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1Departamento de Fı́sica Aplicada I, Escuela Técnica Superior de Ingenierı́a Informática,
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The normal-mode linear analysis of an axisymmetric infinite capillary jet is generalized
to account for arbitrary initial conditions. An exhaustive study of the dispersion
relation reveals the parametric behaviour of all eigenvalues and their corresponding
normal modes. The two capillary modes (dominant and subdominant) are found to be
necessary and sufficient to describe any possible non-recirculating initial conditions.
An infinite set of other modes accounts for initial conditions with recirculating
velocity field. The predictions of the normal-mode analysis are contrasted against
previous computations of the initial-value problem, previous experiments, and our
own one-dimensional numerical simulations. Contrary to the claim of some authors,
the normal-mode analysis accurately predicts the initial transient with non-exponential
growth of the disturbance amplitude observed in previous works. Simple and accurate
formulae for the duration of the initial transient are deduced, with emphasis on
improving the growth-rate measurement.

1. Introduction
A capillary jet forms when a liquid emanates from a usually circular hole rapidly

enough to avoid dripping. It is well known, however, that the resulting liquid column
cannot conserve its initial cylindrical shape: any infinitesimal perturbation, either
noisy or controlled, with wavelength beyond a critical value destabilizes the system.
The perturbation grows up and finally leads the jet to break up downstream into
drops. With an appropriate initial disturbance, this is an efficient way to produce small
droplets of controlled size. Since the pioneering work of Plateau (1873) and Rayleigh
(1945), we know that the surface-tension force is responsible for this instability, as the
adjective capillary announces. Thus, the system naturally evolves to decrease its free
surface. However, they also noticed that inertia and viscous stresses are important to
explain the growth of disturbances.

The potential technological applications of capillary jets has attracted the interest of
many workers. After the first electrostatically deflected ink-jet device of Sweet (1965),
the early development of ink-jet printing technology catalysed a considerable effort
in the 1970s, both theoretical and experimental (see Le 1998, for a description of
techniques). This technology rapidly propagated to other fields of invention that
required both rapid and accurate formation and positioning of small droplets.
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Nowadays, it is successfully used in flow cytometry and cell sorting (Shapiro 2003).
Liquid jets are also valuable as targets for high-power laser-plasma generators of
ultraviolet and X-rays (Hansson & Hertz 2004). See Basaran (2002) for a detailed
review of applications.

Temporal analysis has been the most widely employed approach to predicting the
evolution of capillary jets. The jet is assumed to be an infinitely long cylindrical
liquid column subjected to periodic initial perturbations of its surface. This so-called
infinite jet tries to approximate the real jet emerging from a nozzle, often referred to
as the semi-infinite jet. The infinite jet is a simpler system: the spatial domain of the
infinite jet can be reduced to a small length (the wavelength of the perturbation), and
boundary conditions are simply periodic. In contrast, the semi-infinite jet cannot be
considered strictly periodic; the spatial domain is the whole length of the jet; and the
additional boundary conditions at the orifice and downstream hinder the analysis.
The semi-infinite jet treatment can be formally recovered from temporal analysis
through a simple Galilean transformation, provided the jet velocity is large enough,
relative to the capillary velocity (Keller, Rubinow & Tu 1973). This happens in many
practical situations.

Even in the infinite-jet approximation, solving the resulting time-dependent free-
boundary problem with nonlinear three-dimensional equations is a formidable task,
fully achievable only with the aid of costly numerical methods. Linear temporal
analysis was the first analytical attempt to solve it (Rayleigh 1878, 1892). This first-
order perturbative analysis considers small-amplitude perturbations of a static infinite
cylinder. The resulting set of equations and boundary conditions is linear and the
spatial domain is fixed (a cylinder).

Instead of trying to solve this linear problem directly for any arbitrary perturbation,
the classical approach consists in expressing the solution as a superposition of Fourier
modes, each of these having an appropriate sinusoidal dependence on both the
axial and azimuthal coordinates. This allows us to separate the temporal and radial
dependence of pressure, velocity and surface deformation. The radial dependence is
found by imposing the radial boundary conditions. The remaining problem is a linear
initial-value problem for the time dependence of each Fourier mode, characterized by
a non-negative integer azimuthal number m and a real positive axial wavenumber
k. When perturbations are axially periodic, as is usual in controlled stimulation, the
wavenumber spectrum is finite and the actual solution can be formally expressed
as an infinite discrete sum of these modes: a fundamental and its harmonics.
When they are not periodic, as happens with natural noisy perturbations, such
a spectrum is continuous, and an integral in k replaces the sum. At this point,
two possible approaches for finding the time dependence of pressure, velocity and
surface deformation have been considered in the literature: the Rayleigh normal-mode
analysis and the initial-value problem.

The often-called Rayleigh normal-mode analysis assumes a solution with a complex
exponential dependence on time, exp(α̂t), instead of choosing a particular set of
initial conditions. Substituted into the linear ordinary differential equation for the
time dependence of the Fourier mode, a dispersion relation is found, which relates
the complex eigenvalue α̂ to m, k and the parameters of the fluid. Each root α̂

of the dispersion relation is associated with an eigenfunction for pressure, velocity
and surface deformation: a normal mode of the infinite jet. The real part of the
eigenvalue, α = Re(α̂), gives the growth rate; while the imaginary part ω =Im(α̂)
gives the oscillation frequency of the normal mode. The growth rate is positive only
for axisymmetric perturbations (m =0) with wavenumber smaller than the inverse of
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the radius of the unperturbed jet, the so-called Plateau cutoff wavenumber, or simply
cutoff wavenumber.

Many authors discuss the problem directly in terms of these normal modes, without
discussing explicitly the initial conditions. This is because the modes with greater
positive growth rate, the most meaningful, rapidly dominate over the other. Therefore,
monoharmonic initial conditions are expected to degenerate in a Rayleigh dominant
mode with exponential growth of both velocity and surface disturbance. In fact, the
terms ‘Fourier mode’ and ‘normal mode’ are usually thought to be equivalent. This
has led to a commonly accepted assumption: the normal-mode analysis predicts a
purely exponential growth of the amplitude of a monoharmonic initial disturbance.
Suspecting a possible role of specific initial conditions, several authors have solved the
initial-value problem for the temporal dependence of the perturbative analysis. Most
of them chose inviscid liquids and simple initial conditions: either an initially static
deformation or the more realistic pure impulse with no deformation. Berger (1988)
solved the initial-value problem for arbitrary viscosity and mixed initial conditions.
This approach showed an initial departure from the purely exponential growth
expected from the Rayleigh normal-mode analysis. Most authors had disregarded this
transient. Berger noticed that it depends on the actual initial conditions. He claimed
that the Rayleigh normal-mode analysis is both formally and practically wrong.
Since then, other authors have noticed this initial transient when solving initial-value
problems numerically and have cited Berger’s arguments against the normal-mode
analysis. However, as Berger’s formalism is hard to implement, no predictions about
the initial transient form and duration have been made available up to now.

This paper is concerned with the predictive power of the Rayleigh normal-mode
analysis of a capillary jet. Contrary to Berger’s claim, we shall show that the initial
transient can be seen as a direct consequence of the relation between the initial
conditions and the Rayleigh normal modes. It will be evident how important it
is to know the physical origin and parametric behaviour of all normal modes.
Some of them, generally ignored, will allow us to estimate how long a recirculating
perturbation takes to damp. Our analysis will provide simple and accurate formulae
for the amplitude evolution under general initial conditions, as well as the transient
duration for pure-deformation and pure-impulse initial conditions. We shall explain
how the initial transient introduces systematic errors when measuring the growth
rate; and how to avoid these errors, either in experiments or in computations. The
accuracy of the normal-mode analysis will be contrasted with the aid of previous
results and our own numerical simulations.

Owing to the basic nature of the subject, there are many previous results relevant
to our discussion. In order to fit all the pieces of this puzzle into the framework
of the normal-mode linear analysis, the previous work is reviewed in the next
section. Afterwards, the modal analysis of Rayleigh and Chandrasekhar is extended
to consider all normal modes and its relation to the initial conditions. We then present
some results from this modal linear analysis and from a nonlinear one-dimensional
model. Next, these results and previous ones in the literature are discussed. Finally,
the main conclusions are drawn.

2. Previous work
We do not intend to rigorously examine all previous literature on capillary jets.

Eggers (1997) gives a general view and pending challenges; Lin (2003) is a more
recent source of bibliography.
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0.1

0.2

0.3

α

0.4

 0 0.2 0.4 0.6 0.8  1.0

k

0

0.1

1

10

Figure 1. Non-dimensional growth rate α of the most significant mode versus non-
dimensional wavenumber k (perimeter of the jet cross-section divided by the wavelength),
for the labelled non-dimensional Ohnesorge numbers C (viscous stresses relative to capillary
pressure). The dashed line shows how both αmax and its corresponding wavenumber kmax

decrease as C increases.

2.1. Rayleigh dispersion relation

Rayleigh carried out the modal analysis of the viscous infinite jet (Rayleigh 1892).
Although he formally deduced the corresponding dispersion relation for any possible
viscosity, he could analytically solve it only for zero and paramount viscosity (Rayleigh
1878, 1892). It was Chandrasekhar (1961) who obtained numerical solutions for non-
zero finite viscosity. Their results show that positive growth rates are found only for
axisymmetric perturbations (m =0) with wavelength greater than the perimeter of
the cross-section of the original cylinder, a limit predicted by Plateau (1873). This is
why axisymmetric long-wavelength modes are the most commonly considered in the
literature, while those with negative growth rate are often ignored.

Figure 1 condenses the general understanding of the Rayleigh three-dimensional
modal temporal analysis (Rayleigh 1878; Chandrasekhar 1961). The greater the
growth rate is, the more significant the mode is. This makes specially important the
modes with the greatest growth rate, αmax; with a non-dimensional wavenumber kmax.
For inviscid liquids, kmax = 0.697, diminishing as viscosity increases.

It is known that, besides the solution depicted above, there are more solutions to
the dispersion relation, but with non-positive growth rates. Rayleigh (1878) found
them for inviscid liquids; and so did Weber (1931) for viscous liquids, with a linear
one-dimensional analysis. However, the corresponding decaying modes are generally
ignored in favour of the growing dominant modes. Remarkably, Grossmann & Müller
(1984) found more eigenvalues of the dispersion relation in their linear analysis of
charged jets. Besides the two normal modes mentioned, they identified an infinite set
of other modes, all of them decaying, with recirculating velocity field. Apparently,
this fact has remained unnoticed, with the exception of Garcı́a (1998). Nicolás &
Vega (2000) found a similar set of modes in their three-dimensional linear analysis of
a viscous liquid bridge.

The estimate of the breakup time and the breakup length of the jet is one of the
most important results of the linear analysis. Breakup arrives when the deformation
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amplitude becomes the radius of the jet. If exponential growth of the initial deforma-
tion is assumed, the breakup time can be estimated by

tb =
− ln(f̃ 0)

α
, (2.1)

where f̃ 0 is the initial amplitude of the sinusoidal deformation relative to the radius
of the unperturbed jet (Rayleigh 1945). The breakup length of the jet emanating
from a nozzle comes from multiplying tb by the jet velocity. The greater the initial
perturbation is, the smaller the breakup time and the breakup length are.

Levich (1962) alternatively defined the breakup time as the inverse of the growth
rate, which is the time that the perturbation takes to grow up in a factor e. This
estimate is wrong, since it omits the obvious role of the initial amplitude of the
perturbation. Berger (1988) used it to claim that the initial amplitude was ‘immaterial’
in his comparison of experimental breakup times against his theoretical predictions.

2.2. Initial conditions and transient phase

Rayleigh (1878, 1892) did not consider any concrete initial conditions for capillary
jets. An alternative to the Rayleigh modal analysis is to solve an initial-value
problem for some explicitly given initial conditions. Yuen (1968) was the first to
apply this approach to an inviscid infinite jet with zero initial velocity and a small
sinusoidal deformation of the surface (hereinafter referred to as pure-deformation
initial conditions) in his third-order perturbation analysis of inviscid jets. In practice,
the initial conditions are inherited from the stimulation mechanism of the jet, which
is usually acoustic. When the real jet exits from the nozzle, it is expected to be
almost cylindrical, while the perturbation of pressure within the nozzle produces
a perturbation of velocity outside. The first to consider an initially cylindrical
infinite jet with a velocity modulation (hereinafter referred to as pure-impulse initial
conditions) was Lee (1974), with a linear one-dimensional approach. He demonstrated
its equivalence with a perturbation in pressure. Chaudhary & Redekopp (1980) applied
the same initial conditions to revisit the third-order perturbation analysis of Yuen.
We emphasize that all of the above initial-value problems were for inviscid liquids,
and all of them found a similar time dependence, in terms of hyperbolic functions.
Therefore, the corresponding estimates for the breakup time analogous to (2.1) have
an inverse hyperbolic function of the initial amplitude of the perturbation, instead of
a logarithm (Lee 1974).

Bogy (1978) revisited the initial-value problem of pure-impulse initial conditions
stated by Lee (1974). He extended it to viscous jets with the aid of the one-dimensional
Cosserat model proposed by Green (1976). It is noteworthy that the time dependence
of his solution is a linear combination of two exponentials – one of them increasing
with time, the other one decreasing – corresponding to the two roots of his dispersion
relation. However, no physical consequences have been derived from that solution and
it seems to have fallen into oblivion. Unaware of the work of Bogy, both Furlani (2005)
and Chakraborty (2005) applied a similar two-normal-mode one-dimensional analysis
to study the temporal instability of a viscous jet initially static and undeformed, but
with spatially varying surface tension. Again, it is remarkable how such a combination
of two exponentials allows us to relate the temporal evolution to the initial conditions.

The first to solve an initial-value temporal analysis for a viscous jet subjected
to mixed initial conditions was Berger (1988). As in the Rayleigh modal analysis,
he considered a sinusoidal axial dependence of the dependent variables. Using the
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Laplace transform, he formally solved the problem, but the difficulty of the expressions
compelled him to invert it numerically. In order to fit breakup times from previous
drop-on-demand experiments, ad hoc initial conditions were chosen.

A logarithmic scale is usually chosen for the amplitude of a wave disturbance
when representing its evolution in time. In this way, a typical exponential growth
is represented by a straight line, whose positive slope is proportional to the growth
rate. A deviation from the exponential growth is easy to detect in plots like these.
This is how Berger showed that there is an initial transient phase along which the
perturbation grows more slowly than in the subsequent exponential-growth phase. In
his opinion, the Rayleigh mode analysis implicitly ignores this initial growth phase of
the disturbance. Furthermore, he claimed that, although a discrete superposition of
many modes could be proposed as a solution for describing this transient time, this is
not formally permissible, because the spectrum of the disturbances is continuous. His
fitted prediction apparently agrees better than his modal analysis predictions with the
mentioned experiments in some parametric range.

The involved mathematical method implemented by Berger is correct. He had the
merit of emphasizing the existence of an initial transient phase, before the classical
exponential growth of disturbances is reached, its relation to the specific initial
conditions, and its possible influence on the breakup time. However, there are a
number of subtleties that we enumerate next.

(i) The system treated by him was an infinite jet with periodic initial conditions.
Therefore, the Fourier spectrum is not expected to be continuous, as he claimed, but
discrete.

(ii) Following Levich (1962), Berger computed the breakup time tb as the inverse of
the growth rate, which is the time that the perturbation takes to grow up in a factor
e. This definition and his claim that tb does not depend on the initial amplitude of
the perturbation are wrong, as (2.1) establishes.

(iii) From a formal point of view, his initial conditions are not as general as
claimed. Neither temporal phase between deformation and velocity nor recirculating
initial patterns were considered.

(iv) His ad hoc numerical choice for the initial conditions is quantitatively
unrealistic. When they are compared to the given scales and parameters of the
fluid, we find that its initial velocity is 9 × 10−3 times the capillary velocity; and its
disturbance amplitude is 394 times the radius of the unperturbed jet. As pointed out
by Ashgriz & Mashayek (1995), this amplitude is unlikely to be found in real jets.

(v) Moreover, such almost-pure-deformation initial conditions are qualitatively
unrealistic, because real jets usually have pure-impulse initial conditions. In fact, the
slow-growth transient depicted by him goes against experimental evidence, as we
discuss below.

(vi) The drop-on-demand technique is not appropriate to validate experimentally
either a temporal or a linear theory, because the streams so generated are essentially
semi-infinite and nonlinear in nature (Le 1998). The term ‘drop-on-demand jet’ itself
is confusing, since the drop-on-demand technique does not actually produce jets, but
drops.

(vii) A complete modal analysis, as the one shown in this paper, is equivalent to
Berger’s formalism. It takes account of arbitrary initial conditions for velocity and
surface deformation; it also predicts the existence of non-exponential initial growth;
but is much simpler, instructive and predictive.

Berger’s numerical approach is much more involved than Rayleigh’s. Thus, it is
difficult to make predictions from it. In fact, it has not been used by any other
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author. Even his comparison with experiments and his modal analysis are spurious,
as reasoned above.

The existence of an initial non-exponential transient phase (hereinafter referred
to as initial transient) can be visualized by representing the evolution of either the
logarithmic amplitude of the surface deformation or the instantaneous growth rate.
Those initial transients are evident in the figures of several authors; obtained either
by perturbation analysis (Taub 1976; Chaudhary & Redekopp 1980; Berger 1988),
through the numerical solution of nonlinear three-dimensional or one-dimensional
equations (Bousfield & Denn 1987; Torpey 1989; Sellens 1992; Ashgriz & Mashayek
1995; Saroka, Guo & Ashgriz 2001; Collantes, Yariv & Frankel 2003; Chuech &
Yan 2006; Suryo, Doshi & Basaran 2006), or experimentally (Torpey 1989; Xing
et al. 1996). This is summarized in table 1. Two kinds of transient are found in
different situations, according to the growth of the amplitude of deformation with
respect to the expected exponential growth: a slow-growth transient and a rapid-
growth transient. In a slow-growth transient, the instantaneous growth rate is initially
smaller than expected; in a rapid-growth transient, the instantaneous growth rate is
initially greater than expected. In both cases, the instantaneous growth rate tends to
the value expected from the classical Rayleigh analysis after a time that characterizes
the transient duration. The word ‘normal’ in table 1 means that there seems to be
no initial transient, i.e. the growth is exponential from the beginning. References in
table 1 are ordered according to the qualitative growth of the deformation during the
observed transients.

Only a few short comments have been made to explain the existence and nature
of these transients. Bousfield & Denn (1987), through numerical computations for
pure-impulse initial conditions, found a rapid-growth transient, not predicted by
their linear modal analysis. They associated the transient with a regime dominated
by the balance between inertia and viscous stresses, while capillarity and viscous
stresses dominate over inertia in the exponential-growth phase. Although not general,
their scale argument is true for their high-viscosity example. Berger (1988) noticed
that his slow-growth transient lasted longer for larger wavenumbers. Ashgriz &
Mashayek (1995) numerically found a slow-growth transient for pure-deformation
initial conditions and small viscosity. Noting the parallelism with Berger’s results
and citing him, they associated the transient with the initial presence of higher-
order harmonics, which would be damped and disappear as the exponential-growth
was achieved. However, their study of the temporal evolution of Fourier modes
showed that the amplitudes of harmonics are negligible during the transient. For
very viscous liquids, their figures show an exponential growth from the beginning.
They attributed it to a rapid damping of such harmonics, but no transient could
be appreciated. Chuech & Yan (2006) noticed a slow-growth transient when solving
numerically a nonlinear one-dimensional model for inviscid jets with pure-deformation
initial conditions. Although they computed a global growth rate to compare with
the linear analysis of Levich (1962), they emphasized that choosing a single value
of the growth rate is too simplistic to describe the evolution of the deformation.
They conjectured that this was a consequence of the nonlinear influence of
harmonics.

It seems to be generally thought that the normal-mode analysis cannot account
for the non-exponential initial growth. No other methods have given a thorough
understanding of such a transient and its relation to the initial conditions. Meanwhile,
the qualitative and quantitative description of the transient phase has remained a
challenge.
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88 F. J. Garćıa and H. González

Reference Method C k Initial conditions Growth

Taub (1976)
figures 4–6

Nonlinear perturbation
analysis (Yuen 1968) 0

0.30
0.37
0.60

Deformation Slow

Berger (1988)
figure 3

Initial-value linear
analysis 0.23

0.10
· · ·
0.90

Deformation Slow

Ashgriz (1995)
figure 4

Nonlinear three-dimensional
computation

0.005†
10‡

0.20
0.90

Deformation
Slow†;

normal‡

Saroka (2001)
figure 4

Nonlinear three-dimensional
computation
(evaporation)

0.1 0.70 Deformation Slow

Collantes (2003)
figure 2

Initial-value linear
analysis (Marangoni
instability)

0.01
· · ·
1.0

kmax Deformation Slow

Suryo (2006)
figures 4, 12, 22

Nonlinear three-dimensional
computation
(compound jet)

0.010
0.032
1.0

0.20
· · ·
0.80

Deformation Slow

Chuech (2006)
figure 13

Nonlinear one-dimensional
computation 0 0.70 Deformation Slow

Sellens (1992)
figure 2

Nonlinear one-dimensional
computation 0.004 0.71

Deformation†;
mixed‡;
impulse§

Slow†;
normal‡;
rapid§

Chaudhary (1980)
figures 6–8

Nonlinear perturbation
analysis 0

0.31
0.43
0.65

Impulse Rapid

Bousfield (1987)
figure 1

Nonlinear one-dimensional
computation 4.7 0.50 Impulse Rapid

Torpey (1989)
figures 1, 2, 4,
6–14

Nonlinear spectral
one-dimensional
computation†;
experiment‡

0.048
0.50
· · ·
0.70

Impulse†;
piezoelectric‡ Rapid†,‡

Xing (1996)
figures 4–6

Experiment 0.24 0.64 Piezoelectric Rapid

Table 1. References showing initial transients. Columns show: bibliographic reference (only
first author) and figure numbers; method of acquisition for the data shown (theoretical
or experimental); Ohnesorge number C = µ/(ργR)1/2; non-dimensional wavenumber; initial
conditions (if theoretical) or stimulation mechanism (if experimental); and qualitative growth
of deformation during the initial transient relative to the subsequent pure exponential growth.
†, ‡, §, correspondence within the same row.

2.3. Experimental measurement of the growth rate

What we shall call the amplitude-evolution method is the most direct method of
measuring the growth rate from a conceptual point of view. It consists in perturbing
the jet monoharmonically and measuring the amplitude of radial deformation of the
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jet at each axial position within a selected interval. The logarithm of the amplitude is
plotted against the axial position. The assumption of an exponential growth suggests
fitting a straight line. Its slope gives the spatial growth rate directly; or, if multiplied
by the emerging velocity, the temporal growth rate.

The above method is local, since it allows us to assign a growth rate to the portion of
the jet chosen for the fitting. In this sense, it is opposite to the breakup method, based on
the measurement of either the breakup time or the breakup length for different values
of the initial amplitude (for a review, see Kalaaji et al. 2003; see also González &
Garcı́a 2008).

The amplitude-evolution method relies on the existence of an interval of purely
exponential growth, as predicted by the classical Rayleigh linear analysis. Therefore,
it is expected to suffer systematic errors if the data for the fitting have amplitudes
that are too large, since the governing equations are nonlinear.

The first precise experiments implementing the amplitude-evolution method in order
to measure the growth rate were intended to corroborate the dispersion relation of
the jet. Donnelly & Glaberson (1966) verified the hypothesis of exponential growth
within the accuracy of their experiment, even for unexpectedly large amplitudes.
According to Yuen (1968), their success was due to having measured the amplitude
through the semidifference between the swell and neck radii at each position: some
nonlinear terms cancel out in his third-order perturbation analysis for inviscid jets.
The measurements of Goedde & Yuen (1970) confirmed this.

Ronay (1978b) first took advantage of the measurement of the growth rate of a jet
to obtain accurately the surface tension of a liquid. The measurement of the growth
rate through the amplitude-evolution method serves to obtain the dynamic surface
tension of liquid solutions or suspensions with fresh surfaces (Ronay 1978a). Being
local, this method is suitable for tracing the evolution of the dynamic surface tension
as a function of time (Bellizia et al. 2002; Battal et al. 2003; Alakoç et al. 2004; Weiss
et al. 2004; Jatzkowski & Modigell 2005).

With the photographic technique used in these and other experiments (Rutland &
Jameson 1970; Collicott, Zhang & Schneider 1994), it is difficult to measure small-
amplitude perturbations accurately. The shadow technique (Taub 1976), although
restricted to opaque liquids, allowed the accurate measuring of amplitudes in a range
of several orders of magnitude. Wetsel (1980) applied it to measure growth rates.
Evidence of non-exponential growth during the early evolution of the jet has been
given with the shadow technique (Torpey 1989; Xing et al. 1996). As there is no
theoretical estimate of the zone of the jet where exponential growth is expected, the
experimenter has to select the fitting interval subjectively, which makes the method
prone to systematic errors. Even though the precision of the amplitude measurement
has clearly increased since the first experiments of Donnelly & Glaberson, nobody has
validated the dispersion relation with the accuracy expected from current technical
means. A quantitative estimate of the duration of the initial transient is crucial for
accurately measuring the damping rate as a function of the wavenumber (González &
Garcı́a 2008).

3. Theoretical analysis and numerical methods
In the following analysis, all magnitudes are considered non-dimensional. The

radius of the unperturbed cylindrical jet R is the scale for distance. The capillary time
(ρR3/γ )1/2 and the capillary velocity [γ /(ρR)]1/2 are chosen as the respective scales
for time and velocity, where ρ stands for the density of the liquid and γ denotes
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90 F. J. Garćıa and H. González

the surface tension. The first non-dimensional number that we consider is the dimen-
sionless wavenumber k = 2πR/λ, where λ is the dimensional wavelength of the induced
perturbation. Secondly, the Ohnesorge number gives the balance between the typical
viscous stress and the surface tension,

C =
µ√

ρ γ R
, (3.1)

where µ is the dynamic viscosity. If the jet emanates from a nozzle with dimensional
velocity v∗

0 , the Weber number is the square of this velocity relative to the capillary
velocity,

We =
ρ R v∗

0
2

γ
. (3.2)

Here, the Weber number is assumed to be large enough that the temporal analysis
is valid. At the same time, it is also small enough that, combined with the huge
difference in density, the surrounding gas has a negligible influence on the system.
Thus, this number will not appear in our formulation. These restrictions apply to the
solutions of the dispersion relation, but will be relaxed in our subsequent discussion.

3.1. Eigenvalues and normal modes

We shall not repeat the linearization of the Navier–Stokes equations and the deduction
of the dispersion relation for arbitrary viscosity, worked out by Rayleigh (1892) and
Chandrasekhar (1961). As will become clear below, it is mandatory to identify all
roots of the dispersion relation and their corresponding normal modes if arbitrary
initial conditions have to be taken into account.

Our study starts with the dispersion relation for the infinite axisymmetric jet
(Rayleigh 1878),

cin α̂2 + cvisc α̂ = ccap, (3.3)

where the coefficient functions

cin(k) =
I0(k)

k I ′
0(k)

, (3.4)

cvisc(k; kv(k, α̂)) = 4C

[
k I0(k)

I ′
0(k)

− 1

2
+

k2

k2
v − k2

(
k I0(k)

I ′
0(k)

− kv I0(kv)

I ′
0(kv)

)]
, (3.5)

and

ccap(k) = 1 − k2 (3.6)

account for inertial, viscous and surface-tension contributions, respectively, and kv is
defined by

k2
v = k2 +

α̂

C
. (3.7)

Equation (3.3) recalls the dispersion relation for a damped harmonic oscillator
driven by the surface tension. In fact, there are two solutions that exhibit the same
qualitative behaviour, as found by Weber (1931) with his one-dimensional linear
analysis for arbitrary viscosity. For inviscid liquids (C = 0), the coefficient cvisc is zero.
It is the balance between inertia and surface tension that gives the only two roots of
the dispersion relation. As viscosity is increased, these two roots α̂d and α̂s change,
but the surface-tension term in (3.3) is always significant for them. When viscosity is
paramount, it is the balance between viscous and surface-tension terms which gives
the two roots mentioned, while the inertial terms become negligible. This is why we
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call capillary modes to the eigenfunctions associated with those roots. Hereinafter, the
dominant mode, the one with the greatest growth rate, will be distinguished with the
subscript d; while the always decaying subdominant mode will be labelled with the
subscript s.

However, there is a remarkable failure in this analogy with the harmonic oscillator:
the viscous coefficient depends on α̂ itself. This gives other solutions, here reported
as hydrodynamic modes, whose behaviour and significance must be clarified to have a
rigorous understanding of the Rayleigh analysis.

As noticed by Grossmann & Müller (1984), there is a numerable infinite set of
hydrodynamic modes besides the capillary ones, which will be denoted with the
subscript h. Each of their corresponding eigenvalues is close to a pole of the viscous
coefficient cvisc defined in (3.5). This nearness gives a simple approximation for the
eigenvalues:

α̂hn � −C
(
x2

n + k2
)
, (3.8)

where xn are the zeros of the Bessel function of the first kind and first order. In
particular, for the first hydrodynamic mode,

α̂h1 � −C(14.68 + k2). (3.9)

This approximation is good for small Ohnesorge number and any value of k; and
also for any value of C, provided k is small or of order unity. The proximity to
poles explains why these roots have been reported so rarely, since the usual numerical
methods hardly converge to them. They are difficult to find unless the dispersion
relation (3.3) is multiplied by a factor that removes the nearest pole.

In order to interpret how the different modes evolve, not only do eigenvalues
matter, but also their associated eigenfunctions. It is important to know the velocity
field of each mode as well as its relation with the corresponding deformation of the
surface. In the linear analysis, the time and axial dependence of the deformation and
velocity for a given mode are

f (z, t) = Re[f̂ exp(ikz + α̂t)] (3.10)

and

v(r, z, t) = Re[v̂(r) exp(ikz + α̂t)], (3.11)

where f̂ is the complex amplitude of the deformation of the surface and v̂(r) is the
radial dependence of the velocity, also complex. For a given eigenvalue α̂, the linear
analysis relates v̂(r) with f̂ through

v̂(r)

f̂
=

[
(α̂ + 2Ck2)

I ′
0(kr)

I ′
0(k)

− 2Ck2 I ′
0(kvr)

I ′
0(kv)

]
er

+

[
(α̂ + 2Ck2)

i I0(kr)

I ′
0(k)

− 2Ck2 ikv I0(kvr)

k I ′
0(kv)

]
ez, (3.12)

where er and ez , respectively, stand for the radial and axial unit vectors.
A distinguishing feature of the hydrodynamic modes is that their velocity field

exhibits recirculation. We will describe it in detail in § 4.1.2.

3.2. Initial conditions

The most important dependent variable in practice is the non-dimensional surface
deformation f (z, t). It is the only one that can be accurately measured in a jet up to
now. For any possible small perturbation periodic in space, f (z, t) can be expressed
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as

f (z, t) = Re

∞∑
n=1

exp(inkz)

{
f̂ dn exp[α̂d(nk)t]+f̂ sn exp[α̂s(nk)t] +

∞∑
l=1

f̂ hnl exp[α̂hl(nk)t]

}
,

(3.13)

where f̂ dn, f̂ sn and f̂ hnl are complex amplitudes. In the degenerate case of critical
damping (α̂d = α̂s = α̂), it is given by

f (z, t) = Re

∞∑
n=1

exp(inkz)

{
− f̂ dn α̂(nk) t exp[α̂(nk)t] + f̂ sn exp[α̂(nk)t]

+

∞∑
l=1

f̂ hnl exp[α̂hl(nk)t]

}
. (3.14)

Therefore, each Fourier mode of the surface deformation is associated with two
capillary modes and a countable infinite set of hydrodynamic modes.

We shall neglect the contribution of the hydrodynamic modes in the following. We
shall discuss why in § 5.

An initial surface deformation does not define uniquely the initial conditions. The
velocity must also be considered. We shall do it through the mean axial velocity
on a slice w, closely related to the surface deformation by the continuity equation
integrated on a slice (Garcı́a & Castellanos 1994). We emphasize that this equation is
not a one-dimensional approximation: it is exact. For small perturbations, its linear
counterpart is

ft = − 1
2
wz, (3.15)

which will be referred to as the kinematic condition in the following.
Considering only the capillary modes and using (3.15), we obtain for the surface

deformation and the mean axial velocity

f (z, t) = Re

∞∑
n=1

exp(inkz){f̂ dn exp[α̂d(nk)t] + f̂ sn exp[α̂s(nk)t]} (3.16)

and

w(z, t) = Re

∞∑
n=1

2i

nk
exp(inkz){f̂ dnα̂d(nk) exp[α̂d(nk)t] + f̂ snα̂s(nk) exp[α̂s(nk)t]}.

(3.17)
The initial conditions of the jet can be expressed as

f (z, 0) = Re

∞∑
n=1

f̂ 0n exp(inkz) (3.18)

and

w(z, 0) = Re

∞∑
n=1

ŵ0n exp(inkz), (3.19)

where f̂ 0n and ŵ0n are the complex initial amplitudes of the nth Fourier mode of the
surface deformation and mean axial velocity. Thus, four real parameters per Fourier
mode must be specified to fix the initial conditions uniquely.
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Comparison of (3.18) and (3.19) with (3.16) and (3.17) evaluated at t = 0 leads to

f̂ dn =
−1

α̂d(nk) − α̂s(nk)

[
α̂s(nk) f̂ 0n + 1

2
ink ŵ0n

]
(3.20)

and

f̂ sn =
1

α̂d(nk) − α̂s(nk)

[
α̂d(nk) f̂ 0n + 1

2
ink ŵ0n

]
, (3.21)

which formally give the initial complex amplitudes of the two capillary modes for
arbitrary initial conditions of the surface deformation and mean axial velocity.
Reciprocally, any non-recirculating initial conditions can be described in terms of
the two capillary modes. Not only can independent amplitudes of deformation and
velocity of each Fourier mode be considered, as in the analysis of Berger (1988); here,
phases are arbitrary as well, since constants are complex in general.

The corresponding expressions for the critical damping wavenumber can be readily
obtained in a similar way. Nevertheless, we shall omit them for the sake of clarity,
since they are not necessary for our discussion. Besides, they can be obtained by
taking the appropriate limit.

If the dominant mode only were considered (f̂ s = 0), as has generally been
done before, the initial deformation would impose the initial velocity, or vice versa.
Therefore, such an incomplete modal analysis could not deal with arbitrary initial
conditions, whose initial deformation and velocity can be arbitrarily chosen. This is
why some authors have blamed the Rayleigh analysis for being wrong or incomplete
(Berger 1988; Ashgriz & Mashayek 1995).

In previous works, two types of initial condition have usually been imposed: either
pure-deformation or pure-impulse. The expressions from the Rayleigh analysis, even
more simple for these particular cases, will be useful for our discussion.

Let us start with pure-deformation initial conditions, i.e. ŵ0n = 0 for all n. The
amplitudes of the Rayleigh modes become

f̂ dn =
−α̂s(nk)

α̂d(nk) − α̂s(nk)
f̂ 0n (3.22)

and

f̂ sn =
α̂d(nk)

α̂d(nk) − α̂s(nk)
f̂ 0n. (3.23)

Therefore, given the complex amplitudes of the initial deformation, f̂ 0n, the linear
evolution of the deformation is

f (z, t) = Re

∞∑
n=1

exp(inkz)
f̂ 0n

α̂d(nk) − α̂s(nk)
{−α̂s(nk) exp[α̂d(nk)t]+α̂d(nk) exp[α̂s(nk)t]}.

(3.24)

To clarify the early behaviour of the jet, we shall restrict ourselves to a
monoharmonic perturbation. Moreover, we shall consider the most relevant interval of
wavenumbers, 0<k < 1; i.e. the interval where the perturbation grows aperiodically.
As α̂d = αd and α̂s = αs are real, (3.24) becomes quite simple:

f (z, t) =
f̃ 0

αd − αs

[−αs exp(αdt) + αd exp(αst)] cos(kz), (3.25)

where f̃ 0 is the initial real amplitude of deformation.
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The early evolution of the jet is given by a combination of two exponentials:
the dominant one, increasing with time; and the subdominant one, decreasing. The
behaviour of this transient, as well as its duration before the exponential-growth
phase, depend on the growth rates αd and αs . This is why it is so important to know
their dependence on the wavenumber and viscosity.

In contrast, for pure-impulse initial conditions, i.e. f̂ 0n = 0 for all n, we have

f̂ dn = −f̂ sn =
− 1

2
ink

α̂d(nk) − α̂s(nk)
ŵ0n, (3.26)

while the evolution of the deformation is given by

f (z, t) = Re

∞∑
n=1

exp(inkz)
− 1

2
ink ŵ0n

α̂d(nk) − α̂s(nk)
{exp[α̂d(nk)t] − exp[α̂s(nk)t]}. (3.27)

For a monoharmonic perturbation and 0 <k < 1, (3.27) reduces to

f (z, t) =
1
2
k w̃0

αd − αs

[exp(αdt) − exp(αst)] sin(kz), (3.28)

for an initially cylindrical jet with initial amplitude of the mean axial velocity
perturbation w̃0.

Equation (3.28) leads to a transfer function between the actual initial amplitude
of the velocity perturbation and the equivalent initial amplitude of the dominant
capillary mode:

f̃d0 =
k/2

αd − αs

w̃0. (3.29)

Bousfield & Denn (1987) deduced an analogous expression under the assumption
of paramount viscosity and long wavelength. With our non-dimensionalization, it
becomes

f̃d0 = 1 − exp

(
−w̃0

6Ck

)
. (3.30)

In the limit of small amplitude of perturbation and paramount viscosity, the latter
expression reduces to the argument of the exponential changed in sign. In the long-
wavelength one-dimensional model of Bousfield & Denn (1987), αd − αs → 3Ck2 as
C � 1. Therefore, the limit of (3.30) for small amplitudes is a particular case of (3.29).

3.3. Initial-transient duration and local measurement of the growth rate

In the amplitude-evolution method of measurement of the growth rate, it is assumed
that the amplitude of deformation exponentially grows downstream along a portion
of the jet; or during an interval of time, if seen from the system of reference moving
with the jet velocity. Provided this is the case, the growth rate can be obtained from a
linear fitting of the logarithm of the disturbance amplitude versus either the position
or the time. However, the assumption of exponential growth is not met during the
transient, along which the subdominant capillary mode introduces a systematic error
in the measurement of the growth rate of the dominant mode. To avoid the transient
phase, the experimenter needs an accurate estimate of its duration.

The initial-transient duration depends, on the one hand, on how quickly the
dominant mode grows and the subdominant mode decays. On the other hand, the
transient does not end abruptly; we shall consider it either finished or not, depending
on how strict we are in considering the growth as purely exponential. Therefore, the
transient duration will be a function of a prescribed error level for the growth rate.
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The local or instantaneous growth rate of an infinite jet can be measured from the
evolution of the deformation of its surface through the function α(t) = f̃ t /f̃ (a similar
definition was proposed by Mansour & Lundgren 1990). Here, f̃ is the real amplitude
of the deformation at a given instant. For exponential growth, α(t) = αd . Thus, the
relative departure from the theoretical value of the growth rate is

δα =
f̃ t

αd f̃
− 1. (3.31)

Now we could fix an error level δα and solve (3.31) to find the transient duration.
For a monoharmonic perturbation with wavenumber in the most relevant interval
0 < k < 1, the procedure is simple. First, instead of writing the deformation in terms
of complex initial amplitudes as in (3.16) and (3.20)–(3.21), we would do it in terms
of the real amplitudes of the initial deformation and the mean axial velocity and the
relative phase between them. Secondly, we would maximize such deformation with
respect to the axial position to find the real amplitude for a given instant. Then we
could calculate the instantaneous relative error δα , with the hope of subsequently
solving it for the transient duration. Unfortunately, the result for δα is a rather
cumbersome transcendental function of time. Therefore, we cannot give an explicit
expression of the transient time for general initial conditions. Instead, we shall deduce
simple formulae for the two most interesting initial conditions, i.e. pure-deformation
and pure-impulse.

If we assume pure-impulse initial conditions, (3.28) yields

δα =
(αd − αs)/αd

exp[(αd − αs) t] − 1
. (3.32)

After a time long enough for δα to be small, the unit term in the denominator
becomes negligible against the exponential. Therefore, δα is expected to decrease
almost exponentially with respect to time.

Let us find the time that the transient lasts:

ttrans =
1

αd − αs

ln

[
αd − αs

αd δα

+ 1

]
. (3.33)

Here, δα must be interpreted as an error value: the maximum departure of the growth
rate relative to its theoretical value in order to consider the growth as exponential.
Of course, it has to be small; at least, smaller than the experimental errors, so that
the initial transient does not introduce a systematic deviation in the statistical fitting.
A convenient value could be δα � 1%.

Fixing a goal of relative error is useful in comparing the transient duration for
different C and k. However, it is too strict a criterion when the aim is to corroborate
experimentally the whole Rayleigh dispersion curve, in which αd becomes very small
as k either becomes small or tends to its cutoff value kc. The accuracy in measurement
is limited by the noisy perturbations that grow with the maximum growth rate αmax.
Therefore, the most sensible experimental criterion is to fix an absolute error value
∆α = δα αd as a given fraction of αmax. In terms of ∆α ,

ttrans =
1

αd − αs

ln

[
αd − αs

∆α

+ 1

]
. (3.34)

An appropriate goal for the absolute error could be ∆α = 0.01 αmax.
The corresponding expressions of δα and ttrans for pure-deformation initial conditions

can be useful for interpreting previous numerical results. These are readily found in
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a similar manner to that for (3.32), (3.33) and (3.34):

δα = − 1 − αs/αd

−(αs/αd) exp[(αd − αs) t] + 1
, (3.35)

ttrans =
1

αd − αs

ln

[
−αd

αs

(
1 − αs/αd

|δα| − 1

)]
, (3.36)

ttrans =
1

αd − αs

ln

[
−αd

αs

(
αd − αs

|∆α| − 1

)]
. (3.37)

However, they are not so interesting from an experimental point of view.

3.4. One-dimensional model and numerical method

The numerical solution of the initial-value problem with a nonlinear one-dimensional
model is a good test for our normal-mode analysis. The influence of nonlinearities
can be made evident as well.

The one-dimensional model for our computations is a slightly improved version
of the averaged one-dimensional model (Garcı́a & Castellanos 1994). Its two coupled
equations are in terms of the surface radius F and the mean axial velocity on a slice
W :

(F 2)t + (F 2W )z = 0, (3.38)

F 2(Wt + W Wz) −
[

1
8
F 4

(
Wtz − 1

2
W

2

z + W Wzz

)]
z

= −F 2Pcz + 3C
{
F 2

[(
1 + 1

8
FFzz − 3

8
F 2

z

)2
+ 1

2
F 4

z

]
Wz

}
z
, (3.39)

where the subscripts t and z stand for partial derivatives with respect to time and
axial position, respectively; and Pc is the capillary pressure jump across the surface,

Pc =
1√

1 + F 2
z

(
1

F
− Fzz

1 + F 2
z

)
. (3.40)

Appropriate boundary conditions must be added. For monoharmonic perturbations,
the easiest choice is to impose zero velocity as well as zero spatial derivative of the
deformation at both ends of a half-wavelength, as in Ashgriz & Mashayek (1995).
Beside these symmetric boundary conditions, we have also implemented periodic
boundary conditions for the whole wavelength. This allows more general initial
conditions, but increases the computational effort.

The averaged model was originally deduced by Garcı́a & Castellanos (1994) through
a systematic expansion of the Navier–Stokes equations in the radial variable up to
second order. The linear analysis showed that the most widely used viscous slice model
(Eggers & Dupont 1994; Garcı́a & Castellanos 1994), which can be considered a first-
order model in that sense, is less accurate for small viscosity. The averaged model
is equivalent to the well-known Cosserat model (Green 1976) for inviscid liquids.
However, the Cosserat model is less accurate than both the viscous slice model and
the averaged model for moderate or large viscosity.

The original version of the averaged model becomes numerically unstable near
the breakup, a fact more evident for large C. It is due to slightly negative viscous
dissipation in a small region of the forming drop. An exhaustive energetic analysis
to find the dissipation function, similar to that of Eggers & Dupont (1994) for the
viscous slice model, revealed that the dissipation function of the averaged model was
not strictly positive definite. This was corrected through the addition of appropriate
third-order terms in its viscous contribution. In this way, the numerical instability
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disappears, while the results up to the instant of instability are indistinguishable. A
brief description and some results were given by Garcı́a & Castellanos (1999). The
details are in Garcı́a (1998).

The linear perturbation analysis (i.e. F =1+f and W =w with f 	 1 and w 	 1) of
the above equations leads to the following dispersion relation (Garcı́a & Castellanos
1994):

α̂2
(
1 + 1

8
k2

)
+ 3Ck2α̂ + 1

2
(k4 − k2) = 0. (3.41)

The two roots of this quadratic equation accurately reproduce the corresponding ones
of the three-dimensional dispersion relation. In the interval 0 <k < 1, the relative error
for the positive eigenvalue, i.e. the most significant one, is less than 0.2% for C < 0.1
and less than 0.6% for large values of C, the error rapidly decreasing as k decreases.
For comparison, the inviscid slice model gives a maximum relative error of 6% in the
same interval, while the corresponding error of the Cosserat model is greater than
3% for moderate or large viscosity.

In the dispersion relation (3.41), there are no other roots corresponding to
hydrodynamic modes. This is common to all the mean-velocity one-dimensional
models, whose simplified radial dependence for the velocity cannot account for
recirculation.

The accuracy of one-dimensional models in the nonlinear regime is similar to that
in the linear regime (Garcı́a 1998; Garcı́a & Castellanos 1999). It was tested by
comparison against previous three-dimensional computations of jet breakups, both
for small and paramount viscosity. The shape of the jet close to breakup is well
described, even for wavenumbers near the cutoff limit; the exception is the slight
overturn of the drop surface near pinching when the Ohnesorge number is very small
(Wilkes, Phillips & Basaran 1999; Chen, Notz & Basaran 2002), which cannot be
accounted for with the cylindrical parameterization of the free surface inherent to
one-dimensional models.

The system of nonlinear partial differential equations formed by (3.38) and (3.39),
together with the appropriate boundary and initial conditions, is solved numerically.
First, we have discretized in space through a Galerkin finite-element method with
cubic Hermite interpolation (Strang & Fix 1973). The resulting system of ordinary
differential equations is solved through a second-order predictor–corrector method
(Adams–Bashforth scheme for the predictor and trapezoid rule for the corrector) with
variable time step. For the first four initializing steps only, a first-order predictor–
corrector method (explicit and implicit Euler schemes) guarantees the smoothness
of the initial conditions necessary to avoid subsequent numerical instability, which
eliminates the need for artificial numerical dissipation in each temporal step (Gresho,
Lee & Sani 1980; Zhang, Padgett & Basaran 1996). The system of nonlinear algebraic
equations so obtained is solved through the Newton method. The computational
cost concentrates on the inversion of the Jacobian matrix. As it is block diagonal,
an adapted LU method does the work efficiently. Owing to the singularity of the
solution near breakup, the spatial error tends to increase. In order to maintain
a maximum spatial error through the computation, the spatial grid is refined
when required. Typical per-step errors for the results of this paper are 10−6 for
time and 10−4 for space. Between 1000 and 4000 finite elements were employed,
depending on the wavenumber. The method stops when either a maximum number
of finite elements is reached or the time step becomes smaller than a pre-established
value.
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Figure 2. Growth rate α and oscillation frequency ω versus wavenumber k of the two
capillary modes (––––) and first hydrodynamic mode (– · –) for C = 0.55.

4. Results
4.1. Eigenvalues and normal modes

4.1.1. Capillary modes

Figure 2 depicts the growth rate and the oscillation frequency corresponding to
the two capillary modes and the first hydrodynamic mode, obtained as roots of the
dispersion relation (3.3) with C =0.55. We have chosen this value of the Ohnesorge
number to illustrate clearly the dynamics of each mode as a function of k. In the
figure, kc = 1 is the cutoff wavenumber, above which the infinitesimal perturbations
are stable, while k�

1 and k�
2 are critical-damping wavenumbers. Labels identify the kind

of evolution of the most significant mode in each interval of values of k. Figure 3
allows us to predict that kind of evolution for any values of C and k.

Figure 2 is representative of all possible mathematical behaviour of eigenvalues.
According to the values of the wavenumber and the Ohnesorge number, the capillary
modes behave in three possible ways, quantitatively bounded in figure 3.

(i) Aperiodic growth (αd > 0, αs < 0, ωd = 0 = ωs). For wavenumbers below the
cutoff limit, the surface-tension term is destabilizing. There are an exponentially
growing dominant mode and an exponentially decaying subdominant mode. There are
no oscillations.

(ii) Aperiodic damping (αd < 0, αs < αd , ωd = 0 = ωs). Beyond the cutoff wavenumber,
provided the viscous term is large enough with respect to the capillary term, both the
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Figure 3. Plateau cutoff wavenumber (– – –), critical damping curve (––––), and different
behaviour of capillary modes, for any value of k and C of an axisymmetric infinite jet.

dominant and the subdominant modes are exponentially damped, without oscillations.
This happens for large k, since the viscous shear is large for very short wavelength;
but also for k in the vicinity of the cutoff limit, because the capillary term is small.

(iii) Periodic oscillation (αd = 0 = αs , ωd = −ωs > 0). For small enough Ohnesorge
number (C < 0.573), there is an interval of wavenumbers beyond the cutoff limit where
the two capillary eigenvalues are complex conjugate. Their associated modes are two
damped waves that travel in opposite directions. Stationary waves are possible as an
appropriate combination of these two modes. In this case, both modes are equally
significant, so the names dominant and subdominant make no sense.

In the boundary line of critical damping, which separates the region of oscillations
from the regions of aperiodic damping, the two capillary roots degenerate in only one
(α̂d = α̂s). As in the harmonic oscillator, the solution is not the superposition of two
different exponentials, but a linear combination of exp(α̂t) and t exp(α̂t).

Figure 4 shows the effect of increasing C on the growth rate and the oscillation
frequency of the capillary modes. In particular, we can see how the dominant mode
is more significant than the subdominant mode, through the difference between their
respective growth rates.

It is well known that an increase in viscosity makes the growth rate of the dominant
mode decrease. This also happens with the subdominant mode (figure 4). Notice that,
for small or moderate viscosity, αd is significantly larger than αs in the vicinity of
k = kmax, which means that the subdominant mode has a secondary role. However,
this is not so true for small k or near the critical-damping wavenumber, where the
difference in growth of both capillary modes is smaller.

For our discussion of the initial conditions, it is important to know the form of the
velocity field of the capillary eigenfunctions. This is depicted, for C = 0.55, in figure 5
(k = 0.5, aperiodic growth) and figure 6 (k = 2.5, aperiodic damping).

4.1.2. Hydrodynamic modes

The normal-mode analysis is valid for any small periodic perturbation that we could
consider. This includes initial conditions consisting in a cylinder with a recirculating
velocity field; with viscosity, such perturbations are expected to be damped. A glance
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–1.5

–1.0

–0.5

0

0.5

α

0 1 2 3

–4

–2

0

2

4

ω

k

Figure 4. Growth rate α and oscillation frequency ω versus wavenumber k; for C = 0 (––––),
C = 0.1 (– – –) and C =0.2 (– · –).

(a)

(b)

Figure 5. Velocity field of the two capillary modes, (a) dominant (b) subdominant, in the
zone of aperiodic growth (C = 0.55, k = 0.5) for the same surface deformation (- - -).

at figures 5 and 6 shows that a superposition of capillary modes cannot describe
initial conditions with a recirculating velocity field. Since the linear modal analysis is
complete for small-amplitude perturbations, there must be other modes to account
for recirculation: the hydrodynamic modes.

As an example, the first hydrodynamic root of the dispersion relation with C = 0.55
is shown in figure 2, and its velocity field for k = 0.5 can be seen in figure 7. The
velocity-field pattern of subsequent hydrodynamic modes is easy to imagine: the nth
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(a) (b)

Figure 6. Velocity field of the two capillary modes, (a) dominant (b) subdominant, in the
zone of aperiodic damping (C = 0.55, k = 2.5) for the same surface deformation (- - -).

Figure 7. Velocity field of the first hydrodynamic mode for C = 0.55 and k = 0.5. The surface
deformation is the same as for figure 5, but the velocity field has been scaled by a factor
1/1000.

mode has n recirculating rolls distributed from the symmetry axis to the surface of
the jet, i.e. the sign of the axial velocity changes n times in the radial direction.

The hydrodynamic modes are always aperiodically damped, for their eigenvalues
are always real and negative. For these modes, the leading term in the dispersion
relation is the viscous dissipation term, while the capillary term has a secondary role.
As depicted in figure 7, the amplitudes of the surface deformation and mean axial
velocity are usually negligible in these modes when compared to the amplitude of the
velocity field.

In order to compare the relative significance of the decaying modes, in figure 8
we represent the growth rate of the capillary modes and the first two hydrodynamic
axisymmetric modes against the wavenumber for C = 0.005.

The inverse of the growth rate of the first hydrodynamic mode gives us an estimate
of the damping time of a recirculating perturbation. In practice, the approximation
(3.9) is enough to this purpose. We see that it is very damped, even for small C.
For C > 0.023, its growth rate is even more negative than αs . For smaller Ohnesorge
numbers, one or more hydrodynamic eigenvalues seem to cross the subdominant one,
as shown in figure 8. However, conversely to the critical damping points, the curves
do not actually cross: there is no degeneration of modes.

4.2. Initial transients

Figure 9 compares the semi-analytical results of Berger (1988, from his figure 3)
with the prediction of the modal analysis of Rayleigh. The temporal evolution
of the deformation amplitude relative to its initial value is plotted. In Berger, all
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Figure 8. Growth rates of the capillary dominant, capillary subdominant, and first two
hydrodynamic modes for C = 0.005.
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Figure 9. Evolution of the amplitude of deformation relative to its initial value with the same
initial conditions as in Berger (1988): w̃0 = 2.25 × 10−5 f̃ 0, C =0.2325; and k = 0.1 and 0.2.
Results from the linear analysis of Berger (1988) (
), the single dominant mode (– · –), and
our full normal-mode analysis (––––).

magnitudes are dimensional, with units from the c.g.s. measurement system. He
gives the following values for the parameters: R = 2.54 × 10−3 cm, γ = 78.2 dyn cm−1,

ρ = 1 g cm−3, and µ/ρ = 0.1 cm2 s−1. His initial conditions are defined by f̃
∗
0 = 1 cm

and ˙̃
f ∗

0 = 1.5 cm s−1, where the asterisk identifies those amplitudes as dimensional, and
the overdot denotes derivative with respect to time. With our non-dimensionalization,
we obtain C =0.2325 and initial amplitudes of the deformation and mean axial
velocity f̃ 0 = 394 and w̃0 = 8.86 × 10−3, respectively.

Together with some of the results of Berger, we have plotted the predictions
corresponding to the Rayleigh analysis with only the dominant mode and with the
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Figure 10. Evolution of the semidifference between swell and neck radii for pure-deformation
initial conditions (f̃ 0 = 0.05, w̃0 = 0), C = 0.005, and k = 0.2, 0.7 and 0.9, as given by
the three-dimensional numerical simulation of Ashgriz & Mashayek (1995) (
), our
one-dimensional numerical simulation (– – –), the single dominant mode (– · –), and our full
normal-mode analysis (––––). The vertical arrows mark the theoretical end of the transient
duration for δα = 1 %, according to (3.36).
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Figure 11. Evolution of the semidifference between swell and neck radii for pure-deformation
initial conditions (f̃ 0 = 0.05, w̃0 = 0), C = 10, and k = 0.2, 0.7 and 0.9, as given by
the three-dimensional numerical simulation of Ashgriz & Mashayek (1995) (
), our
one-dimensional numerical simulation (– – –), and both the single dominant mode and our full
normal-mode analysis (––––, coincident).

two capillary modes. The two sets of data represented correspond to small values of
the wavenumber, for which Berger noticed that the initial transient was more evident.

We have represented the temporal evolution of the surface-deformation amplitude
of a jet subject to pure-deformation initial conditions in figures 10 (very small viscosity)
and 11 (paramount viscosity), with the same conditions as in figure 4 of Ashgriz &
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Figure 12. Growth rate α of the most significant mode versus non-dimensional wavenumber
k, for C =0.005, as given by the Rayleigh analysis (solid line), the single-mode fitting of
Ashgriz & Mashayek (1995) (
), and a two-mode fitting of the small-amplitude data shown
in figure 10 (+).

Mashayek (1995). Instead of computing such amplitude as the difference of either the
swell or the neck radius with respect to the unperturbed radius, it is computed as the
semidifference between the swell radius and the neck radius. This seems to partially
counteract the nonlinear effect of growing harmonics (Yuen 1968; Goedde & Yuen
1970). In addition to the data from the numerical three-dimensional computations of
Ashgriz & Mashayek, we have plotted the predictions from the monomodal analysis
(with only the dominant mode) and our full modal analysis (with both the dominant
and subdominant capillary modes). The logarithmic scale in the ordinates means that
a straight line would correspond to a purely exponential growth, as predicted by the
monomodal Rayleigh analysis.

Figures 10 and 11 illustrate, first, the slow-growth transient associated with the pure-
deformation initial conditions when viscosity is small; and the absence of transient
when viscosity is paramount. Secondly, the comparison with the monomodal analysis
prediction gives us an idea of the extent of the three zones of evolution: the linear
transient, the exponential growth and the nonlinear growth towards the breakup.
Thirdly, the comparison with the three-dimensional and one-dimensional nonlinear
numerical simulations contrasts the validity of the full modal analysis. Finally, the
comparison between one-dimensional and three-dimensional numerical simulations
gives an idea of the error associated with the one-dimensional model.

For numerical test purposes, Ashgriz & Mashayek (1995) tried to reproduce the
most significant solution to the three-dimensional dispersion relation by fitting
an exponential (dominant capillary mode) to their numerical data of deformation
amplitude. In figure 12, we show their results for C = 0.005, together with the
corresponding theoretical curve. In order to take into account the transient, we
have applied a second fitting with two exponentials to the original data appearing
in figure 10. We have considered data points with amplitudes that are not too large
(less than 0.2) to avoid nonlinear effects. For k = 0.9, owing to the small number of
data points, we have imposed equal amplitudes for both modes, as expected for such
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Figure 13. Evolution of the amplitude of the first Fourier mode of the deformation, measured
through the semidifference between swell and neck radii; for pure-impulse monoharmonic
initial conditions with k = 0.050; with C = 0.048 and w̃0 = 5.1 × 10−3 (steepest growing curve),
as in Torpey (1989); and C = 4.7 and w̃0 = 1.81, as in Bousfield & Denn (1987). Monomodal
analysis (– · –), full modal analysis with pure-impulse initial conditions (––––), and nonlinear
one-dimensional simulation (– – –). The vertical arrows mark the theoretical end of the transient
duration for the labelled relative error δα , according to (3.33). The inset gives an enlargement
of the transients.

a small Ohnesorge number, so as to have a number of data points at least equal to
the number of fitting parameters.

Figure 13 depicts the influence of viscosity on the rapid-growth initial transient
expected for pure-impulse initial conditions. The two cases presented have k = 0.50.
The parameters of the family of curves with C = 0.048 (steepest) and small initial
amplitude correspond to a numerical simulation of Torpey (1989). The curves
with C =4.7 (flattest) and relatively large initial amplitude simulate those found
numerically in the work of Bousfield & Denn (1987). In both cases, we have plotted
the evolution of the deformation amplitude in logarithmic scale, computed in three
ways: First, the Rayleigh monomodal linear analysis (dot–dashed line), which gives
the classical straight line corresponding to the purely exponential growth; secondly,
our two-mode linear analysis (solid line); and finally, the numerical simulation of the
nonlinear initial-value problem with the aid of the averaged one-dimensional model
(dashed line). The latter is hard to see at the early times because it matches the
solid line from the two-mode analysis. It will serve us to discuss the validity of the
Rayleigh normal-mode analysis, as well as to show the nonlinear effects for non-small
amplitudes.

As an example of comparison between experiments and theory, we have chosen
the experimental data of Xing et al. (1996) with small initial amplitude, measured
through the shadow method applied to an ink jet. Figure 14 shows the amplitude
of the fundamental Fourier mode of the deformation versus the axial position x. As
Kalaaji et al. (2003) showed afterwards, the growth rate of the deformation amplitude
does not agree with its theoretical value because the dynamic surface tension differs
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Figure 14. Amplitude of the first Fourier mode of the deformation versus non-dimensional
axial position, for the experimental conditions of Xing et al. (1996) (C = 0.196 and k =0.636,
see text for details). Experimental data (+); monomodal analysis with fitted dynamic surface
tension (· · ·); monomodal analysis with the original static surface tension (- - -); full modal
analysis with pure-impulse initial conditions (––––); and full modal analysis with tentative
mixed initial conditions (– – –), equivalent to pure-impulse initial conditions at x = −13. The
vertical arrows mark the theoretical end of the transient duration for the labelled relative error
of the growth rate.

from the static surface tension measured in the experiment. In order to estimate the
non-dimensional numbers for our analytical prediction, we have obtained a value of
the dynamic surface tension from a fitting of the original data in the exponential-
growth zone. The corresponding dotted line in the figure is also the prediction of the
monomodal analysis, and its ordinate at the origin gives a fitted value of the initial
amplitude of the dominant mode (f̃d0 = 0.0090). This gives C = 0.196. Just given for
reference, the short-dashed line is the monomodal prediction corresponding to the
original values of the non-dimensional numbers.

The solid line in figure 14 is computed through our full normal-mode analysis for
pure-impulse initial conditions, given by (3.28) with w̃0 = 0.0202, where the initial
amplitude is estimated from the fitted value of f̃d0 along the interval with purely
exponential growth. The vertical arrows mark the end of the transient duration for
different labelled relative errors of the growth rate, as given by (3.33). Finally, in
order to discuss the non-zero deformation amplitudes measured at x =0, we have
plotted the full modal prediction from tentative mixed initial conditions ((3.18) for
a monoharmonic perturbation with f̂ 0 = 4.0 × 10−3 and ŵ0 = 0.0143 i in (3.20) and
(3.21)), equivalent to pure-impulse initial conditions at x = −13; or, in dimensional
units, some 260 µm upstream of the origin of abscissae.

In figure 15, we represent the transient duration for pure-impulse initial conditions
against the wavenumber, with fixed relative error of the growth rate δα = 0.01. Each
curve corresponds to a different Ohnesorge number.

In figure 16, we represent the same transient duration, but with fixed absolute error
of the growth rate ∆α = 0.01 αmax(C). Again, the different curves illustrate the effect
of changing the Ohnesorge number.
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Figure 15. Non-dimensional transient time versus non-dimensional wavenumber, according
to the three-dimensional linear modal analysis, for fixed relative error of the instantaneous
growth rate, δα =0.01, and different Ohnesorge numbers.
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Figure 16. Non-dimensional transient time versus non-dimensional wavenumber, according
to the three-dimensional linear modal analysis, for different Ohnesorge numbers. For each C,
the absolute error of the instantaneous growth rate is set to ∆α = 0.01 αmax(C).

5. Discussion
5.1. Eigenvalues and normal modes

After the previous detailed description of the normal modes, we can answer the
question of how many modes are necessary to account for some given initial
conditions. It is clear that the dominant mode by itself cannot account for initial
conditions of pure deformation or pure impulse, since it always has a velocity field
associated with its surface deformation. An initial superposition of the two capillary
modes is generally necessary.
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Notice that describing the initial conditions through the deformation and the mean
axial velocity, instead of the whole velocity field itself, makes the analysis simpler.
This does not mean that either the radial velocity is neglected or the velocity field
is approximated by its axial component. The evolution of the velocity field can be
computed through the combination of the capillary modes (a linear combination of
two eigenfunctions such as those plotted in figures 5 and 6). The amplitude of the mean
axial velocity is representative of the amplitude of the velocity field, as long as there
is no appreciable recirculation. The only loss of generality when ignoring the initial
amplitudes of the hydrodynamic modes is the inability to represent a recirculating
velocity field. If the hydrodynamic modes were considered, any possible initial state
of the jet could be accounted for, including those with recirculating velocity, as we
have seen at the beginning of our analysis. Instead of four real constants, more would
be necessary to describe arbitrary initial conditions.

However, there are good reasons to eliminate the hydrodynamic axisymmetric
modes when relating the initial conditions to the normal-mode analysis. First, the
initial amplitudes of the hydrodynamic modes are usually expected to be small, since
stimulating devices are not specifically designed for inducing recirculation in the
nozzle. Even if they were present, their contribution to the surface deformation would
be small. Finally, since they are damped, their effect on the subsequent dynamics
is expected to be negligible. Since velocity perturbations are not easy to measure
in jets, it is not surprising that such recirculating modes have not been reported
experimentally.

Only if some external agent were to favour recirculation, as happens when shear
stress on the liquid surface is significant, could the corresponding hydrodynamic
modes be more relevant. A clear example of non-axisymmetric recirculation induced
by interfacial shear stress is found in the numerical simulations of Pan & Suga
(2006). A complete normal-mode analysis considering the growth of hydrodynamic
non-axisymmetric modes could lead to a better understanding of the sinuous wave
instability of jets with high velocity with respect to the surrounding gas.

5.2. Initial transients

The expressions for the evolution of both the deformation and the mean axial
velocity in terms of the given initial conditions depend on the growth rates of the two
capillary modes. Therefore, the initial transient will be explained through our detailed
knowledge of the solutions of the dispersion relation. We shall discuss separately the
two types of initial conditions most widely found in the literature: pure-deformation
and pure-impulse.

Pure-deformation initial conditions are not realistic for liquid jets. They can be
imposed on other related free-boundary fluid systems either by deforming them by
contact (see Apfel et al. 1997, for an example of an initially deformed drop) or
releasing them from the previous action of an electric field, as in Ramos, Garcı́a
& Valverde (1999) for a liquid bridge or in Basaran & Depaoli (1994) for a liquid
drop; but these initial conditions are much more difficult to apply to a liquid jet since
it moves so rapidly. Nevertheless, pure-deformation initial conditions are usual in
theoretical and numerical work. This gives us results to interpret and compare with.

For inviscid liquid jets, −αs is equal to αd . Thus, the temporal dependence for the
deformation after an initial pure deformation is a hyperbolic cosine; this is the same as
considered by Rayleigh (1878) and other authors for these kinds of initial conditions
when C = 0. Something similar can be said, provided viscous effects are small: both
the dominant and subdominant modes contribute with the same sign and similar
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initial amplitudes to the initial deformation. The transient will be slow as compared
to the growth of the dominant mode, since the velocity is small at the beginning (see
figures 9 and 10). As time passes, the subdominant mode decays, while the dominant
one becomes more relevant: the exponential-growth phase approaches. This explains
the clear correlation in table 1 between pure-deformation initial conditions and slow-
growth transient for small viscosity in previous analytical and numerical work (Taub
1976; Berger 1988; Sellens 1992; Ashgriz & Mashayek 1995; Saroka et al. 2001;
Collantes et al. 2003; Chuech & Yan 2006; Suryo et al. 2006).

For moderate or large viscosity, |αs | clearly becomes greater than αd (see figures 2
and 4). Therefore, the subdominant mode has a smaller amplitude right from the
beginning: the transient is either less evident for moderate viscous effects (Berger
1988, with C =0.23 and k > 0.4), or even unnoticed for large viscosity (Ashgriz &
Mashayek 1995, with C = 10). This explains the numerical observation of Ashgriz &
Mashayek (1995): there is no apparent transient when viscosity is paramount (see
figure 11). The mean axial velocity sharply increases from its null initial value to the
value corresponding to the dominant mode; but there is no effect of such a brief
transient on the surface deformation, as the amplitude of the subdominant mode does
not significantly contribute to the amplitude of the deformation from the beginning.

The pure-impulse initial conditions are far more realistic, for these describe the most
common kind of experimental perturbations: the piezoelectric stimulation. In this
case, the initial null deformation imposes that the deformation amplitudes of the two
capillary modes must initially have opposite signs and equal modules, independently of
viscosity. The velocity is initially greater than the one in the exponential-growth phase,
which induces a rapid-growth transient as compared to the growth of the dominant
mode (see figure 13). This agrees with the correlation between pure-impulse initial
conditions and the rapid-growth transient observed in previous results (see table 1),
either theoretical (Chaudhary & Redekopp 1980, with C = 0; Bousfield & Denn 1987,
with C = 4.7; Torpey 1989, with C = 0.034; and Sellens 1992, with C = 0.004) or
experimental (Torpey 1989, with C = 0.034; Xing et al. 1996, with C = 0.24). As C

increases, the transient does not disappear; it becomes more and more brief and
abrupt (see figure 13), while the velocity is greatly and quickly reduced from its initial
amplitude by viscous shear. As the breakup time increases with C, the transient is
less relevant for viscous enough liquid jets.

The normal-mode analysis allows more general initial conditions. The two cases
discussed above are the extreme choices. A mixed case is the pure dominant mode,
which initially has both a deformation and an impulse. With these initial conditions,
the deformation grows exponentially from the beginning, so there is no transient at
all. Some numerical trials with mixed initial conditions like these confirm this absence
of a transient (Sellens 1992).

It might be thought that the only interesting initial conditions are those with pure
impulse. However, the measurement of amplitude does not usually start exactly at
the nozzle exit, but at some point slightly downwards. In such a case, mixed initial
conditions are to be expected, since the jet has had time to deform. Moreover, there
is evidence that other kinds of stimulation, such as electrohydrodynamic stimulation
(Garcı́a et al. 2000), may induce mixed initial conditions, which would involve out-of-
phase perturbations of deformation and velocity. Formally, the Rayleigh normal-mode
analysis can deal with any sort of initial conditions.

Figure 9 clearly depicts a slow-growth transient, typical for pure-deformation initial
conditions when viscosity is small. In fact, this is the case of the initial conditions
proposed by Berger (1988), since the initial impulse is insignificant against the
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disproportional initial deformation. The transient lasts longer for longer wavelength,
as predicted by (3.36) or (3.37).

Berger claimed that the initial amplitude is ‘immaterial’, a misunderstanding derived
from the wrong estimate of the rupture time proposed by Levich (1962). He chose
his initial conditions empirically to better fit his numerical breakup times to the
experiments cited in his work. It is now clear that such initial conditions are arbitrary,
since there was neither theoretical nor experimental evidence of initial deformation
without significant velocity perturbation; and physically impossible, since the initial
deformation cannot initially have an amplitude greater than the radius of the exit
orifice. The large deviations from the experiments for both small and large Ohnesorge
numbers, in spite of fitting the initial conditions, are a consequence of the spurious
comparison.

Nevertheless, the analysis of Berger is formally correct. The good agreement between
our full normal-mode analysis and Berger’s semianalytical predictions in figure 9
definitely contradicts his main claim: the normal-mode analysis does account for the
initial transient provided the two capillary modes are considered.

Figure 10 shows that the full normal-mode analysis accurately predicts the slow-
growth initial transient that a slightly viscous liquid jet exhibits when subject to an
initial static deformation. In contrast, the traditional one-mode analysis fails in the
early stages of the evolution.

When viscous shear is paramount (figure 11), there is no noticeable transient: both
the one-mode and the two-mode analysis agree with each other and with the nonlinear
three-dimensional and one-dimensional simulations of the early evolution of the jet.
Therefore, it is not true that initially there are many harmonics, and viscous shear
damps them out quickly, as previously thought (Berger 1988; Ashgriz & Mashayek
1995). More simply, the monoharmonic pure-deformation initial conditions stimulate
almost exclusively the dominant mode when viscosity is paramount. Only a very brief
transient for the velocity would be noticeable if the latter could be measured.

The excellent agreement between one-dimensional and three-dimensional nonlinear
numerical simulations in figures 10 and 11 is quantitatively similar to the agreement
between their respective linear-analysis predictions (Garcı́a & Castellanos 1994),
which means that the error is less than usual in any experiment. This enables our
one-dimensional nonlinear simulation to distinguish when nonlinear terms begin to
be significant in the evolution of the deformation amplitude. Concerning the linear
normal-mode analysis, the more comfortable one-dimensional estimate of the growth
rates is, in practice, more than enough to safely predict the early evolution of the
deformation and estimate the transient duration.

Figure 10 shows how difficult it is to measure the growth rate of the dominant mode
when the initial amplitude is too large, not only in experiments, but even in numerical
simulations. In principle, it could be thought that such a small initial deformation as
0.05 times the unperturbed radius would leave us a short time, but enough to fit an
exponential growth. However, including data from the initial transient in our fitting
would introduce a systematic deviation in the growth rate. On the other hand, if
we start the fitting after the transient, the nonlinear terms will be significant enough
to yield another systematic deviation. In other words, if the initial amplitude is not
small enough, there will not exist a purely exponential growth phase because the
initial transient phase overlaps the nonlinear growth phase. Under these conditions,
any attempt to fit a growth rate is prone to systematic errors. This is the origin of
the evident systematic deviation of the numerically fitted growth rates from their
theoretical value found by Ashgriz & Mashayek (1995) for small viscosity (figure 12).
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In contrast, for viscous enough liquids, the slow-growth transient is much less
significant, so we can start the fitting of the growth rate almost from the beginning
(see figure 11). As there is a long enough exponential-growth phase before the
nonlinear phase, the growth rate can be fitted without systematic errors. This explains
why the growth rate obtained by Ashgriz & Mashayek (1995) agreed better with its
theoretical value for large viscosity.

We have implemented a new way of fitting the growth rate that allows us to make
use of data from both the transient phase and the exponential-growth phase. Instead
of fitting a single growing exponential to the small-amplitude data of figure 10, we
have fitted a linear combination of two exponentials, one increasing (dominant mode)
and the other decreasing (subdominant mode). The improvement is clear in figure 12.

In numerical simulations such as the one discussed above, a smaller initial amplitude
would be enough to enlarge the purely exponential phase, thus making the correct
growth rate easier to obtain. This has been successfully done by Suryo et al. (2006)
for compound jets. In experiments, however, it is not so easy, as we shall discuss
later.

The two rapid-growth transients depicted in figure 13, with equal wavenumbers but
very different Ohnesorge numbers, illustrate the influence of viscosity for pure-impulse
initial conditions. Although the typical straight line from the one-mode Rayleigh
analysis matches the prediction from the two-mode analysis after some time, it cannot
account for the null initial amplitude of the deformation; the deviation is clear during
the transient. The transient is rapid in the sense that the instantaneous growth rate is
clearly greater than the value of the dominant mode. Therefore, measuring the growth
rate too close to the nozzle would lead to overestimating it. The arrows that mark the
end of the transient for the labelled relative error in the growth rate give a quantitative
idea of how large that systematic error can become if a narrow interval about that
instant is chosen for the fitting. Obviously, if the measurement is not so local, i.e.
the fitting interval starting at ttrans is wider, the systematic error will be smaller than
the labelled value, since the instantaneous error decays along that interval. For large
Ohnesorge numbers, the growth during the transient is qualitatively similar, but the
transient is then more brief because the subdominant mode decays more quickly, as
seen in our description of the dispersion relation (see figure 2).

In figure 13, the two-normal-mode analysis agrees very well with the nonlinear
numerical simulation during the transient. In addition, this comparison makes evident
the nonlinearities that appear for large enough amplitudes. In the most viscous
case, the deviation from the linear prediction is evident almost from the beginning,
because the initial amplitude chosen by Bousfield & Denn (1987) was relatively large.
An accurate experimental measurement of the growth rate would be impossible with
these conditions, but a two-exponential fit would allow us to measure closer to the
nozzle, where the amplitude is smaller and the linearity assumption is better fulfilled.

Xing et al. (1996) measured the deformation amplitude through the shadow method.
Their data, shown in figure 14, are suitable for growth-rate fitting. We can now
interpret the initial deviation from a straight line, which we have called a rapid-
growth transient, as a consequence of the initial combination of the dominant and
subdominant capillary modes for pure-impulse initial conditions. The full normal-
mode analysis predicts the transient well for x � 25. We emphasize that the only
fitted data come from the purely exponential phase. The arrows mark the end of
the transient, according to the labelled error level for the instantaneous growth rate
relative to the theoretical one. For the first time, there is an estimate of where
the purely exponential growth starts. Workers interested in measuring growth rates,
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either experimentally or computationally, should take such estimates as a lower limit
of amplitudes for fitting.

Concerning the departure from the theoretical curve close to the nozzle, we can
only give some speculative hypotheses. Against the widely accepted assumption of
purely impulsive initial conditions from piezoelectric stimulation jets, there is a non-
zero deformation at x = 0, i.e. at the exit orifice. A possible explanation is that the
nozzle orifice might not be at x =0, but a few hundred micrometres upstream. This
is apparently supported by the slight relative misplacement of the data from their
figures 4(a) and 4(c) (the same experimental conditions but different optical set-
ups). The transient predicted by tentative mixed initial conditions at x = 0 is plotted
in figure 14. Although they match the whole transient better, a small systematic
deviation suggests that this is not the correct explanation or at least, not the only
one. The relaxation of the velocity profile after the jet emerges could have a role.
Concerning the experimental technique, the shadow method could be difficult to
apply to the beginning of the jet, owing to reflection or diffraction from the nozzle.
In addition, the nozzle itself could vibrate harmonically. Small non-axisymmetric
deformations could distort the signal from the shadow technique (González &
Garcı́a 2008). In our opinion, new experiments and simulations exploring the
deformation near the nozzle are necessary to understand the exact nature of the
initial conditions of capillary jets.

The dependence of the transient duration on C and k for pure-impulse initial
conditions, represented in figure 15, can be easily explained thanks to our detailed
description of the dependence of αd and αs on C and k. For small viscosity (C < 0.1),
αd − αs is maximum if k � kmax. Therefore, according to (3.33), the transient time will
be minimum in the interval 0.6 � k � 0.8, taking about eight times the capillary time
in dimensional units. In the limits of small k and k � kc, αd and |αs | are smaller and
they approach each other, so the transient is significantly longer.

As viscous shear becomes important, |αs | increases, specially for k not small. This
is why the transient duration diminishes for k not small. Owing to the smallness of
αd , only for moderate C and very near kc does the transient last longer. This explains
why Berger noted a considerably longer transient for k = 0.1 than for k = 0.9 with
C = 0.23. For large C, the transient is clearly shorter for k not small. Although for k

small it is much larger, its duration is less important than for small viscosity because
the breakup time is so large.

Figure 16, computed with (3.34), is more indicated to check experimentally the
theoretical growth rate of the dominant mode, since it is an absolute error level which
is fixed. The only significant change with respect to the above discussion happens for
k far from kmax, since this criterion is less exacting when αd is far from its maximum
value. Even so, our previous discussion about the transient duration remains valid.

Let us discuss the difficulties that an experimenter has to overcome to successfully
reproduce the Rayleigh dispersion curve, i.e. the growth rate of the dominant mode
against the wavenumber. Even in the small-perturbation phase, he will encounter
two enemies: noise and the initial transient. On the one hand, very small-amplitude
perturbations are technically difficult to measure (Goedde & Yuen 1970; Taub 1976;
Xing et al. 1996). They have to compete against noise. Noisy natural perturbations,
although of small amplitude, cover the whole frequency spectrum. The most harmful,
those with k � kmax, grow with the maximum growth rate αmax. This compels the
experimenter to choose a large enough initial amplitude to prevent the disturbing noise
from having time to dominate over the imposed periodic perturbation. On the other
hand, the initial transient makes difficult the measurement for small amplitude, as do
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the nonlinear effects when the amplitude becomes large. This forces the experimenter
to choose a small enough initial amplitude so that the purely exponential growth
phase lasts for enough time (or distance) to make the measurement. A compromise is
thus necessary. This is why it is so important to have good estimates of the interval
of pure exponential growth.

For small C and k � kmax, a small initial amplitude clearly stronger than the natural
noise suffices, since both kinds of perturbation grow at the same rate. It is then
only a matter of choosing the proper interval of amplitudes for the fitting. However,
as k moves away from kmax, first, the noise grows more quickly than the periodic
disturbance and ruins the signal-to-noise ratio; secondly, the transient is longer. For
very small k or when approaching kc, it is impossible to measure the growth rate
accurately.

Thus, there is a practical lower limit for the initial amplitude in experiments to
determine the growth rate. It is therefore convenient either to know a good estimate
of the transient duration in order to avoid it, or to know the expected functional
time dependence of the deformation during the transient so as to use all the data
from the beginning, as in figure 12. Not doing so would lead to systematically wrong
measurements of the growth rate.

Concerning the two-exponential fitting method to include the transient phase, it
could be advantageous in two more ways. First, it could provide the growth rate of
the two capillary modes, which has not been done before. Secondly, the same fitting
would give us information about the initial deformation and velocity for general
initial conditions. This would be useful for characterizing new stimulation devices,
since it is very difficult to measure the small initial velocity perturbations of a liquid
jet (Dressler 1998).

5.3. Generality of the modal analysis

The equations found for the transient duration and the evolution of both the surface
deformation and the mean axial velocity are simple expressions in terms of the
eigenvalues αd and αs . In principle, we have restricted our normal-mode analysis
to the classical initial-value problem of an infinite viscous jet. However, the idea of
expressing the evolution in terms of the two capillary modes, instead of only the
most dominant mode, is general. It can be extended to slightly different physical
systems that include other effects: slight aerodynamic shear, viscoelasticity, electric
or magnetic forces, small spatial-instability deviation due to a small Weber number,
Marangoni instability (Chakraborty 2005; Furlani 2005), swirling, etc. The dispersion
relation, as well as the values of αd and αs , will be different in each case, but an initial
transient is expected. Its duration will be given by an expression similar to the one in
our analysis, provided that there are no significant changes in the normal modes. The
same expressions might be generalized to systems similar to capillary jets, as hollow
jets or compound jets. In fact, we have mentioned a clear case of slow-growth initial
transient in numerical simulations of a compound jet with pure-deformation initial
conditions (Suryo et al. 2006).

Frequently, the normal-mode linear analysis is taken as an auxiliary tool to validate
numerical simulation codes. It may also be required in experiments, to validate a
theoretical model, to test the apparatus, to find out the initial conditions, or even
to accurately determine some elusive parameter of the system, such as the dynamic
surface tension. A consequence of the above analysis is that it is advisable to undertake
a complete normal-mode analysis, not restricted to the most dominant mode. Only in
that way can the appropriate connection to the initial-value problem be established.
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6. Conclusions and future work

Contrary to what was previously thought, we have demonstrated that the Rayleigh
normal-mode linear analysis predicts the non-exponential growth transient that occurs
in the first stages of the evolution of an infinite capillary jet subject to periodic
initial perturbations. In order to establish a bi-unique correspondence between initial
conditions and initial amplitudes of normal modes, it is necessary to know all roots
of the dispersion relation and their respective normal modes.

There are two kinds of mode: the two already-known capillary modes, called
dominant and subdominant; and an infinite set of hydrodynamic modes. In order to
satisfactorily describe the initial transient, the two capillary modes are necessary when
general non-recirculating initial conditions are considered. The hydrodynamic modes
have a recirculating velocity field and relatively small deformation of the surface and
mean axial velocity. These allow the normal-mode analysis to account for periodic
recirculating initial conditions.

General non-recirculating initial conditions have been formally considered,
including the arbitrary temporal phase between deformation and mean axial velocity.
The two particular sets of initial conditions more usual in the literature have been
discussed in detail: pure deformation and pure impulse. When the initial disturbance
is a pure deformation of the surface, the amplitude of the deformation grows
more slowly than the dominant mode during the transient (slow-growth transient).
Conversely, when the initial disturbance is purely impulsive, as expected in acoustic
stimulation, the disturbance grows more rapidly than the dominant mode (rapid-
growth transient). In both cases, the amplitudes of the two capillary normal modes
can be readily obtained from the initial amplitude of the perturbation. In particular,
the initial velocity perturbation of an acoustically stimulated jet can be deduced from
the subsequent evolution of the surface-deformation amplitude.

The normal-mode linear analysis accurately predicts the same kind of initial
transient as observed in previous computations and our own one-dimensional
numerical simulations of the initial-value problem. The normal-mode analysis
quantitatively agrees with a previous experiment in a wide range of amplitudes.
However, neither the normal-mode analysis nor the nonlinear numerical simulation
with pure-impulse initial conditions can account for the non-zero initial deformation
amplitude measured in that experiment. New experiments measuring the early
evolution would be interesting in order to find whether the actual initial conditions
of acoustically stimulated jets are purely impulsive, as thought until now.

A simple but accurate estimate of the the initial-transient duration has been
derived for purely impulsive initial conditions. For small Ohnesorge numbers,
the transient duration significantly increases for wavenumbers far from the
maximum-growth wavenumber. When the Ohnesorge number increases, the transient
becomes shorter and shorter for moderate or near-to-unit wavenumbers; its relative
significance in the evolution diminishes as compared to the increasing breakup
time.

Knowing the initial transient duration will be useful for experimenters interested in
accurately measuring the growth rate of the dominant mode, as it marks the beginning
of the exponential growth phase, suitable for data fitting. In particular, special care is
necessary when interested in low Ohnesorge numbers and wavenumbers far from the
maximum-growth value, as the exponential growth phase could disappear. In order to
delimit the end of the interval for measuring the growth rate, a nonlinear perturbation
analysis is under way.
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The analysis presented is quite general, in the sense that the derived expressions
are in terms of the roots of the dispersion relation. Therefore, in many cases,
those expressions can readily be extended to account for other effects apart from
surface tension and viscous shear, provided that the eigenvalues of the corresponding
dispersion relation for the necessary normal modes are computed. Workers interested
in the linear analysis of capillary jets and other related physical systems should
consider all roots in their dispersion relation, including those that are apparently less
significant. More than one mode is necessary to describe the initial transient of the
initial-value problem.

In the past, the normal-mode linear analysis has proved to be useful for studying
capillary jets. No other more complex tools have given such a simple and intuitive
insight into the evolution of the jet. Although its validity for describing the early
growth of the applied disturbance has been under suspicion, it is now clear that this
was not warranted. Moreover, the connection established here between the normal-
mode analysis and the initial conditions will help to solve some basic questions not
satisfactorily answered until now. A direct practical application is the formulation of
theoretical transfer functions to relate the initial amplitude of the dominant mode
to the measurable quantity that controls the stimulation, which we shall discuss in
future work.
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