q ∈ C−N−1(P ′d)(P a). We consider (l′ij), where l′ij = lij for all (i, j) �= (a, d), l′ad = lad+q.
Obviously, if we replace (lij) by (l′ij) then (13) would be fulfilled for all i, j. Therefore,
g = 0 in H(A, B).

(4) Let X = (P i, fij) be as in § 2.5; let s be given by a set of sij ∈ J i−j([P i], [P j ]),
i � j; (sij) are defined up to a homotopy of the sort described in § 2.5. t0(s) is homotopic
to zero. Since this homotopy can be represented by a set of mi ∈ SmCor(P i, P i−1) =
J0([P i], [P i−1]), we can lift this homotopy to H. This means that we take lij = mi for
j = i − 1, lij = 0 for j �= i − 1, where l is as in (6); this allows us to assume that sii = 0.
Next, since s2 = s in H, we have sn = s for any n > 0. Now note that all degrees of
components of sn are less than or equal to −n. Hence sr = 0 if X ∈ H[a,b] for r > b − a.

(5) Immediate from assertion (4) applied to X = Y and s = idY .

(6) Follows immediately from assertion (5) (recall that a morphism is an isomorphism
whenever its cone is zero). �

In fact, for a smooth quasi-projective X one can compute M c
gm(X) explicitly (see

Proposition 6.5.1 below).
We say that X ∈ H has stupid length less than or equal to N if for some l ∈ Z,

m � l + N , the motif X ∈ H[l,m]. We will define the fine length of a motif below.
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Remark 6.2.2.

(1) In fact, surjectivity (but not injectivity) in part (3) is also valid for d − a = N + 1.
The proof is similar to those for the case d − a = N . We should choose rad, ra+1,d,
and ra,d−1; the classes of ra+1,d and ra,d−1 modulo coboundaries are fixed. This
choice affects the equality (12) only for i = a, j = d. Note also that this equality
only depends on dP ′drad. One can choose arbitrary values of ra+1,d and ra,d−1 in
the corresponding classes. Then the equality (12) with rad = 0 will be satisfied
modulo dP ′dq for some q ∈ C−N−1(P ′d)(P a). Therefore, if we take rad = q then
tN (r) = h.

(2) Let A ∈ H[a,b], B ∈ H[c,d], N + 1 � d − a, N � 0. Then one can check that A ∼= B

if and only if tN (A) ∼= tN (B).

Indeed, if f : A → B is an isomorphism then tN (f) also is.

Conversely, let fN : tN (A) → tN (B) be an isomorphism. Then, as was noted
above, there exists an f ∈ H(A, B) such that fN = tN (f) (f is not necessarily
unique). Since tN (F ) is an isomorphism, t0(f) = tN0(tN (f)) also is. From part (6)
of Theorem 6.2.1 we obtain that f gives an isomorphism A ∼= B.

It follows immediately that two objects A, B ∈ H of stupid length less than or equal
to N + 1 are isomorphic whenever tN (A) ∼= tN (B).

(3) One could define HN,[0,N ] ⊂ HN similarly to H[0,N ]. Then tN would give an equiv-
alence of additive categories H[0,N ] → HN,[0,N ]. Indeed, this restriction of tN is
surjective on objects; it is an embedding of categories by part (3) of Theorem 6.2.1.

6.3. Fine length of a motif (in DMeff
gm); conservativity of

the weight complex functor t : DMeff
gm → Kb(Choweff )

One can check (using the method of the proof of Proposition 6.4.1 below) that the
stupid length of a motif M ∈ Obj DMs coincides with the length of t0(M) ∈ Kb(Corrrat).
Yet replacing Kb(Corrrat) by Kb(Choweff) one can obtain a more interesting invariant
which will be defined on the whole Obj DMeff

gm.

Proposition 6.3.1.

(1) t0 can be extended to an exact functor t : DMeff′
gm → Kb(Choweff) where DMeff′

gm is
the idempotent completion of H.

(2) t is conservative.

Proof. (1) t0 can be canonically extended to an exact functor from DMeff′
gm to the idem-

potent completion of Kb(Corrrat). It remains to note that the idempotent completion of
Kb(Corrrat) is exactly Kb(Choweff) (see, for example, Corollary 2.12 of [1]).

(2) Immediate from part (4) of Theorem 6.2.1. �
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Remark 6.3.2.

(1) Exactly the same arguments yield that there exists a functor t0 ⊗ Q : H ⊗ Q →
Kb(Corrrat ⊗ Q) that can be extended to a conservative tQ : DMeff′

gm Q →
Kb(Choweff

Q).

(2) Since H ∼= DMs, we have DMeff′
gm

∼= DMeff
gm. For this reason we will usually identify

these categories.

(3) Composing t (or tQ) with the natural functor Choweff → Moteffnum (respectively
Choweff

Q → Moteffnum Q) one gets a functor tnum : DMeff
gm → Kb(Moteffnum) (respec-

tively tnumQ : DMeff
gm Q → Kb(Moteffnum Q)). These functors can be easily extended

to functors DMgm → Kb(Motnum) and DMeff
gm Q → Kb(Motnum Q). Here Motnum

(and Moteffnum) denotes the category of (effective) numerical motives; note that
Motnum Q is an abelian category (see [23]). Yet in order to obtain the ‘correct’
structure of Kb(Motnum Q) (i.e. those compatible with ‘standard’ realizations) one
needs Kunneth projectors for numerical motives; currently they are known to exist
only over a finite field (see § 8.3). Moreover, one cannot prove that tnumQ is con-
servative without assuming certain ‘standard’ conjectures (cf. Proposition 8.3.1).
See also part (2) of Remark 8.3.2 below for further discussion in the case when k

is finite.

Note also: if numerical equivalence of cycles coincides with homological equivalence
(a standard conjecture!) then the cohomology of tnumQ(X) computes the (pure)
weight factors of étale (and singular) cohomology of X; see § 7.4 below. This gen-
eralizes to (weight complexes of) motives Remark 3.1.6 of [14].

Definition 6.3.3.

(1) For M ∈ Obj DMeff
gm we write M ∈ DMeff

gm[a,b] if t(M) ∼= W for a complex W of
Chow motives concentrated in degrees [a, b].

(2) We define the fine length of M as the smallest difference b − a such that
M ∈ DMeff

gm[a,b].

(3) The rational length of a motif M is the length of t(M) ⊗ Q ∈ Kb(Choweff
Q)

(Choweff
Q is the idempotent completion of Choweff ⊗Q!).

Obviously, the fine length of M ∈ Obj DMs is not greater than its stupid length and
not less than its rational length. Note also that the fine length of Z(n) is 0. Besides, we
also have the sets DMeff

gm[a,b],Q ⊂ Obj DMeff
gm Q for each a � b ∈ Z.

The length of a motif is a natural motivic analogue of the length of weight filtration of
a mixed Hodge structure or of a geometric representation (i.e. of a representation coming
from the étale cohomology of a variety). Note that even the stupid length of the motif
of a smooth variety is not larger than its dimension; this is a motivic analogue of the
corresponding statement for the weights of singular and étale cohomology.

The results of the next section along with Proposition 6.4.1 easily imply (see § 7.4)
that the length of the weight filtration of the singular or étale cohomology of a motif
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M is not greater than the fine length of M . Moreover, the standard conjectures imply
that M ∈ DMeff

gm[a,b],Q if and only if for any l the weights of H l(M) (singular or étale
cohomology) lie between l + a and l + b (see § 7.4 below).

6.4. The study of K0(DMeff
gm) and K0(DMgm)

We recall some standard definitions (cf. [14, 3.2.1]). We define the Grothendieck group
K0(Choweff) as a group whose generators are of the form [A], A ∈ Obj Choweff ; the
relations are [C] = [A] + [B] for C ∼= A ⊕ B ∈ Obj Choweff . Note that A ⊕ 0 ∼= A implies
[A] = [B] if A ∼= B. We use the same definition for K0(Chow).

The K0-group of a triangulated category T is defined as the group whose generators
are [t], t ∈ ObjT ; if A → B → C → A[1] is a distinguished triangle then [B] = [A] + [C].
Note that this also immediately implies [A] = [B] if A ∼= B.

The existence of t allows to calculate K0(DMeff
gm) easily. To this end we prove the

following statement.

Proposition 6.4.1. For X ∈ Obj DMeff
gm if X ∈ DMeff

gm[a,b] then X is a direct summand
of some X ′ ∈ H[a,b].

Proof. The proof is similar (and generalizes) those of part (4) of Theorem 6.2.1.
Suppose that X is a direct summand of an object Y = (P i, fij) of H of length r; X

is given by an idempotent endomorphism s = (sij) of Y . It suffices to verify that Y is a
direct summand of X ′ = Y[a,b] (see Proposition 2.6.1).

Similarly to the proof of part (4) of Theorem 6.2.1, we can assume that sii = 0 for
i > b and i < a. Indeed, sii = 0 is ‘homotopic to 0 outside of [a, b]’, whereas we can alter
sii by f0

i−1i(lii−1) + l0i+1i(fii+1) for any set of lkk−1 ∈ C0(P k, P k−1) (see (6)).
Again we have s = sn for any n. If we replace s by sr+1 we easily obtain that sij = 0

for i > b, j > b and i < a, j < a.
Obviously, it suffices to check that (for the new choice of s):

(1) arrows (sij , a � i � b) give a morphism s′ ∈ H(Y[a,b], Y );

(2) (sij , a � j � b) give a morphism s′′ ∈ H(Y, Y[a,b]);

(3) s = s′′s′ (in H).

(1) We have to check all equalities (5) for s′. Both sides of (5) belong to Jj−i+1([P i], [P j ])
for some i, j, a � i � b. Since the components of s′ are taken from s, we only have to
compare the differences for both sides for i, j � a (for other values of i, j both sides are
zero for s′). The only summands in (5) for i, j that distinguish s from s′ are those of the
form si−l+1

lj (fil) for l > b. Yet in these cases slj = 0 by our assumption.

(2) This is proved similarly.

(3) In J ′ we have s2 = s′s′′ + (s′′ + s′)d + d(s′′ + s′) + d2, where the components of d are
morphisms in J([P i], [P j ]) for i < a, j > b. It remains to note that all (possible) degrees
of arrows in (s′′ + s′)d + (s′ + s′′)d are positive and d2 = 0. �
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Theorem 6.4.2. t induces an isomorphism K0(DMeff
gm) ∼= K0(Choweff).

Proof. Since t is an exact functor, it gives an abelian group homomorphism a :
K0(DMeff

gm) → K0(Kb(Choweff)). By Lemma 3 of 3.2.1 of [14], there is a natural isomor-
phism b : K0(Kb(Choweff)) → K0(Choweff). The embedding i : Choweff → DMeff

gm (see
Proposition 2.1.4 of [36]) gives a homomorphism c : K0(Choweff) → K0(DMeff

gm). The
definitions of a, b, c imply immediately that b ◦ a ◦ c = idK0(Choweff ). Hence a is surjec-
tive, c is injective.

It remains to verify that c is surjective.
We claim that if t(X) = P i → P i+1 → · · · → P j , P l ∈ Obj Choweff , then the class

[X] ∈ K0(DMeff
gm) equals

∑
(−1)l[P l].

We prove this fact by induction on the (fine) length of X. The length one case follows
immediately from Proposition 6.4.1 (conservativity of t could be considered as a partial
case of it).

To make the inductive step it suffices to show the existence of a morphism l : P j [−j] →
X in DMeff

gm that gives the obvious morphism of complexes after we apply t to it. Indeed,
then the length of the cone of l would be less than j − i (cf. part (4) of Proposition 2.6.1).

By Proposition 6.4.1, X is a direct summand of some X ′ ∈ H[i,j]. Hence the existence
of l follows from part (3) of Theorem 6.2.1. �

Now we recall that Choweff is a tensor category and the functor ⊗Z(1) : Choweff →
Choweff is fully faithful. Chow is usually defined as the ‘union’ of Choweff(−i) while each
Choweff(−i) is isomorphic to Choweff , i.e. Chow = lim−→⊗Z(1)

Choweff .
Besides, the same is true for DMeff

gm ⊂ DMgm, see § 4. Hence the embedding i :
Choweff → DMeff

gm extends to i′ : Chow → DMgm.

Corollary 6.4.3. i′ induces an isomorphism K0(Chow) → K0(DMgm).

Proof. The definitions easily imply that K0(Chow) = K0(Choweff)[Z(1)]−1 and
K0(DMgm) = K0(DMeff

gm)[Z(1)]−1. Now Theorem 6.4.2 yields the claim immediately.
Note that i′(Z(−1)) = Z(−1)! �

Remark 6.4.4. Note that the categories Choweff ⊂ DMeff
gm have compatible tensor

categories structures. Hence their K0-groups are actually rings, whereas the isomorphism
constructed is an isomorphism of rings.

The same is true for Chow ⊂ DMgm.

6.5. Explicit calculation of m−1(Mc
gm(X)); the weight complex of smooth

quasi-projective varieties

Let M c
gm(X) for X ∈ SmCor denote the motif of X with compact support (cf. § 2.2 or

§ 4.1 of [36]).

Proposition 6.5.1. For a smooth quasi-projective X/k let j : X → P be an embedding
for P ∈ SmPrVar, let P \X =

⋃
Yi, 1 � i � m, be a smooth normal crossing divisor. Let

Ui =
⊔

(ij) Yi1 ∩ Yi2 ∩ · · · ∩ Yir
for all 1 � i1 � · · · � ir � m, U0 = P . We have r natural

maps Ur → Ur−1. We denote by dr their alternated sum (as a finite correspondence). We
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consider Q = (Qi, fij), where Qi = U−i for 0 � i � −m, P i = 0 for all other i; fij = di

for 0 > i � −m, j = i + 1, and fij = 0 for all other (i, j). Then M c
gm(X) ∼= m(Q).

Proof. Let j∗ denote the natural morphism M c
gm(P ) = Mgm(P ) → M c

gm(X) (see [36,
4.1]). Then by Proposition 4.1.5 in [36] the cone of j∗ is naturally isomorphic to
M c

gm(R0) = Mgm(R0), where R0 =
⋃

Yi (note that R0 is proper). Hence our asser-
tion is equivalent to the statement that C(R) ∼= 0, here C denotes the Suslin complex
of R,

R = L(Um) dm∗−−→ L(Um−1)
dm−1∗−−−−→ · · · d2∗−−→ L(U1) → L(R0).

The acyclicity of C(R) could be called ‘multi-Mayer–Vietoris’. Its proof is quite similar
to the corresponding part of the proof of Theorem 3.2.6 of [36]. By Theorem 5.9 of [35]
it suffices to check that R is acyclic. We can verify this by applying Proposition 3.1.3
of [36] for the covering {Yi → R0}. See also Lemma 7.1 of [33]. �

We also get an explicit presentation of M c
gm(X) as a complex over SmCor (this corre-

sponds to the first description of DMeff
gm in [36]). The terms of the complex are (motives

of) smooth projective varieties.

Remark 6.5.2.

(1) Applying Proposition 6.5.1 along with the statements of § 7.3 below we get a nice
machinery for computing cohomology with compact support. Moreover, Proposi-
tion 6.5.1 appears to be connected with the Deligne’s definition of (mixed) Hodge
cohomology of smooth quasi-projective X. This is no surprise (cf. § 7.4 below); yet
a deeper understanding of this matter could improve our understanding of cohom-
ology.

(2) Using Proposition 6.5.1 along with Theorem 3.1.1 one can write an explicit formula
for DMeff

− (M c
gm(X), M c

gm(Y )) for smooth quasi-projective X, Y/k.

Using § 4.3 of [36] one can also calculate DMeff
− (Mgm(X), Mgm(Y )). Indeed, if

dim X = m, dimY = n, X, Y are smooth equidimensional, then (in the cate-
gory of geometric motives DMgm)

DMeff
− (Mgm(X), Mgm(Y )) = DMgm(Mgm(Y )∗, Mgm(X)∗)

= DMgm(M c
gm(Y )(−n)[−2n], M c

gm(X)(−m)[−2m])

= DMgm(M c
gm(Y )(m)[2m], M c

gm(X)(n)[2n]),

see § 8.5 for the discussion on Z(r)[2r].

In § 2 of [14] for any X/k a certain weight complex W (X) of Chow motives was defined.
In order to make the notation of [14] compatible with ours we reverse the arrows in
the category of Chow motives. Thus we consider homological Chow motives instead of
cohomological ones considered in [14]. We have W (X) ∈ K−(Choweff).

Let m−1 denote the equivalence of DMs ⊂ DMeff
− with H inverse to m.
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Corollary 6.5.3. For any smooth quasi-projective X/k we have t0(m−1(M c
gm(X))) ∈

Kb(Corrrat) ∼= W (X) (in K−(Choweff)).

Proof. By Proposition 2.8 of [14] the weight complex of X is isomorphic to the image in
Kb(Choweff) ⊂ K−(Choweff) of the complex U defined in Proposition 6.5.1 (with arrows
reversed). �

6.6. cdh-hypercoverings; the weight complex of Gillet and Soulé for
arbitrary varieties

We recall one of the main tools of [36] (cf. Definition 4.1.9); it allows to do computations
with motives of non-smooth varieties.

Definition 6.6.1. cdh-topology is the smallest Grothendieck’s topology such that both
Nisnevich coverings and coverings of the form X ′ ∐ Z → X are cdh-coverings; here p :
X ′ → Z is a proper morphism, i : Z → X is a closed embedding, and the morphism
p−1(X − i(Z)) → X − i(Z) is an isomorphism.

By Lemma 12.26 of [30], proper cdh-coverings are exactly envelopes in the sense of
1.4.1 of [14]. Therefore, a hyperenvelope in the sense of [14] is exactly the same thing as a
proper cdh-hypercovering. We recall that a cdh-hypercovering is an augmented simplicial
variety X. such that each Xi → (coski−1ski−1(X))i is a cdh-covering.

We introduce the category Schprop. Its objects are varieties over k, its morphisms are
proper morphisms of varieties.

In [14] the weight complex functor W : Schprop → Kb(Choweff) was defined in the
following way. The weight complex for a simplicial smooth projective variety T was
defined (up to the reversion of arrows) as T0 → T1 → T2 → · · · ; the boundary maps were
given by alternated sums of face maps. Recall that we reverse arrows in W (T )!

For X ∈ Var a proper Y ⊃ X was chosen; Z = Y − X. It was shown in [14] that
there exist hyperenvelopes Z. of Z, Y. of Y , and a simplicial closed embedding Z. → Y.

extending the map Z → Y , whereas the terms of Z. and Y. are smooth projective varieties.
Then W (X) was defined as the cone of W (Z.) → W (Y.) (if we reverse arrows). By means
of comparing different hyperenvelopes Gillet and Soulé showed that W (X) is well defined
as an object of Kb(Corrrat) and gives a functor Schprop → Kb(Corrrat).

Proposition 6.6.2. The functor t0(m−1(M c
gm(X))) : Schprop → Kb(Corrrat) is equiva-

lent (after we reverse all arrows) to the functor W .

Proof. We recall that to compare t0 ◦ m−1 ◦ M c
gm with the functor of Gillet and Soulé

we should fix some choice of m−1 ◦ M c
gm (a priori the latter one is only defined up to

an isomorphism, cf. Remark 3.1.2). So first we should check that t0(m−1(M c
gm(X))) is

isomorphic to the weight complex of X defined in [14]; this does not require any choices.
Since Y. → Y is a cdh-hypercovering, the cdh-sheafification of the corresponding com-

plex L(Y.) → L(Y ) is quasi-isomorphic to 0. Then Theorem 5.5 of [12] shows that
C(Y.) ∼= C(Y ). Hence C(Y.) calculates Mgm(Y ). The same is true for Z.
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By Proposition 4.1.5 of [36] there exists a distinguished triangle

Mgm(Z)(= M c
gm(Z)) → Mgm(Y )(= M c

gm(Y ))
j−→ M c

gm(X) → Mgm(Z)[1]

in DMeff
gm. Hence we obtain that t0(m−1(M c

gm(X))) ∼= W (X) (in K−(Choweff)).
The definitions imply that W and t0(m−1(M c

gm(X))) coincide as functors on the cat-
egory of proper smooth varieties (cf. Remark 3.1.2). In order to compare the functors
in general we can define m−1 ◦ M c

gm using the method of § 2 of [14] (see the descrip-
tion above). It can be easily seen that this method allows to lift W (X) to a functor
W ′ : Schprop → H which (as we have just proved) can be identified with m−1 ◦ M c

gm.
Certainly, in order to prove that W ′ is well defined one should replace the usage of the
Gersten acyclicity (i.e. of Proposition 2 of 1.4.3 of [14]) in the proof of Theorem 2 of [14]
by the usage of Theorem 5.5 of [12]. �

Remark 6.6.3.

(1) In Theorem 5.10 of [16] also a certain functor h : Schk → Kb(Choweff) was con-
structed (Schk is the category of varieties over k). It can be shown that h is equiva-
lent to the restriction of t : DMeff

gm → Kb(Choweff) to motives of varieties (see § 6.4
for the definition of t).

(2) In § 2 of [14] it was shown that any two different representatives Wi of W (X)
(considered as complexes over SmCor) could be connected by a chain of certain
homomorphisms hi of complexes of smooth projective varieties. Gillet and Soulé
proved that hi induce isomorphisms on the level of Kb(Corrrat). The main technical
tools were Proposition 2 and Theorem 1 of § 1 of [14] showing that hyperenvelopes
give quasi-isomorphisms of complexes of Chow motives.

To any such Wi we can associate an object of H. Since t0(hi) is an isomorphism,
the corresponding map of motives will be an isomorphism too, see part (6) of
Theorem 6.2.1.

Hence one can prove that the method of [14] gives a well-defined motif without
using the cdh-descent reasoning above.

(3) More generally, one can easily define Voevodsky’s motives of Deligne–Mumford
stacks (i.e. stacks coming from quotients of varieties by finite groups) over k. For a
finite G, #G = n, acting on a variety X/k one can take

Mgm(X/G)Q = aG∗Mgm(XQ) ∈ DMeff
gm Q

and

M c
gm(X/G)Q = aG∗M

c
gm(XQ) ∈ DMeff

gm Q.

Here aG is the idempotent correspondence∑
g∈G g

n
: X → X.
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As we have noted above there exists a conservative exact weight complex functor
tQ : DMeff

gm Q → Choweff
Q (with properties similar to those of t). Certainly, for G =

{e} we will have tQ(Mgm(X/G)) = t(Mgm(X)) and tQ(M c
gm(X/G)) = t(M c

gm(X)).
Besides, it is most probable that tQ(M c

gm(X/G)) would coincide with the weight
complex for X/G defined by Gillet and Soulé (see Proposition 14 of [15]). Indeed,
both of these weight complexes could be calculated using proper hypercoverings
of X/G. So it seems that the method of the proof of Proposition 6.6.2 could be
extended to this case. Still the details of the proof of the isomorphness (as well as
of [15]) have to be written out.

7. Realizations of motives; weight filtration; the spectral sequence of motivic
descent

One of the main parts of the theory of motives is the problem of constructing and studying
different realizations, i.e. exact functors DMs → T for T being a triangulated category.
Some authors consider functors from the category of (smooth) varieties to T , yet usually
those functors can be factorized through DMs (cf. [21,27]).

In § 7.1 we recall that any differential graded functor from J gives a realization of
H (and DMs). This method of constructing realizations is a vast generalization of the
method described in 3.1.1 of [14]. We call realizations that could be constructed from
differential graded functors enhanceable realizations; this class seems to contain all ‘stan-
dard’ realizations as well as all representable functors for the category of motives (cf. § 7.2
and part (1) of Remark 7.3.1). In particular, in § 7.2 we verify that the étale cohomology
realization is enhanceable; a reader who believes in this fact could skip this subsection.

For any enhanced realization D in § 7.3 we define a family of truncated realizations.
One could say that truncated realizations correspond to ‘forgetting cohomology outside a
given range of weights’. In particular, for ‘standard’ realizations and motivic cohomology
one obtains an interesting new family of realizations this way.

In § 7.3 we also prove that truncated realizations of length N could be factorized
through tN ; they give a filtration on the natural complex that computes D. We obtain
a spectral sequence S converging to D(Y ) for a motif Y . S could be called the spectral
sequence of motivic descent (note that the usual cohomological descent spectral sequences
compute cohomology of varieties only). For the cohomology with compact support of a
variety S is very similar to the spectral sequence considered in 3.1.2 of [14]; yet the origin
of S is substantially different from those of the mentioned one. Besides we do not need
the sheaves to be torsion as one does for étale cohomology. En(S) could be expressed in
terms of t2n−2(Y ) (see [15]); in particular, E1-terms depend only on t0(Y ) and have a
nice description in terms of cohomology of smooth projective varieties. S gives a canonical
weight filtration on a wide class of cohomological functors; for the ‘standard’ realizations
this filtration coincides with the usual one (with indices shifted).

We note that (as an easy partial case of our results) we get a canonical ‘weight’ filtra-
tion on the motivic cohomology of any variety and the corresponding ‘weight’ spectral
sequence for it. S (and the filtration) is ‘motivically functorial’; they are also functorial
with respect to ‘enhanced’ transformations of functors (this includes regulator maps).
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In § 7.4 we verify that the our definition of weights gives classical weights for ‘standard’
realizations (at least, rationally). Moreover, if W denotes the weight filtration on Hi(X)
then Wl+NHi(X)/Wl−1H

i(X) is exactly the corresponding truncated realization; hence
it factorizes through tN . A morphism f induces a zero morphism on cohomology if t0(f)
is zero. We also prove that the rational length of X ∈ DMeff

gm coincides with the ‘range’
of difference of l with the weights of H l(X) for all l (cf. Proposition 7.4.2). If we assume
certain ‘standard’ conjectures then there would be an equality, see Proposition 7.4.2.

We conclude the section by the discussion of qfh-descent cohomology theories and
qfh-motives of (possibly) singular varieties. It turns out that a wide class of realizations
(including ‘standard’ ones) are ‘qfh-representable’ (hence they are enhanceable realiza-
tions of DMs). Moreover, the qfh-motif of a (not necessarily smooth) variety gives ‘right
values of standard realizations’.

7.1. Realizations coming from differential graded functors
(‘enhanceable’ realizations)

We consider the problem of constructing and studying different realizations of motives,
i.e. exact functors DMs → T for T being a triangulated category. Our description of DMs

gives us a simple recipe for constructing realizations. Any differential graded functor F :
J → X for a differential graded category X gives an exact functor Tr+(F ) : H → Tr+(X)
(and hence also a functor H → Tr(X)), cf. Remark 2.3.3. It can be easily seen that Tr+(F )
can be factorized through tN if t(J l([Y ], [Z])) = 0 for any Y, Z ∈ SmPrVar, l < −N .
This is always true if X l = 0 for l < −N . One can also note that all functors factorizing
through tN could be reduced (in a certain sense) to functors of such sort.

We will say that F gives an enhancement of the realization Tr+(F ); a realization that
possesses an enhancement could be called enhanceable. Obviously, any differential graded
transformation of enhancement induces an exact transformation of realizations. We will
mostly consider contravariant functors F .

Note that for N = 0, X being equal to S(A) for A an abelian category (see the
definition of S(A) in § 2.1), our construction of Tr+(F ) essentially generalizes to motives
the recipe proposed in 3.1.1 of [14] for cohomology of varieties with compact support (cf.
also [16]).

Note lastly that any exact functor DMs → T can be uniquely extended to an exact
functor from DMeff

gm to the idempotent completion of T .

7.2. ‘Representable’ contravariant realizations; étale cohomology

Now we verify that a large class of realizations are enhanceable; this includes étale
cohomology.

To this end we describe a recipe for constructing a rich family of contravariant differen-
tial graded functors from J . Let A be a Grothendieck topology stronger than Nisnevich
topology (for example, étale topology). We consider the category Shv(SmCor)A (i.e. the
morphisms are those of SmCor, coverings are those of A); let C(Shv(SmCor)A) denote
the category of (unbounded) complexes over Shv(SmCor)A. We suppose that for any
X ∈ SmCor the representable presheaf L(X) = SmCor(−, X) is a sheaf. We denote by
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D(Shv(SmCor)A) and DMeff
A the categories of unbounded complexes over Shv(SmCor)A

that are similar to the corresponding categories of [36] (i.e. derived category of complexes
of sheaves, respectively derived category of complexes of sheaves with homotopy invariant
cohomology). We also consider the categories K(Shv(SmCor)A) and B(Shv(SmCor)A)
that are unbounded analogues of K−(Shv(SmCor)A) and B−(Shv(SmCor)A) (cf. § 2.1)
respectively.

Now we verify that the étale cohomology realization is enhanceable in the case when
K has finite étale cohomological dimension. Let Y ∈ C+(Shv(SmCor)A) be a complex of
injective sheaves with transfers bounded from below with homotopy invariant hypercoho-
mology (we need the hypercohomology condition if A �= Nis). Now we consider C(L(X))
for X ∈ SmVar. Since C(L(X)) is quasi-isomorphic to C(L(X)), for any i ∈ Z we have

D(Shv(SmCor)A)(C(L(X)), Y [i]) = D(Shv(SmCor)A)(C(L(X)), Y [i]).

Since the correspondence (F ) → C(F ) defines a functor RCA which is left-adjoint
to the embedding DMeff

A → D(Shv(SmCor)A) (cf. Proposition 3.2.3 of [36]), Y ∈
D(Shv(SmCor)A), we have

D(Shv(SmCor)A)(C(L(X)), Y [i]) = D(Shv(SmCor)A)(L(X), Y [i]).

Let Z ∈ ObjH = ObjJ ′ satisfy m(Z) ∼= Mgm(X) = C(L(X)) (in D−(Shv(SmCor))
and so also in D(Shv(SmCor)A), cf. Corollary 3.2.1). Since the terms of Y are injective
sheaves, we conclude that

H−i(Y )(X) = K(Shv(SmCor)A)(L(X), Y [i]) ∼= K(Shv(SmCor)A)(h(Z), Y ).

Moreover, the complex B(Shv(SmCor)A)(h′(Z ′), Y ) computes the complex Y (X) up to
a quasi-isomorphism (see the definitions of § 2.5).

Now we describe how the formalism of § 2 can be applied to the computation of
B(Shv(SmCor)A)(h′(Z), Y ). We have a contravariant functor Y ∗ : J → C(Ab) that maps
[P ] ∈ ObjJ to B(Shv(SmCor)A)(C(P ), Y ). Let a : J ′ = Pre-Tr J → B(Shv(SmCor)A)
denote the differential graded functor induced by the embedding J → B−(Shv(SmCor)A),
cf. Remark 2.3.3 and Proposition 2.2.3. Since Y ∗ = B(Shv(SmCor)A)(−, Y )◦a, we obtain
that

B(Shv(SmCor)A)(h′(Z), Y ) ∼= Pre-Tr(Y ∗)(Z).

Here Pre-Tr(Y ∗) denotes the extension of Y ∗ to J ′, cf. Remark 2.3.3.
For example, we can take A being the étale site. Y could be an injective resolution of

Z/nZ (or a resolution of any other étale complex C with transfers with homotopy invari-
ant hypercohomology) by means of étale sheaves with transfers. By Proposition 3.1.8 and
Remark 2 preceding Theorem 3.1.4 in [36] the cohomology of Y (L(X)) for X ∈ SmVar
will compute the ‘usual’ étale hypercohomology (i.e. in the category of sheaves with-
out transfers) of C restricted to X. Hence Tr(Y ∗) gives the corresponding realization
of motives. We obtain that in order to compute the étale realization of motives (with
coefficients in Z/nZ(r) for any n > 0, r � 0) it suffices to know the restriction of the
corresponding ‘representable functor’ to the subcategory of Shv(SmCor)A consisting of
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sheaves of the form Ci(P ) for P ∈ SmPrVar. Note also that we can compute morphisms
in the category of presheaves with transfers.

If C is a complex of cdh-sheaves (see § 6.6) with transfers then the cohomology of
Y (L(X)) for X ∈ SmVar will compute the cdh-hypercohomology of C restricted to
X for any X/k. Yet cdh-topology is not subcanonical; cdh-hypercohomology does not
necessarily coincides with ‘usual’ hypercohomology of C. For the computation of ‘usual’
cohomology for singular varieties the qfh-topology seems to be more useful; see § 7.5
below.

One can check that the Galois action on Hi
et(X ×Spec k Spec k̄, Z/nZ), where k̄ is the

algebraic closure of k, n is prime to the characteristic of k, could be expressed in terms of
our formalism. Indeed, isomorphisms in the derived category corresponding to the Galois
action can be extended to an injective resolution of Z/nZ. Therefore, all statements of
this section are valid for étale realization with values in Galois modules.

A similar method for constructing the étale realization (without using the formalism of
differential graded categories) was described in [21] (see the reasoning following Propo-
sition 2.1.2). In the next subsection we describe a general method of obtaining weight
filtrations for realizations.

It seems that the same method can be applied to other ‘classical’ realizations including
the ‘mixed realization’ one. Yet filling out the details is rather hard. Fortunately, one can
avoid this by applying the weight structure formalism of [7]; see Remark 7.4.4 below.

7.3. The spectral sequence of motivic descent; weight filtration of
realizations; the connection with tN

Now we consider a contravariant functor F : J → B(A) for an abelian A. We denote
the functor Pre-Tr(F ) : J ′ → B(A) by G, denote Tr(F ) : H → K(A) by E.

It seems very probable that one can ‘enhance’ all ‘classical’ realizations this way (pos-
sibly, for a ‘large’ A). Besides, it practice it usually suffices to consider functors whose
targets are categories of complexes bounded (at least) from one side.

The constructions of this subsection use the results of § 2.7 heavily.
We recall that for a complex X over A, a, b ∈ Z, a � b, its canonical [a, b]-truncation

is the complex

Xa/dXa−1 → Xa+1 → · · · → Xb−1 → Ker(Xb → Xb+1),

here Ker(Xb → Xb+1) is put in degree b; for a = b we take Ha(X). We also consider
truncations of the type τ�b (i.e. truncations from above).

For any b � a ∈ Z we consider the following functors (see § 2.7). By Fτ�b
we denote the

functor that sends [P ] to τ�b(F ([P ])). By Fτ[a,b] we denote the functor that sends [P ] to
τ�b(F ([P ]))/τ�a−1(F ([P ])). For N = a−b we consider the functor Fb,N that sends [P ] to
the [a, b]th canonical truncation of F ([P ]). These functors are differential graded; hence
they extend to Gb = Pre-Tr(Fτ�b

) : J ′ → B−(A), Gb
N = Pre-Tr(Fb,N ) : J ′ → Bb(A),

and Ga,b = Pre-Tr(Fτ[a,b]) : J ′ → Bb(A). We recall that Ga,b and Gb
N are connected by

a canonical functorial quasi-isomorphism, see part (2) of Proposition 2.7.3. The reason
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for considering both of them is that the functors Ga,b are more closely related to the
spectral sequence (14) below whereas Gb

N behave better with respect to tN .
We denote Tr(Fb,N ) : H → Kb(A) by F b

N . Since Fb,N is concentrated in degrees [b −
N, b], Fb,N maps all Jm(X, Y ) for X, Y ∈ ObjJ , m < −N , to 0. Hence one can present
F b

N as bb,N ◦ tN for a unique bb,N : HN → K(A). The set of F b
N could be called truncated

realizations for the realization E; N is the length of the realization. These realizations
appear to be new even in the case when E is the étale cohomology. Note that for X = [P ],
P ∈ SmVar, the truncated realizations give exactly the corresponding truncations of
E([P ]) (i.e. of the corresponding ‘cohomology’ of P ); that is what one usually expects
from the weight filtration.

The complexes Gb(X) give a filtration of G(X) for any X ∈ ObjJ ′; moreover
Ga,b(X) = Gb(X)/Ga−1(X).

Let X = (P i, qij) ∈ ObjJ ′ = ObjH. We obtain the spectral sequence of a filtered
complex (see § III.7.5 of [13])

S : Eij
1 (S) =⇒ Hi+j(G(X)) (14)

we call it the spectral sequence of motivic descent. Here Eij
1 (S) = Hi+jGj,j(X) =

Hi+j(F j
0 (X)). Note that Hi+j(G(X)) = Hi+j(E(X)), in the right-hand side we consider

X as an object of H. It is easily seen that S is H′-contravariantly functorial with respect
to X (starting from E0). Besides starting from E1 the terms of S are also H-functorial
in X (for example, see (15)) below.

Moreover, if h : F → F ′ is a differential graded transformation of functors then the
corresponding map of spectral sequences depends only on Tr(h) (starting from E1). In
particular, for the étale realization the spectral sequence does not depend on the choice
of an injective resolution for the corresponding complex (see the previous subsection).

The spectral sequence S is similar to those coming from hypercoverings (and hyper-
envelopes). Yet its terms are ‘much more functorial’; it computes cohomology of any
motif (not necessarily of a motif of a variety).

By definition, Eij
1 (S) = Hi+j(F j

0 (Y )) is the ith cohomology group of the chain complex
Al = Hj(P−l). Hence the E1-terms are functorial in the complex (P l) ∈ Kb(Corrrat),
i.e. in t0(Y ). S is convergent: if for X of (stupid) length N we choose a representative in
H′ of length N then only N + 1 rows of E1(S) would be non-zero. Besides if all F j

0 (Y )
are acyclic then E(Y ) is acyclic. We denote the filtration on Hs(E(Y )) given by S by
Wl; we call it the weight filtration of Hs.

For any b, N we also have a ‘spectral subsequence’

Sb
N : Eij

1 (Sb
N ) =⇒ Hi+j(Ga,b(X)) = Hi+j(Gb

N (X)) = Hi+j(F b
N (Y )).

Its E1-terms form a subset of the E1-terms of S, the (non-zero) boundary maps are the
same. We also have weight filtration on Hs(F b

N (Y )).
For any 0 � l � N we have an obvious spectral sequence morphism Sb−l

N−l → Sb
N . It

induces an epimorphism

αs
l,b,N : Hs(F b−l

N−l(Y )) → Wb−l(Hs(F b
N (Y ))).
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Now we use an argument that could be applied to any filtered complex. For any N � 0,
n � 1, one easily sees that Eij

n (Sb
N ) = Eij

∞(Sb
N ) if b − n < j < b − N + n. Moreover, if

b + 1 − n � j � b − N + n − 1 then Eij
n (Sb

N ) = Eij
n (S). Therefore, we have

Eij
n (S) = GrW

n−1H
i+j(F j+n−1

2n−2 (Y ))

= Wn−1(Hi+j(F j+n−1
2n−2 (Y )))/Wn−2(Hi+j(F j+n−1

2n−2 (Y )))

= Im αi+j
n−1,j+n−1,2n−2/ Im αi+j

n,j+n−1,2n−2, (15)

i.e. it is the middle factor of the weight filtration of Hi+j(F j+n−1
2n−2 (Y )). A similar equality

can be written for Eij
n (Sb

N ) for any b ∈ Z, N � 0, n � 1. Hence for any n � 1 the En-terms
of S and all Sb

N depend only on t2n−2(Y ).
Suppose that X ∈ H′

[c,d]. It can be easily verified (for example, using the spectral
sequence (14)) that for any j ∈ Z, b − N − c � j � b − d, the jth cohomology group
of F b

N (Y ) coincides with Hj(E(Y )). Besides for any j ∈ Z the weights of Hj(E(Y )) lie
between j + c and j + d. In particular, by part (1) Theorem 6.2.1 the weights of Hj(X)
for X ∈ SmVar of dimension N lie between j and j + N , the weights of Hj

c (X) (the
cohomology with compact support) lie between j − N and j.

Hence all ‘cohomological information’ of a motif of length less than or equal to N could
be factorized through tN (in order to prove this for fine length less than or equal to N

one should use Proposition 6.4.1). This statement can be considered as the ‘realization
version’ of Theorem 6.2.1 (parts (1) and (2)).

Remark 7.3.1.

(1) For an object U ∈ ObjJ ′ = ObjH′ = ObjH (recall that J ′ = Pre-Tr(J)) one can
consider the differential (contravariant) graded functor JU : J → B(Ab) that maps
[P ] to J ′([P ], U). Then Hi(Tr(U))(X) = H(X, U [i]); this means that representable
realizations are enhanceable.

In particular, we can take U = Z(n) for n � 0. Hence we obtain canonical ‘weight’
filtration on the motivic cohomology of any variety and the corresponding ‘weight’
spectral sequence for it. A simple example of this spectral sequence could be given
by the Bloch’s long exact localization sequence for higher Chow groups (see [4]).

Indeed, let Z ⊂ X ∈ SmPrVar, Z is everywhere of codimension c, let Y = X − Z.
Then (cf. the proof of part (1) of Theorem 6.2.1) the motif of Y is a cone of
Mgm(X) → Mgm(Z)(c)[2c]. So the length of Mgm(Y ) is 1; hence for any realization
S reduces to a long exact sequence that relates cohomology of X, Z(c)[2c], and Y .
If the realization is motivic cohomology then it would certainly equal the exact
sequence of Bloch. This example shows that the weight filtration obtained this
way is non-trivial in general; it appears not to be mentioned in the literature.
The filtration is compatible with the regulator maps (whose targets are ‘classical’
cohomology theories).

Using the spectral sequence relating algebraic K-theory to the motivic cohomology
(see [11] and [33]) one can also obtain a new filtration on the K-theory of a smooth
variety X.
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(2) The spectral sequence functor described is additive (here we fix F and consider S

as a functor from H). Hence it is easily seen that it could be uniquely extended to
the whole DMeff

gm (starting from E1).

(3) It seems to be interesting to study the truncations and the weight spectral sequence
for the cohomology of the sheaf Y → Gm(X × Y ) for a fixed variety Y (Gm is the
multiplicative group). These things seem to be related with the Deligne’s one-
motives of varieties as they were described in [2].

More generally, for any X ∈ DMeff
gm the functor Hom(−, X) : DMeff

gm → DMeff
− is

enhanceable.

(4) In Remark 6.4.1 of [7] we verify that the truncated realizations coming from rep-
resentable realizations are representable also. The truncated realizations are rep-
resented by t-truncations of the objects representing the original realizations with
respect to a certain Chow t-structure. Note that this is the case for motivic cohom-
ology and for ‘classical’ realizations of motives (with values in Ab).

More generally, one could define a t-structure on the category Tr(DG-Fun(J, B(A)))
(differential graded functors) that corresponds to the canonical truncation of A-
complexes. Then the realizations of the type considered here correspond to some
objects of this category; truncations of a realization with respect to this t-structure
would be exactly its truncated realizations.

(5) Another important source of differential graded functors from J (generalizing rep-
resentable functors considered in part (1)) are those coming from localizations of
H (or of DMs which is the same thing). It will be discussed in § 8.2 below.

7.4. Comparison with ‘classical weights’; comparison of the rational length
with the ‘Hodge length’

Suppose now that there are no maps between different weights: that is, for any
P, P ′, Q, Q′ ∈ SmPrVar, f ∈ SmCor(P, P ′), g ∈ SmCor(Q, Q′), i �= j, we have

A(Ker(Hi(E([P ]))
f∗

−→ Hi(E([P ′]))), Coker(Hj(E([Q]))
g∗

−→ Hj(E([Q′])))) = 0.

Recall that this condition is fulfilled for the étale and Hodge realizations with rational
coefficients. Then S and all Sb

N degenerate at E1. Therefore,

HjF b
N (X) = Wb(Hj(E(Y )))/Wb−N−1(Hj(E(Y ))).

Besides, if there are no maps between different weights, then for any H l(X) there
cannot exist more than one filtration Wj on H l(X) such that Wj/Wj−1 is of weight j.
Hence for the étale and Hodge realizations our weight filtration coincides with the usual
one (with indices shifted). Therefore, tN can be called the weight functors.

The existence of the weight spectral sequence easily implies that the length of the
weight filtration of H l is not larger than the stupid length of M ∈ Obj DMs. Moreover,
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Proposition 6.4.1 gives the same inequality for the fine length of any object of DMeff
gm and

also for the rational length (on the rational level). Besides, if M ∈ DMeff
gm[a,b],Q then the

weights of H l ⊗ Q(M) lie between l + a and l + b.

Conjecture 7.4.1. The converse implication is true also, i.e. if for all l the weights
of H l ⊗ Q(M) (here H∗ is the singular cohomology) lie between l + a and l + b then
M ∈ DMeff

gm[a,b],Q.

Now we show that Conjecture 7.4.1 follows from certain ‘standard’ conjectures.

Proposition 7.4.2. Suppose that following statements are valid.

(1) Hodge standard conjecture.

(2) Any morphism of Chow motives that induces an isomorphism on singular cohom-
ology is an isomorphism.

Then Conjecture 7.4.1 is also valid.

Proof. Indeed, we should check that if M �∈ DMeff
gm[a,b],Q then at least for one l the

weights of H l ⊗ Q(M) do not lie between l + a and l + b. Using Proposition 6.4.1 we
obtain that we have the motivic descent spectral sequence for the singular realization
of objects of DMeff

gm; its Eij
1 -term is the ith cohomology group of the chain complex

Al = Hj(P−l). Therefore, one should check

(1) if the ‘first term’ of tQ(M) = (P i) is at cth place and the map g : P c → P c+1 is not
a projection onto a direct summand then for some l the (l + c)th weight component
of H l ⊗ Q(M) is non-zero;

(2) the dual statement.

We verify (1); (2) is similar (and follows from (1) by duality). Suppose that for any l

the (l + c)th weight piece of H l ⊗ Q(M) is zero. Note that this piece equals Coker(g∗
l :

H l(P c+1) → H l(P c)); hence all g∗
l are surjective. Since the category of rational pure

Hodge structures is semisimple; we can choose a family of splittings for g∗
l (that respect

the Hodge structures). Since the splittings are Hodge, by Hodge standard conjecture (for
P c × P c+1) we obtain that these splittings can be realized by a morphism h : P c+1 → P c

of Chow motives. We obtain that H∗(h) gives a splitting of H∗(g); the condition (2)
(applied to h ◦ g) implies that g is a projection onto a direct summand. �

Remark 7.4.3.

(1) Note that Conjecture 7.4.1 implies the conservativity of the singular realization,
which certainly implies condition (2) of Proposition 7.4.2.

(2) In order to get a similar result for the étale realization one should replace the Hodge
conjecture by the Tate conjecture.

(3) One could also count the (minimal) number of non-zero terms of t(M).
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We also note that for any morphism f : Y → Z for Y, Z ∈ H the morphisms
H l(f) : H l(E(Z)) → H l(E(Y )) for Y, Z ∈ H are strictly compatible with the weight
filtration. Therefore, H l(f) is zero if and only if the corresponding map of E1-terms in
S(Y ) → S(Z) is zero. Hence the map H(Y, Z) → A(H l(E(X)), H l(E(Y ))) factorizes
through t0∗.

For cohomology with integral coefficients one may apply the previous statement for
rational cohomology to obtain that f∗ is zero on H l ⊗ Q if t0(f) = 0. Hence if t0(f) = 0
then f∗ is zero on cohomology modulo torsion.

Using the results of § 6.6 one can compute H(Z, T ) for Z = m−1(Mgm(X)), T =
m−1(Mgm(Y )), and also compute

MN (X, Y ) = Im tN∗(H(Z, T )) → HN (tN (Z), tN (T )).

Remark 7.4.4. Formally all our filtrations and spectral sequences depend on the choices
of enhancements for realizations. One could check that they are independent in fact;
yet in order to use the theory described above it is necessary (at least) to prove that
enhancements exist. This seems to be true for all reasonable cases; yet proofs could be
difficult (see § 7.5 below).

There is a way to avoid these difficulties completely; it is studied in [7]. The idea is
to consider a set of axioms of so-called weight structures for a triangulated category C;
the axioms are somewhat similar to those for t-structures (yet the consequences of the
axioms are quite distinct!). One could say that any object of C has a weight decomposition
which is not unique but is ‘unique up to a homotopy’ (in a certain sense). In the case
when C = H one could consider the decompositions given by the ‘stupid filtration’ (see
Proposition 2.6.1). Then for any (covariant) functor H : C → A, where A is an abelian
category, one could consider the filtration of H(X) by H(X[a,+∞]) for a ∈ Z. Note that
while X does not determine X[a,+∞] uniquely, it does determine the image of H(X[a,+∞])
in H(X). If H is contravariant then one should consider the image H(X[−∞,b]) → H(X).
The objects X[a,+∞], X[−∞,b] give a Postnikov tower for X; this yields a spectral sequence
T converging to H(X). Its E1-terms are Hi(P j); hence they are not determined by X.
Yet starting from E2 all terms of the spectral sequence are canonical and functorial in X.
In fact, the filtration induced by Gb on G could be obtained from the filtration for T by
Deligne’s decalage. Hence the spectral sequences and the filtration for T coincide (up a
certain change of indexes) with the terms of S defined in (14).

This approach for constructing weight filtrations of realizations of Hanamura’s motives
was described in [18]; yet the proof of Proposition 3.5 in [18] relies heavily on (sort of)
enhancements for realizations.

The advantage of our alternative approach is that enhancements are no longer needed;
in particular, it could be applied to the stable homotopy category for which no (differ-
ential graded) enhancements exists. Yet in this abstract setting it is difficult to define
truncation functors (especially the ‘higher’ ones). The reason for that is (as was noted by
several authors) that the axiomatics of an (abstract) triangulated category is not ‘rigid
enough’.
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7.5. qfh-descent cohomology theories; motives of singular varieties

Some ‘standard’ cohomology theories are difficult to represent by a complex of sheaves
with transfers (in the way described in § 7.2). One of the ways to do this is to use
qfh-topology.

We recall that the qfh-topology is the topology on the set of all varieties whose coverings
are quasi-finite universal topological coverings (see [34] for a precise definition). In partic-
ular, the qfh-topology is stronger than the flat topology and the cdh-topology. There is a
natural functor from DMeff

− to the derived category of qfh-sheaves with homotopy invari-
ant cohomology (it is denoted as DMqfh(k)); this functor is surjective on objects. Note
also that any ‘ordinary’ topological sheaf restricted to Var gives a qfh-sheaf. Moreover,
qfh-descent follows from proper descent combined with Zariski descent (see § 2 of [34]).

Let C be a complex of presheaves (possibly without transfers) whose hypercohomol-
ogy satisfies qfh-descent. Then the qfh-hypercohomology of the qfh-sheafification of C

coincides with the hypercohomology of C (for example, a similar statement was proved
in the proof of Theorem 5.5 of [12]). Therefore, if the cohomology of C is homotopy
invariant then it could be presented by means of ‘representable’ functors on DMs as it
was described in § 7.2 above. In particular, this shows that Betti and Hodge cohomology
theories could be enhanced to differential graded realizations.

Now let C be a complex of qfh-sheaves. It was proved in [34] (see Theorems 3.4.1
and 3.4.4) that the qfh-hypercohomology of a variety X with coefficients in C coincides
with the étale hypercohomology of C in the cases when either C is a Q-vector space sheaf
complex and X is normal or C is a locally constant étale sheaf complex. Hence in this
cases the étale hypercohomology of C also gives a ‘representable’ realization.

Note that these realization compute qfh-hypercohomology with coefficients in C of
any (not necessarily smooth) variety X. Hence Mgm(X)qfh (i.e. the image of Mgm(X) in
DMqfh(k)) seems to be the natural choice for the qfh-motif of a (possibly) singular variety.
In particular, its ‘standard’ realizations have the ‘right’ values of Hi

et(X, Z/lZ(m)) (at
least, in the case when k has finite étale cohomological dimension).

8. Concluding remarks

In § 8.1 we give a general description of subcategories of H generated by fixed sets of
objects. In particular, this method can be used to obtain the description of the category
of effective Tate motives (i.e. the full triangulated subcategory of DMs generated by Z(n)
for n > 0).

In § 8.2 we describe the construction of ‘localization of differential graded categories’
(due to Drinfeld). This gives us a description of localizations of H. All such localizations
come from differential graded functors. As an application, we prove that the motif of
a smooth variety is a mixed Tate one whenever its weight complex (as defined in [14],
cf. §§ 6.5 and 6.6) is.

In § 8.3 we verify that over an arbitrary perfect field one can apply our theory (at least)
with rational coefficients. One of the main tools is the Poincaré duality in characteristic
p proved by Beilinson and Vologodsky. Moreover, over finite fields the Beilinson–Parshin
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conjecture (that Hi(P, Q(n)) for smooth projective P could be non-zero only for i =
2n) holds if and only if tQ : DMeff

gm Q → Kb(Choweff
Q) is an equivalence (note that

here DMeff
gm Q, Choweff

Q, and tQ denote the corresponding idempotent completions);
see Proposition 8.3.1. We also describe an idea for constructing certain ‘infinite integral’
weight complex in finite characteristic (see § 7.3 of [7] for a complete proof).

In § 8.4 we prove that traces of endomorphisms of cohomology of motives induced by
endomorphisms of motives do not depend on the choice of a Weil cohomology theory.
This result generalizes Theorem 3.3 of [5].

In § 8.5 we remark that one can easily add direct summands of objects to J . In par-
ticular, one could include [P ][2i](i) into J .

In § 8.6 we consider a functor mN : HN → DMeff
− that maps [P ] into the Nth canonical

truncation of C(P ) (as a complex of sheaves).

8.1. Subcategories of H that are generated by a fixed set of objects

Let B be a set of objects of H; we assume that B is closed with respect to direct sums.
Let B′ denote some full additive subcategory of J ′ = Pre-Tr(J) such that the corre-

sponding objects of H are exactly elements of B (up to isomorphism).
Let B denote the smallest triangulated category of H containing B.

Proposition 8.1.1. B is canonically isomorphic to Tr+(B′).

Proof. Follows immediately from Theorem 1 in § 4 of [6]. �

Remark 8.1.2.

(1) It follows immediately that in order to calculate the smallest triangulated category
of containing an arbitrary fixed set of objects in H it is sufficient to know morphisms
between the corresponding objects in J ′ (i.e. certain complexes) as well as the
composition rule for those morphisms.

(2) We obtain that for any triangulated subcategory of D ⊂ H the embedding D → H

is isomorphic to Tr+(E) for some differential graded functor E : F → G. Here G is
usually equal to J ′ (though sometimes it suffices to take G = J); F depends on D.

It follows that for any h ∈ ObjH the representable contravariant functor h∗ : D →
Ab : d → H(d, h) can be represented as H0(u) for some contravariant differential
graded functor u : F → B−(Ab). See part (2) of Proposition 8.2.1 below for a
similar statement for localization functors.

(3) Using this statement one can easily calculate the triangulated category of (mixed
effective) Tate motives (cf. [28]). It is sufficient to take B =

∑
ai�0[(P

1)ai ], i.e. the
additive category generated by motives of non-negative powers of the projective
line. This gives a certain extension of the description of [32] to the case of integral
coefficients. Note that the description of the category of effective Tate motives
immediately gives a description of the whole category of Tate motives since Z(1)
is quasi-invertible with respect to ⊗. Alternatively, one could expand J , see § 8.5
below.
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8.2. Localizations of H

Let C be a differential graded category satisfying the homotopical flatness condition,
i.e. for any X, Y ∈ ObjC all Ci(X, Y ) are torsion free. Note that both J and J ′ =
Pre-Tr+(J) satisfy this condition.

In [10] Drinfeld has proved (modifying a preceding result of Keller) that for C satisfying
the homotopical flatness condition and any full differential graded subcategory B of
C there exists a differential graded quotient C/B of C modulo B. This means that
there exists a differential graded g : C → C/B that is surjective on objects such that
Tr+(g) induces an equivalence Tr+(C)/ Tr+(B) → Tr+(C/B) (i.e. Tr+(C)/ Tr+(B) ∼=
Tr+(C/B), Tr+(g) is zero on Tr+(B) and induces this equivalence).

The objects of C/B are the same as for C whereas for C1, C2 ∈ ObjC = Obj(C/B),
i ∈ Z, we define

(C/B)i(C1, C2)

= Ci(C1, C2)
⊕ ⊕

j�0

⊕
B1,...,Bj∈Obj B,∑

ai=i+j

Ca1(C1, B1) ⊗ εB1 ⊗ Ca2(B1, B2)

⊗ εB2 ⊗ · · · ⊗ εBj ⊗ Caj (Bj , C2). (16)

Here εb ∈ (C/B)−1(b, b) for each b ∈ ObjB ∈ Obj(C/B) is a ‘canonical new morphism’
such that dbεb = idb; εb spans a canonical direct summand Zεb ⊂ (C/B)−1(b, b). From
this condition one recovers the differential on morphisms of C/B.

For example, this construction (for C = J) gives an explicit description of the local-
ization of H by the triangulated category generated by all [Q], Q ∈ SmPrVar, dimQ < n,
for a fixed n (and hence also of the corresponding localization of DMs).

We will only need (for part (3) of Proposition 8.2.1 below) the following obvious prop-
erty of the construction: if Ci(−,−) = 0 for i > 0 then the same is true for C/B. Note
also that in this case C0(X, Y ) = (C/B)0(X, Y ) for all X, Y ∈ ObjC; H(C/B)(X, Y ) is
a certain easily described factor of HC(X, Y ) (yet we will not need this statement).

More generally, for localizations of H modulo some A ⊂ H it is sufficient to know the
complexes C/B([P ], [Q]) and the composition law for a certain B and all P, Q ∈ SmPrVar;
here either C = J or C = J ′. In the case when A is not generated by objects of (stupid)
length 0 we are forced to take C = J ′; this makes the direct sum in (16) huge.

Proposition 8.2.1.

(1) If F : H → T is a certain localization functor (T is a triangulated category) then
F ∼= Tr+(G) for a certain differential graded functor G from J .

(2) For any t ∈ T the contravariant functor t∗ : H → Ab : X → T (F (x), t) can be repre-
sented as H0(u) for some contravariant differential graded functor u : J → B−(Ab).

(3) Let B be a full additive subcategory of J , ObjB = T ⊂ SmPrVar. Let B denote
the smallest triangulated subcategory of H that contains all objects of B and is
closed with respect to taking direct summands (in B). Then for M ∈ ObjH we
have M ∈ ObjB whenever t0(M) is a direct summand of a complex all whose
terms have the form [Q], Q ∈ T .

https://doi.org/10.1017/S147474800800011X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800800011X


90 M. V. Bondarko

Proof. (1) Let A = {X ∈ ObjH, F (X) = 0} ⊂ ObjJ ′ = ObjH, we denote the corre-
sponding full subcategory of J ′ by B′. By Proposition 8.1.1, Tr+(B′) is isomorphic to the
categorical kernel of F . Let H : J ′ → J ′/B′ denote the functor given by Drinfeld’s con-
struction. Since Tr+(J ′) = H, we obtain Tr+(H) ∼= F . Hence by part (2) of Remark 2.3.3
we can take G being the restriction of H to J ⊂ J ′.

(2) Let w denote some element that corresponds to t in Pre-Tr+(J ′/B′). Then it suffices
to take u([P ]) = Pre-Tr+(J ′/B′)(Pre-Tr+(G)([P ], w)).

(3) If M ∈ ObjB then t0(M) belongs to the triangulated subcategory of H0 =
Kb(Corrrat) that contains all [Q], Q ∈ T and is closed with respect to taking direct
summands. This subcategory consists exactly of complexes described in the assertion (3).

We prove the converse implication.
We can assume that t0(M) is homotopy equivalent to a complex all whose terms have

the form [Q], Q ∈ T .
Let I denote J/B, let K = Tr+(I). Let S : J → J/B be the localization functor of [10];

let u = Tr+(S). Since Ii(−,−) = 0 for i > 0, we have natural functors I → S(HI)
(see § 2.1) and v : K → K0 where K0 = Kb(HI) (the weight complex functor for this
case). Hence we have functors u0 : H0 → K0 and v : K → K0 such that u0 ◦ t0 = v ◦ u.
We obtain v(u(M)) = 0.

Suppose that M = j(X) for some X ∈ ObjH′. We can also assume that X ∈ ObjK.
For any object U ∈ ObjK = Obj Pre-Tr+(I) we consider the (contravariant) differen-

tial graded functor U∗ : J → B(Ab) that maps [P ] to Pre-Tr+(I)([P ], U). Then we can
consider the spectral sequence (14) for Tr+(U∗) : Eij

1 (S) =⇒ K(X, U [i+ j]). As in § 7.3
we note that its E1-terms depend only on u0(t0(X)) (they are just K0(u0(t0(X)), v(U)[i+
j])). Since u0(t0(X)) = v(u(X)) = 0, we have Tr+(U∗)(X) = 0 for any U . Since
Tr+(U∗)(X) = K(X, U), we obtain that X ∼= 0 in K. Hence M ∈ ObjB. �

Part (3) is a generalization of part (5) of Theorem 6.2.1 (there T = {0}).

Corollary 8.2.2. Let X ∈ SmVar. Then Mgm(X) is a mixed Tate motif (as described in
part (3) of Remark 8.1.2) in DMeff

gm (i.e. we add direct summands) whenever the complex
t0(U) ∈ Kb(Choweff) is.

Proof. We apply part (3) of Proposition 8.2.1 for T = {
⊔

ai�0(P
1)ai}.

We obtain that M c
gm(X) is a mixed Tate motif whenever t0(M c

gm(X)) = W (X) is
mixed Tate as an object of Kb(Choweff).

On the category of geometric of Voevodsky’s motives DMgm ⊃ DMeff
gm (see § 4 of

this paper and § 4.3 of [36]) we have a well-defined duality such that Z(n)∗ = Z(−n).
Therefore, the category of mixed Tate motives is a self-dual subcategory of DMgm. Since
Mgm(X)∗ = M c

gm(X)(−n)[−2n], n = dimX (see Theorem 4.3.7 of [36]; we can assume
that X is equidimensional), we obtain that Mgm(X) is a Tate motif if and only if M c

gm(X)
is. �

One can translate this statement into a certain condition on the motives Mgm(Yi1 ∩
Yi2 ∩ · · · ∩ Yir ) (in the notation of Proposition 6.5.1).
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8.3. Motives in finite characteristic; t ⊗ Q is (conditionally) an isomorphism
over a finite field

In this subsection we consider Voevodsky’a motives over an arbitrary perfect k.
In the proof of Theorem 3.1.1 we used two facts.

(i) The cohomology of Suslin complex of a smooth projective variety coincides with
its hypercohomology.

(ii) Motives of smooth projective varieties generate DMs.

To the author’s knowledge, neither of these facts is known in finite characteristic.
Yet for an covering of any variety over any perfect k one has the Mayer–Vietoris tri-

angle (see Proposition 4.1.1 of [36]); one also has the blow-up distinguished triangle (see
Proposition 3.5.3 of [36] and Proposition 5.21 of [35]). Besides, for a closed embedding
of smooth varieties one has the Gysin distinguished triangle (see [9]).

8.3.1. Certain integral arguments

In [3] it was proved unconditionally that DMs has a differential graded enhancement.
In fact, this follows rather easily from the localization technique of Drinfeld described
in § 8.2 along with Voevodsky’s description of DMs as a localization of Kb(SmCor).
Moreover, Proposition 6.7 of [3] extends the Poincaré duality for Voevodsky motives to
our case. Therefore, for P, Q ∈ SmPrVar we obtain

DMs(Mgm(P ), Mgm(Q)[i]) =

{
Corrrat([P ], [Q]) for i = 0,

0 for i > 0.

Hence the triangulated subcategory DMpr of DMs generated by [P ], P ∈ SmPrVar
could be described as Tr(I) for a certain negative differential graded I (see part (2)
of Remark 2.7.4). Note also that the complexes I(P, Q) compute motivic cohomology of
P × Q.

If we define the categories In similarly to Jn (see § 6.1) then I0 = Corrrat. Hence there
exists a conservative weight complex functor t0 : DMpr → Kb(Corrrat). Moreover, for any
‘enhanceable’ realization of DMpr (again one can easily check that these include motivic
cohomology and étale cohomology) and any X ∈ Obj DMpr one has the motivic descent
spectral sequence (14).

The problem is that (to the knowledge of the author) at this moment there is no way
to prove that DMpr contains the motives of all varieties (though it certainly contains the
motives of varieties that have ‘smooth projective stratification’).

Yet for any X ∈ Var one could consider the restriction X∗
pr of the functor X∗ that

equals DMeff
gm(−, Mgm(X)) restricted to DMpr. It has a differential graded ‘enhancement’;

in § 7.3 of [7] we prove that X∗
pr is representable by (at least) an object of a certain infinite

analogue of DMpr. This gives a (possibly, infinite) weight complex for X.
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8.3.2. Rational arguments

For rational coefficients (ii) was proved in Appendix B of [22]: it suffices to note that if
there exists an étale finite morphism U → V for smooth U , V then Mgm(V )⊗Q is a direct
summand of Mgm(U) ⊗ Q. Hence the existence of de Jong’s alterations (see [8]) yields
(ii) for motives with rational coefficients (up to an idempotent completion of categories).

Hence we obtain that in the characteristic p case the category DMeff
gm Q is the idempo-

tent completion of Tr(I) for a certain negative differential graded I (see above). Moreover
(by the same arguments as in the characteristic 0 case), there exists a conservative weight
complex functor tQ : DMeff

gm Q → Kb(Choweff
Q).

Now we show that, in contrast to the characteristic 0 case, over finite fields the
Beilinson–Parshin conjecture (see below) implies that tQ is an equivalence.

Proposition 8.3.1. Let k be a finite field.
Suppose that for any X ∈ SmVar the only non-zero cohomology group Hi(X, Q(n))

is H2n.
Then tQ is an equivalence of categories.

Proof. By Theorem 4.2.2 of [36] (note that it is valid with rational coefficients in our
case also!) for any P, Q ∈ SmPrVar, i ∈ Z we have

DMeff
− (Mgm(P ) ⊗ Q, Mgm(Q) ⊗ Q[i]) = Hi+2r(P × Q, Q(r)), (17)

where r is the dimension of Q. Therefore, if the Beilinson–Parshin conjecture holds then

DMeff
− (Mgm(P ) ⊗ Q, Mgm(Q) ⊗ Q[i]) =

{
Corrrat ⊗Q([P ], [Q]) for i = 0,

0 otherwise.

We obtain

DMs ⊗Q([P ], [Q][i]) ∼= Kb(Corrrat ⊗Q)(t0 ⊗ Q([P ]), t0 ⊗ Q([Q][i]))

for all i ∈ Z. Since [P ] for P ∈ SmPrVar generate DMs ⊗Q as a triangulated category,
the same easy standard reasoning as the one used in the proof of Theorem 3.1.1 shows
that t0 ⊗ Q induces a similar isomorphism for any two objects of DMs ⊗Q; hence t0 ⊗ Q

is a full embedding. Since [P ], P ∈ SmPrVar generate Kb(Corrrat ⊗Q) as a triangulated
category, we obtain that t0 ⊗ Q is an equivalence of categories. Lastly, since DMeff

gm Q is
the idempotent completion of DMs ⊗Q and Kb(Choweff

Q) is the idempotent completion
of Kb(Corrrat ⊗Q), tQ is an equivalence also. �

Remark 8.3.2.

(1) Obviously, the converse statement holds also: if tQ is an isomorphism then
DMeff

gm Q(Mgm(P ) ⊗ Q, Mgm(Q) ⊗ Q[i]) = 0 for i �= 0, P, Q ∈ SmVar; hence the
Beilinson–Parshin conjecture holds.
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(2) As it was noted in Remark 6.3.2, using tQ one can obtain a functor tnumQ :
DMeff

gm Q → Kb(Moteffnum Q) (the ‘wrong’ homotopy category of effective numerical
motives). Over a finite field we can use Kunneth projectors for numerical motives
(cf. § 2 of [31]; note that the projectors are functorial!) to replace Kb(Moteffnum Q)
by the ‘correct’ category Kb(M) such that M is Tannakian, Hi(P ) (the ith homo-
logical component) is put in degree i. Moreover, the ‘standard’ conjectures assumed
in Theorem 5.3 of [31] (Tate conjecture plus numerical equivalence coincides with
rational equivalence) imply that tnum can be extended to an equivalence of DMgm Q

with the motivic t-category of Theorem 5.3 of [31] (see also Theorem 56 of [24]).
The relation between different conjectures is discussed in 1.6.5 of [24].

8.4. An application: independence on l for traces of open correspondences

Our formalism easily implies that for any X ∈ Obj DMeff
gm and any f ∈ DMeff

gm(X, X)
the trace of the map f∗ induced on the (rational) l-adic étale cohomology H(X) does not
depend on l. This gives a considerable generalization of Theorem 3.3 of [5] (see below).

Now we formulate the main statement more precisely. In this subsection we do not
demand the characteristic of k to be 0.

Proposition 8.4.1. Let H denote any of rational l-adic étale cohomology theories or the
singular cohomology corresponding to any embedding of k into C (in characteristic 0).
Denote by Tr f∗

H the sum (−1)i Tr f∗
Hi(X).

Then Tr f∗
H does not depend on the choice of H.

Proof. This statement is well known for Chow motives. Now we reduce everything to
this case.

We consider the weight spectral sequence S for H(X) (see § 7.3 and part (2) of
Remark 7.3.1). Recall that S is functorial in H; it is functorial in X starting from
E1. Hence any f induces a certain endomorphism f∗

S of S starting from E0 which is
uniquely determined by f starting from E1. To construct f∗

S one could also use the spec-
tral sequence T described in Remark 7.4.4. Hence to reduce the statement to the case of
Chow motives it suffices to apply the following formula (that follows immediately from
the general spectral sequence formalism):

Tr f∗
H =

∑
i,j

−1i+jf∗
Hi(P j); (18)

see III.7.4 c of [13]. �

Note that, as we have shown above, these rational arguments also work in finite char-
acteristic.

Now, Theorem 3.3 of [5] states the independence from the choice of H of traces of
maps induced by open correspondences on the cohomology of U ∈ SmVar with compact
support. Open correspondences and the corresponding cohomology maps were described
in Definition 3.1 of [5]. We will not recall this definition here; we will only note that the
map Γ∗ of [5] comes from a certain f ∈ DMeff

gm(M c
gm(U), M c

gm(U)). Indeed, Γ∗ was defined
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as a composition (p1)∗ ◦ (p2)∗ (in the notation of [5]). One can define the morphism of
motives corresponding to (p2)∗ using the functoriality of M c

gm with respect to proper
morphisms (see § 4.1 of [36]). To define the morphism corresponding to (p1)∗ one should
use Corollary 4.2.4 of [5].

It follows that we have generalized Theorem 3.3 of [5] considerably. Indeed, we do
not demand U to be a complement of a smooth projective variety by a strict normal
crossing divisor. This is especially important in the characteristic p case. Besides, it
seems that open correspondences of the type considered in Theorem 2.8 of [5] also give
endomorphisms of M c

gm(U).

Remark 8.4.2.

(1) Certainly, exactly the same argument proves the independence from H of nλ(H) =
(−1)inλf∗

Hi(X); here nλf∗
(Hi(X)) for a fixed algebraic number λ denotes the algebraic

multiplicity of the eigenvalue λ for the operator f∗
Hi(X).

(2) In fact, all these statements follow easily from the following statement: the appropri-
ately defined group K0(End Choweff) surjects onto K0(End DMeff

gm); see § 5.4 of [7]
for details.

8.5. Adding kernels of projectors to J

The description of the derived category of Tate motives would be nicer if Z(i), i � 0,
would be motives of length 0 (see part (3) of Remark 8.1.2 and § 6.2). To this end we
show that one can easily add direct summands of objects to J .

Indeed, if the cohomology of a complex of sheaves coincides with its hypercohomology,
the same it true for any direct summand of this complex. Therefore, if D, D′ are direct
summands (in C−(Shv(SmCor))) of C(P ), C(P ′) respectively, P, P ′ ∈ SmPrVar, then
the natural analogue of Proposition 1.3.1 will be valid for DMeff

− (p(D), p(D′)). Hence any
such D can be naturally added to J ; then an analogue of Theorem 3.1.1 would be valid
with DMs extended by adding the corresponding direct summands of objects.

In particular, let P ⊂ Q ∈ SmPrVar and let there exist a section j : Q → P of the
inclusion. Then one can add the cone of j to J (note that it is isomorphic to m−1(M c

gm(Q−
P ))).

For example, one can present [P1] as [pt]⊕[Z(1)[2]]. Hence for P ∈ SmPrVar, i � 0, one
could include [P ][2i](i) into J (cf. the reasoning in the proof of part (1) of Theorem 6.2.1
and part (3) of Remark 8.1.2).

Yet this method certainly cannot give a (canonical) differential enhancement of the
whole DMeff

gm (or DMeff′
gm). To obtain an enhancement for it one could apply the ‘infinite

diagram’ method of Hanamura (see § 2 of [17]).

8.6. The functors mN

We consider the functor JN → B−(Shv(SmCor)) that maps [P ] into SCN (P ). Here
SCNi(P ) is the Nisnevich sheafification of the presheaf CNi(P )(−) (they coincide for
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i �= −N). We consider the corresponding functor hN : HN → K−(Shv(SmCor)) and
mN = p ◦ hN . Note that for any X ∈ ObjHN we have mN (X) ∈ DMeff

− .
By Proposition 2.7.2 (1) the natural morphisms CP → SCN (P ) in K−(Shv(SmCor))

induce a transformation of functors TrN : m → mN . Besides TrN for any X ∈ H is
induced by a canonical map in K−(Shv(SmCor)).

It seems that no nice analogue of part (3) of Theorem 6.2.1 is valid for mN . Yet for
low-dimensional varieties mN coincides with m.

Proposition 8.6.1. Suppose that the Beilinson–Soulé vanishing conjecture holds over
k. Then m2n(X) ∼= m(X) in DMeff

− if the dimension of X is less than or equal to n.

Proof. We check by induction on n that Tr2n is the identity for m(X). This is obviously
valid for n = 0.

Applying the same reasoning as in the proof of part (1) of Theorem 6.2.1 we obtain
that it is sufficient to prove the assertion for smooth projective X of dimension less than
or equal to n.

It is sufficient to check that DMeff
− (Mgm(Y )[N ], Mgm(X)) = 0 for any Y ∈ SmVar,

N � 2n.
By Theorem 4.3.2 of [36] if the dimension of X equals n then we have

HomDMeff
−

(Mgm(X), Z(n)[2n]) ∼= Mgm(X).

Hence

DMeff
− (Mgm(Y )[N ], Mgm(X)) = DMeff

− (Mgm(Y × X)[N ], Z(n)[2n])

= DMeff
− (Mgm(Y × X)[N − 2n], Z(n)).

It remains to note that by the Beilinson–Soulé conjecture,

DMeff
− (Mgm(Y × X), Z(n)[i]) = 0 for i < 0.

�

Remark 8.6.2.

(1) We also see that for k of characteristic 0 and any N there exist P, Q ∈ SmPrVar
such that H(P [N ], [Q]) �= 0. Hence none of tN and mN are full functors.

(2) It could be also easily checked that Tr2n being identical for all X of dimension less
than or equal to n, n ∈ Z, implies the Beilinson–Soulé conjecture.
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