cambridge.org/jhl

Research Paper

Cite this article: Sokolov SG, Shchenkov SV, Gordeev II (2019). Records of opecoeline species *Pseudopecoelus* cf. *vulgaris* and *Anomalotrema koiae* Gibson & Bray, 1984 (Trematoda, Opecoelidae, Opecoelinae) from fish of the North Pacific, with notes on the phylogeny of the family Opecoelidae. *Journal of Helminthology* **93**, 475–485. https://doi.org/ 10.1017/S0022149X18000573

Received: 6 April 2018 Accepted: 19 June 2018 First published online: 24 July 2018

Key words:

285 rDNA; Anomalotrema koiae; Discoverytrema; Macvicaria; Nicolla; North Pacific; Opecoelidae; phylogeny; Podocotyle; Pseudopecoelus vulgaris; Sphaerostoma

Author for correspondence: I.I. Gordeev, E-mail: gordeev_ilya@bk.ru

© Cambridge University Press 2018

CAMBRIDGE UNIVERSITY PRESS Records of opecoeline species *Pseudopecoelus* cf. *vulgaris* and *Anomalotrema koiae* Gibson & Bray, 1984 (Trematoda, Opecoelidae, Opecoelinae) from fish of the North Pacific, with notes on the phylogeny of the family Opecoelidae

S.G. Sokolov^{1,2}, S.V. Shchenkov³ and I.I. Gordeev^{4,5}

¹A.N. Severtsov Institute of Ecology and Evolution, 33 Leninskij prosp., 119071 Moscow, Russia; ²Institute of Biology, Karelian Research Centre of the RAS, 11 Pushkinskaya Street, 185910 Petrozavodsk, Russia; ³Department of Invertebrate Zoology, Saint Petersburg State University, 7/9 Universitetskaya emb., 199034, St. Petersburg, Russia; ⁴Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia and ⁵Lomonosov Moscow State University, Moscow, Russia

Abstract

Opecoelid species *Pseudopecoelus* cf. *vulgaris* and *Anomalotrema koiae* Gibson & Bray, 1984 were found in fish collected in the boreal waters of the North Pacific. *Pseudopecoelus* cf. *vulgaris* differs from *Pseudopecoelus vulgaris* (Manter, 1934) in terms of the egg size. This is the first record of *A. koiae* in the North Pacific, and the second of *Pseudopecoelus* cf. *vulgaris*. Previously, *A. koiae* was recorded only in North Atlantic fish. Partial sequences of 28S rDNA obtained for these two species and six other previously unsequenced representatives of the family Opecoelidae were analysed together with data from GenBank. Phylogenetic analysis supports the allocation of the six clades of opecoelids – Helicometrinae, Opecoelinae, Opistholebetinae, 'freshwater Plagioporinae', 'marine Plagioporinae B' and 'marine Plagioporinae C', and confirms the paraphyly of the group 'deep-sea Plagioporinae'. Our phylogeny does not support previous hypotheses about the monophyly of opecoelines with a uroproct.

Introduction

The family Opecoelidae Ozaki, 1925 is a large group of trematodes parasitic in marine and freshwater fish. The modern taxonomic model of this family, based on morphological (Cribb, 2005; Bakhoum *et al.*, 2017) and genetic data (Bray *et al.*, 2016; Martin *et al.*, 2018b, c), distributes opecoelids between six subfamilies: Opecoelinae, Helicometrinae, Opecoelininae, Opistholebetinae, Stenakrinae and Plagioporinae *s. lato*. Plagioporinae *s. lato* is the most problematic group of opecoelids from the taxonomic point of view, as phylogenetic reconstructions demonstrate the polyphyly of this subfamily (Andres *et al.*, 2014; Shedko *et al.*, 2015; Bray *et al.*, 2016; Fayton and Andres, 2016; Faltýnková *et al.*, 2017; Fayton *et al.*, 2017; Martin *et al.*, 2017, 2018b; Rima *et al.*, 2017; Fayton *et al.*, 2018).

In this study, we report on two opecoeline species, *Pseudopecoelus* cf. *vulgaris* and *Anomalotrema koiae* Gibson & Bray, 1984, from fish collected in the boreal waters of the North Pacific. Previously, *A. koiae* was recorded as a parasite only on North Atlantic fish (e.g. Gibson, 1996), and this is the second record of *Pseudopecoelus* cf. *vulgaris* in the North Pacific (see Machida and Araki, 1992). We detail the phylogeny of the family Opecoelidae, taking into account new partial sequences of 28S rDNA of these two species and six other previously unsequenced representatives of the family.

Materials and methods

Specimen collection

The trematodes *Pseudopecoelus* cf. *vulgaris* and *A. koiae* were collected during a parasitological examination of North Pacific fishes *Lycodes brunneofasciatus* Suvorov, 1935, *Microankathus fedorovi* (Mandrytsa, 1991) and *Sebastes* sp. (table 1). A total of 15 specimens of *Lycodes brunneofasciatus* (length 21.0–52.5 cm, weight 135–910 g), 30 specimens of *M. fedorovi* (length 7.5–17.0 cm, weight 19.3–45.0 g), and nine specimens of *Sebastes* sp. (length 30.2–45.0 cm, weight 415–1185 g) were examined in this research. All the specimens were caught by the fishing vessel *Anatoly Torchinov*, when it was fishing for *Pleurogrammus monopterygius* (Pallas, 1810) during 16–25 March 2017 at depths of 150–400 m in the environs of

Species (consensus sequences)	Host species and site of infection	Number of specimens	Location	GenBank accession number	Local deposit number
Anomalotrema koiae	<i>Microankathus fedorovi</i> (Mandrytsa, 1991) (Actinopterygii: Cyclopteridae), intestine	1	Environs of the Simushir Island, North Pacific	MH161429	T-4-SS-(Op_1-806.1)
Discoverytrema gibsoni	<i>Muraenolepis marmorata</i> Günther, 1880 (Actinopterygii: Muraenolepididae), intestine	1	The Ross Sea	MH161430	T-7-SS-(Op_2-654.1)
Discoverytrema markowskii	M. marmorata, intestine	1	The Ross Sea	MH161431	T-8-SS-(Op_3-654.x)
Macvicaria muraenolepidis	M. marmorata, intestine	1	The Ross Sea	MH161432	T-9-SS-(Op_4-654.3)
Nicolla skrjabini	<i>Ponticola gorlap</i> (Iljin, 1949) (Actinopterygii: Gobidae), intestine	1	Obzhorovsky Channel in the Volga River Delta, Astrakhan Region, Russia	MH161438	T-6-SS-(Op_14-Nic96)
Podocotyle atomon	<i>Littorina saxatilis</i> (Olivi, 1792) (Gastropoda: Littorinidae)	1	Educational and research station 'Belomorskaia' of Saint Petersburg State University, White Sea, Russia	MH161437	T-10-SS-(Op_13-cerc)
Pseudopecoelus cf.	Lycodes brunneofasciatus	2	Environs of the Simushir	MH161433	T-1-SS-(Op_7-786.1)
<i>vulgaris</i> (sequences 1 and 2)	Suvorov, 1935 (Actinopterygii: Zoarcidae), intestine		Island, North Pacific	MH161434	T-2-SS-(Op_8-786.3)
<i>Pseudopecoelus</i> cf. <i>vulgaris</i> (sequence no. 3)	Sebastes sp. (Actinopterygii: Sebastidae), intestine	1	Environs of the Simushir Island, North Pacific	MH161436	T-3-SS-(Op_11-787)
Sphaerostoma bramae	<i>Abramis brama</i> (Linnaeus, 1758) (Actinopterygii: Cyprinidae), intestine	1	Obzhorovsky Channel in the Volga River Delta, Astrakhan Region, Russia	MH161435	T-5-SS-(Op_9-S.br)

Table 1. List of newly obtained sequences.

Simushir Island. The fish nomenclature was adopted following Voskoboinikova (2015) and Froese and Pauly (2017).

Additionally, novel genetic data are provided for six other opecoelids, namely adult *Sphaerostoma bramae* (Müller, 1776), *Nicolla skrjabini* (Iwanitzky, 1928), *Discoverytrema gibsoni* Zdzitowiecki, 1990, *Discoverytrema markowskii* Gibson, 1976 and *Macvicaria muraenolepidis* Zdzitowiecki, 1990, and *Podocotyle atomon* (Rudolphi, 1802) cercariae (table 1).

The adult worms collected for morphological study were fixed in 70% ethanol at room temperature under a glass cover without additional pressure and stained with acetocarmine. Species identification was performed following Gibson and Bray (1984), Bykhovskava-Pavlovskava and Kulakova (1987), Sokolov and Gordeev (2013), and Blend et al. (2017). The identification of the P. atomon cercariae was carried out according to the descriptions given in Hunninen and Cable (1943) and Chubrik (1966). According to modern data, in littoral molluscs on the northwestern coast of the White Sea, there is only one species of cercariae: P. atomon (Levakin et al., 2013). In the White Sea, another species of the genus Podocotyle Dujardin, 1845 is also noted: P. reflexa (Creplin, 1825) (see Shulman and Shulman-Albova, 1953). However, the morphology of cercariae of this species differs sharply from those of the larvae of P. atomon: there are three pairs of penetration glands in P. atomon, and four in P. reflexa (Koie, 1981). All the lengths in morphological descriptions are in µm unless otherwise noted. Specimens destined for molecular analysis (table 1) were fixed in 96% ethanol and stored at 4°C.

DNA extraction, amplification and sequencing, and phylogenetic analysis

In order to obtain 28S rDNA sequence, total DNA was isolated using the ZymoBead Genomic DNA Kit (http://www.zymoresearch.com). Only single trematode specimens were used for each DNA extraction. The DNA fragment of *c*. 1200 bp localized at the 5' end of 28 rDNA was amplified using the BIO-RAD C1000 Thermal Cycler. Polymerase chain reactions (PCR) were performed in a total volume of 20 μ l (11.5 μ l H₂O, 2.5 μ l Taq buffer, 2 μ l dNTP at a concentration of 10 pM, 0.5 μ l of each primer at a concentration of 10 pM, 1 μ l of Taq polymerase ('Syntol'), 1 μ l of the DNA template).

The trematode-specific forward primer LSU-5 (5'-TAG GTC GAC CCG CTG AAY TTA AGC A-3') and reverse primer 1500R (5'-GCT ATC CTG AGG GAA ACT TCG-3') were used. GenBank numbers of sequences used in the analysis are provided in table 2. The thermal cycle parameters were as follows: initial denaturation at 95°C (3 minutes); 35 cycles of 20 s at 95°C; 20 s at 56°C; 120 s at 72°C; 5 minutes at 72°C for the final extension. Amplicons were purified using the Cleanup Mini Purification Kit (Eurogene). All amplicons were sequenced directly using equipment belonging to the Research Park of Saint Petersburg State University (Centre for Molecular and Cell Technologies). Sequences from both forward and reverse primers were assembled in Chromas Pro 1.7.4. Each sequence obtained was amplified from primers whose landing sites are at a great distance from each other. Consequently, the sequences obtained from single instances of the

Table 2. List of species incorporated into molecular analysis.

Species	Host species	Location	GenBank accession number	References
Clade 'freshwater Plagioporinae'				
Neoplagioporus ayu	<i>Plecoglossus altivelis</i> (Temminck & Schlegel, 1846) (Actinopterygii: Plecoglossidae)	River Asahi, Okayama City, Okayama Prefecture, Japan	KX553947	Fayton and Andres (2016)
Neoplagioporus zacconis	<i>Opsariichthys platypus</i> (Temminck & Schlegel, 1846) (Actinopterygii: Cyprinidae)	River Uji, Uji City, Kyoto Prefecture, Japan	KX553949	Fayton and Andres (2016)
Neoplagioporus elongatus	Sarcocheilichthys variegatus microoculus Mori, 1927 (Actinopterygii: Cyprinidae)	Lake Biwa, Takashima City, Shiga Prefecture, Japan	KX553948	Fayton and Andres (2016)
Plagioporus aliffi	Etheostoma blennioides newmanni (Agassiz, 1854) (Actinopterygii: Percidae)	Arkansas, USA	KX905056	Fayton <i>et al</i> . (2017)
Plagioporus boleosomi	<i>Percina maculata</i> (Girard, 1859) (Actinopterygii: Percidae)	River West Twin, Wisconsin, USA	KX553953	Fayton and Andres (2016)
Plagioporus carolini	<i>Cottus carolinae</i> (Gill, 1861) (Actinopterygii: Cottidae)	Flint Creek, Arkansas, USA	MG214680	Fayton et al. (2018)
Plagioporus chiliticorum	<i>Notropis chiliticus</i> (Cope, 1870) (Actinopterygii: Cyprinidae)	Basin Creek, North Carolina, USA	KX553943	Fayton and Andres (2016)
Plagioporuis hageli	<i>Oncorhynchus myki</i> ss (Walbaum, 1792) (Actinopterygii: Salmonidae)	River Yuba, California, USA	KX553950	Fayton and Andres (2016)
Plagioporus ictaluri	<i>Noturus lachneri</i> Taylor, 1969 (Actinopterygii: Ictaluridae)	Gulpha Creek, Arkansas, USA	MG214679	Fayton et al. (2018)
Plagioporus fonti	<i>Percina nigrofasciata</i> (Agassiz, 1854) (Actinopterygii: Percidae)	Florida, USA	KX905054	Fayton et al. (2017)
Plagioporus kolipinskii	<i>Gasterosteus aculeatus</i> Linnaeus, 1758 (Actinopterygii: Gasterosteidae)	Lobos Creek, California, USA	KX553952	Fayton and Andres (2016)
Plagioporus limus	Etheostoma squamosum (Agassiz, 1854) (Actinopterygii: Percidae)	Arkansas, USA	KX905055	Fayton et al. (2017)
Plagioporus loboides (as Plagiocirrus loboides in GenBank)	Fundulus nottii (Agassiz, 1854) (Actinopterygii: Fondulidae)	The Upper Pascagoula River Wildlife Management Area, George County, Mississippi, USA	EF523477	Curran <i>et al</i> . (2007)
Plagioporus shawi	<i>Oncorhynchus tshawytscha</i> (Walbaum, 1792) (Actinopterygii: Salmonidae)	River McKenzie, Oregon, USA	KX553951	Fayton and Andres (2016)
Plagioporus sinitsini	Notemigonus crysoleucas (Mitchill, 1814) (Actinopterygii: Cyprinidae)	St. Lawrence River, Montreal, Canada	KX553944	Fayton and Andres (2016)
Urorchis goro	<i>Rhinogobius kurodai</i> (Tanaka, 1908) (Actinopterygii: Gobiidae)	Metoba River, Nagano, Japan	LC149880	Shimazu (2016)
Group 'deep-sea Plagioporinae'				
Allopodocotyle margolisi	<i>Coryphaenoides mediterraneus</i> (Giglioli, 1893) (Actinopterygii: Macrouridae)	Rockall Trough, UK	KU320596	Bray et al. (2016)
Bathycreadium brayi	Phycis blennoides (Brünnich, 1768) (Actinopterygii: Phycidae)	Tarragona, Spain	KJ683740	Pérez-del-Olmo et al. (2014)
Bathycreadium elongatum	Trachyrincus scabrus (Rafinesque, 1810) (Actinopterygii: Trachyrincidae)	Spain	JN085948	Constenla <i>et al.</i> (2011)
Buticulotrema thermichthysi	Thermichthys hollisi (Cohen, Rosenblatt & Moser, 1990) (Actinopterygii: Bythitidae)	South East Pacific Rise, hydrothermal vent site Hobbs, Pacific Ocean	KF733984	Bray <i>et al</i> . (2014)
Gaevskajatrema halosauropsi	Halosauropsis macrochir (Günther, 1878) (Actinopterygi <mark>i</mark> : Halosauridae)	UK	AY222207	Olson <i>et al.</i> (2003)
Neolebouria lanceolata	<i>Polymixia lowei</i> Günther, 1859 (Actinopterygii: Polymixiidae)	West Florida Slope, USA	KJ001210	Andres et al. (2014)

Table 2. (Continued.)

Species	Host species	Location	GenBank accession number	References
Podocotyloides brevis	Conger esculentus Poey, 1861 (Actinopterygii: Congridae)	Mona Passage, Puerto Rico	KJ001212	Andres et al. (2014)
Clade Opecoelinae				
Anomalotrema koiae	Sebastes viviparous Krøyer, 1845 (Actinopterygii: Sebastidae)	Shetland Islands	KU320595	Bray et al. (2016)
Dimerosaccus oncorhynchi	Oncorhynchus masou (Brevoort, 1856) (Actinopterygii: Salmonidae)	Kedrovaya River, Primorsky Territory, Russia	FR870254	Shedko <i>et al</i> . (2015)
Opecoeloides furcatus	<i>Mullus surmuletus</i> Linnaeus, 1758 (Actinopterygii: Mullidae)	Mediterranean Sea near Corsica	AF151937	Tkach <i>et al</i> . (2000)
Opecoeloides fimbriatus	<i>Micropogonias undulatus</i> (Linnaeus, 1766) (Actinopterygii: Sciaenidae)	Gulf of Mexico	KJ001211	Andres <i>et al</i> . (2014)
Pseudopecoeloides tenuis	<i>Priacanthus hamrur</i> (Forsskål, 1775) (Actinopterygii: Priacanthidae)	NewCaledonia	KU320605	Bray <i>et al.</i> (2016)
Clade 'marine Plagioporinae B'				
Allopodocotyle epinepheli	<i>Epinephelus cyanopodus</i> (Richardson, 1846) (Actinopterygii: Serranidae)	New Caledonia	KU320598	Bray <i>et al</i> . (2016)
Bentholebouria blatta	Pristipomoides argyrogrammicus (Valenciennes, 1832) (Actinopterygii: Lutjanidae)	New Caledonia	KU320608	Bray et al. (2016)
Bentholebouria colubrosa	Pristipomoides aquilonaris (Goode & Bean, 1896) (Actinopterygii: Lutjanidae)	West Florida Shelf, USA	KJ001207	Andres et al. (2014)
Cainocreadium labracis (cercariae)	<i>Gibbula adansonii</i> (Payraudeau, 1826) (Gastropoda: Trochidae)	Els Alfacs Lagoon (Ebro Delta), Spain	JQ694144	Born-Torrijos <i>et al.</i> (<mark>2012</mark>)
Cainocreadium lintoni	<i>Epinephelus morio</i> (Valenciennes, 1828) (Actinopterygii: Serranidae)	Caribbean Sea	KJ001208	Andres <i>et al</i> . (2004)
Hamacreadium cribbi	<i>Lethrinus miniatus</i> (Forster, 1801) (Actinopterygii: Lethrinidae)	New Caledonia	KU320603	Bray et al. (2016)
Hamacreadium mutabile	<i>Lutjanus fulviflamma</i> (Forsskål, 1775) (Actinopterygii: Lutjanidae)	New Caledonia	KU320601	Bray et al. (2016)
Macvicaria macassarensis	L. miniatus (Actinopterygii: Lethrinidae)	Heron Island, Coral Sea, Australia	AY222208	Olson <i>et al</i> . (2003)
Pedunculacetabulum inopinipugnus	Plectorhinchus chrysotaenia (Bleeker, 1855) (Actinopterigii: Haemulidae)	Lizard Island, Queensland, Australia	MF805700	Martin <i>et al</i> . (2018c)
Pacificreadium serrani	Plectropomus leopardus (Lacepède, 1802) (Actinopterygii: Serranidae)	New Caledonia	KU320602	Bray et al. (2016)
Podocotyloides australis	Diagramma pictum (Thunberg, 1792) (Actinopterigii: Haemulidae)	Dunwich, North Stradbroke Island, Australia	MF805696	Martin <i>et al</i> . (2018c)
Podocotyloides gracilis	D. pictum (Actinopterigii: Haemulidae)	Lizard Island, Queensland, Australia	MF805693	Martin <i>et al</i> . (2018c)
Clade 'Pedunculacetabulum inopinipugnus + Podocotyloides stenometra'				
Podocotyloides stenometra	Heniochus chrysostomus Cuvier, 1831 (Actinopterygii: Chaetodontidae)	Mo'orea, French Polynesia	MF926406	Martin <i>et al</i> . (2018c)
Pseudopycnadena tendu	Pseudobalistes fuscus (Bloch & Schneider, 1801) (Actinopterygii: Balistidae)	New Caledonia	FJ788506	Bray et al. (2009)
Clade Opistholebetinae				
Gaevskajatrema perezi	Unidentified fish	Near Corsica	AF184255	Tkach <i>et al</i> . (2001)
Maculifer sp.	<i>Diodon hysterix</i> Linnaeus, 1758 (Actinopterygii: Diodontidae)	Australia	AY222211	Olson <i>et al</i> . (2003)

(Continued)

Journal of Helminthology

Table 2. (Continued.)

Species	Host species	Location	GenBank accession number	References
Macvicaria bartolii	<i>Diplodus annularis</i> (Linnaeus, 1758) (Actinopterygii: Sparidae)	Bay of Bizerte, Tunisia	KR149464	Antar <i>et al</i> . (2015)
Macvicaria crassigula	<i>Diplodus vulgaris</i> (Geoffroy Saint-Hilaire, 1817) (Actinopterygii: Sparidae)	Bouzedjar, Algeria	MF166847	Rima <i>et al</i> . (2017)
Macvicaria dubia	<i>Oblada melanura</i> (Linnaeus, 1758) (Actinopterygii: Sparidae)	Bay of Bizerte, Tunisia	KR149470	Antar <i>et al</i> . (2015)
Macvicaria gibsoni	D. vulgaris (Actinopterygii: Sparidae)	Algiers, Algeria	MF166845	Rima <i>et al</i> . (2017)
Macvicaria maamouriae	Lithognathus mormyrus (Linnaeus, 1758) (Actinopterygii: Sparidae)	Bizerte Lagoon, Tunisia	KR149468	Antar <i>et al</i> . (2015)
Macvicaria mormyri	<i>Sparus aurata</i> Linnaeus, 1758 (Actinopterygii: Sparidae)	Bouzedjar, Algeria	MF166850	Rima <i>et al</i> . (2017)
Macvicaria obovata (metacercariae)	<i>Cyclope neritea</i> (Linnaeus, 1758) (Gastropoda: Nassariidae)	Els Alfacs Lagoon (Ebro Delta), Spain	JQ694147	Born-Torrijos <i>et al</i> . (2012)
Magnaosimum brooksae	<i>Tripodichthys angustifrons</i> (Hollard, 1854) (Actinopterygii: Tricanthidae)	Moreton Bay, Australia	MG813907.2	Martin <i>et al</i> . (2018b)
Opistholebes amplicoelus	<i>Tetractenos hamiltoni</i> (Richardson, 1846) (Actinopterygii: Tetraodontidae)	Australia	AY222210	Olson <i>et al</i> . (2003)
Peracreadium idoneum	Anarhichas lupus Linnaeus, 1758 (Actinopterygii: Anarchichadidae)	UK	AY222209	Olson <i>et al.</i> (2003)
Pseudopycnadena fischthali	D. vulgaris (Actinopterygii: Sparidae)	Bouzedjar, Algeria	MF166851	Rima <i>et al</i> . (2017)
Propycnadenoides philippinensis	<i>Gymnocranius grandoculis</i> (Valenciennes, 1830) (Actinopterygii: Lethrinidae)	New Caledonia	KU320604	Bray et al. (2016)
Clade 'marine Plagioporinae C'				
Macvicaria magellanica	Patagonotothen longipes (Steindachner, 1876) (Actinopterygii: Nototheniidae)	Antarctica	KU212191	Hildebrand <i>et al</i> . (2016)
Podocotyloides parupenei	<i>Mulloidichthys vanicolensis</i> (Valenciennes, 1831) (Actinopterygii: Mullidae)	Lizard Island, Queensland, Australia	MF926409	Martin <i>et al</i> . (2018c)
Trilobovarium parvvatis	<i>Lethrinus nebulosus</i> (Forsskål, 1775) (Actinopterygii: Lethrinidae)	Lizard Island, Queensland, Australia	KY551562	Martin <i>et al</i> . (2017)
Choerodonicola renko	Evynnis tumifrons (Temminck & Schlegel, 1843) (Actinopterygii: Sparidae)	Minabe fish market, Wakayama Prefecture, Japan	MG844421	Martin <i>et al</i> . (2018a)
Choerodonicola arothokoros	Scarus ghobban (Forsskål, 1775) (Actinopterygii: Scaridae)	Moreton Bay, Australia	MG844418	Martin <i>et al</i> . (2018a)
Clade Helicometrinae				
Helicometra boseli	Sargocentron spiniferum (Forsskål, 1775) (Actinopterygii: Holocentridae)	New Caledonia	KU320600	Bray et al. (2016)
Helicometra epinepheli (as Helicometra fasciata in GenBank)	<i>Epinephelus fasciatus</i> (Forsskål, 1775) (Actinopterygii: Serranidae)	New Caledonia	KU320597	Bray et al. (2016)
Outgroup Brachycladiidae				
Campula oblonga	<i>Phocoena phocoena</i> (Linnaeus, 1758) (Mammalia: Phocoenidae)	UK	KM258671	Fraija-Fernández et al. (2015)
Oschmarinella macrorchis	Mesoplodon carlhubbsi (Moore, 1963) (Mammalia: Ziphiidae)	Samani, Hokkaido, Japan	LC269095	Nakagun <i>et al.</i> (2018)

worms were manually corrected, and the sequences obtained were consensual. The voucher specimens of the studied species were deposited in the specimen collection at the Department of Invertebrate Zoology at Saint Petersburg State University. The newly obtained sequences were included in a general alignment (table 1). Firstly, the sequences were automatically aligned using the MUSCLE algorithm (Edgar, 2004), as implemented in SeaView 4.0 (Gouy *et al.*, 2010). Then the alignment was verified

manually. The phylogenetic analysis was performed using the maximum likelihood (ML) method, as implemented in the RaxML program (Stamatakis, 2006) at CIPRES Science Gateway (www.phylo.org) (Miller *et al.*, 2010). About 1000 sites were selected for the analysis. The stability of the clades was assessed using a non-parametric bootstrap with 1000 pseudoreplicates. All estimations in RaxML were calculated using default parameters.

Bayesian inference (BI) analysis was performed using MrBayes 3.1.2, a general time reversible (GTR) model with gamma correction for intersite rate variation (eight categories), and the covarion model. Trees were run as two separate chains (default heating parameters) for 15 million generations, at which point they had ceased converging. The quality of chains was estimated using built-in MrBayes tools and, additionally, the Tracer 1.6 package (Rambaut *et al.*, 2014). Based on the estimates using Tracer, 250,000 generations were discarded for burn-in (the relative burn-in parameter was switched off). The names of the clades are given following Martin *et al.* (2018b, c).

Results

Systematics

Family Opecoelidae Ozaki, 1925 Subfamily Opecoelinae Ozaki, 1925 Genus *Pseudopecoelus* von Wicklen, 1946

Pseudopecoelus cf. vulgaris (fig. 1A)

Description

(Based on five gravid specimens from L. brunneofasciatus). Body elongate-oval, flattened dorso-ventrally, 1.90-3.81 × 0.52-0.95 mm. Tegument unarmed. Oral sucker subspherical, unspecialized, $186-285 \times 174-242$. Ventral sucker slightly protuberant, subellipsoidal, unspecialized, 248-446 × 397-521; aperture surrounded by lip-like folds of tegument. Ratio of oral sucker width to ventral sucker width 1: 2.10-2.29. Forebody 19.5-30.1% of body length. Mouth subterminal. Prepharynx not visible. Pharynx muscular, 153-199 × 92-135; oesophagus 167-360. Intestinal bifurcation short distance anterior to ventral sucker. Caeca terminate blindly near posterior extremity. Testes two, in third quarter of body, median, tandem, contiguous, lobated; anterior testis 186-496 × 310-546, posterior testis 248-459 × 298-583. Post-testicular region 533-980. Cirrus-sac absent. Seminal vesicle tubular, convoluted, free in parenchyma, extending some distance into hindbody. Pars prostatica surrounded by prostatic gland-cells; ejaculatory duct thick-walled, short. Genital pore at level of pharynx, sinistrosubmedian. Ovary 4-lobed, median, pretesticular, contiguous with anterior testis, 174-273 × 260-397. Oviduct arising from anteromedial lobe of ovary. Laurer's canal opening on dorsal side of body between sinistral caecum and sinistral body margin, at level of ovary. Seminal receptacle uterine. Mehlis' gland distinct. Uterus preovarian, intercaecal. Metraterm not visible. Vitellarium follicular; follicles in two longitudinal lateral fields extending from ventral sucker region or intestinal bifurcation level to posterior extremity of body, frequently one field slightly longer than other. Vitelline fields overlapping caeca ventrally and confluent in post-testicular region on ventral side of body. Dorsal part of each field covers caecum only in ventral sucker and inter-gonadal areas; in post-testicular region divided into two rows: extra-caecal and submedian intra-caecal. Eggs numerous, oval, operculate, with small knob at an percular pole, 79-82 × 41-47. Excretory bladder tubular, reaching to ovary; pore terminal.

Taxonomic summary

Host. Lycodes brunneofasciatus (Perciformes: Zoarcidae) and Sebastes sp. (Scorpeniformes: Sebascidae).

Locality. North Pacific in the environs of Simushir Island, 46°28′S, 150°59′E, depth 160 m.

Date of collection. 20 March 2017.

Site of infection. Intestine.

Prevalence and intensity. L. brunneofasciatus – 40% (n = 15), 3-10 individuals; Sebastes sp. – 55.6% (n = 9), 1 individual.

Specimens deposited. Mount no. 14266 in the Museum of Helminthological Collections at the Centre for Parasitology of the A.N. Severtsov Institute of Ecology and Evolution (IPEE RAS), Moscow, Russia.

Systematics

Family Opecoelidae Ozaki, 1925 Subfamily Opecoelinae Ozaki, 1925 Genus Anomalotrema Zhukov, 1957

Anomalotrema koiae Gibson & Bray, 1984 (fig. 1B)

Description

(Based on two gravid specimens from *M. fedorovi*). Body elongate, flattened dorso-ventrally, $1.60-1.86 \times 0.37-0.5$ mm. Tegument unarmed. Oral sucker subellipsoidal, unspecialized, 122 × 147-171. Ventral sucker pedunculate, with two sublateral muscular lobes on anterior margin and single median lobe on posterior margin, 322-360 × 260-285. Ratio of oral sucker width to ventral sucker width 1:1.67-1.77. Mouth subterminal. Prepharynx 52, muscular pharynx 92-122×110-159, oesophagus 183. Caeca extending dorso-laterally to posterior extremity of body and opening through separate ani, which lie ventrally to excretory pore. Testes two, in third quarter of body, median, tandem, contiguous entire, oval; anterior testis 174-186 × 236-298, posterior testis 217-233 × 248-273. Post-testicular region 322-446. Vas deferens absent; vasa efferentia joined directly to internal seminal vesicle. Cirrus-sac membranous, containing convoluted internal seminal vesicle, tubular pars prostatica and ejaculatory duct. Distal region of seminal vesicle surrounded by prostatic gland-cells. Genital pore at level of oesophagus, sinistro-submedian. Ovary three-lobed median, pretesticular, contiguous with anterior testis 159×190 -226. Laurer's canal opening dorsally to sinistral caecum at level of ovary. Seminal receptacle uterine. Mehlis' gland distinct. Uterus preovarian, intercaecal. Metraterm muscular. Vitellarium follicular in two longitudinal lateral fields; fields extending from proximal part of external seminal vesicle to posterior extremity of body, interrupted at level of gonads and confluent in posttesticular region. Vitelline reservoir dorsal to ovary. Eggs numerous, 64-66 in length (deformed in Canada balsam). Excretory bladder tubular, extending to ovarian zone; pore terminal.

Taxonomic summary

Host. Microancathus fedorovi (Scorpeniformes: Cyclopteridae).

Locality. North Pacific in the environs of Simushir Island, 47°13′S, 152°24′E, depth 210 m.

Date of collection. 25 March 2017.

Site of infection. Intestine.

Prevalence and intensity. 6.7% (n = 30), 1–3 individuals.

Specimens deposited. Mounts no. 14264 and 14265 in the Museum of Helminthological Collections at the Centre for Parasitology of the A.N. Severtsov Institute of Ecology and Evolution (IPEE RAS), Moscow, Russia.

Phylogenetic data

The BI and ML trees were similar terms of general topology (figs 2 & 3). All opecoelids were distributed between six well-supported

Fig. 2. Phylogenetic tree of the Opecoelidae based on the analysis of 28S rDNA partial sequences using ML and BI algorithms; nodal numbers indicate bootstraps/ posterior probabilities. The brachycladiid species Zalophotrema hepaticum, Oshmarinella macrorchis and Campula oblonga were used as outgroups. Clades with grey shading have different supports in the BI and ML trees and are shown in fig. 3.

clades – Helicometrinae, Opecoelinae, Opistholebetinae, 'freshwater Plagioporinae', 'marine Plagioporinae B' and 'marine Plagioporinae C', and also the paraphyletic group 'deep-sea Plagioporinae' and the poorly supported clade '*Pedunculacetabulum inopinipugnus* +*Podocotyloides stenometra*' (fig. 2).

Pseudopecoelus cf. *vulgaris* and *A. koiae* were included in the clade Opecoelinae (fig. 2). Three sequences of 28S rDNA for *Pseudopecoelus* cf. *vulgaris* (GenBank no. MH161433 and MH161434 ex *L. brunneofasciatus*, and MH161436 ex *Sebastes* sp.) were identical. The newly obtained sequence of 28S rDNA in our own specimen of *A. koiae* was identical to that of *A. koiae* GenBank no. KU320595. Other species examined in this study were distributed across the tree as follows: *D. gibsoni* and *D. markowskii* were sister species to each other in the clade Opecoelinae; *S. bramae* and *N. skrjabini* were in the clade 'freshwater Plagioporinae', *M. muraenolepidis* was in the group 'deep-sea Plagioporinae'.

Pseudopecoelus cf. *vulgaris* is a well-supported sister taxon of *Pseudopecoeloides tenuis* Yamaguti, 1940 within the clade Opecoelinae, and the group they form combines with *Opecoeloides* spp. to constitute a well-supported terminal subclade. This subclade has a weakly supported sister relationship with *A. koiae*. The *Discoverytrema* spp. group shares a common ancestor with a marine opecoelines group, consisting of *A. koiae, Pseudopecoelus* cf. *vulgaris, Pseudopecoeloides tenuis* and *Opecoeloides* spp. (fig. 2). Macvicaria muraenolepidis was combined with Macvicaria magellanica Laskowski, Jeżewski & Zdzitowiecki, 2013 with high support, within the clade 'marine Plagioporinae C'. Group M. muraenolepidis + M. magellanica was combined with Choerodonicola renko Machida, 2014 and Choerodonicola arothokoros Martin, Cribb, Cutmore, & Huston, 2018 into a very well-supported subclade, which is sister to the also strongly supported subclade Podocotyloides parupenei + Trilobovarium parvvatis (fig. 2).

Podocotyle atomon was clustered with the deep-sea plagioporines Allopodocotyle margolisi Gibson, 1995, Buticulotrema thermichthysi Bray, Waeschenbach, Dyal, Littlewood & Morand, 2014 and Gaevskajatrema halosauropsi Bray & Campbell, 1996. However, the strict interrelation between *P. atomon* and these species remains unresolved (figs 2 & 3). The position of *S. bramae* and *N. skrjabini* within the 'freshwater Plagioporinae' clade was poorly resolved (figs 2 & 3).

Discussion

The genus *Pseudopecoelus* von Wicklen, 1946 unites 39 species (Blend *et al.*, 2017). The specimens that we studied are undoubtedly conspecific with the *Pseudopecoelus* sp. collected by Machida and Araki (1992) from *Careproctus roseofuscus* Gilbert & Burke, 1912 in the Sea of Okhotsk. In turn, these parasites are most similar to *Pseudopecoelus vulgaris* (Manter, 1934) in terms of the size of the body, ratio of suckers, presence of lip-like folds around the

Fig. 3. Mismatches between phylogenetic trees inferred with the ML and BI algorithms. On the left are fragments of the Bayesian tree and on the right are fragments of the ML tree.

ventral sucker, position of the genital pore and the anterior edge of the vitelline fields, seminal vesicle and gonad shape, position of the gonads very close together and continuous (without discontinuity) arrangement of vitelline follicles opposite to the testes (see Blend et al., 2017). Nevertheless, the egg length in Pseudopecoelus cf. vulgaris specimens (= Pseudopecoelus sp. Machida & Araki, 1992) is less than that of gravid P. vulgaris s. str.; 79-83 vs 90-127 µm (this study; Manter, 1934, 1954; Machida and Araki, 1992). For very young individuals of P. vulgaris s. str. with a body length of up to 1.39 mm, eggs of a smaller length, 78 µm, are indicated by Manter (1934). The trematodes examined by us cannot be classified as very young, based on both the length of the body (1.90-3.81) and the presence of numerous eggs in the uterus. The closest to the Simushir Island area that P. vulgaris s. str. have been discovered is Tosa Bay, off the Pacific coast of southern Japan (Kuramochi, 2001). Thus, molecular data on P. vulgaris s. str. are required for the clarification of the taxonomic relationship between these two parasites.

The genus *Anomalotrema* Zhukov, 1957 contains two species: *A. putjatini* Zhukov, 1957 (type species) and *A. koiae* (see Gibson and Bray, 1984; Gibson, 1996). Morphological differences between these species are manifested in the length of the body (2.38–7.38 mm vs 1.35–4.4 mm), shape of the ovary (indistinctly lobed or bell-shaped vs clearly 3–4 lobed) and sucker ratio (1: 1.47–1.6 vs 1:1.8–2.4) (Zhukov, 1957, 1963; Gibson and Bray, 1984; Gibson, 1996). Until now, *A. putjatini* has been recorded from North Pacific scorpeniform and gadiform fish (Zhukov, 1957, 1963; Korotaeva, 1968), and *A. koiae* from North Atlantic scorpeniform, gadiform and pleuronectiform fish (Gibson, 1996; Gaevskaya, 2002). Our specimens correspond with the description of *A. koiae* in all features except the sucker ratio, and they occupy a position intermediate between *A. koiae* and *A. putjatini* in the indicated feature. However, given the identity of our sample of 28S rDNA sequences compared with those of *A. koiae* (see above), we consider them conspecific with this species.

The inclusion of Pseudopecoelus cf. vulgaris, A. koiae and Discoverytrema spp. in the clade Opecoelinae corresponds with the generally accepted point of view regarding the subfamilial affiliation of these trematodes (Zdzitowiecki, 1990a; Gibson, 1996; Cribb, 2005; Blend et al., 2017). The molecular data we obtained support the morphologically based monophyly of the genus Discoverytrema Gibson, 1976 (see Zdzitowiecki, 1990a). The node support between A. koiae and the group that unites the representatives of the genera Opecoeloides Odhner, 1928, Pseudopecoelus, Pseudopecoeloides Yamaguti, 1940 is too low to be convincing (fig. 2). In this regard, it is impossible to ascertain yet which group among the mentioned opecoelines is the sister branch to the genus Discoverytrema. At the same time, present analysis demonstrates the sister position of the Opecoeloides spp. group with respect to the Pseudopecoelus cf. vulgaris + Pseudopecoeloides tenuis group. Previously published reconstructions of phylogeny of the opecoelids, which did not include Pseudopecoelus cf. vulgaris, have supported the view that P. tenuis is the sister taxon to the Opecoeloides spp. group (e.g. Bray et al., 2016; Rima et al., 2017; Fayton et al., 2018; Martin et al., 2018c). Based on these data, Bray et al. (2016) hypothesized monophyly of opecoelines with a uroproct. It is important to note that a uroproct is characteristic of Pseudopecoeloides spp. and Opecoeloides spp., but not Pseudopecoelus spp. (e.g. Cribb, 2005). Therefore, the data we have obtained do not support this hypothesis. It is difficult to identify reliable synapomorphies for the Opecoeloides spp. + (Pseudopecoelus cf. vulgaris + Pseudopecoeloides tenuis)

subclade or the *Pseudopecoelus* cf. *vulgaris* + *Pseudopecoeloides tenuis* group, because of the limited number of opecoelines with a phylogenetic position verified using the molecular methods.

There are no clear morphological differences between the clades of the Plagioporinae sensu Cribb, 2005: 'freshwater Plagioporinae' 'marine Plagioporinae B', 'marine Plagioporinae C', Opistholebetinae, 'deep-sea Plagioporinae', and '*Pedunculacetabulum inopinipugnus* + *Podocotyloides stenometra*' (Bray *et al.*, 2016; Martin *et al.*, 2018b). The concept of these clades is supported mainly by phylogenetic and ecological evidence. The inclusion of freshwater representatives of the Plagioporinae *sensu* Cribb, 2005 (*S. bramae* and *N. skrjabini*) into the clade 'freshwater Plagioporinae' (fig. 2) was quite predictable, taking into account the last of the above-mentioned criteria.

The distribution of the remaining plagioporines studied – *M. muraenolepidis* and *P. atomon* – was difficult to predict. *Macvicaria muraenolepidis* appeared in the clade 'marine Plagioporinae C', as a sister to *M. magellanica* (fig. 2). At the same time, most *Macvicaria* Gibson & Bray, 1982 with known 28S rDNA sequences belonged to the clade Opistholebetinae (Rima et al., 2017; Martin et al., 2017, 2018a, b, c). Both species under consideration are in different morphological groups of *Macvicaria* spp. (by Aken'Ova et al., 2008): group D (*M. muraenolepidis*) and group B (*M. magellanica*) (Zdzitowiecki, 1990b; Aken'Ova et al., 2008; Laskowski et al., 2013). However, both belong to the same zoogeographical group, namely the Southern Ocean fauna (Laskowski et al., 2013).

Our analysis confirms the data provided by Martin *et al.* (2018a) on the close relationship between the Antarctic and Subantarctic *Macvicaria* spp. with representatives of the genus *Choerodonicola* Cribb, 2005. According to Martin *et al.* (2018a) the genus *Choerodonicola* is paraphyletic. According to our data, its paraphyly is unclear because of low support of the direct sister relationship of the *M. muraenolepidis* + *M. magellanica* group with *C. renko*. Like Martin *et al.* (2018a), we do not think there are enough data to put Antarctic and Subantarctic *Macvicaria* spp. into the genus *Choerodonicola* today. Firstly, revision of *Macvicaria* genus is impossible without molecular data for its type species *Macvicaria alacris* (Looss, 1901). The second reason is the uncertainty regarding the revealed relationships between the above-mentioned *Macvicaria* spp. and *C. renko*.

In general, our data indicate a polyphyly not only of the genus *Macvicaria*, but also three other genera of opecoelids: *Allopodocotyle* Pritchard, 1966, *Podocotyloides* Yamaguti, 1934 and *Gaevskajatrema* Gibson & Bray, 1982 (fig. 2), which is in full accordance with the data in the literature (Andres *et al.*, 2014; Shedko *et al.*, 2015; Bray *et al.*, 2016; Faltýnková *et al.*, 2017; Martin *et al.*, 2017, 2018c; Rima *et al.*, 2017).

According to Fayton and Andres (2016), and Martin *et al.* (2018b) three clades of the plagioporine species – 'marine Plagioporinae B', 'marine Plagioporinae C' and 'freshwater + deep-sea Plagioporinae' – require recognition as independent subfamilies. However, we should not forget that there are still no molecular data on indisputable representatives of the Stenakrinae (see Sokolov *et al.*, 2017), as well as for opecoelinines, which may change the topology of the tree for the Opecoelidae. Thus, the question about the taxonomic status of the three listed clades remains open.

Acknowledgments. The authors wish to thank S. A. Denisova (SPbSU) and the crew of FV *Anatoly Torchinov* for help with material collection. The work was performed at the Research Park of St. Petersburg State University Centre for Molecular and Cell Technologies. **Financial support.** This study was funded by the Russian Science Foundation (grant 17-74-10203).

Conflict of interest. None.

Ethical standards. All applicable international, national and/or institutional guidelines for the care and use of animals were followed by the authors. All necessary permits for sampling and observational field studies were obtained by the authors from the competent authorities.

References

- Aken'Ova TO, Cribb TH and Bray RA (2008) Eight new species of Macvicaria Gibson and Bray, 1982 (Digenea: Opecoelidae) mainly from endemic temperate marine fishes of Australia. ZooKeys 1, 23–58.
- Andres MJ, Pulis EE and Overstreet RM (2014) New genus of opecoelid trematode from *Pristipomoides aquilonaris* (Perciformes: Lutjanidae) and its phylogenetic affinity within the family Opecoelidae. *Folia Parasitologica* 61, 223–230.
- Antar R et al. (2015) Molecular evidence for the existence of species complexes within Macvicaria Gibson & Bray, 1982 (Digenea: Opecoelidae) in the western Mediterranean, with descriptions of two new species. Systematic Parasitology 91, 211–229.
- Bakhoum AJS et al. (2017) The Opecoelidae sperm model and its contribution to phylogeny: spermatozoon ultrastructural particularities of *Allopodocotyle pedicellata* (Plagioporinae, Digenea, Platyhelminthes). *Zoologischer Anzeiger* 266, 28–34.
- Blend CK et al. (2017) Pseudopecoelus mccauleyi n. sp. and Podocotyle sp. (Digenea: Opecoelidae) from the deep waters off Oregon and British Columbia with an updated key to the species of Pseudopecoelus von Wicklen, 1946 and checklist of parasites from Lycodes cortezianus (Perciformes: Zoarcidae). Acta Parasitologica 62, 231–254.
- Born-Torrijos A et al. (2012) Molecular and morphological identification of larval opecoelids (Digenea: Opecoelidae) parasitising prosobranch snails in a Western Mediterranean lagoon. Parasitology International 61, 450–460.
- Bray RA et al. (2009) The phylogeny of the Lepocreadioidea (Platyhelminthes, Digenea) inferred from nuclear and mitochondrial genes: implications for their systematics and evolution. Acta Parasitologica 54, 310–329.
- **Bray RA** *et al.* (2016) The molecular phylogeny of the digenean family Opecoelidae Ozaki, 1925 and the value of morphological characters, with the erection of a new subfamily. *Folia Parasitologica* **63**, 013.
- Bykhovskaya-Pavlovskaya IE and Kulakova AP (1987) Trematodes and Aspidogastreans. In Bauer ON (ed.), *Opredelitel' parazitov presnovodnykh ryb*. Leningrad: Nauka, pp. 76–198.
- Chubrik GK (1966) Fauna and ecology of larval trematodes in molluscs of Barents and White Seas. In Polanski YuI (ed.), *Life Cycles of Parasitic Worms of North Seas*. Moscow, Leningrad: Nauka, pp. 78–158.
- **Constenla M et al.** (2011) Parasitisation by *Bathycreadium elongatum* (Digenea, Opecoelidae) in pyloric caeca of *Trachyrincus scabrus* (Teleostei, Macrouridae). *Diseases of Aquatic Organisms* **96**, 239–247.
- Cribb TH (2005) Family Opecoelidae Ozaki, 1925. In Jones A, Bray RA and Gibson DI (eds), *Keys to the Trematoda*. Wallingford: CABI Publishing and The Natural History Museum, pp. 443–531.
- Curran SS, Overstreet RM and Tkach VV (2007) Phylogenetic affinities of *Plagiocirrus* Van Cleave and Mueller, 1932 with the description of a new species from the Pascagoula River, Mississippi. *Journal of Parasitology* 93, 1452–1458.
- Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research* **32**, 1792–1797.
- Fayton TJ and Andres MJ (2016) New species of *Plagioporus* Stafford (Digenea: Opecoelidae) from California, with an amendment of the genus and a phylogeny of freshwater plagioporines of the Holarctic. *Systematic Parasitology* 93, 731–748.
- Fayton TJ et al. (2017) Three new species of *Plagioporus* Stafford, 1904 from darters (Perciformes: Percidae), with a redescription of *Plagioporus boleosomi* (Pearse, 1924) Peters, 1957. *Systematic Parasitology* **94**, 159–182.
- Fayton TJ et al. (2018) Two new species of Plagioporus (Digenea: Opecoelidae) from the Ouachita madtom, Noturus lachneri, and the

banded sculpin *Cottus carolinae*, from Arkansas. *Journal of Parasitology* **104**, 145–156.

- Faltýnková A et al. (2017) Biodiversity and evolution of digeneans of fishes in the Southern Ocean. In Klimpel S, Kuhn T and Mehlhor H (eds), *Biodiversity and Evolution of Parasitic Life in the Southern Ocean*. Cham, Switzerland: Springer International Publishing, pp 49–75.
- Fraija-Fernández N et al. (2015) Independent host switching events by digenean parasites of cetaceans inferred from ribosomal DNA. International Journal for Parasitology 45, 167–173.

Froese R and Pauly D (2017) FishBase. Available at http://www.fishbase.org.

- Gaevskaya AV (2002) New data on trematodes of the families Opecoelidae and Accacoelidae from fishes in Atlantic Ocean and its seas. *Parazitologiya* 36, 219–223 (in Russian).
- Gibson DI (1996) Trematoda. In Margolis L and Kabata Z (eds), *Guide to the Parasites of Fishes of Canada*. Ottawa: NRC Research Press, pp. 1–373.
- Gibson DI and Bray R (1984) On Anomalotrema Zhukov, 1957, Pellamyzon Montgomery, 1957, and Opecoelina Manter, 1934 (Digenea: Opecoelidae), with a description of Anomalotrema koiae sp. nov. from North Atlantic waters. Journal of Natural History 18, 949–964.
- Gouy M, Guindon S and Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. *Molecular Biology and Evolution* 27, 221–224.
- Hildebrand J et al. (2016) Molecular characteristics of representatives of the genus *Brachylecithum* Shtrom, 1940 (Digenea, Dicrocoeliidae) with comments on life cycle and host specificity. *Parasitology Research* 115, 1417–1425.
- Hunninen AV and Cable RM (1943) The life history of Podocotyle atomon (Rudolphi) (Trematoda: Opecoelidae). Transactions of the American Microscopical Society 62, 57–68.
- Koie M (1981) On the morphology and life-history of *Podocotyle reflexa* (Creplin, 1825) Odhner, 1905, and a comparison of its developmental stages with those of *P. atomon* (Rudolphi, 1802) Odhner, 1905 (Trematoda, Opecoelidae). *Ophelia* 20, 17–43.
- Korotaeva VD (1968) On the helminth fauna of fishes of the family Cottidae. In Skrjabin KI and Mamaev YL (eds), *Helminths of Animals of the Pacific Ocean*. Moscow: Nauka, pp. 89–96 (in Russian).
- Kuramochi T (2001) Digenean trematodes of anguilliform and gadiform fishes from deep-sea areas of Tosa Bay, Japan. In Fujita T, Saito H and Takeda M (eds), *Deep-Sea Fauna and Pollutants in Tosa Bay*. Tokyo: National Science Museum, pp. 19–30.
- Laskowski Z, Jeżewski W and Zdzitowiecki K (2013) Description of a new opecoelid trematode species from nototheniid fish in the Beagle Channel (sub-Antarctica). *Journal of Parasitology* **99**, 487–489.
- Levakin IA, Nikolaev KE and Galaktionov KV (2013) Long-term variation in trematode (Trematoda, Digenea) component communities associated with intertidal gastropods is linked to abundance of final hosts. *Hydrobiologia* 706, 103–118.
- Machida M and Araki J (1992) Some trematodes and cestodes from the Okhotsk Sea off Hokkaido, Japan. *Memoirs of the National Science Museum, Tokyo* 25, 97–103.
- Manter HW (1934) Some digenetic trematodes from deep-water fish of Tortugas, Florida. Papers of the Tortugas Laboratory of the Carnegie Institute of Washington 28, 257–345.
- Manter HW (1954) Some digenetic trematodes from New Zealand. Transactions of the Royal Society of New Zealand 82, 475–568.
- Martin SB *et al.* (2018a) The phylogenetic position of *Choerodonicola* Cribb, 2005 (Digenea: Opecoelidae) with a partial life-cycle for a new species from the blue-barred parrotfish *Scarus ghobban* Forsskål (Scaridae) in Moreton Bay, Australia. *Systematic Parasitology* **95**, 337–352.
- Martin SB et al. (2018b) Expansion of the concept of the Opistholebetinae Fukui, 1929 (Digenea: Opecoelidae Ozaki, 1925), with Magnaosimum brooksae n. g., n. sp. from Tripodichthys angustifrons (Hollard) (Tetraodontiformes: Triacanthidae) in Moreton Bay, Australia. Systematic Parasitology 95, 121–132.
- Martin SB, Cutmore SC and Cribb TH (2017) Revision of *Neolebouria* Gibson, 1976 (Digenea: Opecoelidae), with *Trilobovarium* n. g., for species infecting tropical and subtropical shallow-water fishes. *Systematic Parasitology* **94**, 307–338.

- Martin SB, Cutmore SC and Cribb TH (2018c) Revision of *Podocotyloides* Yamaguti, 1934 (Digenea: Opecoelidae), resurrection of *Pedunculacetabulum* Yamaguti, 1934 and the naming of a cryptic opecoelid species. *Systematic Parasitology* **95**, 1–31.
- Miller MA, Pfeiffer W and Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. *Proceedings of the Gateway Computing Environments Workshop (GCE)*. New Orleans: IEEE. doi: 10.1109/GCE.2010.5676129
- Nakagun S et al. (2018) Prominent hepatic ductular reaction induced by Oschmarinella macrorchis in a Hubbs' beaked whale Mesoplodon carlhubbsi, with biological notes. Diseases of Aquatic Organisms 127, 177–192.
- **Olson PD** et al. (2003) Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal for Parasitology 33, 733-755.
- Pérez-del-Olmo A et al. (2014) A new species of Bathycreadium Kabata, 1961 (Digenea: Opecoelidae) from Phycis blennoides (Brünnich) (Gadiformes: Phycidae) in the western Mediterranean. Systematic Parasitology 88, 233-244.
- Rambaut A et al. (2014) Tracer v1.6. Available at http://beast.bio.ed.ac.uk/ Tracer.
- Rima M et al. (2017) New molecular and morphological data for opecoelid digeneans in two Mediterranean sparid fishes with descriptions of *Macvicaria gibsoni* n. sp. and *M. crassigula* (Linton, 1910) (sensu stricto). *Systematic Parasitology* 94, 739–763.
- Shedko MB, Sokolov SG and Atopkin DM (2015) The first record of Dimerosaccus oncorhynchi (Trematoda: Opecoelidae) in fishes from rivers of Primorsky Territory, Russia, with a discussion on its taxonomic position using morphological and molecular data. Parazitologiya 49, 171–189.
- Shimazu T (2016) Digeneans parasitic in freshwater fishes (Osteichthyes) of Japan. IX. Opecoelidae, Opecoelinae. Bulletin of the National Museum of Nature and Science. Series A 42, 163–180.
- Shulman SS and Shulman-Albova RE (1953) Parasites of Fish of the White Sea. Moscow & Leningrad: USSR Academy of Sciences Publishing House (in Russian).
- Sokolov SG and Gordeev II (2013) New data on trematodes (Plathelminthes, Trematoda) of fishes in the Ross Sea (Antarctic). *Invertebrate Zoology* 10, 255–267.
- Sokolov SG et al. (2017) Zdzitowieckitrema incognitum gen. et sp. nov. (Trematoda, Xiphidiata) from the Antarctic fish Muraenolepis marmorata Günther, 1880 (Gadiformes: Muraenolepidae): ordinary morphology but unclear family affiliation. Marine Biodiversity. doi: 10.1007/s12526-017-0830-0
- Stamatakis A (2006) RAXML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 22, 2688–2690.
- Tkach V, Pawlowski J and Mariaux J (2000) Phylogenetic analysis of the suborder plagiorchiata (Platyhelminthes, Digenea) based on partial lsrDNA sequences. *International Journal for Parasitology* **30**, 83–93.
- Tkach VV et al. (2001) Molecular phylogeny of the suborder Plagiorchiata and its position in the system of Digenea. In Littlewood DTJ and Bray RA (eds), *Interrelationships* of *Platyhelminthes*. London: Taylor & Francis, pp.186–193.
- Voskoboinikova OS (2015) New genus of the family Cyclopteridae Microancathus gen. nov. (Pisces: Cottoidei: Cyclopteridae) with description of a new species Microancathus tokranovi sp. n. Proceedings of the Zoological Institute RAS 319, 215–228 (in Russian).
- Zdzitowiecki K (1990a) A redescription of *Discoverytrema* markowskii Gibson, 1976 and description of *D. gibsoni* n. sp. (Digenea, Opecoelidae). *Systematic Parasitology* **16**, 163–167.
- Zdzitowiecki K (1990b) Antarctic representatives of the genus Macvicaria Gibson & Bray, 1982 (Digenea: Opecoelidae), with descriptions of two new species. Systematic Parasitology 16, 169–179.
- Zhukov EV (1957) New genera and species of trematodes of fish in the Far-Eastern seas. *Zoologicheskii Zhurnal* **36**, 840–846 (in Russian).
- **Zhukov EV** (1963) Parasite fauna of fishes in the Chukotsk Peninsula. II. Endoparasitic worms of marine and freshwater fishes. *Parazitologicheskii Sbornik* **21**, 96–139 (in Russian).