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SPECTRAL PROPERTIES
OF ASSET PRICING MODELS:
A GENERAL EQUILIBRIUM
PERSPECTIVE
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This paper studies asset returns adopting an alternative strategy to assess a model’s
goodness of fit. Based on spectral analysis, this approach considers a model as an
approximation to the process generating the observed data, and characterizes the
dimensions for which the model provides a good approximation and those for which it
does not. Our aim is to offer new evidence regarding the size and the location of
approximation errors of a set of stochastic growth models considered to be decisive steps
in the progress of the asset pricing research program. Our specific objective is to
reevaluate the results of Jermann’s (1998) model extending the calculations to the spectral
domain. Spectral results are relatively satisfactory: the benchmark model needs very few
contributions of approximation errors to account for the empirical equity premium.
Second, the location of the approximation errors, when they are substantial, seems to be
essentially concentrated at high frequencies.

Keywords: Equity Premium Puzzle, Habit Formation, Capital Adjustment Cost,
Spectral Analysis

1. INTRODUCTION

Dynamic stochastic general equilibrium (DSGE) models with complete markets
and a representative agent are widely used nowadays in the asset pricing liter-
ature. Because Mehra and Prescott (1985), research on “Asset Pricing Puzzles”
has benefited from numerous contributions, which have served to isolate salient
discrepancies between models and data. Three puzzles have particularly attracted
attention: The Equity Premium Puzzle refers to the fact that returns on the stock
market exceed the returns on Treasury bills by an average of 6 percent; the Risk-
Free Rate Puzzle, identified by Weil (1989), refers to the fact that the return on
riskless bills is low in average; and the Stock Market Volatility Puzzle refers to
the fact that returns on stocks are very volatile. A major advancement in the
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research program on the Equity Premium Puzzle suggests that allowing for the
frictionless adjustment of the capital stock constitutes a major weakness of a
DSGE asset pricing model with a nontrivial production sector. Elaborating on this
line of argument, Jermann (1998) has proposed a valuable contribution that, by
combining adjustment costs in the investment technology with habit formation in
preferences, simultaneously succeeds in reproducing asset returns and business
cycles stylized facts.

This paper studies asset returns in different versions of the real business cycle
model, adopting an alternative empirical strategy to assess a model’s goodness
of fit. This approach considers a model as an approximation to the process gen-
erating the observed data, and characterizes the dimensions for which the model
provides a good approximation and those in which it does not. Our aim is to
offer new evidence about the size and the location of approximation errors of a
set of stochastic growth models that are considered to be decisive steps in the
progress of the asset pricing research program: the standard RBC model, a RBC
model with habit persistence, a RBC model with capital adjustment costs, and
our benchmark model inspired from Jermann (1998). Our specific objective is
to reevaluate the results of the Jermann’s model by extending the calculations to
the frequency domain. The second-order moments, which traditionally have been
used to evaluate dynamic general equilibrium models after Kydland and Prescott’s
(1982) original paper, present the disadvantage of hiding important information
on the way data are matched: a model may succeed in replicating the total variance
without concentrating it on correct frequencies. Spectral goodness-of-fit measures,
originally proposed by Watson (1993), are a good guide in detecting this kind of
failure. We are particularly interested in the model ability to explain the volatility
of the equity return, the risk-free rate, the consumption, the dividends and the
mean equity premium.1

The main result is that the benchmark model’s behavior in the spectral domain
is mixed. Some time-based results are confirmed: the model certainly reproduces
enough covariance between the stochastic discount factor (SDF) and the equity
return, and needs a very small contribution of approximation errors to account
for the empirical equity premium. However, some spectral behaviors differ from
the time-based evaluations: although the model’s explanation of the equity return
volatility is well accounted for in the time domain, the contribution of approxima-
tion errors remains relatively high. More generally, we find that spectral results
are relatively encouraging because the location of the approximation errors (when
they are substantial) seems to be essentially concentrated at high frequencies,
which are of little interest for macroeconomists interested in medium- and long-
run dynamics.

Our spectral evaluation is closely related to Cogley (2001).2 The main differ-
ence with Cogley’s work is that we adopt the general equilibrium paradigm and
abandon the partial equilibrium framework, for three reasons. First, even if the
evaluation of specification errors across frequencies for partial equilibrium models
is a necessary first step, it limits itself only to the analysis of the performances of
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a particular utility function with respect to the degree of risk aversion. Extending
the methodology to explore the asset pricing implications of DSGE models in the
frequency domain is in line with the wide use of those models with an explicit
production sector [Rouwenhorst (1995), Jermann (1998), Boldrin et al. (2001)].
Second, at variance with partial equilibrium models, DSGE models include a
full production side that allows one to link the endogenous stochastic discount
factor and asset returns to output and investment. Third, the appeal of the gen-
eral equilibrium paradigm for our purpose lies in the large variety of theoretical
mechanisms (alternative stochastic process specification for productivity, non-
linearity or delays in investment technology, labor-leisure choices) that can be
evaluated.

The paper is organized as follows. Section 2 presents the basic theoretical
framework and the extensions to account for the key financial asset returns prop-
erties. Section 3 reports the methodology used to solve and calibrate the different
versions of the model, then goes on the measure of fit. Section 4 comments the
empirical results.

2. MODEL ECONOMIES

2.1. A Standard Real Business Cycle Model

We analyze a version of the standard real business cycle model with a large number
of infinitely lived firms and households. There is a single consumption-investment
good produced with a constant returns technology, subject to random shocks in
productivity:

Yt = ZtK
α
t (XtNt )

1−α, (1)

where Y denotes production, K the stock of capital, N the labor input, X the
deterministic trend in labor augmenting technical change, and Z the stochastic
productivity level.

2.1.1. Firms. At each period, firms decide how much labor to hire and how
much to invest. Managers maximize the value of the firms to the owners, that is
the present discounted value of current and future expected cash flows:

Et

∞∑
k=0

βk�t+k

�t

[
Zt+kK

α
t+k(Xt+kNt+k)

1−α − Wt+kNt+k − It+k

]
, (2)

where βk�t+k

�t
is the owners’ intertemporal marginal rate of substitution, W the real

wage rate, and I investment. The capital stock obeys the intertemporal accumula-
tion law:

Kt+1 = (1 − δ)Kt + It , (3)

where δ is the depreciation rate. This firm does not issue new shares and finances
its capital stock solely through retained earnings. The dividends to shareholders
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are then equal to:
Dt = Yt − WtNt − It . (4)

2.1.2. Households. The representative household maximizes expected life-
time utility of consumption subject to a sequence of budget constraint. The time
endowment is entirely allocated to productive work. The program writes:

max
Ct

Et

∞∑
k=0

βk
C

1−γ

t+k

1 − γ
(5)

s.t. Ct + a′
t+1V

a
t − WtNt − a′

t

(
V a

t + Da
t

) = 0, (6)

where β is the discount factor, γ the coefficient of relative risk aversion, at is a
vector of financial assets held at t and chosen at t −1, V a

t , and Da
t are the vectors of

asset prices and current period payouts, respectively. The asset vector a contains
shares of the representative firm and possibly other assets.

2.1.3. Final good market equilibrium. At equilibrium, all produced goods are
either consumed or invested:

ZtK
α
t (XtNt )

1−α = Ct + It . (7)

2.1.4. Asset prices. Prices and rates of return derive from the solution to each
agent’s optimization problem. The rate of return on the risk-free asset is:

r
f
t = �t

βEt�t+1
− 1, (8)

where �t is the Lagrange multiplier associated with the household’s resource
constraint, which also operates in the intertemporal marginal rate of substitution
of the owners of the firm. This multiplier is the derivative of expected present
discounted utility with respect to Ct .

We also take into account a j -period bond return:

rb
j,t = �t

βj Et�t+j

− 1. (9)

We can then define the model equivalent to a long term bond return, that is a
ten-year (j = 40) pure discount bond return.

The stochastic discount factor then amounts to

mt = β�t+1

�t

. (10)

The rate of return on equity is:

re
t+1 =

α
Yt+1

Kt+1
+ Pt+1

Qt

− 1, (11)
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where Qt is the consumption good value of a newly installed unit of capital (which
will be used in the production at the beginning of t + 1), and Pt+1 the value of the
same unit of capital at the end of period t + 1. As shown by Boldrin, Christiano,
and Fisher (1995), Qt can be interpreted as the price of equity and Pt+1/Qt as
the capital gain. In the standard RBC model, we have Qt = 1, and Pt+1 = 1 − δ.
Consequently, this model exhibits no variation in the capital gain component of
the return to equity. The mean equity premium is E(re

t+1 − r
f
t ).

Finally, we also define the Sharpe ratio (Sre ) as

Sre = E
(
re
t+1 − r

f
t

)
σre

, (12)

where σre represents the standard-deviation of equity return.

2.2. The Habit Formation Model

A first extension of the RBC model consists in modifying the preference structure.
We consider a simple version of habit formation:

u(Ct , Ct−1) = (Ct − ηCt−1)
1−γ

1 − γ
, 0 < η < 1, γ > 0 (13)

When η is zero, one obtains the standard RBC model. When η is positive, house-
hold preferences are characterized by habit persistence. As shown by Contantinides
(1990), habit formation has the potential to account for the equity premium puzzle,
while implying a modest degree of risk aversion. According to several econometric
analyses, this form of preferences is promising in reconciling U.S. data on con-
sumption and asset returns [Daniel and Marshall (1997, 1998), Heaton (1995)].

2.3. The Adjustment Cost Model

In the standard RBC model, the linear capital accumulation implies that the supply
of capital Kt+1 at date t is infinitely elastic to the price of the consumption good.
The adjustment cost hypothesis reduces the elasticity of capital supply. To this aim,
we replace the linear capital accumulation technology (3) by the specification used
in Jermann (1998):

Kt+1 = (1 − δ) Kt + φ

(
It

Kt

)
Kt, (14)

where φ (.) is a positive increasing and concave function:

φ

(
It

Kt

)
= b

1 − a

(
It

Kt

)1−a

+ c, a, b > 0 (15)

The concavity of φ (.) captures the idea that changing capital stock rapidly is
more costly than changing it slowly. This specification allows the shadow price
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of installed capital to diverge from the price of an additional unit of capital.
Therefore, it allows for variations of Tobin’s q. Coefficients a, b, and c are chosen
so as to yield the same steady-state properties as the standard capital accumulation
technology.3

In what follows, we will focus on four models: the standard RBC model, the
habit formation model (HAB model), the adjustment cost model (ADJ model),
and, finally, our benchmark model (BMK model), which combines habit formation
and capital adjustment costs.

3. THE METHODOLOGY

3.1. Solution Method

A key characteristic of our paper is to solve all of the models with a fully nonlinear
method inspired from Judd (1998).4 This method makes use of a complete basis
of Chebyshev polynomials. As for the projection method, we use orthogonal
collocation. Judd (1998) argues that this projection method is a powerful tool
when used with a Chebyshev polynomial basis. The replication of the exogenous
shock distribution is obtained from a stationary first-order autoregressive process.
This specification involves an integral that cannot be evaluated analytically. In
forming the residual function we need to approximate the integral, using Gauss-
Hermite quadrature.

3.2. Calibration

We use the following parameter values: the quarterly trend growth rate is 1.005,
the depreciation rate δ is 0.025, the constant labor share in the Cobb-Douglas
production function (1 − α) is 0.64. For the productivity level, the standard de-
viation of the shock is set so as to match the U.S. output growth volatility. The
persistence parameter for the AR(1) is set to 0.95. We choose the “transformed
economy” discount factor β∗ = βµ−γ equals to 0.991. To facilitate comparison
with Jermann’s results, we set ξ , the elasticity of the investment capital ratio with
respect to the Tobin’s q, equal to 0.23. In the same fashion, the power parameter
γ , in the utility function, is set at 5 for both the time-separable case and the
habit-formation specifications.

Jermann (1998) uses a minimum-distance metric to calibrate the habit formation
parameter, the capital adjustment costs elasticity parameter, the pure discount
factor, and the shock persistence. His objective is to maximize the model’s ability
to match some moments of interest. This procedure remains applicable with a
fully nonlinear solution method, but is time-consuming. For example, Boldrin,
Christiano, and Fisher (1995, 2001) propose a similar methodology, but they only
compute the criterion’s value for the habit parameter. We follow this procedure to
optimize the model’s ability in accounting for the mean equity premium and the
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TABLE 1. Parameters value

Parameters Value Interpretation

δ 0.025 Physical capital depreciation rate
α 0.36 Share of capital
ρ 0.95 Persistence of the shock
σ 0.0105 Standard deviation of the shock
γ 5 Relative risk aversion
ξ 0.23 Adjustment cost parameter
β∗ 0.991 Growth-adjusted discount factor
η 0.82 Habit persistence parameter

mean risk-free rate. Therefore, we minimize the criterion M (η) where:

M (η) = [̂vT − g(η)]′VT [̂vT − g(η)] (16)

Here, v̂T is a 2×1 vector composed of the sample average of quarterly observations
on the risk-free rate and the equity premium. VT is a 2 × 2 weighting diagonal
matrix, which is composed of the inverse of the variance of the statistics in v̂T .
Finally, g(η) is the model’s implied average quarterly mean risk-free rate and
equity premium, conditional on η and other parameters’ value. The components
of g are obtained by taking the average over 500 simulations, each 200 quarters
long. In practice, we compute M for a grid of values for η = [0, 0.9] then take the
value η̂ that minimizes M. For our benchmark model, we find η̂ = 0.82. Table 1
summarizes the calibration procedure.5

3.3. Measure of Fit

Following Watson (1993), we view our economic model as an approximation to
the stochastic processes generating empirical data.6 The goodness-of-fit measures
are computed to assess the quality of this approximation. To assess this quality, we
evaluate how much error has to be added to the data generated by the economic
model so that the theoretical autocovariances match those of the observed data.
In so doing, we collect a first group of evidence about the size of approximation
errors. The higher the approximations errors, the poorer the model’s explanation.
This provides a global measure of the model’s performances. A second group
of information supplied by spectral measures of fit concerns evidence about the
location of approximation errors. Because spectral measures of fit can be computed
by frequency, this allows to collect evidences about a model’s behavior in explain-
ing the spectral properties of empirical data whatever the band of frequencies
considered.

Let ut , be the approximation error in the economic model. According to Watson
(1993), a lower bound for the variance of ut , also called Relative Mean Square
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Approximation Error (RMSAE) is:

�j(ω) = [Au(z)]jj
[Ay(z)]jj

, z = e−iω, (17)

where �j(ω) denotes the j th component of �, [Au(z)]jj and [Ay(z)]jj denote
the (j, j) elements of matrices Au(z) and Ay(z), which are the autocovariance
generating function of ut and yt , respectively. In the same fashion, our Covariance
Measure of fit writes,

ϒkj (ω) = [Au(z)]kj
[Ay(z)]kj

, z = e−iω, (18)

where ϒkj (ω) denotes the component of kth row and the j th column of ϒ ,
[Au(z)]kj is the (k, j) element of the matrix Au(z).

Given the nonlinear structure of the approximated model solution, it is no longer
possible to exploit the vector autoregressions (VAR) representation that naturally
emerges from the loglinearization of a model’s first order conditions. To estimate
the spectral density matrix for each variable in this context, we have to resort to
another method. We choose to numerically simulate the nonlinear approximated
solution, then estimate a VAR on these simulated series. The implied autocovari-
ance generating function is then used to calculate the previous measure of fit.
This is a kind of indirect inference in the spirit of Smith (1993) and Gouriéroux,
Monfort, and Renault (1993).

4. QUANTITATIVE RESULTS

4.1. Time Domain Results

As a first step, we focus on second order statistics. Table 2 reports key business
cycle and financial statistics for the U.S. economy. Our data sample for asset
returns exhibits a mean equity premium of 6.38%, a mean risk-free rate of 1.23%,
and a Sharpe ratio equal to 0.40. The standard deviation for quarterly dividend
growth is 11%.

The standard RBC model generates an equity premium, which is far too low
(0.0007%). This is a consequence of the too low covariance between mt+1 and
re
t+1. To look into the reasons of this weakness, let us recall that, by definition, the

mean equity premium is:

E
(
re
t+1 − r

f
t

)
1 + r

f
t

= −Cov
(
mt, r

e
t+1

) ≈ −σmσreρm,re . (19)

The mean equity premium can be written as the product of the standard deviation
of the equity return, the standard deviation of the stochastic discount factor and
the correlation between equity return and the stochastic factor. Given the power
utility function used in the RBC models, mt is modeled as a function of aggregate
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TABLE 2. Business cycles and assets returns statistics

Data BMK model RBC model HAB model ADJ model

σ�c 0.67 0.395 0.32 0.11 1.08
σ�i 2.53 2.75 2.64 3.21 1.02
σ�d 11.02 14.4 25.62 46.17 1.41

σ�c/σ�y 0.66 0.37 0.30 0.11 1.02
σ�i/σ�y 2.51 2.60 2.50 3.04 0.96
E(rf ) 1.23 1.26 3.62 3.62 3.08

E(re − rf ) 6.38 6.33 0.0007 0.0007 0.95
σre 15.98 15.78 0.461 0.486 2.83
σrb 9.27 2.36 0.320 2.28 1.27
σrf 1.41 15.14 0.458 0.484 2.80
Sre 0.40 0.40 0.001 0.001 0.34

The symbols have the following meaning: re , equity return, rb , long-term bond return, and rf , risk-free
interest rate. �c, and �i, are respectively the quarterly growth rate of consumption, and investment. σ�x,

is the standard deviation of quaterly variable growth rates. Business cycle and financial moments are
sample means of statistics computed for each of 500 simulations of 200 periods.

consumption and we take the standard deviation of consumption growth as an
empirical proxy of σm. We learn from the observed data that ρm,re and σ�c are
small. The main failure of the RBC model stems from the lack of volatility
(0.46% against 15.9% in the data) of the equity return: the model offers too many
possibilities to smooth consumption after a shock. A successful model should
incorporate factors, which increase the countercyclical movements between mt

and re
t+1.

Introducing habit formation in the utility function does not significantly improve
the model’s performances at reproducing the observed mean equity premium. In
a model that includes endogenous choices for consumption and dividends, the
representative agent smoothes his consumption profile (the standard deviation of
consumption growth is 0.39 for the standard RBC model against 0.11 in the HAB
model). In addition, there is no capital gain in this model (σre is as low as in the
RBC model). As a result, the variations in the return to equity are solely driven
by those of the marginal product of capital, which are small in both the standard
RBC model or the habit formation model.

Similarly, the capital adjustment cost mechanism is unable to increase the
model’s ability to reproduce asset returns. The theoretical mean equity premium
(0.95%), although weak compared with the data, is significantly higher than in the
RBC case. The Sharpe ratio implied by the ADJ model represents a substantial
step forward compared to the RBC or the HAB models. This is first because of
the increase in the value of σre , which is multiplied by a factor of 5 in the presence
of adjustment costs. This confirms the idea that the introduction of capital gains
into a RBC model is a good way to generate the volatility of equity return (2.38
against 0.38 in the RBC model). Nevertheless, the mean risk-free rate is a little
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high (3.25% against 1.23%). In sum, the introduction of capital gain is a necessary
but insufficient condition to match the empirical equity premium. Demand for
capital also must vary appropriately. These conditions are achieved by combining
habit formation in preferences and adjustment costs in the investment technology.

Compared to the three others, the BMK model does a good job in reproducing
financial stylized facts. Its quantitative predictions are similar to those reported in
Jermann (1998). The mean equity premium and risk-free rate are close to the em-
pirical data (respectively 6.33% and 1.23%). The shortcomings also are similar: the
standard deviation of the dividend growth and the risk-free rate are overstated (re-
spectively 15.1% and 14.4% instead of 1.41% and 11.02%). On the business cycle
side, the model reproduces the investment relative volatility quite well, but heavily
understates the consumption relative volatility (0.39 against 0.67 in the data).

4.2. The Frequency Domain Results

The use of second-order statistics in the time domain to evaluate DSGE models
is characteristic of the “RBC methodology” [Prescott (1986), King and Rebelo
(1999)]. In the previous paragraph, we assessed the model’s goodness of fit by
informally comparing a simulated moment with its empirical counterpart. Al-
though these theoretical statistics indicate a good fit, one may wonder about
the quality of the informal moment-matching criterion itself. The second-order
statistics criterion presents the disavantage of hiding important information on the
way data is matched because the statistics only focus on the overall quantity of
variance or covariance. Therefore, it is not very informative about the model’s
behavior because the overall variance or covariance for a given variable may
be well replicated, while being concentrated at wrong frequencies with respect
to the data. By allowing an evaluation of the contribution of each frequency
to the overall (co)variance, a frequency-based evaluation provides a more com-
plete view of the model’s properties. Spectral analysis is particularly useful in
understanding a model’s performances in replicating asset returns stylized facts
[Berkowitz (2001)]. For example, the mean equity premium is proportional to
the covariance between mt and re

t+1, which can be decomposed in the frequency
domain.7 According to Hansen and Jagannathan (1997), a theoretical stochastic
discount factor must covary with excess return on equity in a particular way in
order to reconcile the model with the empirical equity premium. Watson’s (1993)
methodology allows one to decompose the covariance between the mt and the
re
t+1 by frequency, in order to determine the approximation errors necessary to

reconcile the theoretical cospectral density with its empirical counterpart.
Let us recall that this spectral evaluation’s aim is to present new evidence

regarding the size and the location of approximation errors, that is to provide a
characterization of the dimensions for which the models provide a good approxi-
mation and those in which they do not. We address two following questions: How
much error must be added to a model to reconcile it with the observed data? Are the
approximation errors severe throughout the frequency domain, or are they mainly
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confined at high or low frequencies? The measures of fit previously presented
are used to answer the first question. Table 3 presents the frequency domain
results for the four models on the entire spectral domain [0, π ]. To deal with the
second question, we report the RMSAE on three frequency bands in Table 3:
[π/16, π/3] representing business cycles frequencies, [0, π/16] representing low
frequencies, and [π/3, π ], high frequencies. Finally, to illustrate and to complete
the numerical results obtained for each band of frequencies, we plot the RMSAEs
against frequency: Figures 1 to 4 provide the decomposition spectra (or cospectra)
of the model, the data and the approximation errors for several variables.

The following frequency evaluation focuses mainly on five key variables: the
equity return (re

t ), the risk-free rate (r
f
t ), the long-term bond return (rb

t ), the quar-
terly consumption growth (�ct ), and the quarterly dividend growth (�dt ). ϒm,re

measures the fraction of covariance between the stochastic discount factor and eq-
uity return because of the model’s approximation errors.8 This allows us to evaluate
the model’s performances in explaining the equity premium puzzle. As detailed
in Appendix A, the following results are robust to the VAR specification, which is
very close to Campbell and Ammer (1993). We have checked that the results are
the same by relying on an alternative estimation based on the Bartlett method.9

4.2.1. Results on the size of approximation errors. The first general result is
the relatively poor spectral performances of all models. To match the empirical
spectral densities, the magnitude of the variance of errors must represent more
than 60% of the magnitude of the data variance. In the RBC, HAB, and ADJ
models, none of the RMSAE computed on the spectral densities are inferior to
80%, which is synonymous with poor fit.

A first illustration of poor fit is the consumption case. The replication of the
global consumption growth volatility is particularly unsatisfying in the RBC and
HAB models (respectively 0.94 and 0.90). The ADJ is even worse (2.61) on this
point. The BMK is not the exception to the rule and provides poor performances at
matching the overall volatility of the empirical consumption growth. The lack of
variance with respect to the data in the time-domain evaluation, which we pointed
out previously, is confirmed by the frequency-based method: the RMSAE for �ct

equals 1.57, which means that the variance of approximation errors have to be at
least 157% of the magnitude of the variance of the empirical series to reconcile
the model autocovariances with these of the data.10 A second example of poor fit
is illustrated by the risk-free rate case. The combination of habit formation and
capital adjustment cost drastically deteriorates the model’s ability to account for
the volatility of the risk-free rate: the RBC model exhibits a RMSAE equal to
0.95, which increases to 24.05 in the BMK model.

However, except for the consumption and the risk-free rate case, the quantitative
predictions of the BMK model are better than those obtained with the other three
models. The equity return (0.74 against 0.99 for the others), bond return, and
dividend growth volatility are better accounted for by this model. The BMK
model clearly distinguishes itself from the three other models in the replication of
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TABLE 3. Relative mean square approximation errors by fre-
quency bands

BMK model RBC model HAB model ADJ model

Business cycle frequencies
[π/16, π/3]

re
t 0.63 0.99 0.99 0.93

rb
t 0.83 0.99 0.91 0.94

r
f
t 47.92 1.01 0.95 0.83

�ct 1.92 0.89 0.87 1.76
�dt 11.70 50.57 130.33 0.40
ϒm,re 0.17 0.35 0.59 2.02

Low frequencies
[0, π/16]

re
t 0.26 0.94 0.95 0.67

rb
t 0.71 0.97 0.70 0.80

r
f
t 18.41 0.85 0.95 1.10

�ct 2.02 0.88 0.83 1.10
�dt 5.41 63.7 185.06 0.35
ϒm,re 0.24 0.43 0.50 0.23

High frequencies
[π/3, π ]

re
t 0.88 1.00 0.99 0.96

rb
t 0.91 0.99 0.96 0.99

r
f
t 15.87 1.02 0.98 0.90

�ct 1.27 0.98 0.94 3.46
�dt 0.64 6.49 19.48 0.83
ϒm,re 0.26 1.41 0.83 7.21

All frequencies
[0, π ]

re
t 0.74 0.99 0.99 0.94

rb
t 0.86 0.99 0.92 0.96

r
f
t 24.05 0.95 0.96 0.98

�ct 1.57 0.94 0.90 2.61
�dt 0.89 7.55 22.55 0.82
ϒm,re 0.24 0.92 0.81 0.82

The RMSAE is the lower bound of the variance of the approximation error divided by
the variance of the empirical series. It is computed on four bands of frequencies for the
following variables: stocks return, bond return, the risk-free rate, the quarterly growth
rate of consumption, and dividend. Each column represents the RMSAE of the first five
row variables constructed from the representation that minimizes the equally weighted
trace of the error spectrum. The sixth row gives ϒx,y , which is the lower bound of the
covariance between x and y of the approximation error divided by the covariance of
the series x and y. This is done for the two following variables: re

t , mt .
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FIGURE 1. Stock return and the stochastic discount factor cospectrum. Frequency domain is
partitioned in three intervals. [0, π/16] represents low frequencies interval, which include
components for more than eight years. [π/16, π/3] is the business cycle frequencies, that
is, periods between 1.5 and 8 years. The last interval, [π/3, π ], is the high frequencies
interval. A solid line represents error cospectrum required to reconcile the model with the
emprical mean equity premium. Dotted and dashed-dotted lines respectively respresent the
model and the data cospectra.

the covariance between the equity return and the discount factor: the contribution
of approximation errors is 24% to be reconciled with the empirical counterpart.
The BMK model explanation of the covariance between equity return and the
discount factor is encouraging. We will detail the frequencies responsible for this
improved fit later.

The evidence of improved fit of the BMK model with respect to the other
models should prevent the masking of the relatively high contribution of approxi-
mation errors for some variables. For instance, the approximation errors account
for 74% of the model’s explanation of the equity return volatility, and yet the
theoretical standard deviation on equity in the time domain is very close to its
empirical counterpart (15.78 in the model against 15.98). A similar result holds
for the dividend growth. If one only considers the theoretical standard deviation
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FIGURE 2. Quarterly consumption growth spectrum. Frequency domain is splitted into
three intervals. [0, π/16] represents low frequencies interval, which includes components
for more than eight years. [π/16, π/3] is the business cycle frequencies, that is, periods
between 1.5 and 8 years. The last interval, [π/3, π ], is the high frequencies interval. A solid
line represents the error spectrum. Dotted and dashed-dotted lines respectively respresent
the model and the data spectra.

of the dividend growth (14.4%), one may conclude that the model works well
at reproducing the dividend growth volatility. But, according to the RMSAE on
�dt , approximation errors account for more than 89% of the series variance. It is
necessary to investigate the reasons behind this kind of failure by decomposing
the measures of fit by bands of frequencies.

4.2.2. Results on the location of approximation errors. The decomposition of
the entire measure of fit is particularly appealing in the assessment of the quality
of the model approximation: a model may involve an important contribution of
approximation errors while largely confining them at frequencies of little interest
for macroeconomists. We combine the numerical results on different bands of fre-
quencies with Figures 1–4, which represent decomposition spectra (or cospectra)
for the model, the data, and the errors.
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FIGURE 3. Risk-free rate spectrum. See Figure 2 for details.

A salient result concerning the location of approximation errors is the strong ev-
idence of improved fit at low frequencies, especially for the BMK model. In Table
3, the comparison of the results on [0, π/16] and [π/16, π/3] shows that RMSAEs
are closer to zero on [0, π/16] than on [π/16, π/3]. The RMSAE on equity return,
for instance, equals 0.63 on [π/16, π/3], 0.74 on [0, π ] and 0.88 on [π/3, π ]. It
drops to 0.26 on [0, π/16]. The good results at reproducing the equity return
volatility in the time domain essentially comes from low and medium frequencies.

At business cycle frequencies, the covariance between the stochastic discount
factor and equity return is correctly accounted for by the BMK as the contribution
of errors represents 17% of the magnitude of the variance of the data. On lower
frequencies, the RMSAE increases to 0.24, which is still synonymous with a
very good fit. The good performances of the BMK model in the time domain
in reproducing the empirical equity premium seems to be a direct result of the
model’s behavior on medium-low frequencies.

Figure 1 provides further information.11 The stock return and SDF cospectrum
is theoretically dependent: the empirical fact is conditional on a given model of
utility function. When separable preferences are considered (i.e., in the RBC and
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FIGURE 4. Quarterly dividend growth spectrum. See Figure 2 for details.

the ADJ models), the cospectrum is completely positive on [0, π ]. In the habit
formation model, the empirical cospectrum is positive on [0, π/3] , then largely
negative on [π/3, π ]. Finally, when habit formation is combined with adjustment
costs, the cospectrum remains essentially negative, and displays large swings at
high frequencies. The BMK model displays a substantial covariation, especially
at low frequencies, and this is why the error is so close to zero on this dimension.
However, it is worth noting that the BMK model generates enough covariation
but not always with the correct sign. In particular, the empirical cospectrum
is essentially negative, with large swings especially at short horizons; however,
the BMK is not able to generate the same amount of negative covariation. The
ADJ model exhibits a similar pattern: the RMSAE is 0.23 on [0, π/16], but
the model’s cospectrum also displays a wrong sign. For the other two models,
Figure 1 confirms that approximation errors for the covariance must compensate
the lack of covariance in the models. For the HAB model, the error’s cospectrum is
particularly close to the data’s cospectrum, which confirms the lack of comovement
between re

t+1 and mt , already noticed in the time domain.
The spectral evaluation confirms that, in a DSGE model with a nontrivial

production sector, the introduction of either habit persistence or capital adjustment
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cost alone does not help the resolution of the equity premium puzzle. In addition,
we learn that approximation errors are particularly more severe at business cycle
frequencies than at long frequencies in these models.

Figure 2 displays the error necessary to explain the consumption growth
volatility.12 The behavior of the standard RBC and the HAB models in the fre-
quency domain illustrates the reasons why these models are rejected by Watson’s
test. These models fail to explain the consumption growth variance at low, medium,
and high frequencies because they greatly understate the empirical variance of
consumption. This implies an error’s spectrum close to the data’s spectrum at all
frequencies. The ADJ model is also rejected by Watson’s test because it is too
volatile with respect to the data. This implies a large contribution of approxima-
tion errors in both cases. The BMK model produces a substantial volatility around
π/16, which declines too rapidly.

Figure 3 depicts the short-term interest rate spectrum. It gives more information
on the way the models work to reproduce the interest rate volatility. The RBC
model accounts poorly for the risk-free rate volatility on the entire frequency
band. The ADJ model does not really fit in a satisfying way. We have learned
from the time-based evaluation that the ADJ model generates an interest rate
volatility that is as big as the data volatility. The decomposition of this variance
by frequency shows that the volatility comes mainly from the low frequencies.
The BMK model case is intriguing because it produces far too much volatility.
This shortcoming comes from the association of habit persistence in consumption
with capital adjustment cost. This phenomenon has been emphasized by previous
studies using a similar framework.13 Figure 3 shows that low and business cycles
frequencies are mainly responsible for this extra-volatility. This explains why the
BMK model’s spectrum is close to the error spectrum.

The last comment concerns the dividend growth volatility behavior. If one
only considers the standard deviation statistics computed in Table 2, an apparent
conclusion is that the BMK model slightly overstates the dividend growth standard
deviation, whereas the RBC and the HAB models generate dividend time-series
that are too volatile. However, Figure 4 shows another pattern. Quarterly dividends
growth is particularly volatile at very high frequencies compared to low or medium
frequencies. The model’s spectrum largely overstates the contribution of low
and medium frequencies, while largely understating the contribution of the high
frequencies. This is another illustration of a model that replicates the global
variance correctly without concentrating it on correct frequencies.

5. CONCLUSION

This paper is a first attempt to study asset returns by applying Watson’s (1993)
evaluation methodology to several variants of general equilibrium asset pricing
models. The challenge consists in providing a spectral evaluation of general equi-
librium asset pricing models with an explicit production sector. Four versions
have been studied; the last one is closely related to Jermann (1998) and combines
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habit formation and capital adjustment costs. This model is well known for its
success in accounting for both stylized facts of asset returns and business cycles.
Our aim is to develop evidence about the size and the location of approximation
errors. On the one hand, we evaluate how well a model fits the data. On the other
hand, we check that approximation errors are severe throughout the frequency
domain, or confined mainly at frequencies of little interest to macroeconomists.
We do not evaluate the model’s performances with respect to the degree of risk
aversion, as in Cogley (2001). Instead, we take a model known for its ability to
replicate selected stylized facts of asset returns, in order to study its behavior in
the frequency domain. We evaluate a model’s ability to account for the equity
premium puzzle, by decomposing by frequency the cospectrum of the equity
return and the stochastic discount factor. To provide a more complete picture of
the spectral properties of a given model, we also take into account the short-term
interest rate, the quarterly consumption, and the dividends growth.

We found that the spectral performances of the benchmark model were mixed.
The spectral evaluation confirms some time-based results. For instance, the expla-
nation of the equity premium puzzle is relatively satisfying: spectral results are as
good as those obtained in the traditional approach. The spectral evaluation also
exhibits new information that is completely hidden in the time-domain evaluation.
For example, in spite of the closeness of the theoretical variance of the equity
returns with its empirical counterpart, the model needs a substantial contribution
of approximation errors. By decomposing the error by fequency, we show that high
frequencies are responsible for this failure. A similar result holds for the risk-free
rate, which is known to be too volatile in this kind of model. The spectral evaluation
illustrates that this extravolatility mainly comes from the low frequencies.

It turns out that DSGE models with nontrivial production sector, involving
habit persistence and capital adjustment costs, represent a good point of departure
in the task of resolving the asset prices puzzles. Evidence about the location of
approximation errors suggest that this kind of framework provides a relatively
good approximation in analyzing asset pricing topics, especially on medium-
and long-run frequencies. However, the results on economic variables (such as
consumption or dividends) suggest that, in the task of integrating asset returns
and business cycles analysis, this model has to be improved to account for those
dynamics.

NOTES

1. Our contribution exploits the fact that in DSGE models households equate intertemporal marginal
rates of substitution in utility with intertemporal marginal rates of transformation. Under the complete
markets hypothesis, we are able to derive the endogenous stochastic discount factor, the return on
equity, the return on long-term bond, and the risk-free rate. This allows us to evaluate the models’
ability to account for the main Asset Returns Puzzles.

2. He provides a frequency decomposition of approximation errors for stochastic discount factor
models. To this aim, he extends the work of Hansen and Jagannathan (1997) by developing a version
of the Hansen-Jagannathan’s specification error bound in the frequency domain. This diagnostic tool
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is then applied to different versions of SDF models selected for their crucial role in the Asset Pricing
literature or their relative success in accounting for key Asset Returns Puzzles.

3. We also impose the following properties around the steady state: φ( i
k
) = i

k
and φ′( i

k
) = 1. a is

chosen in order to match the elasticity of the i
k

ratio with respect to Tobin’s q. We can then deduce the

value for b = (i/k)a and c = ( i
k
) [1 − 1/(1 − a)].

4. Prior studies of assets returns in general equilibrium models, relied on value function iteration
as a solution technique [Rouwenhorst (1995)]. Jermann (1998) proposes another method based on
loglinear-lognormal environment.

5. For the habit model we find a value of η̂ equal to 0.86.
6. Appendix A provides further details on the methodology.
7. For the models that integrate habit formation in preferences, the formulation of the SDF involves

a conditional expectation operator. Following Kocherlakota (1996), we approximate this conditional
expectation by an unconditional sample mean.

8. One may argue that focusing on the theoretical discount factor “limited comovement” with
equity returns leads to the evaluation of the model conditional on a given utility function. Indeed, the
empirical counterpart of the “SDF” is just a given nonlinear function of consumption. Our opinion is
that a comparison of the model with unconditional empirical quantities is beyond the scope of this
paper. Moreover, the study of comovements between equity returns and consumption growth only
holds for models that involve standard separable utility functions. When habit formation is taken into
account in preferences, the covariance between re

t+1 and mt is not equal to the covariance between
re
t+1 and �ct .

9. See Appendix A for further details.
10. RMSAE may be superior to 1, if the model produces too much (or not enough) variance (or

covariance) with respect to the series.
11. The flat appearance of the HAB, RBC, and ADJ models cospectra is an effect of the scale

difference with respect to the data.
12. The consumption growth behavior plays a central role in the stochastic discount factor defini-

tion. This is why we chose to incorporate this variable in our study.
13. Boldrin, Christiano, and Fisher (2001), Christiano and Fisher (1995, 1998), and Jermann

(1998).
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APPENDIX A

Consider an economic model that describes the evolution of an n × 1 covariance stationary
vector of variables, xt . Let us introduce the autocovariance generating function (ACGF) of
xt denoted Ax(z). The empirical counterpart of xt is denoted yt . Variables making up yt

are functions of raw data collected in a real economy. Suppose that xt and yt are jointly
covariance stationary, and define the approximation error in the economic model ut :

ut = yt − xt , (20)

so that

Au(z) = Ay(z) + Ax(z) − Axy(z) − Ayx(z), (21)
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where Au(z) is the ACGF of ut , Axy(z) the cross ACGF between xt and yt . Term of the
second member of (21) are needed to calculate Au(z). Ay(z) is easily estimated from
sample data; Ax(z) is completely determined by the model. This is not the case for the
third term Axy(z), which is not be determined by the model neither be estimated from the
data.

Any restriction used to identify Axy(z) is arbitrary. Instead, it is possible to calculate a
lower bound for the variance of ut without imposing any restriction on Axy(z). When this
lower bound on the variance of ut is large, then under any assumption on Axy(z), the model
fits poorly the data. If the lower bound of the variance of ut is small, then there are possible
assumptions about Axy(z) that imply that the model fits the data well.

The bound is calculated by choosing Axy(z) so as to minimize the variance of ut subject to
the constraint that the implied joint ACGF for xt and yt is positive and semidefinite. Watson
(1993) suggests that the lower bound estimate of the Relative Mean Square Approximation
Error (RMSAE) writes:

�j (ω) = [Au(z)]jj
[Ay(z)]jj

, z = e−iω, (22)

where �j (ω) denotes the j th component of �, [Au(z)]jj , [Ay(z)]jj the (j, j) elements of
the matrices Au(z) and Ay(z), respectively. Thus, �(ω) measures the fraction of volatility
in frequency ω because of model approximation errors, that is the variance of the error
relative to the variance of the data for each frequency. Small values of �(ω) mean that the
model explains most of the volatility concentrated around this frequency. Integrating the
numerator and denominator of �(ω) provides an overall measure of fit.

In the same fashion, the covariance measure of fit is:

ϒkj (ω) = [Au(z)]kj
[Ay(z)]kj

, z = e−iω, (23)

where ϒkj (ω) denotes the kth row and j th column component of ϒ , and [Au(z)]kj the (k, j)

element of matrix Au(z). The numerator Au(z) measures the real part of the cospectrum
between two variables due to approximation error around frequency ω. The denominator
measures the real part of the data sample covariance between the same two variables in
frequency ω. Thus, ϒ(ω) measures the fraction of the required covariance in frequency ω

that is a result of the model approximation errors. Again, small values mean that the original
model explains most of the covariance between two given variables around frequency ω.

Integrating over all frequencies yields an overall covariance measure of fit.
Because we are interested in the spectral behavior of DSGE models with asset pricing

conditions, recall that the mean equity premium equals the negative of the covariance
between the stochastic discount factor (mt ) and a risky-asset return (ri

t ).

E
(
ri
t+1 − r

f
t

)
1 + r

f
t

= −Cov
(
mt+1, r

i
t+1

)
. (24)

A model that produces a large equity premium must displays a substantial negative
covariation between the stochastic discount factor and the equity return. We compute ϒ

between mt and re
t+1.

According to Watson (1993), the log linearization of the Euler equation yields an approx-
imate solution allowing a VAR representation for the logarithms of endogenous variables.
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Coefficients of this VAR are complicated functions of the structural parameters. With these
values for the parameters, the VAR describing the equilibrium can be calculated and the
ACGF of xt follows directly. This approach is no longer applicable when the Euler equation
is approximated using a fully nonlinear method (the models are solved using orthogonal
collocation with Chebyshev polynomials). Another procedure is needed to compare Ay(z)

to Ax(z) in order to derive �j (ω) and ϒkj (ω).
We propose the following procedure inspired from Smith (1993) and Gouriéroux, Mon-

fort, and Renault (1993). Once we obtain the solution, we simulate our nonlinear model for
the variables we are interested in. Then, as Ellison and Scott (2000), we use these simulated
series to evaluate Ax. Practically, we estimate a VAR on each vector of simulated series,
then we compute the implied ACGF. The operation is repeated 500 times for series of 200
points long. Next, we take the average ACGF among the 500 replications to compare it
with the data. A similar VAR is estimated on empirical data. We impose the same lengths
for empirical and theoretical data and the same number of lags in VARs.

The VAR’s specification is inspired from Campbell and Ammer (1993). We adapt their
forecasting VAR by building a vector autoregression for stocks returns, long-term bond
returns, consumption growth, dividends growth, and the real rate of interest. Estimates
are realized over the period 1952–1998, using quarterly data. In following Campbell and
Ammer (1993), we try to limit the arbitrary aspect of the choice of the variables integrated
in the VAR. Then, given the final VAR specification we have checked that the spectral
behavior derived from the VAR model was robust to its specification by using an alternative
estimation method based on the Bartlett method.

APPENDIX B

So as to define our macroeconomic and financial variables, we start from the following
time-series:

[1]: consumption of durable goods;
[2]: consumption of nondurable goods;
[3]: consumption of services;
[4]: private fixed investment;
[5]: civilian population over 16;
[6]: total gross real return on stocks;
[7]: real dividend;
[8]: three-month treasury bill real rate;
[9]: ten-year treasury yields.

Quarterly data [1], [2], [3], [4], and [5] are taken from the Stock and Watson database
over the period 1952(1)–1998(1). We then define the aggregate series:

c : ([2] + [3])/[5];
x : ([1] + [4])/[5];
y : c + x;
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Notice that public expenditures are excluded from our definition of c, x, and y.
Quarterly financial data [6], [7], [8], and [9] cover the period 1947(1)–1999(1). These

data were kindly furnished by John Y. Campbell. [8] is a quarterly series constructed by
selecting the data corresponding to the last month of the quarter. Bond return are calculated
from yields using the par-bond approximation given in Campbell, Lo, and MacKinlay
(1997), Chapter 10, equation (10.1.19).
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