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In this paper we define a logical framework, called λTT , that is well suited for semantic

analysis. We introduce the notion of a fibration L1 :T1 −→ C1 being internally definable§
in a fibration L2 :T2 −→ C2. This notion amounts to distinguishing an internal category L
in L2 and relating L1 to the externalization of L through a pullback. When both L1 and

L2 are term models of typed calculi L1 and L2, respectively, we say that L1 is an internal

typed calculus definable in the frame language L2. We will show by examples that if an

object language is adequately represented in λTT , then it is an internal typed calculus

definable in the frame language λTT . These examples also show a general phenomenon: if

the term model of an object language has categorical structure S , then an adequate encoding

of the language in λTT imposes an explicit internal categorical structure S in the term model

of λTT and the two structures are related via internal definability. Our categorical

investigation of logical frameworks indicates a sensible model theory of encodings.

1. Introduction

The notion of logical framework first appeared in Martin-Löf’s work (Nordström et

al. 1990). It is meant to be a simple language with which his type theory can be precisely

defined. The idea is picked up and extended in Harper et al. (1987, 1993). According to the

authors, logical frameworks are languages in which logics can be adequately defined. The

good properties of the meta-languages then guarantee that all manipulations of the defined

logics are correct and easy (or even decidable). The language in Harper et al. (1987, 1993),

now known as ELF, consists of kinds, constructors and objects. Types are constructors of

kind Type. In addition to the usual type theoretical features, it has signatures that declare

constant terms. In other words, signatures are constant contexts in which one can declare

both constant objects and constant constructors. When coding up an object language, one

first defines an appropriate signature so that logical operators become constant objects or

constructors. An important feature of ELF is that rules in object languages are presented

as objects in the framework. Logical derivations then amount to function applications.

† During the preparation of this paper, the author was supported by the CLICS-II project. In the later stage

of the preparation, he was under the 863 Project.
‡ Author’s present address: Department of Computer Science, Shanghai Jiao Tong University, 1954 Hua Shan

Road, Shanghai 200030, People’s Republic of China.
§ The definability as used in this paper should not be confused with Bénabou’s ‘definability’ (Bénabou 1985).
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To guarantee the correctness of the encoding, an adequacy theorem must be proved each

time a logic is defined in the framework. The adequacy theorem basically says that what

has been formulated in ELF is sound and faithful with respect to the object language of

interest.

The core of Martin-Löf’s logical framework and that of ELF are the same, but their

emphases are different. Martin-Löf sees his logical framework as a foundational language

upon which his constructive type theory is built. For that to be possible, he needs to

talk about definitional equality for the object languages. His solution is to use equational

theories of his framework. So, to be precise, Martin-Löf’s monomorphic type theories

are equational theories in the underlying calculus. On the other hand, the motivation in

Harper et al. (1987, 1993) is to design a meta-language once and for all so that logics can

be represented and proof checking be mechanized. To keep the calculus decidable, one

has to settle for internal representations of the definitional equalities in object languages.

Now =, like ∈, plays a special role in proof theory. But ELF treats x = y as a judgement

just like other judgements. This is a price one has to pay to retain decidability.

A prominent question a designer of a logical framework must address is how are

the variables in an object language represented in the framework? ELF’s answer is to

identify the variables in an object language with those of the framework itself. One of the

observations in this paper is that this variable identification has serious impact on model

theory.

The proof theoretical and pragmatical aspects of logical frameworks have been exten-

sively studied (Huet and Plotkin 1991; Huet and Plotkin 1993; Nordström et al. 1992).

Their model theory, however, has not yet been paid as much attention as it deserves†.
This paper sets out to remedy this. First, however, we need to make clear what we

mean by a logical framework in this paper. A logical framework is a typed calculus

upon (or in) which typed calculi are defined. Putting this differently, the theory of log-

ical frameworks is about internal type theory. This unifies the views taken in Harper

et al. (1987, 1993) and Nordström et al. (1990), and, arguably, also covers other more

complex languages. The various well-known coding techniques (Böhm and Berarducci;

Wraith 1989) belong to internal type theory. This viewpoint is semantically motivated.

What internal categories are to an ambient category, object languages are to a logical

framework.

In this paper we introduce the notions of internal definability, internal typed calculi and

frame languages. Examples are given to show the potential usefulness of these definitions.

We propose an alternative presentation of Edinburgh LF based on the idea of internal

typed calculi and frame languages. The system is analyzed in terms of internal definability.

We show that the new presentation makes it convenient for an algebraic investigation.

We use three examples to illustrate some new observations about logical frameworks.

Category theory is used to relate the model theory of the logical framework to those of

the represented languages.

† For those familiar with Simpson (1992), we mention that the logical framework considered in that paper

can only encode consequence relations, not proof theories, of logics. The models described in loc.cit. are

inappropriate for logical frameworks à la Martin-Löf.
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Section 2 fixes some notations that will be employed later. Section 3 gives the definitions

central to later development. Section 4 is an undemanding introduction to our logical

framework λTT . Some sample encodings are given in Section 5. Section 6 details the

fact that λTT has a built-in mechanism to generate internal full subcategories, whose

relationship to the variable convention is also explained. Sections 7 and 8 reveal some

further categorical properties of λTT . Section 9 outlines the idea of model theory for

encodings. Finally, in Section 10, we take a brief look at some questions in terms of

internal definability.

2. Preliminaries

The technical definitions given in this section are needed to describe the categorical

properties of λTT . The material is standard; see Bénabou (1985), Pavlović (1990), Barr

and Wells (1990), and Jacobs (1991) for more on the theory of fibration and Hyland et

al. (1990) and Pitts (1987) for relevant internal category theory.

Suppose p : F −→ B is a functor. The morphism Y
f
−→ X in F is said to be a

cartesian lifting of J
u−→ I in B if

(i) pf = u and

(ii) for any Z
g
−→ X in F and pZ

m−→ J satisfying pg = m; u, there is a unique

morphism Z
φ
−→ Y with pφ = m and g = φ; f.

The functor p is a fibration if for every morphism J
u−→ I in the base category B

and every object X in the fibre category F with pX = I , there is a cartesian lifting

u?X
u−→ X of u. A cloven fibration is a fibration equipped with a cleavage, which is a

choice {u}
J
u
→I∈B

of cartesian liftings. A cloven fibration is split if Id = Id and v; u = v; u

for every pair of composable morphisms in B. When this is the case, p can be presented

as an indexed category P : Bop −→ Cat, which is a ‘functor’ from Bop to the ‘category’

of categories. Suppose I is an object in the base category of a split fibration p :F−→B.

The category p−1(I), the fibre over I , is the one whose objects and morphisms are those

of F that are mapped by p onto I and IdI , respectively. For each morphism J
u−→ I

in B, we have a reindexing functor p−1(I)
u?−→ p−1(J). The construction tells us how to

transform a split fibration into an indexed category. The opposite construction is the

so-called Grothendieck construction (Barr and Wells 1990). A split fibration has a fibred

cartesian closed structure if each fibre has a fibred cartesian closed structure and the

reindexing functors preserve the structure on the nose. A split fibration p : F−→B has

A-indexed products, where A is an object in B, if for each I in B, the reindexing functor

over I×A→I has right adjoint ΠI and these right adjoints satisfy the Beck–Chevalley

condition: for each J
u−→ I in B, we have (u×IdA)?; ΠJ = ΠI ; u

?. A cartesian functor

H from p : F −→ B to q : E −→ B is a functor H : F −→ E such that p = H; q,

and H sends cartesian liftings to cartesian liftings. A cartesian functor is full (faithful) if

and only if its fibrewise functors are full (faithful). More generally, a cartesian map from

p : F −→ B to q : G −→ C consists of two functors H : F −→ G and K : B −→ C
such that H; q = p;K , and H sends p-cartesian liftings to q-cartesian liftings. If both p
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and q are split, the cartesian map (H,K) is strict if H sends the chosen cartesian liftings

to the chosen cartesian liftings. An object U in a locally small category B determines a

representable functor B[ , U] : Bop −→ Set that sends A ∈ B to B[A,U] and A
f
−→ B to

B[f,U] : B[B,U] −→ B[A,U].

LetF and B be two categories. A D-category (Ehrhard 1988) is given by three functors

p, G :F −→ B and I : B −→F such that

(i) p is a fibration;

(ii) I is the fibred terminal object functor of p (so I; p = IdB, p a I and I is full

embedding), and

(iii) I a G.

We say that the D-category is split if p is split.

An internal category C in B consists of objects C0, C1, C2 and morphisms as shown in

the diagram below.

C2 C1 C0
γ
Π0

Π1

id
d0

d1

-
-

-
�

-

-

These morphisms in B must satisfy the well-known conditions:

(i) Π0 (Π1) is the pullback of d0 (d1) along d1 (d0);

(ii) the (co)domain of the composition of a pair of composable arrows is the (co)domain

of the first (second) arrow: γ; d0 = Π0; d0 and γ; d1 = Π1; d1;

(iii) id; d0 = id; d1 = IdC0
;

(iv) id is a unit for composition: (id×0IdC1
); γ = Π1 and (IdC1

×0 id); γ = Π0; and

(v) composition is associative: (γ×0IdC1
); γ = (IdC1

×0γ); γ.

The externalization of C is a split fibration domC : [C] −→ B. An object in [C] is a

morphism I
α−→ C0. A map from (I

α−→ C0) to (J
β
−→ C0) is a pair (I

f
−→ J, I

m−→ C1)

such that the two diagrams below commute.

I C1

C0

m

d0α

?

-

@
@
@
@@R

I

J

C1

C0

f

β

m

d1

?

-

?
-

The functor domC sends (I
f
−→ J, I

m−→ C1) onto I
f
−→ J . The canonical cartesian

lifting over I
f
−→ J with respect to J

β
−→ C0 is (I

f
−→ J, I

f
−→ J

β
−→ C0

id−→ C1).

The corresponding indexed category is denoted by [ ,C] : Bop −→ Cat. A morphism
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(I
α−→ C0) −→ (I

β
−→ C0) in [I,C] is a morphism I

m−→ C1 in B such that the following

diagram commutes.

C0

I

C1 C0
d0

α m β

d1

?

�
�
�
��	

@
@
@
@@R

� -

Let D be a collection of morphisms, called display maps (Taylor 1986; Hyland and

Pitts 1989), of B such that for any A
d−→ X in D and any morphism Y

f
−→ X, there is a

(unique) morphism A[f]
d[f]
−→ Y in D rendering the diagram

A[f]

Y

A

X

d[f]

f

d

?

-

?
-

a pullback. Let B/D be the full subcategory of the arrow category B→ determined by

D. The definition of D simply says that B/D cod−→ B is a (cloven) fibration. The fibration

B/D cod−→ B is split if it is cloven and for each display map d, we have d[Id] = d and

d[f; g] = d[g][f].

Suppose B has finite products and D is a family of display maps. Let V
G−→ C0 be

in D. We can transplant the well-known construction of an internal full subcategory

in a locally cartesian closed category (Pitts 1987) to B if there are enough exponential

structure in B/D cod−→ B (notice that B already has enough pullback structure guaranteed

by D). We will call the resulting C the internal category induced by V
G−→ C0. For any

I
a−→ C0, we have a display map G[a] that is the pulling-back of G along a. We say

that the G-induced internal category C is an internal full subcategory of B relative to D

if

(I
a−→ C0) 7−→ G[a],

(I
a−→ C0)

(α,m)
−→ (J

b−→ C0) 7−→ (α, m?) : G[a]→G[b]

establishes a full embedding cartesian functor from domC : [C] −→ B to B/D cod−→ B. We

do not have room here to give a detailed explanation of this construction, but it will be

given for the specific examples used in this paper.
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We say that the internal category C induced by V
G−→ C0 has explicit cartesian closed

(object) structure if there are morphisms 1
>̇−→ C0, C0×C0

×̇−→ C0 and C0×C0
→̇−→ C0

such that we have pullbacks as follows:

1

1

V

C0>̇

G

?

-

-
?

•

C0×C0

V

C0

G1×C2
0
G2

×̇

G

?

-

?
-

•

C0×C0

V

C0

G1→C2
0
G2

→̇

G

?

-

?
-

where Gi is the pulling-back of G along C0×C0
πi−→ C0 for i = 1, 2, and ×C2

0
(→C2

0
) is the

product (exponential) functor on (B/D)−1(C0×C0). We say that C has explicit A-indexed

products if there is a morphism (A→C0)
Π̇−→ C0 such that we have a pullback diagram as

follows:

•

A→C0

V

C0

ΠA(G[ev])

Π̇

G

?

-

?
-

where G[ev] is the pulling-back of G along (A→C0)×A ev−→ C0, and ΠA is the right adjoint

to the weakening functor over (A→C0)×A π1−→ (A→C0).

If C has explicit cartesian closed structure (A-indexed products), the externalization of C

has fibrewise cartesian closed structure and the reindexing functors preserve the structure

on the nose (right adjoints to the weakening functors over morphisms I×A π1→ I) and the

Beck–Chevalley condition is satisfied.

3. Internal typed calculi and frame languages

The central theme of the theory of fibration is that an object in a base category should be

regarded as a ‘set’ (and a morphism a ‘function’). A fibration p : E −→ B is a mathematical

discipline in which one carries out mathematical activities with respect to the ‘set theory’

B. Thinking ‘set theoretically’, it is important to distinguish between ‘small’ fibrations

and ‘non-small’ ones. Roughly speaking, a ‘small’ fibration is obtained by externalizing

some ‘set-theoretical’ gadget in B. An externalization process transfers internal notions

in B to external ones. The famous Yoneda lemma then acts a role similar to that of the

extensionality axiom; it says that a ‘small’ fibration is essentially the same thing as a ‘set’

(‘small’ category etc.) in B. So a ‘small’ fibration is a fibration that is ‘definable’ in the ‘set

theory’ B.
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Given so many papers dealing with the relationship between typed calculi and fibrations,

it is perhaps surprising that in type theory we have not yet seen the notion of ‘internal

definability’ proposed, a notion that is fundamental in the theory of fibration. In this

paper, we will show that this concept is potentially useful to type theory, especially to the

study of logical frameworks.

Type theoretically, a strict cartesian map (H,I) from a split fibration L1 :T1 −→ C1

to another L2 : T2 −→ C2 is a translation from the language L1 to the language

L2. When both H and I are embedding functors, the translation is faithful. In this

case L1 can be seen as a sublanguage of L2. If, furthermore, both H and I are full,

L2 is a conservative extension of L1. A special case of this conservative extensionality

relationship arises when the whole extension L1 ↪→ L2 is determined by C1 ↪→ C2, part

of the extension. Categorically, this means that L1 is the pulling-back of L2 along I.

Here it is most useful to combine the notion of ‘internal definability’ with that of

conservative extensionality. So, typically, we have a strict cartesian map (H,I) from a

language L : T −→ C, viewed as a fibration, to an externalization fibration domU :

[U] −→ D, where U is an internal category in D; both H and I are embedding functors.

Because domU is completely determined by the internal category U in D, it makes sense to

requireL be totally determined by I : C −→ D (that is,L :T −→ C is the pulling-back

of domU along I : C −→ D).

To introduce the central notion in this paper, it is helpful to give an auxiliary definition.

Definition 3.1. Suppose p1 : E1 −→ B1 is a split fibration and B2 a category. Then p1 is

said to be internally codable in B2 by L via I if

(i) I : B1 −→ B2 is an embedding functor;

(ii) L in B2 is an internal category, and

(iii) there is an embedding functor H : E1 ↪→ [L] such that (H,I) is a strict cartesian

map from p1 to domL : [L] −→ B2.

The fibration p1 is said to be internally definable in B2 by L via I if in addition both H

and I are full and the following square is a pullback.

E1

B1

[L]

B2

p1

I

H

domL

?

-

?
-

Example 3.2. Given a second-order λ-theory, we can construct its term model as a split

fibration with fibred cartesian closed structures. In Pitts (1987), it is shown that this

fibration is internally definable in a topos by an internal category equipped with explicit

cartesian closed structure.
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Example 3.3. The higher-order polymorphic λ-calculus is a two level type system. At the

first level we have kinds and constructors. The valid kinds are defined inductively as

follows:

⇒ > a kind

⇒ Type a kind

K1 kind, K2 kind ⇒ K1×K2 kind

K1 kind, K2 kind ⇒ K1→K2 kind.

A kinding context is a finite set of constructor variables with their specified kinds. Suppose

∆ is [X1 : K1, . . . , Xn : Kn]. Then ∆, X : K denotes the kinding context [X1 : K1, . . . , Xn :

Kn,X : K]. Given a kinding context, we can form valid constructors whose constructor

variables are all declared in that context. These are the rules:

∆ a kinding context, X : K ∈ ∆ ⇒ ∆ ` X : K

∆ a kinding context ⇒ ∆ ` ?> : >
∆ ` Ci : Ki for i = 1, 2 ⇒ ∆ ` 〈C1, C2〉 : K1×K2

∆ ` C : K1×K2 ⇒ ∆ ` πiC : Ki for i = 1, 2

∆, x : K1 ` C : K2 ⇒ ∆ ` λx :K1.C : K1→K2

∆ ` F : K1→K2, ∆ ` C : K ⇒ ∆ ` FC : K2

∆ a kinding context ⇒ ∆ ` 1 : Type

∆ ` A : Type, ∆ ` B : Type ⇒ ∆ ` A×B : Type

∆ ` A : Type, ∆ ` B : Type ⇒ ∆ ` A→B : Type

∆, X : K ` A : Type ⇒ ∆ ` ∀X:K.A : Type.

Constructors of kind Type are called types.

A typing context Γ is a set of statements of the form x : A indicating that A is

the type of the free variable x. Let Γ be [x1 : A1, . . . , xn : An]. Then Γ, x : A denotes

the typing context [x1 : A1, . . . , xn : An, x : A]. At the second level we have rules con-

cerning objects. In these rules Γ `∆ a : A presupposes that Γ is well defined under

∆ and ∆ ` A : Type. Here a typing context [x1 : A1, . . . , xn : An] is well defined un-

der ∆ if ∆ ` A1 : Type, · · ·, ∆ ` An−1 : Type and ∆ ` An : Type. Here are the

rules:

Γ well defined under ∆, x : A ∈ Γ ⇒ Γ `∆ x : A

Γ well defined under ∆ ⇒ Γ `∆ ?1 : 1

Γ `∆ ai : Ai for i = 1, 2 ⇒ Γ `∆ 〈a1, a2〉 : A1×A2

Γ `∆ c : A1×A2 ⇒ Γ `∆ πic : Ai for i = 1, 2

Γ, x : A `∆ b : B ⇒ Γ `∆ λx :A.b : A→B
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Γ `∆ f : A→B, Γ `∆ a : A ⇒ Γ `∆ fa : B

Γ `∆,X:K c : C, X /∈ Γ ⇒ Γ `∆ ΛX:K.c : ∀X:K.C

Γ `∆ F : ∀X:K.C, ∆ ` D : K ⇒ Γ `∆ FD : C[D/X],

where X 6∈ Γ means that the constructor variable X does not appear in any type in Γ.

The set of equations is standard:

(ΛX:K.F)C
β2

= F[C/X]

ΛX:K.FX
η2

= F

(λx :A.f)a
β
= f[a/x]

λx :A.fx
η
= f

π1〈t1, t2〉
π1= t1

π2〈t1, t2〉
π2= t2

〈π1t, π2t〉
δ
= t

u
!>= ?>

v
!1= ?1,

where u is of kind >, v is of type 1 and t, for example, is either of type A1×A2 or of kind

K1×K2.

We can construct a split fibration Lω : Tω−→Cω from the terms of the higher-order

λ-calculus: the objects and morphisms of Cω are kinding contexts and realizations, re-

spectively; an object over ∆ is a typing judgement ∆ ` A : Type, and a morphism from

∆1 ` A1 : Type to ∆2 ` A2 : Type is a pair (∆1
r−→ ∆2,`∆1

f : A1→A2[r]), where A2[r]

is obtained from A2 by applying to A2 the substitution prescribed by r. The functor Lω

sends (∆1
r−→ ∆2,`∆1

f : A1→A2[r]) onto ∆1
r−→ ∆2. There is an internal category in Tω

constructed as follows:

Cω
0

def
= X : Type ` 1 : Type

Cω
1

def
= X,Y : Type ` X→Y : Type

Cω
2

def
= X,Y , Z : Type ` (X→Y )×(Y→Z) : Type

dω0
def
= ([X,Y : Type]

(X)
−→ [X : Type],`X,Y :Type λf:X→Y .?1 : (X→Y )→1)

dω1
def
= ([X,Y : Type]

(Y )
−→ [Y : Type],`X,Y :Type λf:X→Y .?1 : (X→Y )→1)

Πω
0

def
= ([X,Y , Z : Type]

(X,Y )
−→ [X,Y : Type],`X,Y ,Z:Type λf:(X→Y )×(Y→Z).π1f)

Πω
1

def
= ([X,Y , Z : Type]

(Y ,Z )
−→ [Y ,Z : Type],`X,Y ,Z:Type λf:(X→Y )×(Y→Z).π2f)

idω
def
= ([X : Type]

(X,X)
−→ [X,Y : Type],`X:Type λz:1.λx:X.x)

γω
def
= ([X,Y , Z : Type]

(X,Z)
−→ [X,Y : Type],

`X,Y ,Z:Type λf:(X→Y )×(Y→Z).λx:X.(π2f)(π1fx)).
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It can be readily shown that there is a pullback as shown by the diagram:

Tω

Cω

[Cω]

Tω

Lω

>ω

Hω

domCω

?

-

?
-

where >ω sends ∆ onto ∆ ` 1 : Type. This means that Lω is internally definable in Tω

by Cω .

Now we come to the central definition of this paper.

Definition 3.4. Suppose both fibrations p1 : E1 −→ B1 and p2 : E2 −→ B2 are split. Then

p1 is said to be internally codable (definable) in p2 (notation p1 / (∝)p2) by L via I if

(i) p1 is internally codable (definable) in B2 by L via I, and

(ii) there is a full embedding functor L : [L] −→ E2 that is cartesian from domL to p2.

E1

B1

[L]

B2

E2

p1

I

H

domL

L

p2

?

-

?
-

-

�
�

�
��	

We call the cartesian map (H,I) the interpretation map.

For typed λ-calculi L1 and L2, if their term models are split fibrations L1 and L2,

respectively, then L1 is the internal typed calculus coded (defined) (notation L1 / (∝)L2)

in L2 by L via I if L1 is internally coded (defined) in L2 by L via I. When L1 ∝ L2,

we say that L2 is a frame language for L1.

The internal definability results to be established in Section 8 all possess some additional

properties. Typically, the fibration p1 has a fibred categorical structure S , say a fibred

cartesian closed structure, and the internal category L is induced by a generic morphism

and is equipped with explicit internal categorical structure S; besides the interpretation

map (H,I) preserves the fibred structure S . The structure S is different in each application.

To avoid the criticism of being imprecise, we refrain from giving a stronger definition.

Example 3.5. (continued from Example 3.3) There is a set Dω of display maps such

that codω a Iω a domω : Tω/Dω−→Tω form a D-category. The set Dω consists of

all the maps in Tω of the form (Id∆,`∆ π1 : A×B→A) : (∆ ` A×B : Type)−→(∆ `
A : Type). The functor Iω sends an object ∆ ` A : Type in Tω onto the object

(Id∆,`∆ π1 : A×>→A) in Tω/Dω . It can be readily shown that Cω is an internal
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full subcategory of codω : Tω/Dω−→Tω . So Lω is internally definable by Cω in the

fibration codω :Tω/Dω−→Tω . For a categorical account of this example and more, see

Pitts (1987).

When the notion of internal definability is employed in this paper, p2 is typically a

D-category. Having a D-categorical structure allows us to switch between fibre category

and base category. For example, if the base category of a D-category has an internal

category, that internal category can be passed to the fibre category, and vice versa. We

are going to prove a result about the relationship between the internal definability in the

base category of a fibration and that in the fibre category of the same fibration. The next

two lemmas will be used to prove the result.

Lemma 3.6. Suppose I : B −→ E is a full embedding functor and U is an internal category

in B. If I preserves finite limits, there is a pullback diagram as shown below and (K, I) is

a strict cartesian map from domU to domIU.

[U]

B

[IU]

E

domU

I

K

domIU

?

-

?
-

Proof. K sends an object X
α→ U0 onto IX

Iα−→ IU0, a morphism (X
f
→ Y ,X

m→ U1)

onto (IX
If
−→ IY , IX

Im−→ IU1) and so on.

Lemma 3.7. Suppose the left exact functor F : C −→ D is left adjoint to G : D −→ C. Let

U be an internal category in D. Then the externalization fibration of domGU : [GU] −→ C
is the pullback of the fibration domU : [U] −→ D along F : C −→ D and the pullback

forms a strict cartesian map from domGU to domU.

Proof. Because G is a right adjoint and thus preserves limits, GU is an internal category

in C. First we need to define a functor K : [GU] −→ [U] such that the following square

commutes.

[GU]

C

[U]

D

domGU

F

K

domU

?

-

?
-

For X
f
→ GY ∈ C and FX

g
→ Y ∈ D, write f̂ and g, respectively, to denote their transposes

across the adjunction. K sends an object Γ
f
→ GU0 to FΓ

f̂
−→ U0 and a morphism

(Γ
r→ ∆,Γ

m→ GU1) to (FΓ
Fr→ F∆, FΓ

m̂→ U1). It can be easily seen that K preserves
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identities. Suppose (Γ
r→ ∆,Γ

m→ GU1) : σ → τ and (∆
s→ Θ,∆

n→ GU1) : τ → δ are

composable morphisms in [GU]. Their composition is (r; s, 〈m, r; n〉0;Gγ〉). This morphism

is mapped onto (F(r; s), ̂〈m, r; n〉0; γ) by K . On the other hand, we can first apply K and

then compose. What we get is (Fr;Fs, 〈m̂, r̂; n〉0; γ). So the problem is reduced to showing

that if Γ
m1→ GU1 and Γ

m2→ GU1 are composable, ̂〈m1, m2〉0 = 〈m̂1, m̂2〉0. By definition,̂〈m1, m2〉0 is F〈m1, m2〉0; εU2
. The map F〈m1, m2〉0 is 〈Fm1, Fm2〉0 because F preserves

limits. By the naturality of ε and a diagram-chasing, we have εU2
= εU1

×0εU1
. Therefore

̂〈m1, m2〉0 = 〈Fm1, Fm2〉0; εU2

= 〈Fm1; εU1
, Fm2; εU1

〉0
= 〈m̂1, m̂2〉0.

We conclude that K is a functor. It is easily seen that K renders the square commutative.

Next we must show that it is a pullback. Suppose M;F = N; domU.

[GU]

C

[U]

D

domGU

F

K

B domU

M

N
H
@
@I

�
�	

�
��

?

-

?
-

The functor H : B −→ [GU] is defined as follows

X 7−→ MX
NX−→ GU0,

X
f
→ Y 7−→ (Mf,Nf),

where we have confused notationally Nf with its second component. H so defined clearly

preserves identities. For morphisms X
f
→ Y and Y

g
→ Z in B, the composition of Nf and

Ng is

(FM(f; g), 〈Nf, FMf;Ng〉0; γ).

So H(f; g) = (M(f; g), 〈Nf, FMf;Ng〉0;Gγ). On the other hand,

H(f);H(g) = (M(f);M(g), 〈Nf,Mf;Ng〉0;Gγ)

= (M(f; g), 〈Nf, FMf;Ng〉0;Gγ).

So we only have to show that if FA
σ→ U1 and FA

τ→ U1 are composable, then 〈σ, τ〉0 =

〈σ, τ〉0. But

〈σ, τ〉0 = 〈ηA;Gσ, ηA;Gτ〉0
= ηA; 〈Gσ,Gτ〉0
= ηA;G〈σ, τ〉0 G preserves limits

= 〈σ, τ〉0.
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Finally, we note that (K, F) is a strict cartesian map from domGU to domU because it

sends a canonical cartesian lifting Γ
α→ ∆

σ→ GU0

G(id)
−→ GU1 onto the canonical cartesian

lifting FΓ
Fα→ F∆

σ̂→ U0
id→ U1.

Theorem 3.8. Suppose p1 : E1 −→ B1 is a split fibration and p2 a I a G : E2 −→ B2 is a

split D-category. Then p1 is internally codable (definable) in B2 via I : B1 −→ B2 iff it

is internally codable (definable) in E2 via I; I : B1 −→ E2.

Proof. One direction is established by Lemma 3.6.

E1

B1

[GU]

B2

[U]

E2

p1

I

J

domGU

K

domU

I

?

-

?
-

-

?
-

Suppose (H,I; I) is a strict cartesian map from p1 to domU. By Lemma 3.7, the

right square in the above diagram is a pullback. So H factors as J;K for some

J : E1 ↪→ [GU]. If the outer rectangle is a pullback, the left square is a pullback.

If H sends a canonical cartesian lifting to the canonical cartesian lifting (IM
Iα→

IN, Iα; σ; id), then J must send the former cartesian lifting to the canonical carte-

sian lifting (M
α→ N, α; σ;G(id)). That is (J,I) is a strict cartesian map from p1 to

domGU.

4. Introducing λTT

The purpose of the first two subsections is to recap on ELF and Martin-Löf’s logical

framework. In order to compare our logical framework to these two languages, we will

give a complete presentation of both of the languages. It is our hope that by analysing

these calculi at an elementary level, we can bring out the point and the advantage of

λTT . Having reviewed the two languages, we will then introduce our logical framework

λTT .

4.1. Martin-Löf ’s logical framework

Martin-Löf’s logical framework (Nordström et al. 1990) has the following rules with the

definitional equality being extensional. Since the language is only used for comparison,

we omit the details of the judgemental equality rules. This comment also applies to the

presentation of ELF given below.

Context

〈〉 valid
Empty Context

Γ ` A type x fresh

Γ, x : A valid
Context Extension
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Assumption

Γ, x : A,Γ′ valid

Γ, x : A,Γ′ ` x : A
Variable

Type

Γ ` A type Γ, x : A ` B type

Γ ` (x :A)B type
Prod

Construction

Γ, x : A ` b : B

Γ ` (x)b : (x :A)B
Abs

Γ ` f : (x :A)B Γ ` a : A

Γ ` f(a) : B[a]
App

Set

Γ valid

Γ ` Set type
Set

Γ ` S : Set

Γ ` El(S) type
Reflection

Conversion

Γ ` a : A Γ ` A = B

Γ ` a : B
Conv

Using this framework, the Π-types in Martin-Löf’s monomorphic type theory can be

defined as follows:

Π : (X :Set)(Y : (x :El(X))Set)Set

Λ : (X :Set)(Y : (x :El(X))Set)(f: (x :El(X))El(Y (x)))El(Π(X,Y ))

• : (X :Set)(Y : (x :El(X))Set)(f :El(Π(X,Y )))(x :El(X))El(Y (x)).

The computational rule can be described as

•(A,B,Λ(A,B, f), a) = f(a) : El(B(a)),

where we assume

A : Set

B : (x :El(A))Set

f : (x :El(A))El(B(x))

a : El(A).

We finish this section by pointing out an important feature of Martin-Löf’s framework:

In Martin-Löf’s logical framework, the definitional equalities of type theories (object languages) are

identified with the definitional equality of the framework.

We will call this the equality convention.

4.2. The Edinburgh LF

ELF is based on the idea of Martin-Löf’s logical framework. Its purpose is to code up

a whole range of logics instead of just one group of them as in the case of Martin-Löf’s
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framework. The system is structured into three levels: objects, constructors and kinds.

The top level kinds provide the mechanism for introducing different universes. In any

particular application, a fixed number of constants are introduced, which form a signature.

These are the rules of ELF:

Valid Signatures

〈〉 Empty Sig

Σ Sig `Σ K a fresh

Σ, a : K Sig
Kind Sig

Σ Sig `Σ A : Type c fresh

Σ, c : A Sig
Type Sig

Valid Contexts

Σ Sig

`Σ 〈〉
Empty Ctxt

`Σ Γ Γ `Σ A : Type x fresh

`Σ Γ, x : A
Type Ctxt

Valid Kinds

`Σ Γ

Γ `Σ Type
Type Kind

Γ, x : A `Σ K

Γ `Σ Πx :A.K
Pi Kind

Valid Constructors

`Σ Γ c : K ∈ Σ

Γ `Σ c : K
Cst Con

Γ, x : A `Σ B : Type

Γ `Σ Πx :A.B : Type
Pi Con

Γ, x : A `Σ B : K

Γ `Σ λx :A.B : Πx :A.K
Abs Con

Γ `Σ A : Πx :B.K Γ `Σ M : B

Γ `Σ AM : K[M/x]
App Con

Γ `Σ A : K Γ `Σ K
′ Γ `Σ K ' K ′

Γ `Σ A : K ′
Conv Con

Valid Objects

`Σ Γ c : A ∈ Σ

Γ `Σ c : A
Const Obj

`Σ Γ x : A ∈ Γ

Γ `Σ x : A
Var Obj

Γ, x : A `Σ M : B

Γ `Σ λx :A.M : Πx :A.B
Abs Obj

Γ `Σ M : Πx :A.B Γ `Σ N : A

Γ `Σ MN : B[N/x]
App Obj

Γ `Σ M : A Γ `Σ A
′ Γ `Σ A ' A′

Γ `Σ M : A′
Conv Obj.

To give an idea of what encodings in ELF look like, we present a fragmentary encoding

of simply typed λ-calculus. A complete formalization should include encodings of the
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equation rules for lambda abstraction and application. The signature should contain at

least the following constants, where =τ stands for = (τ):

U : Type

T : U→Type
= : Πσ :U.T (σ)→T (σ)→Type
⇒ : U→U→U

abs : Πσ :U.Πτ :U.[T (σ)→T (τ)]→T (σ⇒τ)
app : Πσ :U.Πτ :U.T (σ⇒τ)→T (σ)→T (τ)

β : Πσ :U.Πτ :U.Πf :T (σ)→T (τ).Πx :T (σ).[app(σ, τ)(abs(σ, τ)(f), x) =τ fx].

We should remark that in ELF equalities in object languages are ‘internalized’ by

appropriate constructors. Following Martin-Löf’s logical framework, ELF employs the

following principle:

Variables of object languages are identified with the variables in the logical framework.

We will call it the variable convention.

4.3. λTT : a framework for defining type theories

A typed calculus can only be a framework for a certain collection of typed calculi†.
Some logics can be faithfully represented in such a framework because they have type

theoretical formulations via the Curry–Howard isomorphism. Some other logics can be

mimicked in the framework because some of their aspects can be captured type the-

oretically, and these aspects are considered to be important. A well-known example

that cannot be coded up in ELF is relevant logic. Moving to a stronger type sys-

tem is not necessarily a good idea. As far as logical frameworks are concerned, the

priority should always be with simplicity and good meta-theoretical properties. So, as

long as one’s logical framework is a typed calculus, what one can code up in this

framework are some other typed calculi; and that is all. It is for this reason that

we think of λTT as a framework for defining type theories. It should be emphasized

that λTT is not meant to be a stronger logical framework. It is meant to be a man-

ifestation of our view that a logical framework is a setting for defining frame lan-

guages.

The language λTT is designed with the following goals in mind: it should incorporate

ideas from both ELF and Martin-Löf’s logical framework; it should simplify model the-

oretical investigations; and it should have a built-in mechanism that formalizes processes

to define internally definable typed calculi. There are several design decisions one has to

make. Let us mention two of them:

(i) we decide that λTT should have finite product types, and

(ii) we decide that λTT should be an explicit language.

† We only consider languages where there is a notion of variable.
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Both decisions are in line with the second goal mentioned above. As for pragmatics, we

adopt the well-established variable convention and the well-behaved equality convention.

There are usually two ways to present a typed calculus. In both approaches, one first

defines the abstract syntax of the entities of the calculus and then gives rules defining

the well-formed entities. A type theorist would go on to formulate reduction rules and

define the definitional equality in terms of reduction. The notion of reduction is essential

in proof-theoretical studies (Luo 1990a; Harper et al. 1993). A mathematician on the

other hand prefers to define the definitional equality via judgemental equality given by

judgemental equational rules (Pitts 1987; Hyland and Pitts 1989). This latter approach

is favoured in semantical investigations as it renders no proof-theoretical problems when

forming term models. Our logical framework λTT as used in this paper will be given in

the second style for the obvious reason.

The abstract syntax for types and objects in λTT is described by the following grammar:

Types A ::= C | U | 1 | A×A′ | Πx :A.A′ | tU(M)

Objects M ::= c | x | ? | 〈M,M ′〉 | π1M | π2M | λx :A.M |M(M ′)

where C is a type constant declared in a signature, U a universe declared in a universe

declaration, c an object constant declared in a signature and x an object variable. Types

of the form tU(M) are nonstandard. The role of the type constructor t will be explained

after the rules. λTT has assertions of the following forms:

— Ω Uni—Ω is a list of special types called universes. A universe is a type whose

inhabitants can be lifted to types.

— `Ω Σ Sig—Σ is a list of constant types and/or constant objects whose types may

contain universes declared in Ω.

— `Ω;Σ Γ Con—Γ is a well-formed context under Ω and Σ.

— `Ω;Σ Th Theory—Th is a finite set of definitional equations under Ω and Σ.

— The other assertions are obvious.

Substitutions into terms are defined as usual in metalanguage. The only case that is worth

mentioning is

tU(M)[M ′/x]
def
= tU(M[M ′/x]).

The rules concerning the well-formed entities of λTT are as follows:

Universe

` 〈〉 Uni
Empty Universe

` Ω Uni U fresh

` Ω, U Uni
Universe Intro

Signature

` Ω Uni

`Ω 〈〉 Sig
Empty Sig

`Ω Σ Sig C fresh

`Ω Σ, C Sig
Sig-Type

[] `Ω;Σ A Type c fresh

`Ω Σ, c : A Sig
Sig-Obj
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Context

`Ω Σ Sig

`Ω;Σ [] Con
Empty Context

Γ `Ω;Σ A Type

`Ω;Σ Γ, x : A Con
Context Intro

Type

`Ω;Σ Γ Con U in Ω

Γ `Ω;Σ U Type
U-Type

`Ω;Σ Γ Con C in Σ

Γ `Ω;Σ C Type
C-Type

`Ω;Σ Γ Con

Γ `Ω;Σ 1 Type
Unit

Γ `Ω;Σ A Type Γ `Ω;Σ B Type

Γ `Ω;Σ A×B Type
Prod

Γ, x : A `Ω;Σ B Type

Γ `Ω;Σ Πx :A.B Type
Π-Prod

Γ `Ω;Σ M : U U in Ω

Γ `Ω;Σ tU(M) Type
Reflection

Object

`Ω;Σ Γ Con c : C in Σ

Γ `Ω;Σ c : C
C-Obj

`Ω;Σ Γ Con x : A in Γ

Γ `Ω;Σ x : A
V-Obj

Γ, x : A `Ω;Σ M : B

Γ `Ω;Σ λx :A.M : Πx :A.B
Abs

Γ `Ω;Σ M : Πx :A.B Γ `Ω;Σ N : A

Γ `Ω;Σ MN : B[N/x]
App

`Ω;Σ Γ Con

Γ `Ω;Σ ? : 1
Singleton

Γ `Ω;Σ M : A Γ `Ω;Σ N : B

Γ `Ω;Σ 〈M,N〉 : A×B Pair

Γ `Ω;Σ M : A×B

Γ `Ω;Σ π1M : A
L-Proj

Γ `Ω;Σ M : A×B

Γ `Ω;Σ π2M : B
R-Proj

Conversion

Γ `Ω;Σ M : A Γ `Ω;Σ B Type Γ `Ω;Σ A = B

Γ `Ω;Σ M : B
Conv.

The set of judgemental equational rules contains the following extensional rules

Γ `Ω;Σ M : 1

Γ `Ω;Σ M = ? : 1

Γ `Ω;Σ M : Πx :A.B Γ, x : A `Ω;Σ B Type

Γ `Ω;Σ λx :A.Mx = M : Πx :A.B

Γ `Ω;Σ M : A×B Γ `Ω;Σ A Type Γ `Ω;Σ B Type

Γ `Ω;Σ 〈π1M,π2M〉 = M : A×B

https://doi.org/10.1017/S0960129596002058 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129596002058


Categorical properties of logical frameworks 19

and the rule that reflects the judgemental equality between objects of a universe to that

between the corresponding types

Γ `Ω;Σ M = N : U U in Ω

Γ `Ω;Σ tU(M) = tU(N)
.

We omit the rest of the rules since they are well known.

In order to have an external view on equations in object languages we need equational

contexts:

`Ω Σ Sig

`Ω;Σ 〈〉 Theory
Empty Theory

Γ `Ω;Σ M : A Γ `Ω;Σ N : A `Ω;Σ Th Theory

`Ω;Σ Th[Γ `M = N : A] Theory
Theory Introduction.

An equational context is just a finite list of definitional equations. If `Ω;Σ Th Theory, we

write Γ `Ω;Σ M =Th N : A if Γ `Ω;Σ M = N : A is derived from the equations in Th as

well as the definitional equations of λTT .

A careful reader must have noticed that by eliminating the higher-order structure in

ELF we have collapsed rules about valid constructors and those about valid objects into

one group.

A prominent feature of λTT , as compared to ELF, is that there is a built-in operator

tU , for each universe U, that reflects an object M of the universe to a type tU(M).

To appreciate this operator, one must first of all understand the role played by the

kinds in ELF. The basic fact about the kinds in ELF is that they are all of the form

Πx1 :A1. · · ·Πxn :An.Type, where A1, · · · , An are types. In ELF it is legitimate to declare

a constant constructor of a closed kind in a signature; but it is forbidden to declare

a variable constructor of any kind in a context. It follows that ELF is not a full-scale

higher-order language. In ELF one never quantifies over a kind. The purpose of kinds is

to introduce constant families of types indexed over types. This is the only place where

genuine dependent types come into the language. It is this property that enables us to

imitate ELF by a first-order language λTT through the use of the lifting operator t. The

role of Πx1 :A1. · · ·Πxn :An.Type is now played by Πx1 :A1. · · ·Πxn :An.U in λTT , where

U is a universe. This is possible because in ELF we never talk about variables of a kind.

The type Πx1 : A1. · · ·Πxn : An.U classifies the families of names of types indexed over

types A1, . . . , An.

In true type theoretical spirit, λTT is an extension of Martin-Löf’s logical framework.

The additional features are product types and universe declaration†. The universe dec-

laration is the best way of getting rid of higher-order operators like those in ELF while

retaining all the expressive power. The product types are a compromise between having

Σ-types, which are troublesome, and having only Π-types, which sometimes does not

produce encodings in the way we want (the problem is even more serious when we

† As we have seen, Martin-Löf deals exclusively with only one universe Set.
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have universe declaration). For instance, in ELF the plus operator + : N→N→N has a

drawback: +(n) usually does not correspond to anything in the object language. In λTT
we can declare + to be of type N×N→N. The problem now disappears.

There are at least three questions concerned with λTT :

1 If we forget about the equational contexts of λTT , we get a sublanguage, which we

call λLF . Is λLF confluent and strongly normalizing? More generally, is λLF decidable?

2 How do we carry out meta-theoretical investigations into a typed calculus formulated

in λTT?

3 What is the proper notion of semantics of λTT?

The answer to Question 1 is believed to be yes. But so far its combinatorial complexity has

defeated all attempts to prove it. The problem is that the proof of subject reduction and

that of the Church–Rosser property are heavily interwined. No trick has been invented

to break the cycle. Our intuition tells us that λLF is a kind-free formulation of ELF with

finite product types. Unfortunately, we have not been able to give a reversable translation

between them.

Question 2 is harder. It cannot be tackled before the proof theory of λTT has been

fully understood. Suppose we have defined a language L in λTT and want to show that a

property P holds ofL. Suppose further that P holds of λTT . From that we need to prove

that P holds of the extended language λTT +L. So the problem is closely related to that

of compositional understanding of type theory – an issue that has not yet been properly

addressed (as far as we know, the proof theory of the monomorphic Martin-Löf’s type

theory is unknown).

This paper attempts to give an answer to Question 3.

5. Coding object languages

In this section we give four examples of how to encode typed calculi and logics in λTT . The

reader is encouraged to compare Examples 5.1 and 5.3 with those given in Sections 4.1

and 4.2. In the following, we will often use subscripts for application. For instance, appσ,τ
stands for app(σ)(τ).

Example 5.1. Throughout the rest of this paper, we fix a simply typed λ-calculus with a

finite number of constant types. The following is a formulation of this calculus in λTT .

Ωλ is U

Σλ is ∧ : U×U→U
⇒ : U×U→U
� : U

♥ : tU(�)
abs : Πσ :U.Πτ :U.[tU(σ)→tU(τ)]→tU(σ⇒τ)
app : Πσ :U.Πτ :U.tU(σ⇒τ)×tU(σ)→tU(τ)

pair : Πσ :U.Πτ :U.tU(σ)×tU(τ)→tU(σ∧τ)
pr1 : Πσ :U.Πτ :U.tU(σ∧τ)→tU(σ)

pr2 : Πσ :U.Πτ :U.tU(σ∧τ)→tU(τ)
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Thλ is `Ω;Σ [σ : U, τ : U, f : tU(σ)→tU(τ), x : tU(σ) `
appσ,τ(absσ,τ(f), x) = fx : tU(τ)]

`Ω;Σ [σ : U, τ : U, f : tU(σ⇒τ) `
absσ,τ(λx : tU(σ).appσ,τ(f, x)) = f : tU(σ ⇒ τ)]

`Ω;Σ [σ : U, τ : U, x : tU(σ), y : tU(τ) ` (pr1)σ,τ(pairσ,τ(x, y)) = x : tU(σ)]

`Ω;Σ [σ : U, τ : U, x : tU(σ), y : tU(τ) ` (pr2)σ,τ(pairσ,τ(x, y)) = y : tU(τ)]

`Ω;Σ [σ : U, τ : U, z : tU(σ∧τ) ` pairσ,τ((pr1)σ,τz, (pr2)σ,τz) = z : tU(σ ∧ τ)]
`Ω;Σ [x : tU(�) ` ♥ = x : tU(�)]

Here � codes up the unit type in the simply typed λ-calculus; ♥ provides an inhabitant

of the type tU(�); and the accompanying definitional equation forces this inhabitant to be

unique. Eλ will stand for this encoding. We do not give the encoding of the constants as

it is obvious. The same remark also applies to the following examples.

Example 5.2. Again fix a higher-order polymorphic λ-calculus with a finite number of

constant types. To formulate the language in λTT , one must have an operator that

transforms higher-order functionals to types. So, in addition to the encoding for the

simply typed λ-calculus, we need to add constants and equations that deal with kinds and

constructors.

The encoding goes as follows:

ΩPL is U,K

ΣPL is ∧̇ : K×K→K
⇒̇ : K×K→K
�̇ : K

T : K

♥̇ : tK(�̇)
˙abs : Πκ :K.Π% :K.[tK (κ)→tK(%)]→tK (κ⇒̇%)
˙app : Πκ :K.Π% :K.tK (κ⇒̇%)×tK (κ)→tK (%)
˙pair : Πκ :K.Π% :K.tK (κ)×tK (%)→tK (κ∧̇%)
ṗr1 : Πκ :K.Π% :K.tK (κ∧̇%)→tK (κ)

ṗr2 : Πκ :K.Π% :K.tK (κ∧̇%)→tK (%)

in : tK(T )→U
out : U→tK (T )

∧ : tK(T )×tK (T )→tK (T )

⇒ : tK(T )×tK (T )→tK (T )

� : tK(T )

∀̇ : Πκ :K.(tK (κ)→tK (T ))→tK (T )

♥ : tU(in(�))
abs : Πσ : tK (T ).Πτ : tK (T ).[tU(in(σ))→tU(in(τ))]→tU(in(σ⇒τ))
app : Πσ : tK (T ).Πτ : tK (T ).tU(in(σ⇒τ))×tU(in(σ))→tU(in(τ))

pair : Πσ : tK (T ).Πτ : tK (T ).tU(in(σ))×tU(in(τ))→tU(in(σ∧τ))
pr1 : Πσ : tK (T ).Πτ : tK (T ).tU(in(σ∧τ))→tU(in(σ))
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pr2 : Πσ : tK (T ).Πτ : tK (T ).tU(in(σ∧τ))→tU(in(τ))

Abs : Πκ :K.ΠF : tK (κ)→tK (T ).(Πσ : tK(κ).tU(in(Fσ)))→
tU(in(∀̇κ(F)))

App : Πκ :K.ΠF : tK (κ)→tK (T ).tU(in(∀̇κ(F)))→
Πσ : tK(κ).tU(in(Fσ))

ThPL is `Ω;Σ [κ : K, % : K, f : tK (κ)→tK (%), x : tK (κ)

` ˙appκ,%( ˙absκ,%(f), x) = fx : tK (%)]

`Ω;Σ [κ : K, % : K, f : tK (κ⇒̇%)
` ˙absκ,%(λx : tK (κ). ˙appκ,%(f, x)) = f : tK (κ⇒̇%)]

`Ω;Σ [κ : K, % : K, x : tK (κ), y : tK (%) ` (ṗr1)σ,τ( ˙pairσ,τ(x, y)) = x : tK (κ)]

`Ω;Σ [κ : K, % : K, x : tK (κ), y : tK (%) ` (ṗr2)σ,τ( ˙pairσ,τ(x, y)) = y : tK (%)]

`Ω;Σ [κ : K, % : K, z : tK (κ∧̇%) ` ˙pairσ,τ((ṗr1)σ,τz, (ṗr2)σ,τz) = z : tK (κ∧̇%)]
`Ω;Σ [x : tK(�̇) ` ♥̇ = x : tK (�̇)]
`Ω;Σ [x : tK(T ) ` out(in(x)) = x : tK (T )]

`Ω;Σ [x : U ` in(out(x)) = x : U]

`Ω;Σ [κ : K, F : tK (κ)→tK (T ), x : Πσ : tK (κ).tU(in(Fσ))

` Appκ,F (Absκ,F (x)) = x : Πσ : tK (κ).tU(in(Fσ))]

`Ω;Σ [κ : K, F : tK (κ)→tK (T ), x : tU(in(∀̇κ(F)))

` Absκ,F (Appκ,F (x)) = x : tU(in(∀̇κ(F)))]

`Ω;Σ [σ : tK (T ), τ : tK (T ), f : tU(in(σ))→tU(in(τ)), x : tU(in(σ))

` appσ,τ(absσ,τ(f), x) = fx : tU(in(τ))]

`Ω;Σ [σ : tK (T ), τ : tK (T ), f : tU(in(σ⇒τ))
` absσ,τ(λx : tU(in(σ)).appσ,τ(f, x)) = f : tU(in(σ ⇒ τ))]

`Ω;Σ [σ : tK (T ), τ : tK (T ), x : tU(in(σ)), y : tU(in(τ))

` (pr1)σ,τ(pairσ,τ(x, y)) = x : tU(in(σ))]

`Ω;Σ [σ : tK (T ), τ : tK (T ), x : tU(in(σ)), y : tU(in(τ))

` (pr2)σ,τ(pairσ,τ(x, y)) = y : tU(in(τ))]

`Ω;Σ [σ : tK (T ), τ : tK (T ), z : tU(in(σ∧τ))
` pairσ,τ((pr1)σ,τz, (pr2)σ,τz) = z : tU(in(σ ∧ τ))]

`Ω;Σ [x : tU(in(�)) ` ♥ = x : tU(in(�))]

In the above encoding, K is the universe of kinds; the constant �̇ codes up the

unit kind, T the kind Type of all types. The map in helps to code up the ob-

jects. Notice that the map out and the two accompanying equations, which forces

in and out to be inverse to each other, are unnecessary from the proof theoretical

point of view. They are included in the encoding to achieve a better categorical de-

scription. We will refer to the entire encoding of this higher-order polymorphism as

EPL.

Example 5.3. We now give an encoding of Martin-Löf’s type theory built on a finite

number of constants. The encoding should look familiar. In this example we leave out

the subscript in tSet and abbreviate the context [A : Set, B : t(A)→Set] to Γ.

https://doi.org/10.1017/S0960129596002058 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129596002058


Categorical properties of logical frameworks 23

ΩML is Set

ΣML is π : ΠX :Set.(t(X)→Set)→Set
σ : ΠX :Set.(t(X)→Set)→Set
Λ : ΠX :Set.ΠY : t(X)→Set.Πf : (Πx : t(X).t(Y (x))).t(π(X,Y ))

• : ΠX :Set.ΠY : t(X)→Set.Πf : t(π(X,Y )).Πx : t(X).t(Y (x))

pair : ΠX :Set.ΠY : t(X)→Set.Πx : t(X).Πy : t(Y (x)).t(σ(X,Y ))

P1 : ΠX :Set.ΠY : t(X)→Set.Πf : t(σ(X,Y )).t(X)

P2 : ΠX :Set.ΠY : t(X)→Set.Πf : t(σ(X,Y )).Y (P1(X,Y , f))

ThML is `Ω;Σ [Γ, f : (Πx : t(A).t(B(x))), a : t(A) `
•(A,B,Λ(A,B, f), a) = f(a) : t(B(a))]

`Ω;Σ [Γ, f : t(π(A,B)) ` Λ(A,B, λx : t(A). • (A,B, f, x)) = f : t(σ(A,B))]

`Ω;Σ [Γ, a : t(A), b : t(B(a)) ` P1(A,B, pair(A,B, a, b)) = a : t(A)]

`Ω;Σ [Γ, a : t(A), b : t(B(a)) ` P2(A,B, pair(A,B, a, b)) = b : t(B(a))]

`Ω;Σ [Γ, f : t(σ(A,B)) `
pair(A,B,P1(A,B, f),P2(A,B, f)) = f : t(σ(A,B))]

We denote this encoding by EML.

The examples given above are all about encodings of typed calculi. That does not mean

that λTT cannot describe logics within it. In fact, λTT can deal with logics just as well as

ELF. In the following example, we only give fragmentary encodings. The reader is advised

to compare them with those given in Harper et al. (1993).

Example 5.4. When formulating an object language in λTT , the first thing one has to

decide is whether a syntactical class is coded by a universe in Ω or a constant type in Σ.

The general principle is that if an entity of a syntactical class is itself inhabited by other

entities, that syntactical class should be coded up by a universe. For instance, in first-order

logic, there are a class of terms and a class of formulas. As formulas are inhabited by

proofs, the latter syntactical class is encoded by a universe

% in Ω.

The other syntactical class is coded by

κ in Σ.

Some of the constants in Σ are:

0 : κ

s : κ→κ
+ : κ×κ→κ
= : κ×κ→%
¬ : %→%
∨ : %×%→%
∀ : (κ→%)→%

RAA : Πp :%.t%(¬¬p)→ t%(p)

ALL− E : ΠF :κ→%.Πx :κ.t%(∀(F))→t%(Fx).
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The last two code up the reductio ad absurdum rule and the elimination rule for the

universal quantifier respectively. The situation in the case of higher-order logic is, however,

slightly different. We still have the universe

% in Ω,

but it no longer works to interpret the syntactical class of terms as a constant type in

Σ. In order to code up higher-order quantifications uniformly, the class of terms and the

‘name’ of % must be encoded by the constants of the same type. So we have in Σ

κ : H

%̇ : H

⇒ : H×H→H,

where

H is in Ω.

Also in the Σ are

0 : tH (κ)

succ : tH (κ)→tH (κ)

+ : tH (κ)×tH (κ)→tH (κ)

≤ : tH (κ)×tH (κ)→tH (%̇)

⊃ : tH (%̇)×tH (%̇)→tH (%̇)

= : Πσ :H.tH (σ)×tH (σ)→tH (%̇)

∀ : Πσ :H.(tH (σ)→tH (%̇))→tH (%̇)

in : tH (%̇)→%
All− I : Πσ :H.ΠF : tH (σ)→tH (%̇).(Πx : tH (σ).t%(in(Fx)))→t%(in(∀σ(F))).

In the full encoding, there should be application and abstraction constants and the

accompanying definitional equations that ensure that tH (σ1→σ2) and tH (σ1)→tH (σ2) are

‘isomorphic’. As in Example 5.2, the constant in helps to code up the logical rules.

6. Internal categories in λTT

What does it mean to code up an object language in λTT? Since the term model of λTT
is a fibration, we can rephrase the question as how do we say ‘coding-up’ in the language

of fibrations? Our view, which is motivated by the example given in Section 3, is that a

coding-up process amounts to defining an internal category (internal categories). In λTT
there should be a routine way of constructing internal categories. It is the purpose of this

section to show that λTT has a built-in mechanism for defining internal categories.

Let E be an encoding in λTT . We can build a term model (λTT ,E) from the constants in

the universe declaration and the signature of E using the equational contexts in E (Seely

1984; Streicher 1989). It is common knowledge that the term model forms a fibration

https://doi.org/10.1017/S0960129596002058 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129596002058


Categorical properties of logical frameworks 25

(λTT ,E) :T −→ C. Here C is the category of contexts and context realizations. A context

realization r : Γ −→ [x1 : A1, . . . , xn : An] is a tuple (a1, a2, . . . , an) such that

Γ ` a1 : A1

Γ ` a2 : A2[a1/x1]

...

Γ ` an : An[a1/x1, . . . , an−1/xn−1].

The objects of T are types. For instance Γ ` A is an object in T (We have left out the

meta-symbol type). A morphism from Γ ` A to ∆ ` B is a pair (r, f) where Γ ` r : ∆ is

a context realization and Γ ` f : A→B[r]. Notice that, strictly speaking, f should be the

equivalence class [f]. We will, however, always confuse an equivalence class with one of

its representatives. The functor (λTT ,E) :T −→ C takes Γ ` A to Γ and (r, f) to r.

There is a collection D of display maps in C. A realization Γ
r−→ ∆ is in D iff it is of

the form [x1 : A1, . . . , xn : An, xn+1 : An+1]
(x1 ,...,xn)−→ [x1 : A1, . . . , xn : An]. It is readily seen

that T
(λTT ,E)
−→ C is essentially the same as the fibration C/D cod−→ C.

In category theory there is a well-known technique for constructing an internal category

from a generic morphism T
G−→ U (Pitts 1987; Hyland 1988). In type theory this generic

morphism becomes a generic type judgement x : U ` G type. Not every type U has this

property. We have called those that have this property universes. Suppose a universe U is

declared in the encoding E. A distinguished feature of λTT is that T contains an internal

category U constructed from U. This is made possible by the lifting operator tU . Using de

Bruijn’s notation, the components of this small category can be defined as follows:

U0
def
= U ` 1

U1
def
= U2 ` tU(1)→tU(2)

U2
def
= U3 ` [tU(1)→tU(2)]×[tU(2)→tU(3)]

d0
def
= (π1, U

2 ` λw : [tU(1)→tU(2)].?) π1 is [x : U, y : U]
(x)
−→ [x : U]

d1
def
= (π2, U

2 ` λw : [tU(1)→tU(2)].?) π2 is [x : U, y : U]
(y)
−→ [y : U]

Π0
def
= ((π1, π2), U3 ` λw : [tU(1)→tU(2)]×[tU(2)→tU(3)].π1w)

Π1
def
= ((π2, π3), U3 ` λw : [tU(1)→tU(2)]×[tU(2)→tU(3)].π2w)

id
def
= (δU,U ` λw :1.λv : tU(1).v) δU is [x : U]

(x,x)
−→ [x1 : U, x2 : U]

γ
def
= ((π1, π3), U3 ` λw : [tU(1)→tU(2)]×[tU(2)→tU(3)].λv : tU(1).(π2w)((π1w)v)).

In the above definition, U2 is the context [x1 : U, x2 : U]; the pair (π1, π2) is the context

realization [x1 : U, x2 : U, x3 : U]
(x1 ,x2)
−→ [x : U, y : U]; and U2 ` tU(1)→tU(2) for instance

is x1 : U, x2 : U ` tU(x1)→tU(x2).

Lemma 6.1. The above data form an internal category in the fibre category T of the

fibration (λTT ,E) :T −→ C associated with the encoding E.

Proof. This is routine, but we will just mention two things. First it can be easily

checked that the following diagram is a pullback. Here ! is λx : A.? for appropriate A.
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The objects p1 and p2 are U3 ` λw : [tU(1)→tU(2)]×[tU(2)→tU(3)].π1w : tU(1)→tU(2) and

U3 ` λw : [tU(1)→tU(2)]×[tU(2)→tU(3)].π2w : tU(2)→tU(3), respectively.

U3 ` [tU(1)→tU(2)]×[tU(2)→tU(3)]

U2 ` tU(1)→tU(2)

U2 ` tU(1)→tU(2)

U ` 1

((π1, π2), p1)

(π2, !)

((π2, π3), p2)

(π1, !)

?

-

?
-

Second, to prove that compositions are associative, one needs to form an object U3. It is

the type U4 ` ([tU(1)→tU(2)]×[tU(2)→tU(3)])×[tU(3)→tU(4)] of course.

Apart from (λTT ,E), there are another two obvious functors. The functor { ` 1} :

C −→ T embeds C in T by sending a context Γ to Γ ` 1. The functor { [ ]} :T −→ C
on the other hand is basically the context extension. Its actions on objects and morphisms

are defined as follows:

Γ ` A 7−→ Γ, x : A,

(r, f) : (Γ ` A)→(∆ ` B) 7−→ (r, fx) : (Γ, x : A)→(∆, y : B)

To our knowledge, the following fact was first observed by Ehrhard (Ehrhard 1988).

Lemma 6.2. (λTT ,E) a { ` 1} a { [ ]} form a D-category.

It is a direct consequence of Lemma 6.2 that if we apply the functor { [ ]} to U we get an

internal category U̇ in C. This U̇ is isomorphic to the following internal category:

U′0
def
= [x : U]

U′1
def
= [x1 : U, x2 : U, f : tU(x1)→tU(x2)]

U′2
def
= [x1 : U, x2 : U, x3 : U, f : tU(x1)→tU(x2), g : tU(x2)→tU(x3)]

d′0
def
= (x1) : U′1→U′0

d′1
def
= (x2) : U′1→U′0

id′
def
= (x, x, λy : tU(x).y)

Π′0
def
= (x1, x2, f) : U′2→U′1

Π′1
def
= (x2, x3, g) : U′2→U′1

γ′
def
= (x1, x3, λy : tU(x1).g(fy)) : U′2→U′1.

From now on, we take U̇ to be this internal category.

Proposition 6.3. U̇ is an internal full subcategory of C, relative to D, induced by the display

map [x : U, y : tU(x)]
(x)
−→ [x : U].
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[U̇] C/D T

C

H ∼=

dom ˙U cod (λTT ,E)

?

�
�

�
��	

@
@
@
@@R

- -

Proof. In the above diagram, H sends an object (a) : Γ −→ [x : U] onto the display map

Γ, z : tU(a) −→ Γ; it sends a morphism (a, b, f) : Γ −→ [x : U, y : U, z : tU(x)→ tU(y)] in

the fibre dom−1
˙U

(Γ) onto the morphism (IdΓ, fz) : (Γ, z : tU(a)→ Γ) −→ (Γ, z : tU(b)→ Γ).

It is full and faithful by the η-rule. The fact that U̇ is induced by [x : U, y : tU(x)]
(x)
−→

[x : U] is also routine to check.

Since C/D cod−→ C is isomorphic to T
(λTT ,E)
−→ C, it makes sense to say that U̇ is an

internal full subcategory of T
(λTT ,E)
−→ C.

If there is more than one universe declared in an encoding, then for each universe one

can construct an internal full subcategory.

More light can be cast on the above result if we look at it from a proof theoretical

point of view. Suppose E encodes L. As in ELF , variables of the encoded version of

L in λTT are identified with those in λTT . What is the model theoretical implication of

this decision? Suppose Γ `Ω,Σ a : U. Then a ‘variable’ of a in the encoded langage is

an indeterminate of the object (a, ?) in the fibre [Γ, U̇]. On the other hand, a ‘variable’

of a in λTT is an indeterminate of the object Γ ` tU(a) in (λTT ,E)−1(Γ). If we are to

identify a variable in the encoded language with the corresponding variable in λTT , then

[Γ, U̇] should be a full subcategory of (λTT ,E)−1(Γ). We therefore conclude that the result

stated in Proposition 6.3 is the categorical counterpart of the variable convention. This

categorical explanation has a feedback to type theory: the variable convention forces a

conservative extensionality relationship between an encoded calculus and the framework

λTT .

7. Structures of universes

We have not told the full story about the internal categories discussed in Section 6.

When defining a typed calculus in λTT , we force those internal categories to have

specific structures. In this section we show that the internal categories induced by the

universes declared in the first three examples in Section 5 have the necessary categorical

structures that are usually associated with the categorical models of the three typed

calculi, respectively. More specifically, we will show that in the encoding of the simply

typed λ-calculus, the internal full subcategory U̇ induced by the universe U is equipped

with explicit cartesian closed structure. The internal categories U̇ and K̇ induced by the

universes in the encoding of the polymorphic λ-calculus also possess the same structure. In

addition, U̇ has explicit products over the encoded kinds. For the encoding of Martin-Löf

type theory one can show that the internal full subcategory Ṡet induced by the universe
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Set has an appropriate explicit internal structure, which, when externalized, gives rise

to the left and right adjoints to weakening functors. We will omit an account of the

Martin-Löf case, since the proofs are similar to those in the polymorphic case. In this

section, we systematically omit the subscript in `Ω;Σ.

Lemma 7.1. The equations in Thλ imply that the following diagrams are pullbacks in the

base category of the fibration (λTT ,Eλ), where ⊗ is ⇒ (or ∧) and ⊗̇ is → (or ×); m is

absx1 ,x2
(f) when ⊗ is ⇒ and is pairx1 ,x2

(f) when ⊗ is ∧.

[]

[]

[x : U, y : tU(x)]

[x : U]

()

(�)

(�,♥)

(x)

?

-

-
?

[x1 : U, x2 : U, f : tU(x1)⊗̇tU(x2)]

[x1 : U, x2 : U]

[x : U, y : tU(x)]

[x : U]

(x1, x2)

(x1⊗x2)

(x1⊗x2, m)

(x)

?

-

?
-

Proof. This is routine, as follows. Suppose we have a commuting diagram like this

Γ

[x1 : U, x2 : U]

[x : U, y : tU(x)]

[x : U]

(a, b)

(x1⇒x2)

(x)

(c, f)

?

-

?
-

Clearly c = a⇒b and Γ ` f : tU(a⇒b). Let (a, b, ?) be the mediating morphism. Then

absa,b(?) = f.

Therefore

?z = appa,b(absa,b(?), z) = appa,b(f, z).

It follows that

? = λz : tU(a).appa,b(f, z).

The proofs for the other cases are similar.
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The categorical implication of Lemma 7.1 is obvious once we notice the facts in the

next lemma.

Lemma 7.2.

(i) Both [x : tU(�)] and [] are terminal objects.

(ii) [x1 : U, x2 : U] is the product of [x : U] and [x : U].

(iii) [x1 : U, x2 : U, y : tU(xi)]
(x1 ,x2)
−→ [x1 : U, x2 : U] is the pulling-back of [x : U, y :

tU(x)]
(x)
−→ [x : U] along the projection [x1 : U, x2 : U]

(xi)−→ [x : U].

(iv) [x1 : U, x2 : U, f : tU(x1)×tU(x2)] (or [x1 : U, x2 : U, f : tU(x1)→tU(x2)]) is the

product (or exponential) of [x1 : U, x2 : U, y : tU(x1)] and [x1 : U, x2 : U, y : tU(x2)]

in the fibre over [x1 : U, x2 : U].

We conclude that the internal full subcategory U̇ has explicit cartesian closed structure.

In the case of EPL, this property holds for both U̇ and K̇. But now the diagram

associated with U̇ needs to be modified as follows: in the first diagram, � should be

replaced by in(�); in the second diagram, when ⊗̇ is →, ⊗ is in(out(x1)⇒ out(x2)) and m

is absout(x1),out(x2)(f); when ⊗̇ is ×, ⊗ is in(out(x1)∧out(x2)) and m is pairout(x1),out(x2)(f).

In addition, we have the following lemma.

Lemma 7.3. In the encoding EPL of the higher-order λ-calculus, the following is a pullback

in the base category of the fibration (λTT ,EPL) for any `Ω;Σ κ : K .

[x : tK (κ)→U]

[x : tK(κ)→U, z : Πy:tK (κ).tU(xy)]

[x : U]

[x : U, y : tU(x)]

(in(∀̇κ(out ◦ x)))

(in(∀̇κ(out ◦ x)),Absκ,out◦x(z))

(x) (x)

?

-

-
?

Proof. Suppose the following diagram commutes.

Γ

[x : tK (κ)→U]

[x : U, y : tU(x)]

[x : U]

(F)

(in(∀̇κ(out ◦ x)))

(G, t)

(x)

?

-

?
-

Clearly G = in(∀̇κ(out ◦ F)). Assume the mediating morphism is (F, ?). Then we have

Absκ,out◦F (?) = t : tU(in(∀̇κ(out ◦ F))).

So

? = Appκ,out◦F (Absκ,out◦F (?)) = Appκ,out◦F (t).

This completes the proof.
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Lemma 7.4.

(i) [x : tK(κ)→U] is the exponential of [x : tK (κ)] and [x : U].

(ii) [x : tK(κ)→U, y : tK (κ)] is the product of [x : tK (κ)→U] and [x : tK(κ)].

(iii) [x : tK(κ)→U, y : tK (κ)]
(xy)
−→ [x : U] is the evaluation map.

(iv) [x : tK (κ)→U, y : tK (κ), z : tU(xy)]
(x,y)
−→ [x : tK (κ)→U, y : tK (κ)] is the pulling-back

of [x : U, y : tU(x)]
(x)
−→ [x : U] along the evaluation map in (iii).

(v) [x : tK(κ)→U, z : Πy:tK (κ).tU(xy)]
(x)
−→ [x : tK (κ)→U] is obtained by applying to

[x : tK (κ)→U, y : tK (κ), z : tU(xy)]
(x,y)
−→ [x : tK (κ)→U, y : tK (κ)] the right adjoint to

the relabelling functor over [x : tK (κ)→U, y : tK(κ)]
(x)
−→ [x : tK(κ)→U].

In summary, Lemmas 7.3 and 7.4 together say that the internal category U̇ has explicit

products over types lifted from ‘kinds’.

We can generalize what is embodied in the above examples: If a collection of certain

entities in an object language is represented by a universe in λTT , then to code up the

operators associated with the collection is to equip the internal full subcategory, induced

by the universe, with explicit categorical structures.

8. Syntactic adequacy and internal definability

This section reveals the close tie between syntactic adequacy, a linguistic notion, and

internal definability, a semantic notion. This is done by examining the encodings defined

in Section 5. We should point out that in order to demonstrate the relationship, we need

not know if the encodings are syntactically adequate, nor do we have to know any specific

proof theoretical properties of λTT .

In this section we are interested in two kinds of models: the closed term models and

the open term models. In the former we consider only closed terms whereas in the latter

we consider terms with free variables. For instance, the closed term model of a simply

typed λ-calculus is a cartesian closed category (Lambek and Scott 1986). On the other

hand, the open term model of the same calculus is a fibration Lλ : Tλ −→ Cλ. Here

Cλ is the category of contexts and their realizations, and a morphism over Γ ∈ Cλ is an

equivalence class of terms Γ ` f : A→B. In the case of dependent typed calculi, however,

we always talk about open term models.

Because of the presence of the equational contexts, the syntactic adequacy used in this

paper is slightly different from that defined in Harper et al. (1987, 1993).

8.1. Adequacy of Eλ and definability of simply typed λ-calculus

Let Lλ and Lλ : Tλ −→ Cλ be the closed term model and the open term model of the

simply typed λ-calculus, respectively. HereLλ has types as objects. A morphism from A to

B is a closed term of type A→B. The category Cλ is the category of contexts and context

realizations. An object in Tλ is a pair (Γ, A) of a context and a type. A morphism in Tλ

is a pair (r, f) : (Γ, A)→(∆, B) such that Γ
r−→ ∆ is a context realization and Γ ` f : A→B.

The functor Lλ is the first projection. The canonical cartesian lifting over Γ
r−→ ∆ with
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respect to (∆, B) is (r, λx :B.x). The fibration Lλ has a fibred cartesian closed structure.

For example, the product and exponential of the objects (Γ, A) and (Γ, B) in the fibre over

Γ are (Γ, A×B) and (Γ, A→B), respectively.

The encoding Eλ provides us with a translation from a type A in the simply typed

λ-calculus to a closed term Â of type U in λTT , and from a judgement

x1 : A1, . . . , xn : An ` a : A (1)

in the simply typed λ-calculus to a judgement (in this section, we are not going to distin-

guish notationally the universes (signatures) defined in the examples given in Section 5)

x1 : tU(Â1), . . . , xn : tU(Ân) `Ω;Σ â : tU(Â) (2)

in λTT . We now define the translation inductively as follows:

1̂
def
= �

Â×B def
= Â∧B̂

Â→B def
= Â⇒B̂

x̂
def
= x

?̂
def
= ♥

(f : A→B, a : A) f̂a
def
= appÂ,B̂(f̂, â)

(b : B) ̂λx:A.b
def
= absÂ,B̂(λx:tU(Â).b̂)

(a : A, b : B) ̂〈a, b〉 def
= pairÂ,B̂(â, b̂)

(c : A×B) π̂1c
def
= (pr1)Â,B̂(ĉ)

(c : A×B) π̂2c
def
= (pr2)Â,B̂(ĉ).

The syntactic adequacy for the encoding Eλ consists of the following statements:

1 The map that sends a type A to its translation Â prescribes a bijective correspon-

dence between types in the simply typed λ-calculus and judgements of the form

x1 : tU(Â1), . . . , xn : tU(Ân) `Ω;Σ M : U in λTT (with the encoding Eλ) for any fixed

types A1, . . . , An in the λ-calculus. Strictly speaking, M should be an equivalence class,

where the equivalence relation is induced by the definitional equality of λTT . Notice

that intuitively x1 : tU(Â1), . . . , xn : tU(Ân) `Ω;Σ M : U if and only if `Ω;Σ M : U. But

that belongs to the proof theory of λTT .

2 The map that sends (1) onto (2) is a bijection between the judgements of the form (1)

and the judgements of the form x1 : tU(Â1), . . . , xn : tU(Ân) `Ω;Σ M : tU(Â). Strictly

speaking, M should be an equivalence class, where the equivalence relation is induced

by the definitional equality of λTT .

3 x1 : A1, . . . , xn : An ` a = b : A if and only if x1 : tU(Â1), . . . , xn : tU(Ân) `Ω;Σ â =Thλ b̂ :

tU(Â).

4 The translation is compositional, that is, ̂a[b/x] is syntactically the same as â[b̂/x].

Proposition 8.1. If Eλ is syntactically adequate, then both Lλ and Lλ are internally

definable by U̇ in (λTT ,Eλ). In addition, the two interpretation maps send the fibred
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cartesian closed structures of Lλ and Lλ, respectively, onto the fibred cartesian closed

structure of dom ˙U induced by the explicit cartesian closed structure of U̇.

Proof. Condition (ii) in Definition 3.4 is satisfied according to Proposition 6.3. This

fact will not be mentioned in the proofs of Propositions 8.2 and 8.3 given below.

(i) Let us explain the functors I and H in the following diagram.

Tλ

Cλ

[U̇]

C

Lλ

I

H

dom ˙U

?

-

?
-

I sends a context [x1 : A1, . . . , xn : An] in Cλ onto the context [x1 : tU(Â1), . . . , xn : tU(Ân)],

the existence of which is guaranteed by Statement (1). A morphism r : [x1 : A1, . . . , xn :

An] −→ [y1 : B1, . . . , ym : Bm] consists of

x1 : A1, . . . , xn : An ` b1 : B1,
...

x1 : A1, . . . , xn : An ` bm : Bm.

Statement (2) says that we can define I(r) to be the realization consisting of

x1 : tU(Â1), . . . , xn : tU(Ân) `Ω;Σ b̂1 : tU(B̂1),
...

x1 : tU(Â1), . . . , xn : tU(Ân) `Ω;Σ b̂m : tU(B̂m).

Statement (4) means that I preserves composition. Statement (3) ensures that I is well

defined as a functor and is faithful. Statement (3) implies that it is full; and Statement (1)

says that it is injective on objects. So I is a full embedding functor.

Next, let us define the functor H . An object in the fibre L−1
λ ([x1 : A1, . . . , xn : An]) is

a type A in the simply typed λ-calculus. Define H(A) to be the realization (Â) : [x1 :

tU(Â1), . . . , xn : tU(Ân)] −→ [x : U], which is essentially the sequent [x1 : tU(Â1), . . . , xn :

tU(Ân)] `Ω;Σ Â : U. But by the syntactic adequacy, there is a correspondence between types

in the simply typed λ-calculus and sequents like [x1 : tU(Â1), . . . , xn : tU(Ân)] `Ω;Σ Â : U.

So H establishes a bijection between the objects of L−1
λ ([x1 : A1, . . . , xn : An]) and those

in dom−1
˙U

([x1 : tU(Â1), . . . , xn : tU(Ân)]). A morphism in L−1
λ ([x1 : A1, . . . , xn : An]) is a

term [x1 : A1, . . . , xn : An] ` f : A→B. The syntactic adequacy implies that it is in bijective

correspondence with [x1 : tU(Â1), . . . , xn : tU(Ân)] `Ω;Σ f̂ : tU(Â⇒B̂). But the latter is in

bijective correpondence with [x1 : tU(Â1), . . . , xn : tU(Ân)] `Ω;Σ λw : tU(Â).appÂ,B̂(f̂, w) :

tU(Â)→tU(B̂). Let H(f) be

[x1 : tU(Â1), . . . , xn : tU(Ân)]
(Â,B̂,λw:tU (Â).appÂ,B̂ (f̂,w))

−→ [x : U, y : U, z : tU(x)→tU(y)].
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Clearly H is full and faithful. It is routine to check the functoriality of I and H . Here we

only show that H preserves compositions. Suppose [x1 : A1, . . . , xn : An] ` f : A→B and

[x1 : A1, . . . , xn : An] ` g : B→C are two sequents in the simply typed λ-calculus. Then by

the definition of H , the composition H(ĝ) ◦H(f̂) is

(Â,Ĉ,λw:tU (Â).appB̂,Ĉ (ĝ,appÂ,B̂ (f̂,w)))

[x1 : tU(Â1), . . . , xn : tU(Ân)] −→ [x : U, y : U, z : tU(x)→tU(y)],

whereas H(g ◦ f) is

[x1 : tU(Â1), . . . , xn : tU(Ân)]
(Â,Ĉ,λw:tU (Â).appÂ,Ĉ (ĝ◦f,w))

−→ [x : U, y : U, z : tU(x)→tU(y)].

But

appÂ,Ĉ(ĝ ◦ f, w) = appÂ,Ĉ( ̂λx :A.g(fx), w)

= appÂ,Ĉ(absÂ,Ĉ(λx : tU(Â).ĝ(fx)), w)

= (λx : tU(Â).ĝ(fx))w

= ̂g(fw)

= appB̂,Ĉ(ĝ, f̂w)

= appB̂,Ĉ(ĝ, appÂ,B̂(f̂, w)).

We are done.

The diagram is also a pullback, so we conclude that Lλ ∝ (λTT ,Eλ).
The verification that the interpretation map sends the fibred cartesian closed structure of

Lλ onto the fibred cartesian closed structure of dom ˙U induced by the explicit cartesian

closed structure of U̇ is routine but long. The following is a snapshot of it. In the

fibre Lλ(Γ), (Γ, A→B) is the exponential of (Γ, A) and (Γ, B). H sends (Γ, A→B) onto

Γ̂
(Â⇒B̂)
−→ [x : U]. The latter is the exponential of Γ̂

(Â)
−→ [x : U] and Γ̂

(B̂)
−→ [x : U] by

Lemma 7.1.

(ii) For the closed term model Lλ, a similar argument shows that the diagram below is a

pullback,

Lλ

?

[U̇]

C

!

[]

H

dom ˙U

?

-

?
-

where ? is the terminal category and [] sends the only object to the empty context.
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8.2. Adequacy of EPL and definability of polymorphic λ-calculus

For higher-order polymorphic λ-calculus, there are two open term models: that of kinds

and constructors LK
PL : TK

PL −→ CKPL, and that of types and objects over the empty

kinding context LT
PL : TT

PL −→ CTPL. An object in CTPL is a context x1 : A1, . . . , xn : An,

where [] ` A1, . . . , [] ` An. Let LPL : TPL −→ CPL be the closed term model. Here the

objects of CPL are closed kinds; a morphism from object K1 to object K2 is a closed

constructor F : K1→K2. An object in TPL over K is of the form x : K ` A : Type. A

morphism from x1 : K1 ` A1 : Type to x2 : K2 ` A2 : Type is a pair (F : K1→K2,`[x1:K1]

f : A1→A2[Fx1/x2]). Both LK
PL and LT

PL have a fibred cartesian closed structure. It is

well known that LPL is equipped with a PL-categorical structure (Seely 1987). Roughly,

this amounts to saying that the base category CPL has a cartesian closed structure and

LPL has a fibred cartesian closed structure; in addition the fibration has right adjoints

to weakening functors and these right adjoints satisfy the Beck–Chevalley condition.

We now define the translation inductively as follows:

— kind

>̂ def
= �̇

T̂ype
def
= T̂K1×K2
def
= K̂1∧̇K̂2̂K1→K2
def
= K̂1⇒̇K̂2

— constructor

x̂
def
= x

?̂>
def
= ♥̇

(F : K1→K2, C : K1) F̂C
def
= ˙appK̂1 ,K̂2

(F̂ , Ĉ)

(C : K2) ̂λx:K1.C
def
= ˙absK̂1 ,K̂2

(λx:tK (K̂1).Ĉ)

(C : K1, D : K2) ̂〈C,D〉 def
= ˙pairK̂1 ,K̂2

(Ĉ, D̂)

(C : K1×K2) π̂1C
def
= (ṗr1)K̂1 ,K̂2

(Ĉ)

(C : K1×K2) π̂2C
def
= (ṗr2)K̂1 ,K̂2

(Ĉ)

type (special constructor)

1̂
def
= �

Â×B def
= Â∧B̂

Â→B def
= Â⇒B̂̂∀x:K.A
def
= ∀̇K̂ (λx:tK (K̂).Â)

— object

x̂
def
= x

?̂1
def
= ♥
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(f : A→B, a : A) f̂a
def
= appÂ,B̂(f̂, â)

(b : B) ̂λx:A.b
def
= absÂ,B̂(λx:tU( ˆin(A)).b̂)

(a : A, b : B) ̂〈a, b〉 def
= pairÂ,B̂(â, b̂)

(c : A×B) π̂1c
def
= (pr1)Â,B̂(ĉ)

(c : A×B) π̂2c
def
= (pr2)Â,B̂(ĉ)

(a : A) Λx:K.a
def
= AbsK̂,λx:tK (K̂).Â(λx:tK (K̂).â)

(F : ∀x:K.A) F̂C
def
= AppK̂,λx:tK (K̂).Â(F̂ , Ĉ).

The statements for the syntactical adequacy for EPL are similar to those for Eλ:

1 For any fixed kinds K1, . . . , Kn, the map that sends a kind K to the judgement

x1 : tK (K̂1), . . . , xn : tK (K̂n) `Ω;Σ K̂ : K is a bijection between kinds and judgements of

the form x1 : tK (K̂1), . . . , xn : tK (K̂n) `Ω;Σ M : K .

2 For any fixed kinds K1, . . . , Kn and K , the map that sends a constructor judgement

x1 : K1, . . . , xn : Kn ` C : K to the judgement x1 : tK (K̂1), . . . , xn : tK (K̂n) `Ω;Σ Ĉ :

tK(K̂) is a bijection between the judgements of the form x1 : K1, . . . , xn : Kn ` C : K

and the judgements of the form x1 : tK (K̂1), . . . , xn : tK (K̂n) `Ω;Σ M : tK(K̂).

3 For any fixed kinds K1, . . . , Kn and K , x1 : K1, . . . , xn : Kn ` C = D : K iff x1 :

tK(K̂1), . . . , xn : tK (K̂n) `Ω;Σ Ĉ =ThPL D̂ : tK (K̂).

4 For any fixed types A1, . . . , An valid under the kinding context [y1 : K1, . . . , ym : Km],

the map that sends a judgement y1 : K1, . . . , ym : Km ` A : Type to the judgement y1 :

tK(K̂1), . . . , ym : tK (K̂m), x1 : tU(in(Â1)), . . . , xn : tU(in(Ân)) `Ω;Σ Â : tK (T ) is a bijection

between judgements of the form y1 : K1, . . . , ym : Km ` A : Type and the judgements of

the form y1 : tK (K̂1), . . . , ym : tK(K̂m), x1 : tU(in(Â1)), . . . , xn : tU(in(Ân)) `Ω;Σ M : tK (T ).

5 For any fixed types A1, . . . , An and A valid under the kinding context [y1 : K1, . . . , ym :

Km], the map that sends an object judgement x1 : A1, . . . , xn : An `[y1:K1 ,...,ym:Km] a : A

to the judgement y1 : tK (K̂1), . . . , ym : tK (K̂m), x1 : tU(in(Â1)), . . . , xn : tU(in(Ân)) `Ω;Σ

â : tU(in(Â)) is a bijection between the judgements of the form x1 : A1, . . . , xn :

An `[y1:K1 ,...,ym:Km] a : A and the judgements of the form y1 : tK (K̂1), . . . , ym : tK (K̂m), x1 :

tU(in(Â1)), . . . , xn : tU(in(Ân)) `Ω;Σ M : tU(in(Â)) .

6 For any fixed types A1, . . . , An and A valid under the kinding context y1 : K1, . . . , ym :

Km, we have x1 : A1, . . . , xn : An `[y1:K1 ,...,ym:Km] a = b : A iff y1 : tK (K̂1), . . . , ym :

tK(K̂m), x1 : tU(in(Â1)), . . . , xn : tU(in(Ân)) `Ω;Σ â =ThPL b̂ : tU(in(Â)).

7 The translation is compositional.

Proposition 8.2. If the encoding EPL is syntactically adequate, then

(i) LT
PL and LK

PL are internally definable in (λTT ,EPL) by U̇ and K̇, respectively, and

the interpretation maps for both LT
PL and LK

PL preserve fibred cartesian closed

structure;

(ii) LPL is internally definable in (λTT ,EPL) by U̇ and the interpretation map (H,I)

from TPL L
PL

−→ CPL to dom ˙U preserves the PL-categorical structure.
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Proof. (i) By Proposition 8.1, bothLK
PL andLT

PL are internally definable in (λTT ,EPL)

and the interpretation maps preserve the fibred cartesian closed structures.

CKPL

TK
PL

C

[K̇]

CTPL

TT
PL

C

[U̇]

IK

HK

LK
PL dom ˙K

IT

HT

LT
PL dom ˙U

?

-

?
-

?

-

-
?

Notice that the assumption that the types and objects appearred in LT
PL do not contain

constructor variables is important; otherwise the situation would not be similar to the

one described in the proof of Proposition 8.1.

(ii) First we need to show that we have a pullback diagram.

TPL

CPL

[U̇]

C

LPL

I

H

dom ˙U

?

-

?
-

In the diagram, I sends an object K (a kind) to [x : tK (K̂)] and a map F : K1 → K2 onto

[x : tK (K̂1)]
( ˙appK̂1 ,K̂2

(F̂ ,x))

−→ [x : tK (K̂2)]. The functor H sends an object x : K ` A : Type

onto [x : tK (K̂)]
(in(Â))
−→ [x : U] and a map (F : K1→K2,`[x:K1] f : A1→A2[F]) : (x : K1 `

A1 : Type) −→ (x : K2 ` A2 : Type) onto a pair whose first component is

[x : tK (K̂1)]
( ˙appK̂1 ,K̂2

(F̂ ,x))

−→ [x : tK (K̂2)]

and whose second component is

[x : tK (K̂1)]

(in(Â1),in(Â2[F]),λx:tU (in(Â)).app
Â1 ,Â2[F]

(f̂,x))

−→ [x :U, y :U, z : tU(x)→tU(y)]).

The verification that (H,I) preserves fibred cartesian closed structure and thatI preserves

the cartesian closed structure in the base category are routine. The proof that it preserves

right adjoints to weakening functors is similar to that in the proof of Proposition 8.3

given below.

8.3. Adequacy of EML and definability of Martin-Löf type theory

Let TML

LML−→ CML be the term model of the Martin-Löf type theory (see Seely (1984) for

details). Here CML is the category of contexts. A morphism in TML is a pair (r, f) : (Γ `
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A)−→(∆ ` B), where Γ
r−→ ∆ is a context realization and Γ ` f : A→B[r]. A display map

is a context realization of the form [x1 : A1, . . . , xn+1 : An+1]
(x1 ,...,xn)−→ [x1 : A1, . . . , xn : An].

It is well known that the fibration LML has left and right adjoints to the reindexing

functors over the display maps. These right adjoints satisfy the Beck–Chevalley condition.

For example, the right adjoint to the reindexing functor over Γ, x : A −→ Γ sends the

object Γ, x : A ` B onto Γ ` Πx:A.B.

The translation from Martin-Löf’s type theory to EML is defined inductively as follows:

— context

[̂] 7−→ []̂Γ, x : A 7−→ Γ̂, x : t(Â),

where Γ̂ `Ω;Σ Â : Set is the translation of Γ ` A;

— type

Γ ` Πx :A.B 7−→ Γ̂ `Ω;Σ π(Â, λx : t(Â).B̂) : Set

Γ ` Σx :A.B 7−→ Γ̂ `Ω;Σ σ(Â, λx : t(Â).B̂) : Set

Γ ` x : A 7−→ Γ̂ `Ω;Σ x : t(Â)

Γ ` fa : B[a/x] 7−→ Γ̂ `Ω;Σ •(Â, λx : t(Â).B̂, f̂, â) : t( ̂B[a/x])

Γ ` λx :A.b : Πx :A.B 7−→ Γ̂ `Ω;Σ Λ(Â, λx : t(Â).B̂, λx :

t(Â).b̂) : t(π(Â, λx : t(Â).B̂))

Γ ` 〈a, b〉 : Σx :A.B 7−→ Γ̂ `Ω;Σ pair(Â, λx :

t(Â).B̂, â, b̂) : t(σ(Â, λx : t(Â).B̂))

Γ ` π1c : A 7−→ Γ̂ `Ω;Σ P1(Â, λx : t(Â).B̂, ĉ) : t(Â)

Γ ` π2c : B[π1c/x] 7−→ Γ̂ `Ω;Σ P2(Â, λx : t(Â).B̂, ĉ) : t(B̂[P1(Â, λx :

t(Â).B̂, ĉ)/x]),

where f : Πx:A.B, a : A and c : Σx:A.B.

The syntactic adequacy consists of the following statements:

1 The map that sends Γ ` A onto Γ̂ `Ω;Σ Â : Set is a bijection between judgements of

the form Γ ` A and judgements of the form Γ̂ `Ω;Σ M : Set.

2 Γ ` A = B if and only if Γ̂ `Ω;Σ Â =ThML
B̂ : Set.

3 The map that sends Γ ` a : A onto Γ̂ `Ω;Σ â : t(Â) is a bijection between the

judgements of the form Γ ` a : A and the judgements of the form Γ̂ `Ω;Σ M : t(Â).

4 Γ ` a = b : A if and only if Γ̂ `Ω;Σ â =ThML
b̂ : t(Â).

5 The translation is compositional.

Proposition 8.3. If the encoding EML is syntactically adequate, the term model is internally

definable in (λTT ,EML) by ˙Set. In addition, the interpretation map (M,I) preserves the

left and right adjoints along the display maps.
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Proof. In the diagram below, the functor I is defined as in the previous two cases. The

only difference is that types are dependent in this case.

TML

CML

[ ˙Set]

C

LML

I

M

dom ˙Set

?

-

?
-

The functor M : TML −→ [ ˙Set] is defined as follows, bearing in mind that a map from

Γ̂
(Â)
→ Ŝet0 to ∆̂

(B̂)
→ Ŝet0 is a pair (Γ̂

m−→ ∆̂, Γ̂
m′−→ Ŝet1):

Γ ` A 7−→ Γ̂
(Â)
−→ ˙Set0

(Γ ` A)
(r,f)
−→ (∆ ` B) 7−→ (r̂, (Â, B̂[r], λx : t(Â). • (Â, λw : t(Â).B̂[r], f̂, x)))

: (Γ̂
(Â)
→ ˙Set0) −→ (∆̂

(B̂)
→ ˙Set0),

where Γ̂ `Ω;Σ Â : Set, Γ̂ `Ω;Σ B̂[r] : Set, Γ̂
r̂−→ ∆̂ and Γ̂ `Ω;Σ f̂ : t(π(Â, λw : t(Â).B̂[r])).

Syntactic adequacy implies that M so defined is full, faithful and injective on objects (it

also maps canonical cartesian liftings to canonical cartesian liftings). It can be readily

verified that the diagram is also a pullback. We still need to show that M preserves left

and right adjoints along display maps in CML. By the translation we have given, the

actions of M : TML −→ [ ˙Set] on Γ, x : A ` B and Γ ` Πx : A.B, respectively, are as

follows:

Γ, x : A ` B 7−→ Γ̂, x : t(Â)
(B̂)
−→ ˙Set0

Γ ` Πx :A.B 7−→ Γ̂
(π(Â,λx:t(Â).B̂))
−→ ˙Set0.

The following establishes a bijective correspondence between Γ̂ `Ω;Σ f : X→t(π(Â, λx :

t(Â).B̂)) and Γ̂, x : t(Â) `Ω;Σ g : X→t(B̂),

Γ̂ `Ω;Σ f : X→t(π(Â, λx : t(Â).B̂))

Γ̂, y : X `Ω;Σ fy : t(π(Â, λx : t(Â).B̂))

Γ̂, y : X, x : t(Â) `Ω;Σ •(Â, λx : t(Â).B̂, fy, x) : t(B̂)

Γ̂, x : t(Â), y : X `Ω;Σ •(Â, λx : t(Â).B̂, fy, x) : t(B̂)

Γ̂, x : t(Â) `Ω;Σ λy :X. • (Â, λx : t(Â).B̂, fy, x) : X→t(B̂)
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and its inverse

Γ̂, x : t(Â) `Ω;Σ f : X→t(B̂)

Γ̂, x : t(Â), y : X `Ω;Σ fy : t(B̂)

Γ̂, y : X, x : t(Â) `Ω;Σ fy : t(B̂)

Γ̂, y : X `Ω;Σ λx : t(Â).fy : Πx : t(Â).t(B̂)

Γ̂, y : X `Ω;Σ Λ(Â, λx : t(Â).B̂, λx : t(Â).fy) : t(π(Â, λx : t(Â).B̂))

Γ̂ `Ω;Σ λy :X.Λ(Â, λx : t(Â).B̂, λx : t(Â).fy) : X→t(π(Â, λx : t(Â).B̂))
.

We conclude that M preserves right adjoints to reindexing functors over display maps.

The fact that it also preserves left adjoints to reindexing functors over display maps can

be similarly established.

8.4. Conclusion

In all three examples above we have assumed that the number of constant types is

finite. Let us look at an example where there is an infinite number of constant types.

Forgetting the encoding of constant types, Eλ as it stands is an encoding of simply

typed λ-calculus with an infinite number of constant types. The idea is to assume a

bijective correspondence between the constant types and variables of type U. A type A

in the simply typed λ-calculus is now coded up by σ1 : U, . . . , σn : U `Ω;Σ Â : U, where

σ1, . . . , σn correspond to the constant types occurring in A. It can be routinely checked

that Proposition 8.1 still holds for Lλ. But the functor Cλ
I−→ C has to be redefined. It

now sends [x1 : A1, . . . , xn : An] onto [σ1 : U, . . . , σm : U, x1 : t(Â1), . . . , xn : t(Ân)], where

σ1, . . . , σn correspond to the constant types occurring in A1, . . . , Am and A.

The technique used above can be applied to the other two examples.

The general phenomenon is this: If the encoding EL of a typed calculus L in λTT
is syntactically adequate, then, in a canonical way (determined by the translation of L
into EL), L is internally definable in (λTT ,EL) (or, waving hand, L ∝ λTT ). In other

words, a faithful encoding of L defines a frame language such that L is an internal

typed calculus definable in the frame language by the encoding via the translation of L
into the representation in λTT .

So, to formulate an object language in λTT is to identify a frame language that contains

an internal version of the represented language. The richer the object language, the

richer the frame language. A correct formulation of the encoded language and the frame

language involves a build-up of an internal definability relationship between the two

languages. The function of λTT is to provide a framework on which this frame language

is built. The good properties of λTT ensure that to design the frame language is the same

thing as to give an adequate representation of the object language in λTT .
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9. The notion of models for logical frameworks

We now turn our attention to semantics. There are two levels of semantics. The model

theory of λTT has been well established, see, for instance, Hyland and Pitts (1989). A

categorical model consists of a category B with finite products and a collection D of

display maps. The fibration B/D cod−→ B must be a fibred cartesian closed category and

be complete relative to D. A generic judgement x : U `Ω;Σ tU(x) must be interpreted as a

display map.

The proper model theory of logical frameworks is about the meanings of encodings and

how to relate the model theory of an object language to that of a framework. It is this

aspect of semantics we have been trying to understand. Suppose L is a typed calculus

and E = (Ω,Σ, Th) is an adequate encoding of L in λTT . There are two questions one

can ask:

1 Given an interpretation of the frame language (λTT ,E), what does the interpretation

of E constitute? Arguably, we are only interested in those interpretations whose

restrictions to E constitute internal models of L.

2 Given a model of L, can we fully embed it into a model of (λTT ,E)?

A categorical interpretation of E = (Ω,Σ, Th) consists of a sound categorical interpre-

tation of λTT and an interpretation of constants in Ω and Σ. We say the interpretation of

E is sound if it validates all the definitional equations in Th. We say a sound interpretation

of E is good if the denotations of the constants in Ω and Σ under this interpretation form

an internal model of L. We say the encoding E is semantically adequate if every sound

interpretation of E is good.

Proposition 9.1. If both Eλ and EPL are syntactically adequate, both are semantically

adequate.

Proof. Lemma 7.1 (7.3) holds for any sound interpretation of Eλ (EPL), and the results

follow.

Suppose [[ ]] is a sound categorical interpretation of λTT . Usually there are many ways

of extending [[ ]] to [[ ]]Σ
Ω so that it also interprets the constants in both Ω and Σ. If the

encoding E is syntactically adequate, the translation ˆ :L −→ E gives rise to a map

sound interpretations of E −→ sound interpretations of L.

We say that the encoding E is semantically complete if the above map is surjective.

Proposition 9.2. If both Eλ and EPL are syntactically adequate, both are semantically

complete.

Proof. The semantic completeness for polymorphic λ-calculus is essentially the main

result of Pitts (1987). The result for simply typed λ-calculus can be proved similarly.

10. Applications to other typed calculi

The central notion introduced in this paper is that of internal definability. We have seen

the importance of this notion for the analysis of the logical framework λTT . As a matter
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of fact, internal definability (codability) can be found in a range of typed calculi. It is the

purpose of this section to explain how some proof theoretical questions can be rephrased

in terms of internal definability or internal codability.

10.1. Polymorphic λ-calculus, continued

We have already seen in Examples 3.3 and 3.5 that the higher-order polymorphic λ-

calculus is, roughly speaking, internally definable in itself. For i ∈ {n ≥ 2 | n ∈ ω}, we

can construct a term model Ti Li

−→ Ci for the i-th polymorphic λ-calculus. Similar to

Lω , we have an internal category Ci in Ti and a set Di of display maps such that

codi a Ii a domi : Ti/D−→Ti is a D-category and Ci is an internal full subcategory of

codi. Moreover, the following diagram is a pullback.

Ti

Ci

[Ci]

Ti

Li

>i

Hi

domCi

?

-

?
-

Since the i-th polymorphic λ-calculus is a sublanguage of the (i + 1)-th polymorphic

λ-calculus, there is a natural cartesian map from Li to Li+1 that sends everything to

itself, so to speak. This cartesian map preserves all the relevant categorical structures. But

is it full and faithful? In view of the above pullback diagram, the question can be couched

in more informative terms:

Is the i-th polymorphic λ-calculus internally definable in the (i + 1)-th polymorphic λ-calculus by

Ci+1 via the natural interpretation map?

As far as we know, this question is open. Notice that Ci+1 has enough explicit categorical

structures to be a model of the i-th polymorphic λ-calculus.

10.2. Martin-Löf type theory

There are two ways of presenting Martin-Löf’s type theory. One approach is to define

the type theory in a metalanguage. Typed calculi so defined are often polymorphic in the

sense that type constructors in them are not fully specified. For instance, in λx : A.b, b

could be of any type. The other approach is to define the type theory in Martin-Löf’s

logical framework. In contrast to the polymorphic case, terms in languages defined in

Martin-Löf’s logical framework are fully specified; these languages are therefore called

monomorphic. As a monomorphic type theory is defined to be the encoding in Martin-Löf’s

logical framework, we have the obvious fact:

Monomorphic Martin-Löf type theories are internally definable in Martin-Löf’s logical framework.
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For a particular polymorphic Martin-Löf type theory, one can ask the question: is it the

same as a monomorphic Martin-Löf type theory? Putting it differently, the question asks

if the polymorphic Martin-Löf type theory can be adequately represented in Martin-Löf’s

logical framework. In our terminology, the question goes as follows:

Is the polymorphic Martin-Löf type theory internally definable in Martin-Löf’s logical framework?

There are polymorphic Martin-Löf type theories that are not internally definable in

Martin-Löf’s logical framework. For example, type theories with ‘extensional equality

types’ are not internally definable in Martin-Löf’s logical framework (Nordström et

al. 1990).

Suppose ML0 is a Martin-Löf type theory without universes and ML1 is a Martin-Löf

type theory with a first universe U that reflects the type structures of ML0 on the object

level (ML1 must also contain a copy of the type structures of ML0 on type level). The

reader should refer to Nordström et al. (1990) for a detailed account. The point we would

like to make here is that U induces an internal category in the category of contexts of

ML1. There is a structure-preserving cartesian map from the term model of ML0 to that

of ML1 that sends a type in ML0 to its reflection. A question about how faithful ML0 is

reflected in ML1 is whether ML1 equates more objects of ML0 than ML0? This question

can be rephrased as:

Is ML0 internally codable in ML1 via the said cartesian map?

If there are enough type structures in ML0, then Peano’s fourth axiom is expressable in

ML0 as a type. This type is inhabited in ML1 but not in ML0 (Smith 1988). So ML0

is in general not internally definable in ML1. A natural question to ask is under what

restrictions ML0 is internally definable in ML1.

10.3. Calculus of constructions

There are many variants of calculus of constructions. Here we take the view that a

calculus of constructions is a Martin-Löf type theory with an encoded logic. The calculus

of constructions we usually refer to is the one with an intended encoding of Church’s

higher-order logic. To emphasize that the internal logic in constructions can be seen as

an encoded logic, we formulate the language in a slightly different way.

The Ambient Calculus

[] valid
C1

Γ ` A type x /∈ FV (Γ)

Γ, x : A valid
C2

Γ, x : A,Γ′ valid

Γ, x : A,Γ′ ` x : A
Var

Γ ` A type Γ, x : A ` B type

Γ ` (x :A)B type
Prod

Γ `M : (x :A)B Γ ` N : A

Γ `MN : B[N/x]
App

Γ ` A type Γ, x : A ` B type Γ, x : A `M : B

Γ ` (x :A)M : (x :A)B
Abs
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Small Type

Γ valid

Γ ` Type type
Type

Γ ` A : Type

Γ ` A type
Cum

Γ valid

Γ ` Obj : Type
Obj

Γ valid

Γ ` Prop : Type
Prop

Γ ` A : Type Γ, x : A ` B : Type

Γ ` Πx :A.B : Type
Π

Γ ` f : Πx :A.B Γ ` a : A

Γ ` fa : B[a/x]
app

Γ ` A : Type Γ, x : A ` B : Type Γ, x : A ` b : B

Γ ` λx :A.b : Πx :A.B
abs

Proposition

Γ ` P : Prop

Γ ` Prf (P ) : Type
Prf

Γ valid

Γ ` ∀ : (X:Type)(Y :X→Prop)Prop ∀

Γ valid

Γ ` Λ : (X:Type)(Y :X→Prop)(z:(x:X)Prf (Y (x)))Prf (∀(X,Y ))
Λ

Γ valid

Γ ` • : (X:Type)(Y :X→Prop)(z:Prf (∀(X,Y )))(x:X)Prf (Y (x))
•

The definitional equality is defined in terms of the extensional reduction rules.

The following are the components of an internal category in the category of contexts.

C0
def
= [P : Prop]

C1
def
= [P ,Q : Prop, f : Prf (P )→Prf (Q)]

C2
def
= [P ,Q, R : Prop, f : Prf (P )→Prf (Q), g : Prf (Q)→Prf (R)]

d0
def
= (P ) : C1→C0

d1
def
= (Q) : C1→C0

id
def
= (P , P , λp :Prf (P ).p)

Π0
def
= (P ,Q, f) : C2→C1

Π1
def
= (Q,R, g) : C2→C1

γ
def
= (P , R, λx :Prf (P ).g(fx)) : C2→C1

Luo (1990b) gives a type theoretical formulation of Church’s higher-order logic and shows

that a particular calculus of constructions is a conservative extension of the higher-order

logic. Notice that conservativity as used in Luo (1990b) is at the level of provability. A
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stronger property is conservativity at the level of proofs†. Is the calculus of constructions

conservative over the higher-order logic in this stronger sense? The aim of our particular

presentation of the calculus of constructions is to make the question both precise and

concise:

Is Church’s higher-order logic‡ internally definable by C in the calculus of constructions via the

obvious interpretation map?

This question adds another dimension to that of conservativity at the level of provability.

10.4. Edinburgh Logical Framework

In ELF, a constant type U : Type and a constant constructor t : U→Type in a signature

of an encoding also induce an internal category in the category of typing contexts over

that signature. We can use the notion of internal definability to give a categorical account

of adequate encodings in ELF. But the situation is less satisfactory due to the absence

of equational contexts. The encodings in ELF definitely do not have the categorical

properties of the kind we have seen in Section 7. However, our intuition tells us that still

there is something to be said. The reason that an encoding of simply typed λ-calculus

does not have an explicit cartesian closed structure on the internal category induced by

universe U in the encoding is that the definitional equality of the object language is now

represented by an internal map =U: U×U→ B. Consequently, the diagrams in Lemma 7.1

are not pullbacks (in fact they are not even weak pullbacks). But the map =U induces

an equivalence relation ∼ on each homset of the category of typing contexts. If in the

definition of pullbacks we replace the external equality = by ∼, the above mentioned

diagrams are ‘pullbacks’. So what we need is a notion of relative categorical structures

where mediating morphisms are required to be unique up to an internal equality (Leibniz

equality) rather than up to the external equality =. This point needs further investigation.

The same can be said about λLF .

11. Conclusions and related work

This paper has attempted to give a model theoretical account of logical frameworks.

We have argued that the real issues in the semantics of logical frameworks are about

the meanings of encodings and how they are related to the model theories of the object

languages. We have proposed a logical framework that is well suited to model theoretical

analysis. We have used examples to show how syntactic conditions force term models to

possess certain categorical properties. One important point of view taken in this paper is

that a logical framework is a setting for defining frame languages. According to this view,

to code up an object language is to search for a frame language within which the object

language is internally definable. In the following table, the right-hand column contains

the semantic counterparts of the corresponding syntactic notions in the left-hand column.

† We propose to call the conservativity of provability the logical conservativity and the conservativity of proofs

the type theoretical conservativity (or just conservativity).
‡ In this question, Church’s higher-order logic is assumed to have extensional definitional equality.
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syntactical notion semantical notion

universes generic objects

encodings of object calculi internal categories

constants other than universes explicit structures on internal categories

variable convention internal full subcategories

syntactic adequacy internal definability

By characterizing the categorical properties of λTT and some encodings within it, we

hope that we have pointed out a sensible way of performing semantic investigations. It is

our personal opinion that the general ideas expressed in this paper are helpful when one

designs a logical framework or tries to code up an object language.

A selling point of logical frameworks is that non-constructive logics can also be treated.

The point is that whatever the object logic is, be it classical or intuitionistic, any assertion

that holds in the logic must be constructively verifiable. An assertion forms a range of

significance. So by Russel’s principle, it can be represented by a type and its inhabitants

can be represented by its verifiers. In this paper we have concentrated our attention

on constructive logics. For a non-constructive language L, say Church’s higher-order

logic (Church 1940), what we code up in a logical framework is the ‘image’ of L in a

‘constructive mirror’. It is this aspect ofL that is captured in an encoding. So, in this case,

the categorical properties are characterizations of this ‘image’. In this way, one assigns

denotations to classical proofs in suitable categories. These categories are not degenerated

in any sense as we have not imposed any equality on proofs. An obvious question is

whether we have any interesting model theory for classical proofs.

The development in Power (1994) is at a more abstract level. There the author seeks a

categorical setting within which semantical constructions of typed calculi can be carried

out. There are two issues: one is to search for a semantic framework; the other is to

study type theory semantically within the framework. The dichotomy corresponds to the

one we advocate in this paper. The difference is that we concentrate on a particular

typed calculus and its semantic description. Our approach emphasizes the importance of

internal categories in semantic studies of logical frameworks.

The language ELF+ investigated in Gardner (1992) is a refined version of ELF. In

addition to the kind Type, ELF+ introduces two new kinds: Judge and Sort. The basic

idea is that in an encoding of an object language, the basic judgements should be coded

by inhabitants of Judge, whereas sorts correspond to objects of Sort. The purpose is to

achieve a close correspondence between a language and its representation in ELF+. We

can modify λTT along this line. For instance, a universe declaration can be broken into

two parts: one contains universes that encode judgements; the other consists of universes

that represent sorts. Sorts of course can also be represented in λTT by constant types in

a signature.

Gardner (1992) contains an observation similar to that in Section 8. Because of the

presence of Judge and Sort, the author of Gardner (1992) is able to prove that adequate
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encodings of a class of logics are essentially the same as the logics themselves when

both are viewed as indexed categories. This ‘isomorphism’ phenomenon is implicit in our

definition of internal definability. The nice thing about our approach is that it brings out

the internal categorical aspect of this phenomenon.

In this paper, the definitional equality of λTT is given by judgemental equality. If one

is interested in the proof theory of λTT , one uses the version of λTT where definitional

equality is defined in terms of reduction. In this version we remove the unit type, since it

complicates the notion of reduction. Now instead of equational contexts, we have in this

version reduction contexts. Definitional equalities in object languages are all supposed to

be defined in terms of reductions and they are represented in λTT by reduction contexts.

This version of λTT is appropriate for the study of proof theory of encodings.
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D. (eds.) Category Theory and Computer Science. Springer-Verlag Lecture Notes in Computer

Science 283 12–39.

Power, J. (1994) Why tricategories? Technical Report ECS-LFCS-94-289, Department of Computer

Science, University of Edinburgh.

Seely, R. (1984) Locally cartesian closed categories and type theory. Mathematical Proceedings of

Cambridge Philosophical Society 95 33–48.

Seely, R. (1987) Categorical semantics for higher-order polymorphic lambda calculus. Journal of

Symbolic Logic 52 969–989.

Simpson, A. (1992) Kripke semantics for a logical framework. In: Nordström, B., Petersson, K. and

Plotkin, G. (eds.) Proceedings of the 1992 Workshop on Types for Proofs and Programs 333–362.

Smith, J. (1988) The independence of Peano’s fourth axiom from Martin-Löf’s type theory without
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