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The purpose of this study is two-fold. First, we investigate further properties of the
second-order regular variation (2RV). These properties include the preservation prop-
erties of 2RV under the composition operation and the generalized inverse transform,
among others. Second, we derive second-order expansions of the tail probabilities
of convolutions of non-independent and identically distributed (i.i.d.) heavy-tail ran-
dom variables, and establish second-order expansions of risk concentration under
mild assumptions. The main results extend some ones in the literature from the i.i.d.
case to non-i.i.d. case.

1. INTRODUCTION

Second-order regular variation (2RV) was originally studied in the extreme value the-
ory and was used to study the speed of convergence of certain estimators; see [7]
and [8]. The formal definition of 2RV will be given in Section 2. For a general theory
of 2RV, we refer to [6]. 2RV provides a nice theoretical platform for studying second-
order approximation of limiting properties. For example, Geluk et al. [11] discussed
the equivalence of 2RV and asymptotic normality of Hill’s estimator. Lin et al. [13]
obtained the convergence rates of the distribution of the largest-order statistic under
weaker conditions by using the properties of 2RV. Degen and Embrechts [4] high-
lighted the importance of the 2RV tail behavior of the underlying loss severity models
in exploiting extreme value theory (EVT)-based estimation methodologies of high
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quantiles. Degen et al. [5] derived second-order approximations for the risk concen-
tration and the diversification benefit by using the theory of 2RV under the assumption
that the underlying risk variables are independent and identically distributed (i.i.d.).
The definition of risk concentration is given by (4.2). Hua and Joe [12] studied some
interesting properties of 2RV, and conducted asymptotic analysis on conditional tail
expectation under the condition of 2RV.

The purpose of this study is two-fold. First, we investigate further properties of
2RV. These properties include the preservation properties of 2RV under the compo-
sition operation and the generalized inverse transform, among others. Second, we
establish second-order approximations of risk concentration for non-i.i.d. risk vari-
ables. To the end of the second purpose, we derive second-order expansions of the
tail probabilities of convolutions of non-i.i.d. heavy-tail random variables under mild
assumptions. The main results extend some ones in [1] and [5] from the i.i.d. to
non-i.i.d. case.

The whole study is organized as follows. Properties of the 2RV are presented in
Section 2. The second-order approximations of tail probabilities of convolutions and
of risk concentration are given in Sections 3 and 4, respectively.

Throughout, the terms “increasing” and “decreasing” mean “non-decreasing” and
“non-increasing,” respectively, and the notation “∼” means asymptotic equivalence;
that is, for functions g and h,

g(x) ∼ h(x), x → x0 ⇐⇒ lim
x→x0

g(x)

h(x)
= 1.

2. PROPERTIES OF SECOND-ORDER REGULAR VARIATION

In this section, we will investigate further properties of 2RV.Although some properties
of 2RV were mentioned in the literature, we state them here for completeness and also
for easy reference, and give different proofs from those in the literature. First, we
recall the notions of (first-order) regular variation and 2RV.

Standard references on regular variation are [2], [9], and [14].

Definition 2.1: A measurable function h : �+ → �+ is said to be regularly varying
at infinity with index α ∈ �\{0}, written h ∈ RVα , if, for any x > 0,

lim
t→∞

h(tx)

h(t)
= xα . (2.1)

If (2.1) holds with α = 0 for any x > 0, then h is said to be slowly varying at infinity
and written as h ∈ RV0. If (2.1) holds with α = −∞ for any x > 0, then h is said to
be rapidly varying at infinity and written as h ∈ RV−∞.

Similarly, one can define regular variation at 0+ replacing t → ∞ in (2.1) by
t → 0+. If h is regularly varying at 0+ with index α ∈ �\{0} [resp. slowly varying at
0+, rapidly varying at 0+], denote it by h ∈ RVα(0+) [resp. RV0(0+), RV−∞(0+)].
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For the definition of 2RV, see [6, Sect. 2.3 and Appendix B] and [8].

Definition 2.2: Suppose that h ∈ RVα for some α ∈ �. Then h is said to be of 2RV
with first-order parameter α and second-order parameter ρ ≤ 0, denoted by h ∈
2RVα,ρ , if there exist some ultimately positive or negative function A(t) and a constant
c 
= 0 such that

lim
t→∞

h(tx)/h(t) − xα

A(t)
= cxα

∫ x

1
uρ−1du, x > 0. (2.2)

Here, A(t) is referred to as the auxiliary function of h.
Similarly, suppose that h ∈ RVα(0+) for some α ∈ �. Then h is said to be of

2RV with first-order parameter α and second-order parameter ρ ≥ 0, denoted by
h ∈ 2RVα,ρ(0+), if there exist some ultimately positive or negative function A(t) and
a constant c 
= 0 such that

lim
t→0+

h(tx)/h(t) − xα

A(t)
= cxα

∫ x

1
uρ−1du, x > 0. (2.3)

Here, A(t) is also referred to as the auxiliary function of h.

In Definition 2.2, if the limit of the left-hand side of (2.2) exists and is not a
multiple of xα , then A(t) → 0 as t → ∞. Moreover, by Theorem 2.1 of [6], the limit
must be the right-hand side of (2.2) and |A(t)| ∈ RVρ . Therefore, ρ ≤ 0 in (2.2). In
(2.3), ρ ≥ 0 can be interpreted similarly. In both (2.2) and (2.3), by adjusting A(t),
we can always let c = 1. Throughout, we always assume that A(t) is chosen such
that c = 1. However, A(t) is unique in both (2.2) and (2.3) in the sense of asymptotic
equivalence as t → ∞ and t → 0+, respectively.

We will use �(x) to represent a slowly varying function (at infinity or at zero). If
h is regular varying with index α, then h has a representation of the form

h(x) = xα�(x)

for some slowly varying function �(x). It is easy to see that

h ∈ RVα ⇐⇒ h∗ ∈ RV−α(0+); (2.4)

h ∈ 2RVα,ρ with auxiliary A(t) ⇐⇒ h∗ ∈ 2RV−α,−ρ(0
+) with auxiliary A∗(t),

(2.5)

where h∗(t) = h(1/t) and A∗(t) = −A(1/t) for t ∈ �+.
For any locally bounded function h : �+ → �+, if h(x) tends to infinity as x

goes to infinity or if h(x) tends to zero as x goes to zero, define its generalized
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inverse h← by

h←(x) = inf{t ∈ �+ : h(t) ≥ x}, x ∈ �+;

and if h(x) tends to zero as x goes to infinity or if h(x) tends to infinity as x goes to
zero, define its generalized inverse h← by

h←(x) = sup{t ∈ �+ : h(t) ≥ x}, x ∈ �+.

The next two lemmas are elementary, which state the preservation properties of
regularly varying functions under generalized inverse and composition operations.

Lemma 2.3:

(i) If h ∈ RVα with α > 0, then h← ∈ RV1/α with

h ◦ h←(x) ∼ h← ◦ h(x) ∼ x, x → ∞.

(ii) If h ∈ RV−α(0+) with α > 0, then h← ∈ RV−1/α with

h ◦ h←(x) ∼ x, x → ∞; h← ◦ h(x) ∼ x, x → 0+.

(iii) If h ∈ RVα(0+) with α > 0, then h← ∈ RV1/α(0+) with

h ◦ h←(x) ∼ h← ◦ h(x) ∼ x, x → 0+.

(iv) If h ∈ RV−α with α > 0, then h← ∈ RV−1/α(0+) with

h ◦ h←(x) ∼ x, x → 0+; h← ◦ h(x) ∼ x, x → ∞.

Proof: (i) See Theorem 1.5.12 in [2].

(ii) Define h∗(x) = h(1/x). Then, by (2.4), h∗ ∈ RVα . By part (i), we have h←∗ ∈
RV1/α and

h∗ ◦ h←
∗ (x) ∼ h←

∗ ◦ h∗(x) ∼ x, x → ∞.

Note that, for x ∈ �+,

h←
∗ (x) = inf

{
t ∈ �+ : h

(
1

t

)
≥ x

}
= inf

{
1

t
∈ �+ : h(t) ≥ x

}

= (sup{t ∈ �+ : h(t) ≥ x})−1 = 1

h←(x)
.

Then h← ∈ RV−1/α ,

x ∼ h∗ ◦ h←
∗ (x) = h ◦ h←(x), x → ∞

and

h←
∗ ◦ h∗(x) =

[
h← ◦ h

(
1

x

)]−1

∼ x, x → ∞,

or, equivalently, h← ◦ h(x) ∼ x, x → 0+.
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(iii) It can be proved by a similar argument to that of the proof of Theorem 1.5.12
in [2].

(iv) The proof is similar to part (ii) by considering h∗(x) = h(1/x) and applying
part (iii). This completes the proof.

�

Lemma 2.4:

(i) Let g ∈ RVα and h ∈ RVβ with α > 0 and β ∈ �. Then h ◦ g ∈ RVαβ .

(ii) Let g ∈ RV−α and h ∈ RVβ(0+) with α > 0 and β ∈ �. Then h ◦ g ∈ RV−αβ .

(iii) Let g ∈ RV−α(0+) and h ∈ RVβ with α > 0 and β ∈ �. Then h ◦ g ∈
RV−αβ(0+).

(iv) Let g ∈ RVα(0+) and h ∈ RVβ(0+) with α > 0 and β ∈ �. Then h ◦ g ∈
RVαβ(0+).

Proof: (i) See Proposition 2.6(iv) in [14].

(ii) Define g∗(x) = 1/g(x) and h∗(y) = h(1/y). Then g∗ ∈ RVα and h∗ ∈ RV−β .
Since α > 0, it follows that g∗(x) → +∞ as x → ∞. By part (i), we have

h ◦ g = h∗ ◦ g∗ ∈ RV−αβ .

(iii) It follows from part (i) and (2.4).

(iv) It follows from part (iii) by observing 1/g ∈ RV−α(0+) and h(1/x) ∈ RV−β .
This completes the proof.

�

For any h ∈ RVα with α ∈ �, 1/h ∈ RV−α . For 2RV, we have the next proposition.

Proposition 2.5:

(i) If h ∈ 2RVα,ρ with auxiliary function A(t), ρ < 0 and α ∈ �, then 1/h ∈
2RV−α,ρ with auxiliary function B(t) ∼ −A(t) as t → ∞.

(ii) If h ∈ 2RVα,ρ(0+) with auxiliary function A(t), ρ > 0 and α ∈ �, then 1/h ∈
2RV−α,ρ(0+) with auxiliary function B(t) ∼ −A(t) as t → 0.

Proof: (i) From the proof of Lemma 3 in [12], we know that h(x) has the following
representation

h(x) = kxα[1 − η(x)] with |η| ∈ RVρ and A(t) ∼ −ρη(t), t → ∞, (2.6)

where k > 0 is some constant. Here, it should be pointed out that |η| ∈ RVρ with
ρ < 0 implies that η(t) → 0 as t → ∞ and η(x) is ultimately positive or negative.
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Note that, for any fixed x > 0,

1

−A(t)

[
1/h(tx)

1/h(t)
− x−α

]
= x−α η(tx) − η(t)

A(t)(η(tx) − 1)

∼ x−α η(tx) − η(t)

ρη(t)
∼ x−α xρ − 1

ρ

as t → ∞. This means 1/h ∈ 2RV−α,ρ with auxiliary function B(t) ∼ −A(t) as
t → ∞.

(ii) From the proof of part (i) and (2.5), h(x) also has the following representation:

h(x) = kxα[1 − η(x)] with |η| ∈ RVρ(0
+) and A(t) ∼ −ρη(t), t → 0+,

(2.7)
where k > 0 is some constant. The rest of the proof is similar to the above
paragraph and, hence, omitted. This completes the proof.

�

The next two results present the preservation property of the generalized inverse
of an 2RV function.

Proposition 2.6:

(i) Suppose h ∈ 2RVα,ρ with auxiliary function A(t), α > 0 and ρ < 0. If h is
continuous, then h← ∈ 2RV1/α,ρ/α with auxiliary function B(t) = −α−2A ◦
h←(t).

(ii) Suppose h ∈ 2RV−α,ρ with auxiliary function A(t), α > 0 and ρ < 0. If h
is continuous, then h← ∈ 2RV−1/α,−ρ/α(0+) with auxiliary function B(t) =
−α−2A ◦ h←(t).

Proof: (i) From (2.6), we have

h ∈ 2RVα,ρ , ρ < 0 ⇐⇒ |η(x)| ∈ RVρ , ρ < 0 and A(t) ∼ −ρη(t) (2.8)

with η(x) = 1 − k−1x−αh(x) for some k > 0. Since h ∈ RVα , h← ∈ RV1/α by
Lemma 2.3(i). Define η∗(t) = 1 − (t/k)−1/αh←(t) for t ∈ �+. By (2.8), to prove
h← ∈ 2RV1/α,ρ/α with auxiliary function B(t), it suffices to prove that

|η∗(t)| ∈ RVρ/α , (2.9)

which implies B(t) ∼ −ρη∗(t)/α as t → ∞.
To prove (2.9), denote x = h←(t). Since h is continuous, h(x) = t. Note that

t → ∞ iff x → ∞ since h(x) → ∞ as x → ∞. Thus, by substituting t = h(x), we
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have

η∗(t) = 1 − k1/α[h(x)]−1/αx = 1 −
[

1

k
x−αh(x)

]−1/α

= 1 − (1 − η(x))−1/α = − 1

α
η(x) + o(η(x))

∼ − 1

α
η ◦ h←(t), t → ∞.

By Lemma 2.4(i), we conclude that |η∗| ∼ |η| ◦ h←/α ∈ RVρ/α . Now,

B(t) ∼ −ρ

α
η∗(t) = ρ

α2
η ◦ h←(t) ∼ − 1

α2
A ◦ h←(t), t → ∞.

(ii) The proof is similar to that of part (i). We outline the proof. From (2.7),
h has a representation as follows: h(x) = kx−α[1 − η(x)] for some positive
constant k, |η| ∈ RVρ , and the auxiliary function A(t) ∼ −ρη(t) as t → ∞.
Since h ∈ RV−α , h← ∈ RV−1/α(0+) by Lemma 2.3(iv). Define η∗(t) = 1 −
(t/k)1/αh←(t) for t ∈ �+. By (2.8), to prove h← ∈ 2RV−1/α,−ρ/α(0+) with
auxiliary function B(t), it suffices to prove that

|η∗(t)| ∈ RV−ρ/α(0+), (2.10)

implying B(t) ∼ ρη∗(t)/α as t → 0+.
To prove (2.10), denote x = h←(t). Note that t → 0+ if x → ∞. Thus,

η∗(t) = 1 −
[

1

k
xαh(x)

]1/α

= 1 − (1 − η(x))1/α

= 1

α
η(x) + o(η(x)) ∼ 1

α
η ◦ h←(t), t → 0+.

By Lemma 2.4(iii), we conclude that |η∗| ∼ |η| ◦ h←/α ∈ RV−ρ/α(0+). Now,

B(t) ∼ ρ

α2
η ◦ h←(t) ∼ − 1

α2
A ◦ h←(t)

as t → 0+. This completes the proof. �

Proposition 2.7:

(i) Suppose that h ∈ 2RV−α,ρ(0+) with auxiliary function A(t), α > 0 and ρ > 0.
If h is continuous, then h← ∈ 2RV−1/α,−ρ/α with auxiliary function B(t) =
−α−2A ◦ h←(t).

(ii) Suppose that h ∈ 2RVα,ρ(0+) with auxiliary function A(t), α > 0 and ρ > 0.
If h is continuous, then h← ∈ 2RV1/α,ρ/α(0+) with auxiliary function B(t) =
−α−2A ◦ h←(t).
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Proof: (i) Define h∗(x) = h(1/x) for x ∈ �+. By (2.5), h∗ ∈ 2RVα,−ρ with auxiliary
function A∗(t) = −A(1/t). Since h∗(t) is continuous, by Proposition 2.6(i), h←∗ ∈
2RV1/α,−ρ/α with auxiliary function

B∗(t) = −α−2A∗ ◦ h←
∗ (t) = α−2A

(
1

h←∗ (t)

)
.

From the proof of Proposition 2.6(i), we know that

h←
∗ (t) =

(
t

k

)1/α

(1 − η∗(t))

for some positive k and |η∗| ∈ RV−ρ/α . Since η∗(t) → 0 as t → ∞, h←∗ ∈ 2RV1/α,−ρ/α

reduces to

lim
t→∞

η∗(t) − η∗(tx)
B∗(t)

=
∫ x

1
u−ρ/α−1du. (2.11)

It is shown in the proof of Lemma 2.3(ii), h←∗ (t) = 1/h←(t) for t ∈ �+. So, we have

h←(t) = 1

h←∗ (t)
=

(
t

k

)−1/α 1

1 − η∗(t)
=

(
t

k

)−1/α

[1 + η∗(t) + o(η∗(t))]. (2.12)

Combining (2.11) with (2.12), we conclude that h← ∈ 2RV−1/α,−ρ/α with auxiliary
function B(t) = −B∗(t) = −α−2A ◦ h←(t).

(ii) By a similar argument to that in the proof of part (i), the desired result follows
from (2.5) and Proposition 2.6(i).

�

The 2RV property is preserved under the composition operation, as stated in the
next four propositions.

Proposition 2.8: Suppose that f ∈ 2RVα,ρ(0+) and g ∈ 2RVβ,γ with respective
auxiliary functions A(t) and B(t), where β < 0, γ < 0, ρ > 0, and α ∈ �. Then

(i) for γ > ρβ, f ◦ g ∈ 2RVαβ,γ with auxiliary function αB(t);

(ii) for γ = ρβ, f ◦ g ∈ 2RVαβ,γ with auxiliary function αB(t) + βA ◦ g(t);

(iii) for γ < ρβ, f ◦ g ∈ 2RVαβ,ρβ with auxiliary function βA ◦ g(t).

Proof: Since f ∈ RVα(0+) and g ∈ RVβ , it follows from Lemma 2.4(ii) that f ◦ g ∈
RVαβ . From (2.8), we know that there exist some positive constants k1 and k2 and
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functions η1(x) and η2(x) such that

f (x) = k1xα(1 − η1(x)) with |η1| ∈ RVρ(0
+) and A(t) ∼ −ρη1(t), t → 0+

and

g(x) = k2xβ(1 − η2(x)) with |η2| ∈ RVγ and B(t) ∼ −γ η2(t), t → ∞.

Then

f ◦ g(x) = k1kα
2 xαβ(1 − η2(x))

α(1 − η1 ◦ g(x))

and

η(x)
def= 1 − k−1

1 k−α
2 x−αβ f ◦ g(x) = 1 − (1 − η2(x))

α(1 − η1 ◦ g(x))

= 1 − (
1 − αη2(x) + o(η2(x)

)
(1 − η1 ◦ g(x))

= αη2(x) + η1 ◦ g(x) + o(η2(x)), x → ∞,

where the last equality follows from η2(x) → 0 and η1 ◦ g(x) → 0 as x → ∞. Again
by (2.8), to prove f ◦ g ∈ 2RVαβ,τ with auxiliary function D(t) for some τ < 0, it
suffices to prove that |η| ∈ RVτ , where B(t) can be chosen as D(t) = −τη(t). Note
that

lim
t→∞

η(xt)

η(t)
= lim

t→∞
αη2(xt) + η1 ◦ g(xt)

αη2(t) + η1 ◦ g(t)
, (2.13)

and that |η2| ∈ RVγ and |η1| ◦ g ∈ RVβρ by Lemma 2.4(ii).
If γ > βρ, then (2.13) reduces to

lim
t→∞

η(xt)

η(t)
= lim

t→∞
α + η1 ◦ g(xt)/η2(xt)

α + η1 ◦ g(t)/η2(t)
× η2(xt)

η2(t)
= xγ , x > 0,

that is, τ = γ . Thus, the auxiliary function D(t) = −γ η(t) ∼ −γαη2(t) ∼ αB(t) as
t → ∞.

If γ < βρ, then (2.13) reduces to

lim
t→∞

η(xt)

η(t)
= lim

t→∞
αη2(xt)/η1 ◦ g(xt) + 1

αη2(t)/η1 ◦ g(t) + 1
× η1 ◦ g(xt)

η1 ◦ g(t)
= xβρ ,

that is, τ = βρ. Thus, D(t) = −βρη(t) ∼ −βρ η1 ◦ g(t) ∼ βA ◦ g(t) as t → ∞.
If γ = βρ, then |η| ∈ RVγ . Thus, τ = γ and the auxiliary function

D(t) = −γ η(t) ∼ −γαη2(t) − γ η1 ◦ g(t) ∼ αB(t) + βA ◦ g(t)

as t → ∞. This completes the proof. �

By a similar argument to that in the proof of Proposition 2.8 with minor
modifications, we can easily obtain the next three propositions.
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Proposition 2.9: Suppose that f ∈ 2RVα,ρ and g ∈ 2RVβ,γ with respective auxiliary
functions A(t) and B(t), where β > 0, γ < 0, ρ < 0, and α ∈ �. Then

(i) for γ > ρβ, f ◦ g ∈ 2RVαβ,γ with auxiliary function αB(t);

(ii) for γ = ρβ, f ◦ g ∈ 2RVαβ,γ with auxiliary function αB(t) + βA ◦ g(t);

(iii) for γ < ρβ, f ◦ g ∈ 2RVαβ,ρβ with auxiliary function βA ◦ g(t).

Proposition 2.10: Suppose that f ∈ 2RVα,ρ and g ∈ 2RVβ,γ (0+) with respective
auxiliary functions A(t) and B(t), where β < 0, γ > 0, ρ < 0, and α ∈ �. Then

(i) for γ > ρβ, f ◦ g ∈ 2RVαβ,ρβ(0+) with auxiliary function βA ◦ g(t);

(ii) for γ = ρβ, f ◦ g ∈ 2RVαβ,γ (0+) with auxiliary function αB(t) + βA ◦ g(t);

(iii) for γ < ρβ, f ◦ g ∈ 2RVαβ,γ (0+) with auxiliary function αB(t).

Proposition 2.11: Suppose that f ∈ 2RVα,ρ(0+) and g ∈ 2RVβ,γ (0+) with respective
auxiliary functions A(t) and B(t), where β > 0, γ > 0, ρ > 0, and α ∈ �. Then

(i) for γ > ρβ, f ◦ g ∈ 2RVαβ,ρβ(0+) with auxiliary function βA ◦ g(t);

(ii) for γ = ρβ, f ◦ g ∈ 2RVαβ,γ (0+) with auxiliary function αB(t) + βA ◦ g(t);

(iii) for γ < ρβ, f ◦ g ∈ 2RVαβ,γ (0+) with auxiliary function αB(t).

For regular variation, there is a well-known monotone density theorem (see, e.g.,
Proposition B.1.9 in [6]). The theorem states that if f ∈ RVα , α > 0 [resp. α < 0] and

f (t) = f (t0) +
∫ t

t0

ψ(s)ds [resp. f (t) =
∫ ∞

t
ψ(s)ds]

for t ≥ t0 with ψ monotone, then ψ ∈ RVα−1. However, there is no analogous result
for 2RV, as shown by the following counterexample.

Counterexample 2.12: (H ∈ 2RVα,ρ , α > 0, ρ < 0, and H ′ is monotone 
=⇒ H ′ ∈
2RV)
Suppose that H ∈ 2RVα,ρ is twice differentiable with α > 1, ρ < −1, and auxiliary
function A(t). Then, from (2.6), we have

H(x) = kxα[1 − xρ�(x)] (2.14)

with A(x) ∼ −ρxρ�(x) as t → ∞ and |�| ∈ RV0 for some k > 0. Note that

h(x) = H ′(x) = kαxα−1

[
1 −

(
1 + ρ

α
+ x�′(x)

α�(x)

)
xρ�(x)

]
(2.15)

sgn= αxα−1 − (α + ρ)xα+ρ−1�(x) − xα+ρ�′(x) and
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h′(x) sgn= α(α − 1)xα−2 − (α + ρ)(α + ρ − 1)xα+ρ−2�(x)

− 2(α + ρ)xα+ρ−1�′(x) − xα+ρ�′′(x)
sgn= α(α − 1) − (α + ρ)(α + ρ − 1)xρ�(x) − 2(α + ρ)xρ+1�′(x) − xρ+2�′′(x).

Now, choose �(x) = 1 + x−1 sin x. Since

tρ+1�′(t) = tρ
(

cos t − sin t

t

)
−→ 0, t → ∞,

tρ+2�′′(t) = tρ+1

(
2 sin t

t2
− sin t − 2 cos t

t

)
, −→ 0, t → ∞,

we have h′(x) > 0 for x large enough, that is, h is ultimately increasing. From (2.15),
it follows that, for x > 0,

h(tx)

h(t)
− xα−1 ∼ xα−1tρ�(t)

{(
1 + ρ

α
+ t�′(t)

α�(t)

)
−

(
1 + ρ

α
+ tx�′(tx)

α�(tx)

)
xρ �(tx)

�(t)

}
.

(2.16)

Since t�′(t)/�(t) ∼ cos t, which does not converge as t → ∞, it does not exist an
auxiliary function B(t) such that h ∈ 2RV.

From (2.16), it is easy to see that if � in (2.14) satisfies that

t�′(t)
�(t)

−→ 0, t → ∞,

then |h| ∈ 2RVα−1,ρ with auxiliary function B(t) ∼ (1 + ρ/α)A(t) and with parame-
ters ρ < 0 and α 
= 0 such that α + ρ 
= 0. �

For completeness, we state one result, due to [12], which extends Karamata’s
theorem to a second-order regular condition for the case with regular variation index
α < −1.

Proposition 2.13: [12] Let g ∈ 2RVα,ρ with an auxiliary function A(t), ρ < 0 and
α < −1, and define g∗(t) = ∫ ∞

t g(x)dx. Then g∗ ∈ 2RVα+1,ρ with auxiliary function
A∗(t) = 1+α

1+α+ρ
A(t) and

g∗(t) + 1

1 + α
tg(t) ∼ A(t)

ρ

(
1

1 + α
− 1

1 + α + ρ

)
tg(t), t → ∞. (2.17)

In the end of this section, a counterexample is given to show that 2RV property
is not closed under linear combination.
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Example 2.14: Let h1 and h2 be two functions defined by

h1(x) = x−α

(
1 + log x

x

)
, x > 1 and

h2(x) = x−α

(
1 − log x

x

)
, x > 1,

with α > 0. It is easy to see that hi ∈ 2RV−α,−1 for i = 1 and 2. However, (h1 +
h2)/2 = x−α does not possess 2RV property. Moreover, it can be checked that both
h1(x) and h2(x) are decreasing when x is large enough. So this example also shows
that the mixture of 2RV distributions may not possess the 2RV property. �

3. SECOND-ORDER APPROXIMATION OFTAIL PROBABILITIES
OF CONVOLUTIONS

Barbe and McCormick [1] derived the second-order approximation for tail probability
of the convolution of finite i.i.d. random variables under a mild regularity condition
that the underlying survival function is regular varying and asymptotically smooth.
In this section, we will extend such results to non-i.i.d. case, in which the underlying
survival functions of all random variables are asymptotically smooth and regularly
varying with the same index α.

Before we state and prove the main results, we should recall from [1] the defi-
nitions of the asymptotical smoothness and the right-tail dominance, and give some
notations and some useful lemmas.

A function h : �+ → �+ is said to be asymptotically smooth with index −α if

lim
δ→0

lim sup
t→∞

sup
0<|x|≤δ

∣∣∣∣h(t(1 − x)) − h(t)

xh(t)
− α

∣∣∣∣ = 0.

It is shown that the class of asymptotically smooth functions with index −α coincides
with that of normalized regularly varying ones with index −α. For the definition of the
normalized regularly varying functions, see [2, p. 15]. In particular, if a distribution
function F with density f satisfies that

lim
t→∞

tf (t)

F(t)
= α > 0,

then F is asymptotically smooth with index −α.
A distribution function F is said to be right-tail dominant if

lim
t→∞

F(−tδ)

F(t)
= 0, ∀ δ > 0.

For any distribution function F, denote the truncated mean of F by

μF(t) =
∫ t

−t
xdF(x), t ∈ �+.
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If the mean μF of F exists, then μF(t) → μF as t → ∞, where μF can be written as

μF =
∫ ∞

0
F(x)dx −

∫ 0

−∞
F(x)dx.

Similarly, μG(t) and μG are defined.

3.1. Some Lemmas

Lemma 3.1: Let F and G be two distribution functions such that F ∈ RV−α and G ∈
RV−α with 0 < α ≤ 1. Assume that F and G are right-tail dominant and

lim
t→∞

F(t)

G(t)
= c ∈ �+. (3.1)

If μF and μG are infinite (α must be smaller than or equal to 1), then

lim
t→∞

μF(t)

μG(t)
= c.

Proof: Note that ∫ 0

−t
xdF(x) = tF(−t) −

∫ 0

−t
F(x)dx (3.2)

and ∫ t

0
xdF(x) = −tF(t) +

∫ t

0
F(x)dx. (3.3)

Since F is right-tail dominant, it follows that the infinity of μF implies that at least
one of

∫ 0
−∞ F(x)dx and

∫ ∞
0 F(x)dx is infinite, and that if

∫ 0
−∞ F(x)dx = ∞ then∫ ∞

0 F(x)dx = ∞. Thus,

lim
t→∞

∫ 0
−t F(x)dx∫ t
0 F(x)dx

= lim
t→∞

F(−t)

F(t)
= 0.

Moreover, by Karamata’s theorem (see Theorem B.1.5 in [6]), we have

tF(t)∫ t
0 F(x)dx

−→ 1 − α, t → ∞,

when α ≤ 1. Then, from (3.2) and (3.3), we get

lim
t→∞

∫ 0
−t xdF(x)∫ t
0 xdF(x)

= 0.
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Similarly,

lim
t→∞

∫ 0
−t xdG(x)∫ t
0 xdG(x)

= 0.

So

lim
t→∞

μF(t)

μG(t)
= lim

t→∞

∫ t
0 xdF(x)∫ t
0 xdG(x)

= lim
t→∞

∫ t
0 F(x)dx∫ t
0 G(x)dx

= lim
t→∞

F(t)

G(t)
= c.

This completes the proof. �

It should be pointed out that the conclusion in Lemma 3.1 does not hold if μF

and/or μG are finite.

Lemma 3.2: Let F and G be two distribution functions such that F ∈ 2RV−α,ρ and
G ∈ 2RV−α,ρ with α > 0 and ρ + α < 0. If (3.1) holds, then

lim
t→∞

F(t) − cG(t)

[G(t)]2
= 0.

Proof: From (2.6), F(t) and G(t) have the following representations: there exist a
constant k > 0 and slowing varying functions �F and �G such that

F(t) = ckt−α�F(t), lim
t→∞ �F(t) = 1, |1 − �F(t)| ∈ RVρ

and

G(t) = kt−α�G(t), lim
t→∞ �G(t) = 1, |1 − �G(t)| ∈ RVρ .

Since ρ + α < 0, we have

tα|1 − �F(t)| −→ 0, tα|1 − �G(t)| −→ 0,

as t → ∞. Then tα|�F(t) − �G(t)| → 0 as t → ∞. Therefore,

lim
t→∞

F(t) − cG(t)

[G(t)]2
= lim

t→∞
ctα(�F(t) − �G(t))

k�2
G(t)

= 0.

This completes the proof. �

Lemma 3.3: [1] Let F and G be two distribution functions such that F ∈ RV−α

and G ∈ RV−β with α ∧ β ≥ 1. Assume that F and G are asymptotically smooth

and right-tail dominant, with
∫ 0
−∞ xdF(x) and

∫ 0
−∞ xdG(x) both finite. Then F ∗ G is

asymptotically smooth with index −α ∧ β, right-tail dominant, and

F ∗ G(t) = F(t) + G(t) + 1

t

(
αF(t)μG(t) + βG(t)μF(t)

)
(1 + o(1)), t → ∞.
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Lemma 3.4: [1] Let F and G be two asymptotically smooth survival functions such
that F ∈ RV−α and G ∈ RV−β with α ∨ β < 1. Then F ∗ G is also asymptotically
smooth with index −α ∧ β, and

lim
t→∞

F ∗ G(t) − F(t) − G(t)

F(t)G(t)
= I(α, β) + I(β, α) + 2α+β − 2α − 2β ,

where

I(α, β) =
∫ 1/2

0
((1 − x)−α − 1)βx−β−1dx.

In Lemma 3.3, under the mild condition, the first-order term to approximate
F ∗ G(t) is F(t) + G(t) as t → ∞, while the second-order term is αF(t)μG(t)/t +
βG(t)μF(t)/t = o(F(t) + G(t)) as t → ∞ since μF(t)/t → 0 and μG(t)/t → 0 as
t → ∞ if μF and μG exist. The same comment applies to Lemma 3.4. In the next two
subsections, we give second-order expansions of survival functions of convolutions
for n independent heavy-tail random variables.

3.2. Expansion for the Case α ≥ 1

Proposition 3.5: Let F1, . . . , Fn be a sequence of right-tail dominant distribution
functions such that all the Fis are asymptotically smooth with index −α, and denote by
G = F1 ∗ · · · ∗ Fn the convolution of the Fis. Assume that there exist positive constants
c1, . . . , cn such that

lim
t→∞

t

μFj (t)

(
Fi(t)

Fj(t)
− ci

cj

)
= 0, ∀ 1 ≤ i 
= j ≤ n. (3.4)

(i) If α = 1 and μFν
= ∞ for some ν, then, for each i,

lim
t→∞

t

μFi(t)

(
G(t)

Fi(t)
− σc

ci

)
= α

σcc

c2
i

, (3.5)

where

σc =
n∑

i=1

ci and σcc =
∑
k 
=j

ckcj. (3.6)

(ii) If α ≥ 1 and μFν
< ∞ for some ν, then

lim
t→∞ t

(
G(t)

Fi(t)
− σc

ci

)
= α

∑
k 
=j ckμFj

ci
. (3.7)
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Proof: Since μF(t)/t → 0 as t → ∞ when μF exists, it follows from (3.4) that
Fi(t)/Fj(t) → ci/cj for all i 
= j as t → ∞. This implies that if any one ofμF1 , . . . , μFn

is infinite [finite], then all the μFi s are infinite [finite]. We first establish that

μF1∗···∗Fk (t) ∼
k∑

i=1

μFi(t) as t → ∞ (3.8)

for k = 2, . . . , n by using a similar argument to that in the proof of Proposition 2.4
in [1]. To see (3.8), first consider the case that all μFi s are finite. Then μFi(t) ∼ μFi

as t → ∞ for each i and, hence,

μF1∗···∗Fk (t) ∼ μF1∗···∗Fk =
k∑

i=1

μFi ∼
k∑

i=1

μFi(t) as t → ∞.

Now assume that all the μFi s are infinite, which implies α = 1. Since the regular
variation property is closed under the convolution of identical distribution functions
(see Lemma 1.3.1 in [9] or [10, p. 278]), we have F1 ∗ · · · ∗ Fk ∈ RV−1 and

F1 ∗ · · · ∗ Fk(t) ∼
k∑

i=1

Fi(t) as t → ∞.

By Karamata’s theorem, we have

t F1 ∗ · · · Fk(t) = o

(∫ t

0
F1 ∗ · · · ∗ Fk(x)dx

)
as t → ∞.

By Lemma 3.3 and by induction, F1 ∗ · · · ∗ Fk is asymptotically smooth with index
−1, and right-tail dominant for each k. Hence,

μF1∗···∗Fk (t) ∼
∫ t

0
xdF1 ∗ · · · ∗ Fk(x)

= −t F1 ∗ · · · ∗ Fk(t) +
∫ t

0
F1 ∗ · · · ∗ Fk(x)dx

∼
∫ t

0
F1 ∗ · · · ∗ Fk(x)dx

∼
∫ t

0

k∑
i=1

Fi(x) dx =
k∑

i=1

∫ t

0
Fi(x) dx

∼
k∑

i=1

μFi(t) as t → ∞,

where the last asymptotic equivalence follows from
∫ t

0 Fi(x)dx ∼ μFi(t) → ∞ as
t → ∞. This proves (3.8).
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In views of (3.8), repeated application of Lemma 3.3 yields that

F1 ∗ · · · ∗ Fn(t) = Fn(t) + F1 ∗ · · · ∗ Fn−1(t)

+ α

t

{
Fn(t) μF1∗···∗Fn−1(t) + F1 ∗ · · · ∗ Fn−1(t) μFn(t)

}
(1 + o(1))

= Fn(t) + F1 ∗ · · · ∗ Fn−1(t)

+ α

t

(
Fn(t)

n−1∑
i=1

μFi(t) + F1 ∗ · · · ∗ Fn−1(t) μFn(t)

)
(1 + o(1))

= · · ·

=
n∑

i=1

Fi(t) + α

t

∑
i 
=j

Fi(t) μFj (t) × (1 + o(1)) (3.9)

as t → ∞.

(i) Suppose α = 1 and all the μFi s are infinite. From (3.9), it follows that

t

μFi(t)

(
G(t)

Fi(t)
−

∑n
k=1 Fk(t)

Fi(t)

)
= α

∑
k 
=j Fk(t)μFj (t)

Fi(t)μFi(t)
× (1 + o(1)).

Because of (3.4), we have

lim
t→∞

t

μFi(t)

(∑n
k=1 Fk(t)

Fi(t)
− σc

ci

)
= 0.

By Lemma 3.1, Fj/Fi → cj/ci implies μFj (t)/μFi(t) → cj/ci as t → ∞ for
each pair i 
= j. Thus, (3.5) follows.

(ii) Suppose that α ≥ 1 and all the μFi s are finite. From (3.9), we get

F1 ∗ · · · ∗ Fn(t) =
n∑

i=1

Fi(t) + α

t

∑
k 
=j

Fk(t)μFj × (1 + o(1)),

which implies that

t

(
G(t)

Fi(t)
−

∑n
k=1 Fk(t)

Fi(t)

)
= α

∑
k 
=j Fk(t)μFj

Fi(t)
× (1 + o(1)).

Since

lim
t→∞ t

(∑n
k=1 Fk(t)

Fi(t)
− σc

ci

)
= 0,

the desired result (3.7) follows. This completes the proof. �
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Remark 3.6: In Proposition 3.5, Condition (3.4) can be replaced by

lim
t→∞

1

Fj(t)

(
Fi(t)

Fj(t)
− ci

cj

)
= dij ∈ �+, ∀ 1 ≤ i 
= j ≤ n. (3.10)

To prove that (3.10) implies (3.4), first assume that α = 1 and μFi = ∞. Then, by
Karamata’s theorem,

tFi(t) = o

(∫ t

0
Fi(x)dx

)
as t → ∞,

and hence tFi(t) = o
(
μFi(t)

)
as t → ∞, which implies that

lim
t→∞

t

μFj (t)

(
Fi(t)

Fj(t)
− ci

cj

)
= lim

t→∞
tFj(t)

μFj (t)
× 1

Fj(t)

(
Fi(t)

Fj(t)
− ci

cj

)
= 0.

Now assume that α ≥ 1 and μFi is finite. Then tFi(t) → 0 and hence tFi(t) =
o
(
μFi(t)

)
as t → ∞. Therefore, the above equality holds. �

Remark 3.7: Another sufficient condition for (3.4) and (3.10) is that

Fi ∈ 2RV−α,ρ , lim
t→∞

Fi(t)

Fj(t)
= ci

cj
, ∀ 1 ≤ i 
= j ≤ n, (3.11)

where α ≥ 1, α + ρ < 0 and the cis are positive constants. This can be seen from
Lemma 3.2 directly. �

A special consequence of Proposition 3.5 is the following corollary.

Corollary 3.8: [1] Let F be a right-tail dominant distribution function which is also
asymptotically smooth with index −α ≤ −1, and denote by F∗n the n-fold convolution
of F. Then

lim
t→∞

t

μF(t)

(
F∗n(t)

F(t)
− n

)
= n(n − 1)α.

3.3. Expansion for the Case 0 < α < 1

Proposition 3.9: Let F1, . . . , Fn be a sequence of right-tail dominant distribution
functions such that all the Fis are asymptotically smooth with index −α, 0 < α < 1,
and denote by G = F1 ∗ · · · ∗ Fn. If (3.10) holds or if (3.11) holds with α + ρ < 0,
then

lim
t→∞

1

Fk(t)

(
G(t)

Fk(t)
− σc

ck

)
= Jα

σcc

c2
k

(3.12)

for any k, where σc and σcc are given in (3.6), and

Jα = I(α, α) + 22α−1 − 2α . (3.13)
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Proof: By Lemma 3.2, (3.11) implies (3.10). Now suppose that (3.10) holds. By
Lemma 3.4, F1 ∗ · · · ∗ Fk is right-tail dominant and asymptotically smooth with index
−α. Again repeated application of Lemma 3.4 yields that

F1 ∗ · · · ∗ Fn(t) = 2Jα(1 + o(1)) × F1 ∗ · · · ∗ Fn−1(t)Fn(t)

+ F1 ∗ · · · ∗ Fn−1(t) + Fn(t)

= · · ·

=
n∑

i=1

Fi(t) + 2Jα(1 + o(1))
∑

1≤i<j≤n

Fi(t)Fj(t).

The rest of the proof is similar to that of Proposition 3.5. �

A special consequence of Proposition 3.9 is the following corollary.

Corollary 3.10: [1] Let F be a right-tail dominant distribution function such that
F is asymptotically smooth with index −α, 0 < α < 1. Then

lim
t→∞

1

F(t)

(
F∗n(t)

F(t)
− n

)
= n(n − 1)Jα .

Corollaries 3.8 and 3.10 are also summarized in Proposition 4.1 of [5].

4. SECOND-ORDER EXPANSIONS OF RISK CONCENTRATION

Let X be a random variable with distribution function F. The value-at-risk (VaR) with
respect to the level p ∈ (0, 1) is defined as the generalized inverse of F:

VaRp[X] = F−1(p) = inf{t ∈ R : F(t) ≥ p}.
Let X1, . . . , Xn be independent non-negative random variables with respective survival
functions F1, . . . , Fn satisfying that

Fi ∈ RV−α , lim
t→∞

Fi(t)

Fj(t)
= ci

cj
, ∀ 1 ≤ i 
= j ≤ n, (4.1)

with α > 0 and the cis being positive constants. From Theorem 5.1 in [3], it follows
that

C(p) := VaRp
[∑n

i=1 Xi
]

∑n
i=1 VaRp[Xi] −→

(∑n
i=1 ci

)1/α∑n
i=1 c1/α

i

as p → 1. (4.2)

Here, C(p) is termed by [5] as the risk concentration at level p, and 1 − C(p) as
the diversification benefit. The term in the right-hand side of (4.2) is the first-order

https://doi.org/10.1017/S0269964812000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964812000174


554 W. Lv,T. Mao, andT. Hu

approximation of C(p) as p → 1. In this section, we identify conditions under which
we establish the second-order approximation of C(p).

Proposition 4.1: Let X1, . . . , Xn be independent non-negative random variables with
continuous and asymptotically smooth survival functions F1, . . . , Fn, respectively.
Assume that

Ui =
(

1

Fi

)←
∈ 2RV1/α,ρ , ∀ i (4.3)

with auxiliary function ai(t) for some α ≥ 1 and ρ ≤ 0. If (3.4) holds, we have

(i) For ρ < −1, α = 1, and μFν
= ∞ for some ν,

C(p) − 1 ∼ μFk (F
←
k (p))

F←
k (p)

× σcc

σ 2
c

(4.4)

as p → 1 for each k, where σc and σcc are given in (3.6).

(ii) For ρ > −1, α = 1, and μFν
= ∞ for some ν,

C(p) − 1 ∼ 1

σc

n∑
i=1

ci
(σc/ci)

ρ − 1

ρ
× ai

(
1

1 − p

)
(4.5)

as p → 1. Here and henceforth, for ρ = 0, the term [1 − (σc/ci)
ρ]/ρ is

interpreted as − log(σc/ci).

(iii) For ρα < −1, α ≥ 1, and μFν
< ∞ for some ν,

C(p) − σ
1/α
c∑n

i=1 c1/α

i

∼ 1

F←
k (p)

× c1/α

k

σc
∑n

i=1 c1/α

i

∑
l 
=j

clμFj (4.6)

as p → 1 for each k.

(iv) For ρα > −1, α ≥ 1, and μFν
< ∞ for some ν,

C(p) − σ
1/α
c∑n

i=1 c1/α

i

∼ σ
1/α
c(∑n

i=1 c1/α

i

)2 ×
n∑

i=1

c1/α

i

(σc/ci)
ρ − 1

ρ
× ai

(
1

1 − p

)

(4.7)
as p → 1.
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Proof: Let G denote the distribution function of
∑n

i=1 Xi. Since Ui ∈ 2RV1/α,ρ and
G(t)/Fi(t) → σc/ci as t → ∞ for each i, it follows that

lim
t→∞

Ui(1/Fi(t))
Ui(1/G(t))

−
(

G(t)
Fi(t)

)1/α

ai(1/G(t))
=

(
σc

ci

)1/α
(σc/ci)

ρ − 1

ρ

by using the uniform convergence property of (2.2) with respect to x ∈ [d1, d2] with
0 < d1 < d2 < ∞. Setting t = G←(p), we have

G←(p)

F←
i (p)

=
(

G(t)

Fi(t)

)1/α

+
(

σc

ci

)1/α
(σc/ci)

ρ − 1

ρ
× ai

(
1

G(t)

)
(1 + o(1))

=
(

σc

ci

)1/α


i(t) +
(

σc

ci

)1/α
(σc/ci)

ρ − 1

ρ
× ai

(
1

G(t)

)
(1 + o(1)) (4.8)

as t → ∞ or p → 1, where the second equality follows from Proposition 3.5, and


i(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 + μFi(t)

t

σcc

ciσc
(1 + o(1)), if μFν

= ∞ for some ν;

1 + 1 + o(1)

tσc

∑
l 
=j

clμFj , if μFν
< ∞ for some ν.

Since Ui ∈ 2RV1/α,ρ with auxiliary function ai(t), we have Ui ∈ RV1/α and
|ai(t)| ∈ RVρ . Hence, by Lemma 2.3, Fi ∈ RV−α . By Lemma 1.3.1 in [9] and Lemma
2.4, we have G ∈ RV−α and |ai(1/G)| ∈ RVρα . Note that μFi(t)/t ∈ RV−(1∧α) and
α ≥ 1. From (4.8), with t = G←(p), it follows that:

G←(p)

F←
i (p)

=
(

σc

ci

)1/α


i(t), t → ∞, (4.9)

when ρα < −1, and that

G←(p)

F←
i (p)

=
(

σc

ci

)1/α [
1 + (σc/ci)

ρ − 1

ρ
× ai

(
1

G(t)

)
(1 + o(1))

]
, t → ∞,

(4.10)
when ρα > −1.

(i) First, assume that ρ < −1, α = 1, and μFν
= ∞ for some ν. Then, from (4.9),

we get that

F←
i (p)

G←(p)
= ci

σc

(
1 − μFi(t)

t

σcc

ciσc
(1 + o(1))

)
, t → ∞ (4.11)

and ∑n
i=1 F←

i (p)

G←(p)
− 1 ∼ −σ−2

c σcc

n∑
i=1

μFi(t)

t
.
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Then, for some k,

lim
t→∞

t

μFk (t)

[∑n
i=1 F←

i (p)

G←(p)
− 1

]
= −σ−2

c σcc

n∑
i=1

ci

ck
= − σcc

σcck
,

which implies that

lim
t→∞

t

μFk (t)

[
G←(p)∑n
i=1 F←

i (p)
− 1

]
= σcc

σcck
. (4.12)

Since μFk (t)/t ∈ RV−1, from (4.11), we get

lim
p→1

μFk (G
←(p))/G←(p)

μFk (F
←
k (p))/F←

k (p)
= lim

p→1

F←
k (p)

G←(p)
= ck

σc
. (4.13)

Therefore, the desired result (4.4) follows from (4.12) and (4.13).

(ii) Assume that ρ > −1, α = 1, and μFν
= ∞ for some ν. The proof is similar

to that of part (iv).

(iii) Assume that ρα < −1, α ≥ 1, and μFν
< ∞ for some ν. Then, from (4.9),

we get that

F←
i (p)

G←(p)
=

(
ci

σc

)1/α

⎛
⎝1 − 1 + o(1)

σct

∑
l 
=j

clμFj

⎞
⎠ , t → ∞

and

∑n
i=1 F←

i (p)

G←(p)
−

∑n
i=1 c1/α

i

σ
1/α
c

∼ − 1

tσ 1/α+1
c

(
n∑

i=1

c1/α

i

) ∑
l 
=j

clμFj ,

which implies that

G←(p)∑n
i=1 F←

i (p)
− σ

1/α
c∑n

i=1 c1/α

i

∼
(

σ
1/α
c∑n

i=1 c1/α

i

)2
1

tσ 1/α+1
c

(
n∑

i=1

c1/α

i

) ∑
l 
=j

clμFj

= 1

t

σ
1/α−1
c∑n
i=1 c1/α

i

∑
l 
=j

clμFj

∼ 1

F←
k (p)

c1/α

k

σc
∑n

i=1 c1/α

i

∑
l 
=j

clμFj

since 1/t = 1/G←(p) ∼ (ck/σc)
1/α/F←

k (p) as p → 1. This proves (4.6).
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(iv) Assume that ρα > −1, α ≥ 1, and μFν
< ∞ for some ν. Then, from (4.10),

we get that

F←
i (p)

G←(p)
=

(
ci

σc

)1/α [
1 − (σc/ci)

ρ − 1

ρ

× ai

(
1

G(t)

)
(1 + o(1))

]
, t → ∞

and

∑n
i=1 F←

i (p)

G←(p)
−

∑n
i=1 c1/α

i

σ
1/α
c

∼
n∑

i=1

(
ci

σc

)1/α 1 − (σc/ci)
ρ

ρ

× ai

(
1

1 − p

)
, t → ∞,

implying that

G←(p)∑n
i=1 F←

i (p)
− σ

1/α
c∑n

i=1 c1/α

i

∼
(

σ
1/α
c∑n

i=1 c1/α

i

)2

×
n∑

i=1

(
ci

σc

)1/α
(σc/ci)

ρ − 1

ρ
× ai

(
1

1 − p

)
, t → ∞.

This proves (4.7).

�

Remark 4.2: (i) In Proposition 4.1, the result for the boundary case ρα = −1 is not
included because, in this case, the situation is more complicated. Furthermore, in
Proposition 4.1, the second-order parameters ρi of all Uis are assumed to be the
same as ρ. In fact, a refinement of the proof of Proposition 4.1 allow us to derive
second-order approximations of C(p) for the different ρis.

(ii) By Propositions 2.5 and 2.6, Ui ∈ 2RV1/α,ρ with auxiliary function ai(t) for
α > 0 and ρ < 0 is equivalent to

Fi ∈ 2RV−α,ρα with auxiliary function bi(t) = α2ai

(
1

F(t)

)
.

Proposition 4.3: Let X1, . . . , Xn be independent non-negative random variables with
continuous and asymptotically smooth survival functions F1, . . . , Fn, respectively.
Assume that (4.3) holds with 0 < α < 1 and ρ ≤ 0. If (3.10) holds, then we have
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(i) For ρ < −1,

C(p) − σ
1/α
c∑n

i=1 c1/α

i

∼ (1 − p)
Jασccσ

1/α−2
c

α
∑n

i=1 c1/α

i

, p → 1,

where σc and σcc are given in (3.6), and Jα is defined by (3.13).

(ii) For ρ > −1, (4.7) holds.

Proof: In view of Proposition 3.9, note that (4.8) also holds for G←(p)/F←
i (p) with


i(t) replaced by


i(t) = 1 + Jα

α
× σcc

ciσc
Fi(t)(1 + o(1)).

(i) Assume that ρ < −1. Since Fi ∈ RV−α and |ai(1/G)| ∈ RVρα , from (4.8), we
have

G←(p)

F←
i (p)

=
(

σc

ci

)1/α (
1 + Jα

α
× σcc

ciσc
Fi(t)(1 + o(1))

)
with t = G←(p). So∑n

i=1 F←
i (p)

G←(p)
−

∑n
i=1 c1/α

i

σ
1/α
c

∼ − Jασcc

ασ
1+1/α
c

n∑
i=1

c1/α−1
i Fi(t),

which implies that

G←(p)∑n
i=1 F←

i (p)
− σ

1/α
c∑n

i=1 c1/α

i

∼ Jασccσ
1/α−1
c

α
(∑n

i=1 c1/α

i

)2

n∑
i=1

c1/α−1
i Fi(t)

∼ (1 − p)
Jασccσ

1/α−2
c

α
∑n

i=1 c1/α

i

,

where the last equivalence follows from the fact that

Fi(G←(p))

1 − p
= Fi(G←(p))

Fi(F←
i (p))

∼
(

G←(p)

F←
i (p)

)−α

∼ ci

σc
, p → 1.

This proves part (i).

(ii) For ρ > −1, the proof is the same as that of part (iv) of Proposition 4.1. This
completes the proof. �

Degen et al. [5] derived second-order approximations of C(p) for i.i.d. heavy-tail
random variables X1, . . . , Xn by using the theories of second-order regular varia-
tion and second-order subexponentiality. Their main result, Theorem 3.1, is a direct
consequence of Propositions 4.1 and 4.3.
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