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An introduction to the physical interpretation of the Coulomb logarithm is given
with particular emphasis on the quantum-mechanical corrections that are required at
high temperatures. Excerpts from the literature are used to emphasize the historical
understanding of the topic, which emerged more than a half-century ago. Several
misinterpretations are noted. Quantum-mechanical effects are related to diffraction
by scales of the order of the Debye screening length; they are not due to quantum
uncertainty related to the much smaller distance of closest approach.
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1. Introduction

The Coulomb logarithm lnΛ, often called the ‘Spitzer logarithm’ in honour of
its discussion in the pioneering monograph of Spitzer (1962) (and earlier by Cohen,
Spitzer & Routly (1950) in the section prepared by Spitzer), is one of the most
fundamental quantities in basic plasma physics, as it quantifies the dominance of
small-angle scattering in a weakly coupled plasma. In introductory discussions
of collisions in plasmas, usually only classical physics is considered. However,
for sufficiently high temperatures quantum-mechanical effects become important.
Although the proper way of including those effects has been understood at least
since the work of Cohen et al. (1950), there appears to be some ignorance of that
early literature and, thus, some residual uncertainty about the interpretation of the
quantum-mechanical corrections. Instead of presenting a full review of this subject,
which would be quite lengthy, here I shall merely present a brief tutorial whose
purpose is to provide a new student of the subject with some entry points to the
literature relating to the basic physics of the Coulomb logarithm. Sometimes-lengthy
excerpts from original papers and reviews are used to emphasize the historical
development. Several interesting points of confusion are identified. The focus is on
conceptual foundations, not practical applications.
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2 J. A. Krommes

I shall address only the restricted problem of the calculation and interpretation
of lnΛ in weakly coupled, many-body, charge-neutral plasmas with the usual
statistical symmetries of homogeneity and isotropy; other issues, such as the effects of
anisotropy considered in the interesting work by Mulser, Alber & Murakami (2014),
are not discussed.

2. The Coulomb logarithm in classical kinetic theory – a brief review

One definition of Λ is Λ
.
= λD/bmin ( .= denotes a definition), where λD is the

Debye screening length (the effective maximum impact parameter for two-body
scattering) and bmin is a characteristic length to be determined. In classical scattering
theory,1 bmin = b0, where

b0
.
=

q1q2

µu2
(2.1)

is the impact parameter for 90◦ scattering between particles 1 and 2. Here q is the
charge, µ is the reduced mass and u is the relative velocity. The distance of closest
approach is 2b0. For a weakly coupled plasma, b0 is very much smaller than λD;
specifically, b0/λD = O(εp), where εp

.
= 1/(nλ3

D) is the so-called plasma (expansion)
parameter (n is the mean density).

The result bmin = b0 arises in classical, weakly coupled plasma kinetic theory
(Montgomery & Tidman 1964) as follows. One can determine the net scattering
cross-section σ , or in more detail the velocity-dependent collision operator, from
an approximate calculation of the pair correlation function in the limit of small εp.
That leads to an integration over all possible impact parameters b or, equivalently,
over wavenumber magnitude k .

= b−1. In particular, with εk
.
= −4πik/k2 being the

Fourier representation of the bare Coulomb field of a unit point charge, D(k, ω) being
the Vlasov dielectric function and f being the one-particle distribution function, the
Balescu–Lenard collision operator (which captures the effect of dielectric shielding2

but not large-angle scattering) for collisions of species s on species s is3

Css[f ]
.
= −π(nm)−1

s (nq2)s(nq2)s
∂

∂v
·

∫
dv

∫
dk
(2π)3

εk ε∗k
|D(k, k · v)|2

δ(k · (v − v))

·

(
1

ms

∂

∂v
−

1
ms

∂

∂v

)
fs(v)fs(v). (2.2)

1The collision process in a weakly coupled plasma is discussed in the review article by Sivukhin (1966)
and in numerous textbooks such as the one by Helander & Sigmar (2002). An equivalent background is helpful
for the subsequent discussion.

2As a reminder, the notion of a Debye shielding cloud is a statistical concept. It arises from the spatial pair
correlations between an ensemble of field particles and a specified test particle. That the Vlasov approximation
to D(k, ω) is adequate is a standard result for weak coupling (εp� 1, relevant for magnetic fusion). For that
important regime, Rostoker (1964a) was led to his famous test-particle superposition principle. (Derivations of
the superposition principle that are more compact than Rostoker’s original can be found in Krommes (1976).)
That principle, in turn, inspired the test-particle methods introduced by Rostoker (1964b); they have been
extraordinarily successful. A representative and very clear textbook discussion of test-particle techniques can be
found in Krall & Trivelpiece (1973). The resulting, well-justified formulas for the weakly coupled electric-field
fluctuation spectrum at Debye scales and for the polarization drag on a moving test particle are manifested in
the kernel of the Balescu–Lenard operator through the factors of εk/D(k, k · v), which describe the dynamical
shielding of the bare electric field of a test particle moving with velocity v.

3Derivations of the Balescu–Lenard operator can be found in many textbooks, e.g. Ichimaru (1973,
appendix B). See also Krommes (2018b, § G.1).
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An introduction to the physics of the Coulomb logarithm 3

The Vlasov dielectric has the well-known form

D(k, ω)= 1+
∑

s

ω2
ps

k2

∫
dv

k · ∂vfs(v)

ω− k · v + iε
, (2.3)

where ωps is the plasma frequency. According to (2.2), this is to be evaluated at the
characteristic streaming or transit frequency ω= k · v (not a normal-mode frequency).
Thus, the dependence on wavenumber magnitude cancels out under the v integral in
(2.3), and without further approximation the integration over wavenumber magnitude
requires evaluation of

I(k) .=
∫ kmax

0

dk
k

(
1

[1+ A(kλD)−2]2 + [B(kλD)−2]2

)
, (2.4)

where A(k̂, v) and B(k̂, v) are functions that at least for thermal particles are of order
unity (Montgomery & Tidman 1964, Chap. 7). The integral (2.4) can be done exactly,
but the details are not important for qualitative discussion; for kmaxλD� 1, one finds

I(k)= ln(kmaxλD)+O(1). (2.5)

To understand this result physically, note that the denominator inside the large
parentheses in (2.4) represents the mean-square effect of dielectric shielding and
makes the integral strongly convergent at k→ 0, effectively limiting the wavenumber
integration to k & kmin

.
= kD, where kD

.
= λ−1

D ; this corresponds to a maximum
impact parameter bmax ≈ λD. Because Debye shielding is ineffective at small
scales, equation (2.4) is logarithmically divergent at large k and must be cut off
at some kmax (or bmin

.
= k−1

max); the dominant term in (2.5) obviously arises from
evaluating

∫ kmax

kD
dk k−1

=
∫ λD

bmin
db b−1. However, this large-k or small-scale divergence is

not physical. It arises because the Balescu–Lenard derivation is perturbative, based on
zeroth-order straight-line trajectories; thus, large-angle scattering (the effect of impact
parameters b . b0) is misrepresented. There is no solution for this difficulty within
the Balescu–Lenard framework. However, one can asymptotically match between an
‘inner’ solution that treats large-angle scattering correctly and an ‘outer’ solution
appropriate for small-angle scattering, as was done, for example, by Frieman & Book
(1963) for the classical regime. Such matching removes any apparent divergence at
the small scales, in agreement with the result that the Rutherford cross-section is
integrable as the scattering angle θ→π or b→ 0. Of course, the scale b0 remains in
the asymptotically matched solution: it determines the two-body relationship between
scattering angle and impact parameter,

tan(θ/2)= b0/b; (2.6)

it sets the basic size of the classical cross-section σcl, which is finite and proportional
to b2

0; and the asymptotic matching leads to kmax = b−1
0 (this is clear on dimensional

grounds). One is led to the dominant result4σcl ∼ b2
0 lnΛcl, where5

lnΛcl ≡ Lcl
.
= ln(λD/b0)=O(ln(ε−1

p )). (2.7)

4From (2.5), one sees that corrections to this result are of O(1), i.e. of relative order (ln Λcl)
−1
∼

[ln(ε−1
p )]−1

� 1. For the typical values lnΛcl ∼ 10–20, the corrections are thus in the range of 5–10 %. Note
that if kmax is replaced by αkmax, where α = O(1), one must consider ln(αkmaxλD) = ln(kmaxλD) + ln α =
ln(kmaxλD)+O(1). Thus, uncertainty in the choice of cutoff does not affect the dominant asymptotics.

5Conventional notation introduces λ .= lnΛ. In this paper I use L instead of λ in order to avoid confusion
with the symbols λD and λB.
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4 J. A. Krommes

Since this Lcl is independent of k̂ and v, one can perform the integration over solid
angle in (2.2); one is ultimately led (Lenard 1960) to the Landau collision operator
(Landau 1936), which is generally used in practice. The Landau operator is discussed
in appendix B of Krommes (2018a) and in various textbooks.

An alternative way of arriving at ln Λcl is to begin with the Boltzmann collision
operator (which does not incorporate Debye shielding but does handle large-angle
scattering correctly), then to take its small-angle limit. (That amounts to considering
a Fokker–Planck operator that does not incorporate shielding effects.) In that limit,
one encounters the integral

∫ kmax

kmin
dk k−1

=
∫ bmax

bmin
db b−1, to be considered in the classical

regime. Clearly, the logarithmic divergence at large b must be rectified by inserting the
cutoff bmax=λD, which as I discussed follows systematically from the Balescu–Lenard
formalism.

In both of the above two procedures, which are correct only for small-angle
scattering, the necessity for a small-scale cutoff remains. In order to deal with the
misrepresentation of large-angle scattering in lieu of complicated asymptotic analysis,
students are generally taught to merely insert the short-scale cutoff bmin = b0 or
kmax = b−1

0 , which describes the cross-over between large- and small-angle scattering.
That is the correct result, and it is more than hand waving. It must be stressed that
that recipe encapsulates the result of a systematic asymptotic matching between the
classical regimes of large and small impact parameters, that the underlying physics
is convergent for small impact parameters and that no discontinuity or exponentially
rapid variation that would lead to diffraction occurs in the vicinity of b0. These
remarks expand upon some of those in the paper by Mulser et al. (2014).

It is insightful to transform the impact-parameter integration to an integration over
scattering angle θ . When that is done, one sees according to (2.6) that the effect of
dielectric shielding is to introduce a cutoff at small θ , so σ ∼

∫
θmin

dθ/θ ∼ ln θ−1
min; see,

for example, Landau & Lifshitz (1981, (41.9)). Classically, one has θmin≈ θ0
.
= 2b0/λD

(which follows from the small-angle limit of (2.6)). In the next section, we shall see
that quantum-mechanical diffraction effects on the Debye scale lead to a larger value
of θmin for sufficiently high temperatures, and thus to a smaller value of lnΛ.

3. Quantum-mechanical corrections to lnΛ

As noted by Spitzer and more clearly explained in the 149 page review article
by Sivukhin (1966), at sufficiently high temperature the classical approximation
fails, quantum-mechanical considerations apply, and one finds bmin = λB

.
= h/µu, the

‘de Broglie wavelength of the test particle in the coordinate system in which the
scattering center . . . is at rest’ (Sivukhin 1966). Interpolation between the classical
and quantum-mechanical limits leads to the standard prescription

bmin =max{λB, b0}. (3.1)

Spitzer (1962, p. 128) said it this way:6

When the electron temperature exceeds approximately 4× 105 degrees K,
Λ must be somewhat reduced below the values obtained from [classical
theory], because of quantum-mechanical effects. An electron wave passing
through a circular aperture of radius b will be spread out by diffraction
through an angle λ/2πb, where λ is the electron wavelength. If this

6To conform to my notation, I have changed Spitzer’s p to b, and w to u.
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An introduction to the physics of the Coulomb logarithm 5

deflection exceeds the classical deflection 2b0/b, then the previous
equations must be modified; in accordance with the results of Marshak
(1941) the only change needed is to reduce Λ by the ratio αc/u, where
α is the fine structure constant, equal to 1/137.

Essentially the same discussion appears in Cohen et al. (1950, p. 233). Spitzer referred
to the choice of a deflection angle, called θmin above. His words correspond to the fact
that when λB > b0 diffraction of the de Broglie wave by an opaque disc of radius λD
(not the very much smaller radius λB) produces a diffraction angle θB that is larger
than the classical deflection angle θ0 for a particle incident with maximum impact
parameter bmax = λD; thus, σqu ∼ ln θ−1

B <σcl ∼ ln θ−1
0 .

A possible source of confusion is that Spitzer did not completely spell out the
argument; he did not explicitly state that the diffraction angle should be evaluated
with bmax = λD, although this is clearly implied by the fact that λD appears in the
classical θ0, and by Spitzer’s discussion (on the page preceding the above quotation)
of λD as the maximum impact parameter). Instead, he cited a paper by Marshak
(1941). Tracing back through the historical record is interesting. Marshak stated,7

Thus far we have not given any explicit form for I [I being the θ integral
of the Rutherford differential scattering cross section σ(θ)]. If we look at
the integral expression for I [(3.8) below with ε=0] we see that it diverges
if we integrate between the limits 0 and π. However, there are physical
grounds for extending this integration only to some small angle θmin, in
which case:

2I = loge
2

(1− cos θmin)
.

Now it can be shown that θmin=λ/a * where λ is the de Broglie wavelength
of the electron participating in the collision, and ‘a’ is the screening
radius . . . .

Marshak referred to the screening radius ‘of the atom’, but it is clear that in the
present plasma context one should replace a by λD. Thus, we see more clearly
that Spitzer was recapitulating and providing a physical interpretation of Marshak’s
argument, which was focused on the physics of θmin or, equivalently, the physics
associated with maximum impact parameter λD. In turn, Marshak’s * footnote,
which provides the background to his assertion ‘it can be shown that . . . ’, refers to
p. 497 of the famous paper of Bethe (1933) on the quantum mechanics of one- and
two-electron atoms. Bethe worked in the first Born approximation (for which he cited
earlier literature) and discussed a form factor F that determines σ(θ). In modern
notation, the formula for σ(θ) is given by (3.6). (This reduces to the Rutherford
cross-section when θB→ 0.) Bethe emphasized,8

Der Atomformfaktor F selbst hängt vom Ablenkungswinkel θ – genauer
von (sin θ/2)/λB – ab.

(The last ratio is not dimensionless; obviously, the intended comparison is between
sin 1

2θ and 1
2θB or, for small angle, between θ and θB.) It is the quantum correction to

the Rutherford cross-section, which is important at small scattering angle and was well
7To conform to my notation, I have replaced Marshak’s θ0 by θmin.
8In English: ‘The atomic form factor F itself depends on the scattering angle θ – more precisely on

sin(θ/2)/λ.’
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6 J. A. Krommes

known to the pioneers of quantum mechanics, that underlies Marshak’s conclusion and
Spitzer’s interpretation.

The first Born approximation does not, in and of itself, predict the interpolation
recipe (3.1). Indeed, in that approximation the integral that defines the total
momentum transfer can be done exactly, a result known to Sivukhin (see (3.6) in
the excerpt below) and surely earlier workers as well. The inner length b0 enters the
resulting formula only multiplicatively (the total scattering cross-section is proportional
to b2

0). However, the first Born approximation is valid (at best; see later discussion)
only at high energies. Sivukhin explains the issue clearly:9

3. The classical-mechanics analysis applies so long as (2π/λ)b0�1, where
λ= h/µu is the de Broglie wavelength of the test particle in the coordinate
system in which the scattering center (field particle) is at rest. . . . We can
write this condition in the form

u� αc, (3.2)

where

α =

∣∣∣∣ee∗

h̄c

∣∣∣∣ (3.3)

(h̄ = h/2π = 1.05 · 10−27 erg s). If e and e∗ are equal to the elementary
charge the constant α = e2/h̄c= 1/137 is the fine-structure constant.
The classical analysis cannot be used if (3.2) is not satisfied. This result
might appear strange at first glance since the exact quantum-mechanical
solution for scattering of a charged particle in a Coulomb field yields an
expression for σ(θ,u) which is exactly the same as the classical expression
. . . (cf., for example, Davydov (1976) or any text on quantum mechanics).
The essential point here, however, is that the results coincide only when the
scattering field is a Coulomb field over all space. In the case of a cutoff
Coulomb field the wave properties of the particle are appreciably different
from those given by the classical analysis.
When

u� αc, (3.4)
the quantum-mechanical scattering problem can be solved relatively easily
by means of the Born approximation. The solution of the problem is
simplified if the cutoff Coulomb field is replaced by a Debye field with
potential

ϕ =
e∗

r
e−r/λD . (3.5)

If (3.4) is satisfied, it is well known that the quantum-mechanical analysis
leads to the result

σ(θ, u)=
(

ee∗

2µu2

)2 1(
sin2 θ

2
+ ε2

)2 , (3.6)

where
ε=

λ

4πλD
=

h̄
2µuλD

(3.7)

(cf., for example, [any textbook discussion of quantum-mechanical
scattering theory]).

9To conform to my notation, I have changed Sivukhin’s D to λD.
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An introduction to the physics of the Coulomb logarithm 7

By substituting (3.6) [into the formula for mean momentum transfer] we
recover [the classical result (2.7)] with the sole difference that the classical
value of the Coulomb logarithm is replaced by the quantum-mechanical
value

Lqu =
1
4

∫ π

0

sin2 θ

2
sin θ(

sin2 θ

2
+ ε2

)2 dθ

=
1
2

ln
1+ ε2

ε2
−

1
2(1+ ε2)

. (3.8)

In all cases of physical interest it is found that

ε=
λ

2πλD
� 1, (3.9)

so that the square of ε can be neglected compared with unity. In this
approximation

Lqu = ln
1
ε
−

1
2
= ln

4πλD

λ
−

1
2
. (3.10)

If the term −1/2 is neglected this expression differs from the classical
value [ln(λD/b0)] only in that the lower limit b0 is replaced by λ/4π.
This result is easily understood: the De Broglie wave associated with
the incident particle is diffracted on the Debye sphere surrounding
the scattering center. Diffraction theory or elementary interference
considerations shows that to within a factor of order unity the mean
value of the diffraction angle is θ = λ/2λD. If this value exceeds the
classical limit θmin = 2b0/λD, the classical formula . . . no longer applies
and θ = λ/2λD is to be taken as the lower limit in the integral in (3.8).
This procedure leads to L = ln(4λD/λ), which differs from (3.10) by
the unimportant factor of π under the logarithm. It also follows from
this qualitative description that scattering on a cutoff Coulomb field is
essentially the same as scattering on a Debye field (3.5).
The quantum-mechanical relation (3.10) can be written in the form

Lqu = Lcl + ln
2αc

u
−

1
2

(3.11)

[which, since αc/u< 1, shows that when the diffraction correction is valid
the size of the Coulomb logarithm is reduced].
We recall that this formula is derived under the assumption that u� αc,
whereas the classical expression (2.7) applies when u� αc.
4. The quantum-mechanical calculation becomes extremely complicated in
the intermediate region. It would not be very meaningful to be concerned
with this region because we are already using the binary-collision
approximation with its artificial and, indeed, somewhat arbitrary truncation
of the Coulomb forces so that any improvement in the values of the
Coulomb logarithm obtained as a result of more complex calculations
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8 J. A. Krommes

would be quite illusory. Instead, it is simpler and more in the spirit of
the approximation used here to proceed as follows. The formulas for the
limiting cases (2.7) and (3.10) show that the Coulomb logarithm contains
the velocity u under the logarithm so that the latter is a slowly varying
function of u. It is physically obvious that this slow variation also obtains
in the intermediate region. Hence, without incurring any serious error we
can extrapolate (2.7) and (3.10) into the intermediate region up to the value
u = ulim, at which both expressions coincide. When u < ulim the classical
formula (2.7) is to be used; when u � ulim the quantum-mechanical
formulas (3.10) or (3.11) are used.
. . . If the relative velocity u is replaced by the equivalent temperature
according to the relation 3T = µu2 . . . [and upon] substituting the
appropriate values of the reduced mass for a deuterium plasma, we obtain
the following limiting temperatures for electron–electron, electron–ion, and
ion–ion collisions, respectively:

Tee
lim = 6.65 eV,

Tei
lim = 13.3 eV,

T ii
lim = 2.45 · 104 eV= 24.5 keV.

(3.12)

A similar discussion can be found on p. 239 of the book by Kulsrud (2005), who cites
Sivukhin. (Kulsrud arrives at somewhat different but qualitatively similar transition
temperatures by using a different interpolation scheme.)

All of the above discussions are consistent in their physical interpretations.
Interestingly, however, Mulser et al. (2014) challenged Spitzer’s heuristic description.
They stated,

A special argument for [the prescription (3.1)] is by Spitzer (1962). He
arrives at the limitation b > λB by observing that for impact parameters
b 6 λB the Coulomb differential cross section leads to higher diffraction
values than an opaque disc of the same radius, which is ‘unphysical.’ It
seems that for numerous researchers this constitutes the basic argument.
. . . Although physically appealing at first glance, it is false and self
contradictory. In the neighborhood of the Coulomb singularity, the author
compares Rutherford scattering with optical diffraction from a diaphragm
of diameter 2λB. . . . Spitzer’s setting of bmin = λB is a prominent example
of excellent physical intuition but mistaken proof.

This characterization of Spitzer’s discussion is incorrect and appears to be a
misunderstanding; nowhere in his argument did Spitzer mention ‘a diaphragm of
diameter 2λB’ or discuss impact parameters smaller than λB. In fact, in agreement
with the various authors cited above, Mulser et al. (2014) also concluded that the
de Broglie correction was associated with large impact parameters. But although they
asserted that this was a new and surprising result, we see that it has been understood
for more than a half-century.

Although the basic ideas and results are clear, some discussions in the literature
are incomplete; for example, Mulser et al. (2014) cited a number of references in
which apparently the classical cutoff was used. However, closer inspection shows that
in several of the papers cited by Mulser et al. (2014) the authors were, in fact, aware
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An introduction to the physics of the Coulomb logarithm 9

of the quantum correction. For example, Rosenbluth, Macdonald & Judd (1957) refer
in their footnotes 6 and 3 to the discussion of cutoffs by Cohen et al. (1950), which,
as we have seen, contains the original version of Spitzer’s argument. And although
Balescu (1988) described the classical situation, he noted (p. 130),

Some authors (e.g. Braginskii 1965) consider semi-empirical corrections
to ln Λ under various conditions of temperature and density; we do not
discuss these minor points here.

One could quibble with Balescu’s characterization of the issue as ‘minor’, and the first
Born approximation does not deserve to be called ‘semi-empirical’. In any event, it is
instructive to consider the explanation of Braginskii (1965, p. 238), who said,10

At large velocities, in which case e2/hv < 1, where h is Planck’s constant
(i.e., v/c> 1/137), it is necessary to use a smaller value for the maximum
impact parameter; specifically, we use the distance for which the scattering
angle is of the same order as the quantum uncertainty, in which case pmax≈

λDe2/hv.

Here it is asserted that instead of using the classical formula θmin ∼ b0/bmax with
bmax = λD, one should use bmax = λD(b0/λB) or θmin ∼ λB/λD, the latter ‘quantum
uncertainty’ being the diffraction angle of a wave with wavelength λB encountering
an object of radius λD. But although Braginskii’s argument leads to the correct θmin,
his heuristic introduction of a modified bmax is incorrect; apparently, it was devised in
order to obtain agreement with the proper θmin and the earlier discussion of Spitzer.
However, Braginskii did appreciate the role of the quantum-mechanical uncertainty
due to diffraction by Debye screening clouds of radius λD, and he understood that
the classical cutoff was not to be used for large velocities.

The proper value of θmin must follow from a systematic kinetic theory. Clearly,
λB can enter the problem only when quantum-mechanical effects are included. An
asymptotic matching between the Born approximation and the quasi-classical regime
is described by Landau & Lifshitz (1981, § 46), where original references are cited.
The physics content of that calculation agrees with the heuristic arguments given
above. A recent and more refined (as yet unpublished) analysis by R. Kulsrud
(private communication, 2018) corrects those estimates by a relatively small amount
in the five per cent range.

4. Discussion and summary
Are the quantum-mechanical corrections to ln Λ significant? For definiteness,

consider electron–ion collisions. For cold ions, Huba (2016) quotes the easy-to-
remember formula11

lnΛei =

{
ccl − ln(n1/2

e ZT−3/2
e ) for Te < 10 Z2 eV,

cqu − ln(n1/2
e T−1

e ) for 10 Z2 eV< Te,
(4.1)

10This quote corrects a typographical error; the original article describes the large-velocity limit as v/c<1/137.
Also, I have changed Braginskii’s δD to λD.

11With ∆
.
= cqu − ccl − ln Z − 1 ≈ 0 (for Z = 1), formula (4.1) predicts the crossover temperature Te,c =

e2(1+∆)
≈ 7.4e2∆. Clearly, small changes in the precise value of ∆ can change Te,c by an amount of order

unity. But the basic point is that this temperature, of the order of 10 eV, is much lower than the approximately
10 KeV temperatures characteristic of fusion plasmas, for which evidently quantum corrections play a role.
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10 J. A. Krommes

where ccl ≈ 23, cqu ≈ 24, Z is the atomic number, ne is in units of cm−3 and
Te is in eV. For the ITER-like parameters (FusionWiki 2012) ne ≈ 1014 cm−3,
Te ≈ 8.8 KeV and Z = 1, one finds that the relative quantum-mechanical correction
is approximately 17 %. Although this is not entirely negligible, one might question
the quantitative significance of the quantum effects given that there are already
subdominant corrections to ln Λ (recall footnote 4 on p. 3). Of course, this is just
one numerical example; there are other possibilities best left for the discussion of
specific applications. In any event, such a concern misses the point. The quantum
effects are conceptually interesting and introduce a new dimension to the physics of
the collision processes in plasmas. Clarifying one’s understanding of those processes
is a worthy goal in itself.

In summary, excerpts from the literature provide historical perspective and explain
the correct interpretation of the quantum-mechanical correction to lnΛ. The λB
in the ratio Λqu = λD/λB that appears in the first Born approximation (which is,
roughly speaking, valid for sufficiently high temperatures) ‘is the result of the charge
distributions at large impact parameters’ (Mulser et al. 2014), not quantum uncertainty
related to the impact parameter b0 for 90◦ scattering or to the distance of closest
approach (2b0). This conclusion was obtained early on by Cohen et al. (1950), Spitzer
(1962) and Sivukhin (1966), and it has been usefully repeated in more modern texts
such as those of Kulsrud (2005) and Wesson (2011, chap. 14.5). Proper understanding
of the physics of the Coulomb logarithm is crucial, as that basic quantity figures in
a multitude of important plasma-physics applications.
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