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Abstract. Systems of illative logic are logical calculi formulated in the untyped λ-calculus
supplemented with certain logical constants.1 In this short paper, I consider a paradox that arises
in illative logic. I note two prima facie attractive ways of resolving the paradox. The first is well
known to be consistent, and I briefly outline a now standard construction used by Scott and Aczel
that establishes this. The second, however, has been thought to be inconsistent. I show that this isn’t
so, by providing a nonempty class of models that establishes its consistency. I then provide an illative
logic which is sound and complete for this class of models. I close by briefly noting some attractive
features of the second resolution of this paradox.

§1. Illative paradoxes. We can characterize the terms of an untyped λ-language as
follows.

DEFINITION 1.1. Let � be a signature, i.e., a set of constants, and let V be a set of
variables. The set of untyped λ-terms, given � and V, TV

� , is then defined as follows:

• x ∈ T
V
� , for each x ∈ V

• X ∈ T
V
� , for each X ∈ �

• XY ∈ T
V
� , for each X, Y ∈ T

V
�• λx.Y ∈ T

V
� , for each Y ∈ T

V
� , and each x ∈ V.

An important relation amongst untyped λ-terms is that of β-equivalence. We can define
this as follows.

DEFINITION 1.2. We say that a term of the form (λx.Y)Z is a β-redex and Y[x/Z] is its
β-contractum.2

DEFINITION 1.3. We say that X is β-equivalent to X′, X =β X′, just in case X′ results
from X by changes of bound variables, and a finite number of substitutions of β-redexes
for β-contractums and β-contractums for β-redexes.

Let � be a signature containing a primitive or defined constant →.3 The well-known
Curry Paradox shows that the following prima facie attractive principles entail every
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1 Or systems formulated in an untyped combinatory language with additional logical constants.
In this paper, I will primarily focus on versions formulated using the untyped λ-calculus. Note,
though, that all of the main claims I make also hold, mutatis mutandis, for systems formulated in
a combinatory language.

2 Here Y[x/Z] is the result of substituting Z for free occurrences of x in Y . It is assumed that Z is
free for x in Y . For more details see Hindley & Seldin (2008).

3 In what follows, we’ll take A → B to be a definitional abbreviation for → AB.
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term.4 Here we take � to be a set of terms, and let X, Y etc. be terms. We let �, �′ serve as
an abbreviation for � ∪ �′, and �, X as an abbreviation for � ∪ {X}.

(Ax)
�, X � X

� � X → Y �′ � X(→ E)
�, �′ � Y

� � X X =β Y
(Eq)

� � Y

�, X � Y
(→ I)

� � X → Y

Curry’s Paradox: Given (Ax), (Eq), (→ I), and (→ E) we have � ⊥
for any arbitrary term ⊥.

Proof. Let C =β C → ⊥, where ⊥ some arbitrary term.5 By (Ax), we
have C � C. Since we have C =β C → ⊥, by (Eq), we have C �
C → ⊥. Thus, by (→ E), we have C � ⊥. And so, by (→ I), we have
� C → ⊥, which, by (Eq), gives us � C. And so finally, by (→ E), we
have � ⊥.

Now a natural assumption in developing an illative logical system is that some but not all
terms in a λ-language with a constant → will express propositions. But, given this, it is also
natural to think that certain prima facie plausible inference rules may need to be restricted
in certain ways when some of the terms that they involve do not express propositions.

A natural conclusion, then, to draw from Curry’s Paradox is that at least some of the
rules: (Ax), (Eq), (→ I), (→ E), need to be restricted to allow for cases where some
of the terms that they involve do not express propositions. This indeed was the response
advocated by Curry and others.6 In particular, it was suggested that the appropriate way to
block the above derivation is to restrict the principle (→ I).

Let � now be a signature containing, in addition to the constant →, a constant Prop,
which should be glossed as meaning: is a proposition. The suggestion advocated by Curry
and others is that we should replace (→ I) by the following:

�, X � Y �′ � Prop(X)
(→ Is)

�, �′ � X → Y

And indeed this restriction will suffice to block the derivation. For we can show that
(Ax), (Eq), (→ Is), and (→ E) are consistent.7

Of course, once we’ve introduced the constant Prop and appealed to it to restrict certain
inference rules, we will want some principles that tell us when a term of the form Prop(X)
follows from some other terms �. And, at least prima facie, the following two principles
seem attractive:

� � X(Prop 1)
� � Prop(X)

(Prop 2)
� � Prop(Prop(X))

4 See Curry (1942a).
5 Note that we can be assured that there is such a C given the existence of a λ-term Y such that, for

every X, we have YX =β X(YX). A term with this functional behavior is called a Y-combinator.
An example of such a term is: λz.(λx.z(xx)λx.z(xx)).

6 See Curry, Hindley, & Seldin (1972).
7 This is a consequence of the existence of the nonempty class of models we will consider in §3.

https://doi.org/10.1017/S1755020319000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000054


BUNDER’S PARADOX 831

The idea behind (Prop 1) is that the only terms that should be provable in an illative
logic, given some set of assumptions, are those that express propositions, given those same
assumptions. And the idea behind (Prop 2) is that while various terms may fail to express
propositions, for any term X, the claim that X is a proposition should be a proposition.
According to (Prop 2), then, Prop is a propositional function in the sense that we have
Prop(Prop(X)) for every term X.

Despite their prima facie plausibility, however, Martin Bunder has shown that, while
(Ax), (Eq), (→ Is), and (→ E) are consistent, they are not jointly consistent with (Prop 1)
and (Prop 2).8

Bunder’s Paradox: Given (Ax), (Eq), (→ Is), (→ E), (Prop 1) and
(Prop 2), we have � ⊥ for any arbitrary term ⊥.

Proof. Let B =β Prop(B) → (B → ⊥), where ⊥ is some arbitrary
term. By (Ax), we have Prop(B), B � B. And so, by (Eq), we have
Prop(B), B � Prop(B) → (B → ⊥). And since, by (Ax), we have
Prop(B), B � Prop(B), it follows, by (→ E), that we have Prop(B), B �
⊥. And so, by (→ Is), we have Prop(B) � B → ⊥. And since, by
(Prop 2), we have � PropProp(B), it follows by (→ Is) that we have
� Prop(B) → B → ⊥, and so, by (Eq), we have � B. And since, by
(Prop 1), we have � Prop(B), it follows, by (→ E), that we have � ⊥.

I take it that (Ax) and (Eq) are nonnegotiable principles, if one wants to develop any
reasonably strong illative logic. Given Bunder’s Paradox, then, it seems that we are forced
to either weaken the logic of → or the logic of Prop.

One option, then, is to try to weaken the principles concerning Prop in order to hold on
to the principles concerning →. Here the most natural option, I take it, is to reject (Prop 2)
in order to hold on to (Prop 1), in addition to (Ax), (Eq), (→ Is), (→ E). For, insofar as
we are forced to choose between (Prop 1) and (Prop 2), it seems more desirable to hold on
to the inference from provability to propositionhood than to hold on to the claim that Prop
is a propositional function.

In §3, I will briefly outline a construction due to Scott and Aczel which shows that this
does provide one consistent response to this paradox.

Another prima facie attractive option, though, is to try to weaken the principles concern-
ing → in order to hold on to the principles concerning Prop. Here the most natural option,
I take it, is to further weaken (→ Is) in order to hold on to (→ E) in addition to (Ax), (Eq),
(Prop 1) and (Prop 2). Of course, for this option to be at all attractive, we would need there
to be some other suitably principled introduction rule for → that was consistent with this
set of principles. And the following seems like the most natural option:

�, X � Y �′ � Prop(X) �′′ � Prop(Y)
(→ Iw)

�, �′, �′′ � X → Y

Interestingly, this option has not, to my knowledge, been developed or shown to be
consistent. Indeed, it has been claimed that a slight strengthening of the conjunction of
(Ax), (Eq), (→ E), (→ Iw), (Prop 1) and (Prop 2) is inconsistent.9 In particular, it has been

8 See Bunder (1976). For a related paradox see: Bunder (1970), Curry (1942b).
9 See Bunder & Meyer (1978) for a putative proof of this inconsistency, and Czajka (2015) pp.

35–36 for brief discussion of the putative inconsistency of this package of principles.
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claimed that (Ax), (Eq), (→ E), (→ Iw), (Prop 1) and (Prop 2) are jointly inconsistent with
the following additional principle:

� � Prop(X) �′ � Prop(Y)
(Prop →)

�, �′ � Prop(X → Y)

Since (Prop →) seems extremely plausible, if these principles were all jointly inconsis-
tent this would, I think, show that the correct response to Bunder’s Paradox is to weaken
the logic governing Prop. In §4, however, I will present a model construction technique
that can be used to prove the consistency of (Ax), (Eq), (→ E), (→ Iw), (Prop 1), (Prop 2)
and (Prop →). Given the consistency of this package of principles, it strikes me as being
at the very least a subtle question what the right response is to Bunder’s Paradox.

§2. λ-Algebras. In this section, we briefly describe a class of structures suitable for
interpreting an untyped λ-language. The key feature of these structures is that terms that
are β-equivalent are assigned the same denotation when interpreted in these structures.10

DEFINITION 2.1. Let � be a signature, and let V be a set of variables. In addition to the
members of �, we also take there to be two distinguished constants K and S. The set of
untyped combinatory-terms, given � and V, CTV

� , is then defined as follows:

• x ∈ CT
V
� , for each x ∈ V

• X ∈ CT
V
� , for each X ∈ �

• X ∈ CT
V
� , if either X = K or X = S

• XY ∈ CT
V
� , for each X, Y ∈ CT

V
� .

DEFINITION 2.2. Let C = 〈C, ·〉, where C is a set, and · is a binary operation on C. We
say that C is a combinatory algebra just in case there are elements k, s ∈ C such that: (i)
k · a · b = a, and (ii) s · a · b · c = (a · c) · (b · c), for all a, b, c ∈ C.

Given a combinatory algebra, we can provide an interpretation for a set of untyped
combinatory terms, relative to an assignment to variables, as follows.

DEFINITION 2.3. Let C = 〈C, ·〉 be a combinatory algebra. Let ρ : V → C and �·� : � →
C. We now define a function �·�ρ : CTV

� → C as follows:

• �x�ρ = ρ(x), if x ∈ V
• �X�ρ = �X�, if X ∈ �
• �K�ρ = k
• �S�ρ = s
• �XY�ρ = �X�ρ · �Y�ρ .

We now describe a way of simulating λ-abstraction in a combinatory language.

DEFINITION 2.4. For each Y ∈ CT
V
� , we let λ∗x.Y ∈ CT

V
� be defined as follows:

• λ∗x.x = SKK, for x ∈ V
• λ∗x.Z = KZ, if Z does not contain any occurences of x
• λ∗x.ZQ = S(λ∗x.Z)(λ∗x.Q).

10 Propositions listed without proof or a reference are standard results that may be found, together
with more detailed discussion of such structures, in Barendregt (1984) or Hindley & Seldin
(2008).
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Given this way of simulating λ-abstraction, we can now describe two mappings, one
which takes untyped lambda terms to untyped combinatory terms, the other which takes
untyped combinatory terms to untyped lambda terms.

DEFINITION 2.5. We let CL : TV
� → CT

V
� be the mapping such that:

• CL(x) = x, if x ∈ V
• CL(Y) = Y, if Y ∈ �
• CL(YZ) = CL(Y)CL(Z)
• CL(λx.Y) = λ∗x.CL(Y).

DEFINITION 2.6. We let � : CTV
� → T

V
� be the mapping such that:

• �(x) = x, if x ∈ V
• �(Y) = Y, if Y ∈ �
• �(YZ) = �(Y)�(Z)
• �(K) = λxλy.x
• �(S) = λxλyλz.xz(yz).

PROPOSITION 2.7. Let X, Y ∈ T
V
� . If X =β Y, then �(CL(X)) =β �(CL(Y)).11

DEFINITION 2.8. Given a combinatory algebra C = 〈C, ·〉, we let T
V
C and CT

V
C be,

respectively, the sets of untyped λ-terms and sets of untyped combinatory terms, where
we (ambiguously) take C to be a signature such that each sc ∈ C uniquely corresponds to
some c ∈ C.

We are now in a position to characterize the class of structures appropriate for interpret-
ing the untyped λ-calculus.

DEFINITION 2.9. Let C = 〈C, ·〉 be a combinatory algebra. And let �·� : CTV
C → C be

such that we have �sc� = c, for each c ∈ C. Then we say that C is a λ-algebra just in case:
if �(X) =β �(Y), then �X�ρ = �Y�ρ .

PROPOSITION 2.10. Let C = 〈C, ·〉 be a λ-algebra and let �·� : CTV
C → C be as above.

Then if X, Y ∈ T
V
C are such that X =β Y, then �CL(X)�ρ = �CL(Y)�ρ .

Proof. Assume that X =β Y . Then by 2.7, we have �(CL(X)) =β �(CL(Y)). And so it
follows, since C is a λ-algebra that we have �CL(X)�ρ = �CL(Y)�ρ . �

As a consequence of the preceding, it follows that we can interpret untyped λ-terms by
assigning denotations to constants in a λ-algebra.

DEFINITION 2.11. Let C = 〈C, ·〉 be a λ-algebra. Let ρ : V → C and �·� : � → C. We
take �·�ρ : CTV

� → C to be as defined above. We now define �·�ρ : TV
� → C as follows:

• �x�ρ = ρ(x), if x ∈ V
• �X�ρ = �X�, if X ∈ �
• �XY�ρ = �X�ρ · �Y�ρ

• �λx.Y�ρ = �CL(λx.Y)�ρ .

PROPOSITION 2.12. Let C = 〈C, ·〉 be a λ-algebra and let �·� : TV
� → C be as above.

Then if X, Y ∈ T
V
� are such that X =β Y, then �X�ρ = �Y�ρ .

11 See Hindley & Seldin (2008) for a proof of this.
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PROPOSITION 2.13. For each X ∈ T
V
� , let [X] be the β-equivalence class of members

of TV
� . Let C = {[X] : X ∈ T

V
�}. And let [X] · [Y] = [XY]. Then 〈C, ·〉 is a λ-algebra.

§3. Strong Kleene Illative Algebras. We now describe a method for constructing
models which satisfy (Ax), (Eq), (→ Is), (→ E), and (Prop 1).12 In what follows, it will
prove to be expeditious to work with a signature that contains primitive constants ¬, ∨. We
can then take A → B to be defined as: ¬A ∨ B.13

DEFINITION 3.1. Let C be a λ-algebra, with distinguished elements: n, v, p. We say that
〈C, T, F〉 is a Strong Kleene Illative Algebra just in case:

(i) T, F ⊆ C, and T ∩ F = ∅
(ii) v · a · b ∈ T iff a ∈ T or b ∈ T

(iii) v · a · b ∈ F iff a ∈ F and b ∈ F

(iv) n · a ∈ T iff a ∈ F

(v) n · a ∈ F iff a ∈ T

(vi) p · a ∈ T iff a ∈ T ∪ F.

DEFINITION 3.2. Let � be such that it contains distinguished constants: ¬, ∨, Prop. Let
I = 〈C, T, F〉 be a Strong Kleene Illative Algebra. Let �·� : � → C be such that:

• �¬� = n
• �∨� = v
• �Prop� = p.

We let �·�ρ : T
V
� → C be defined as above. We say that 〈I, �·�〉 is a Strong Kleene

Illative Model for TV
� .

DEFINITION 3.3. We let � |�sk X just in case, for every Strong Kleene Illative Model, and
every ρ : V → C, if �Y�ρ ∈ T, for every Y ∈ �, then �X�ρ ∈ T.

THEOREM 3.4. Let A → B =df ¬A ∨ B. And let �s be the smallest relation closed under
(Ax), (Eq), (→ Is), (→ E), and (Prop 1). We have that if � �s X, then � |�sk X.

Proof. This can be proved by a simple induction. �
We now show that there are Strong Kleene Illative Algebras.

DEFINITION 3.5. Let ∅ ⊂ P ⊂ �, {∨, ¬, Prop} ⊂ � and P ∩ {∨, ¬, Prop} = ∅. For each
X ∈ T

V
� , we let [X] be the β-equivalence class of members of TV

� . Then we let C = 〈C, ·〉,
where C = {[X] : X ∈ T

V
�} and [X] · [Y] = [XY].

PROPOSITION 3.6. By 2.13, we have that C = 〈C, ·〉 is a λ-algebra.

12 The construction which leads to such models is described in Scott (1975) and Aczel (1980).
The construction from Aczel (1980) is used to interpret first-order illative systems in Hindley &
Seldin (1986), Chapter 17, while Bunder (1979) investigates how the construction developed in
Scott (1975) may be used interpret illative systems. A similar construction also appears in Fitch
(1981), and, in the context of truth theories, in Kripke (1975). More recently, such fixed-point
constructions have been used in Czajka (2013) and Czajka (2015) to construct models of higher-
order systems of illative logic.

13 Where ¬A ∨ B is itself a definitional abbreviation for ∨(¬A)B.
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We now inductively define two sequences of subsets of C.

DEFINITION 3.7. Let T0 ⊂ [P] and F0 ⊂ [P] be such that T0 ∩ F0 = ∅ and T0 ∪ F0 = [P].
We let Tα+1 and Fα+1 be defined as follows:

• If p ∈ P and [p] ∈ Tα , then [p] ∈ Tα+1
• If p ∈ P and [p] ∈ Fα , then [p] ∈ Fα+1
• If [X] ∈ Tα or [Y] ∈ Tα , then [∨XY] ∈ Tα+1
• If [X] ∈ Fα and [Y] ∈ Fα , then [∨XY] ∈ Fα+1
• If [X] ∈ Fα , then [¬X] ∈ Tα+1
• If [X] ∈ Tα , then [¬X] ∈ Fα+1
• If [X] ∈ Tα ∪ Fα , then [Prop(X)] ∈ Tα+1.

Finally, where λ is a limit ordinal, we let Tλ = ⋃
α<λ Tα , and Fλ = ⋃

α<λ Fα .

LEMMA 3.8. If α ≤ β, then Tα ⊆ Tβ and Fα ⊆ Fβ .

Proof. This may be proved by a simple induction. �

LEMMA 3.9. There is some α such that Tα = Tα+1 and Fα = Fα+1.

Proof. By 3.8, we have that the sequences Tβ and Fβ are both monotonically increasing
sequences of subsets of C. It is a consequence of the Knaster-Tarski fixed-point theorem
that each such sequence stabilizes. And since each sequence stabilizes, it follows that there
is some α such that Tα = Tα+1 and Fα = Fα+1.14 �

PROPOSITION 3.10. If A and B are constants and AX1, . . . , Xn =β BY1, . . . , Yk, then
A = B, n = k and Xi =β Yi, for each i.15

LEMMA 3.11. For each ordinal α, Tα ∩ Fα = ∅.

Proof. Assume that for all β < α we have Tβ ∩ Fβ = ∅. We will show that we have
Tα ∩ Fα = ∅. There are three cases to consider.

(i) α = 0. In this case, by construction, we have T0 ∩ F0 = ∅.

(ii) α = γ + 1. By our Induction Hypothesis we have that Tγ ∩ Fγ = ∅. Now assume
that we have [X] ∈ Tγ+1 ∩Fγ+1. Then, given our construction, we must have either
(a) X =β p, for some p ∈ P, (b) X =β ∨ZQ, for some terms Z and Q, (c) X =β ¬Z,
for some term Z, or (d) X =β Prop(Z), for some term Z. And, given 3.10, it follows
that exactly one of (a)–(d) can obtain.
If (a) uniquely obtains, then given our construction it follows that [X] = [p] ∈
Tγ ∩ Fγ which contradicts our Induction Hypothesis. If (b) uniquely obtains, then
given our construction we must have [Z] ∈ Fγ and [Q] ∈ Fγ , and either [Z] ∈ Tγ or
[Q] ∈ Tγ , which contradicts our Induction Hypothesis. If (c) uniquely obtains, then
given our construction we must have [Z] ∈ Tγ ∩ Fγ , contradicting our Induction

14 See Tarski (1955). It’s worth noting that the Knaster-Tarski fixed-point theorem, in full generality,
is stronger than is needed here. For one can show by a simple induction that if there is some α
such that [X] ∈ Tα , then there is some n ∈ N such that [X] ∈ Tn, and similarly that if there
is some α such that [X] ∈ Fα , then there is some n ∈ N such that [X] ∈ Fn. It follows, given
the monotonicity of these sequences, that we have Tω = Tω+1 and Fω = Fω+1, and so, more
generally, Tω = Tα and Fω = Fα , for each α ≥ ω.

15 See Hindley & Seldin (1986) Corollary 1.35.5 for a proof.
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Hypothesis. Finally, given our construction, if (d) holds then it cannot be that [X] =
[Prop(Z)] ∈ Tγ+1 ∩ Fγ+1. For, given our construction, we have, in general, that
[Prop(Z)] �∈ Fα . This may be proved by a simple induction, but the key fact is that
there is no clause in our construction that allows [Prop(Z)] ∈ Fα .

(iii) α = λ for some limit ordinal λ. In this case, given our construction, Tλ ∩ Fλ = ∅
follows straightforwardly from the Induction Hypothesis that for all β < λ we
have Tβ ∩ Fβ = ∅, together with 3.8, which tells us that our sequences increase
monotonically. �

THEOREM 3.12. The class of Strong Kleene Illative Algebras is nonempty.

Proof. Let Is = 〈C, T, F〉, where T = Tα = Tα+1 and F = Fα = Fα+1.16 Letting
n = [¬], v = [∨] and p = [Prop], we verify that this structure satisfies conditions (i)–(vi).

We have that Is satisfies condition (i), by 3.11. For conditions (ii)–(vi) we note that,
given our construction, we immediately have the right-to-left direction of these bicondi-
tionals. And the left-to-right directions follow from the fact that, given 3.10, at most one
of (a) X =β p, for some p ∈ P, (b) X =β ∨ZQ, for some terms Z and Q, (c) X =β ¬Z,
for some term Z, or (d) X =β Prop(Z), for some term Z can obtain. Thus consider the case
of (ii). Suppose that we have [∨ZQ] ∈ T = Tα+1. Then, given our construction and the
above fact, the only way that this could obtain is if [Z] ∈ T = Tα or [Q] ∈ T = Tα . And
so we have the left-to-right direction of (ii). Cases (iii)–(vi) may be justified in the same
manner. �

COROLLARY 3.13. (Ax), (Eq), (→ Is), (→ E), and (Prop 1) are jointly consistent.

Proof. Given the existence of Strong Kleene Illative Algebras, it follows that there are
Strong Kleene Illative Models. The joint consistency of (Ax), (Eq), (→ Is), (→ E), and
(Prop 1) follows from 3.4. �

§4. Weak Kleene Illative Algebras. We now describe a method for constructing mod-
els which satisfy (Ax), (Eq), (→ E), (→ Iw), (Prop 1), (Prop 2), and (Prop →).17 We will
continue to work with a signature that contains primitive constants ¬, ∨, and take A → B
to be defined as: ¬A ∨ B.

DEFINITION 4.1. Let C be a λ-algebra, with distinguished elements: n, v, p. We say that
〈C, T, F〉 is a Weak Kleene Illative Algebra just in case:

(i) T, F ⊆ C, and T ∩ F = ∅
(ii) v · a · b ∈ T iff a, b ∈ T ∪ F and either a ∈ T or b ∈ T

(iii) v · a · b ∈ F iff a ∈ F and b ∈ F

(iv) n · a ∈ T iff a ∈ F

(v) n · a ∈ F iff a ∈ T

(vi) p · a ∈ T iff a ∈ T ∪ F

(vii) p · a ∈ F iff a �∈ T ∪ F.

16 The existence of such an ordinal is ensured by 3.9. Note that we can let α be ω or any other
ordinal greater than ω.

17 See Gupta & Martin (1984) for this construction in the context of truth theories.
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DEFINITION 4.2. Let � be such that it contains distinguished constants: ¬, ∨, Prop. Let
I = 〈C, T, F〉 be a Weak Kleene Illative Algebra. Let �·� : � → C be such that:

• �¬� = n
• �∨� = v
• �Prop� = p.

We let �·�ρ : TV
� → C be defined as above. We say that 〈I, �·�〉 is a Weak Kleene Illative

Model for TV
� .

DEFINITION 4.3. We let � |�wk X just in case, for every Weak Kleene Illative Model, and
every ρ : V → C, if �Y�ρ ∈ T, for every Y ∈ �, then �X�ρ ∈ T.

THEOREM 4.4. Let A → B =df ¬A ∨ B. And let �w be the smallest relation closed under
(Ax), (Eq), (→ E), (→ Iw), (Prop 1) (Prop 2), and (Prop →). We have that if � �w X,
then � |�wk X.

Proof. This can be proved by a simple induction. �
We now show that there are Weak Kleene Illative algebras. Our proof proceeds as

follows. We first construct a sequence of monotonically increasing subsets of C, Hα . This
sequence will have a fixed-point, H. The role of this construction is to pick out the subset of
C that we can informally think of as representing the members of C that are propositions.
We will then construct two sequences of monotonically increasing subsets of C, Tα and Fα .
These sequences will also have fixed-points, T and F, which can be easily shown to satisfy
conditions (i)–(v). In addition, this construction ensures that we have [Prop(X)] ∈ T just
in case [X] ∈ H, and [Prop(X)] ∈ F just in case [X] �∈ H. We then show that H = T ∪ F.
This ensures that [Prop(X)] ∈ T just in case [X] ∈ T ∪ F and [Prop(X)] ∈ F just in case
[X] �∈ T ∪ F, ensuring that T and F satisfy conditions (vi) and (vii).

As in the preceding section, we let ∅ ⊂ P ⊂ �, {∨, ¬, Prop} ⊂ � and P∩{∨, ¬, Prop} =
∅, and we let C = 〈C, ·〉, where C = {[X] : X ∈ T

V
�} and [X] · [Y] = [XY]. We inductively

define a sequence of subsets of C as follows.

DEFINITION 4.5. Let [PROP] be the set of elements of C of the form [Prop(X)], for some
term X. Let H0 = [P] ∪ [PROP].

We let Hα+1 be defined as follows:

• If p ∈ P, then [p] ∈ Hα+1
• [Prop(X)] ∈ Hα+1, for each X ∈ T

V
�• If [X] ∈ Hα and [Y] ∈ Hα , then [∨XY] ∈ Hα+1

• If [X] ∈ Hα , then [¬X] ∈ Hα+1.

Finally, where λ is a limit ordinal, we let Hλ = ⋃
α<λ Hα .

LEMMA 4.6. If α ≤ β, then Hα ⊆ Hβ .

Proof. This may be proved by a simple induction. �

LEMMA 4.7. There is some α such that Hα = Hα+1.

Proof. This follows by 4.6 and the Knaster-Tarski fixed-point theorem.18 �

18 Note that one could also show by a simple induction, and without appeal to the Knaster-Tarski
fixed-point theorem, that if there is some α such that [X] ∈ Hα , then there is some n ∈ N such
that [X] ∈ Hn. It follows, given the monotonicity of this sequence, that we have Hω = Hω+1,
and so, more generally, Hω = Hα , for each α ≥ ω.
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We now construct a pair of sequences of monotonically increasing subsets of C.

DEFINITION 4.8. Let H =df Hα = Hα+1.19 Next, let T0 ⊂ [P] ∪ [PROP] and F0 ⊂
[P] ∪ [PROP] such that T0 ∩ F0 = ∅, T0 ∪ F0 = [P] ∪ [PROP]. In addition, we assume
that if [X] ∈ H, then [Prop(X)] ∈ T0, and if [X] �∈ H, then [Prop(X)] ∈ F0. Note that the
consistency of these assumptions follows from 3.10.

We let Tα+1 and Fα+1 be defined as follows:

• If p ∈ P and [p] ∈ Tα , then [p] ∈ Tα+1
• If p ∈ P and [p] ∈ Fα , then [p] ∈ Fα+1
• If [Prop(X)] ∈ Tα , then [Prop(X)] ∈ Tα+1
• If [Prop(X)] ∈ Fα , then [Prop(X)] ∈ Fα+1
• If [X], [Y] ∈ Tα ∪ Fα , and either [X] ∈ Tα or [Y] ∈ Tα , then [∨XY] ∈ Tα+1
• If [X] ∈ Fα and [Y] ∈ Fα , then [∨XY] ∈ Fα+1
• If [X] ∈ Fα , then [¬X] ∈ Tα+1
• If [X] ∈ Tα , then [¬X] ∈ Fα+1.

Finally, where λ is a limit ordinal, we let Tλ = ⋃
α<λ Tα , and Fλ = ⋃

α<λ Fα .

LEMMA 4.9. If α ≤ β, then Tα ⊆ Tβ and Fα ⊆ Fβ .

Proof. This may be proved by a simple induction. �

LEMMA 4.10. There is some α such that Tα = Tα+1 and Fα = Fα+1.

Proof. This follows by 4.9 and the Knaster-Tarski fixed-point theorem.20 �

LEMMA 4.11. For each α, Hα = Tα ∪ Fα .

Proof. We assume that, for all β < α, Hβ = Tβ ∪ Fβ . We will show that Hα = Tα ∪ Fα .
There are three cases to consider.

(i) α = 0. In this case, we have H0 = [P] ∪ [PROP] = T0 ∪ F0.
(ii) α = γ + 1. Then by our Induction Hypothesis we have: Hγ = Tγ ∪ Fγ . We will

show that: Hγ+1 = Tγ+1 ∪ Fγ+1. To this end, we will show that: Hγ+1 ⊆ Tγ+1 ∪ Fγ+1.
The proof that: Tγ+1 ∪ Fγ+1 ⊆ Hγ+1 proceeds mutatis mutandis.

Suppose that [X] ∈ Hγ+1. Then, given our construction and 3.10 we have that exactly
one of the following conditions obtains: (a) X =β p, for some p ∈ P, (b) X =β Prop(Y),
for some Y , (c) X =β ∨ZQ, for some Z and Q, or (d) X =β ¬Z, for some Z.

(a) Since [p] ∈ Tα ∪ Fα , for every α, we have that [p] = [X] ∈ Tγ+1 ∪ Fγ+1.
(b) Since [Prop(Y)] ∈ Tα ∪ Fα , for every α, we have that [Prop(Y)] = [X] ∈ Tγ+1 ∪

Fγ+1.
(c) We have [∨ZQ] ∈ Hγ+1. It follows from this given the construction and 3.10 that

[Z] ∈ Hγ and [Q] ∈ Hγ . By our Induction Hypothesis we have, then, that [Z] ∈ Tγ ∪ Fγ

and [Q] ∈ Tγ ∪ Fγ . And so we have: [∨ZQ] ∈ Tγ+1 ∪ Fγ+1.

19 The existence of such an ordinal is ensured by 4.7. In particular, we can let α be ω or any other
ordinal greater than ω.

20 Again, one could also show by a simple induction, and without appeal to the Knaster-Tarski
fixed-point theorem, that if there is some α such that [X] ∈ Tα , then there is some n ∈ N such that
[X] ∈ Tn, and similarly that if there is some α such that [X] ∈ Fα , then there is some n ∈ N such
that [X] ∈ Fn. It follows, given the monotonicity of these sequences, that we have Tω = Tω+1
and Fω = Fω+1, and so, more generally, Tω = Tα and Fω = Fα , for each α ≥ ω.
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(d) We have [¬Z] ∈ Hγ+1. It follows from this given the construction and 3.10 that
[Z] ∈ Hγ . By our Induction Hypothesis, it follows that we have [Z] ∈ Tγ ∪ Fγ . And so we
have: [¬Z] ∈ Tγ+1 ∪ Fγ+1.

We’ve shown then that Hγ+1 ⊆ Tγ+1∪Fγ+1. And a parallel proof will establish: Tγ+1∪
Fγ+1 ⊆ Hγ+1. Thus we have: Hγ+1 = Tγ+1 ∪ Fγ+1.

(iii) α = λ, for some limit ordinal λ. We show that Hλ = Tλ ∪ Fλ. To this end we show:
Hλ ⊆ Tλ ∪ Fλ. Again, the proof of Tλ ∪ Fλ ⊆ Hλ proceeds mutatis mutandis.

Suppose that [X] ∈ Hλ. Then we have that there is some α < λ such that [X] ∈ Hα .
By our Induction Hypothesis it follows that [X] ∈ Tα ∪ Fα . And so, it follows that [X] ∈
Tλ ∪ Fλ. We thus have that Hλ ⊆ Tλ ∪ Fλ. And we can provide a parallel proof that
Tλ ∪ Fλ ⊆ Hλ. Thus we have: Hλ = Tλ ∪ Fλ. �

LEMMA 4.12. For each ordinal α, Tα ∩ Fα = ∅.

Proof. The proof for this is a simple variant, mutatis mutandis, of the proof of 3.11. �

THEOREM 4.13. The class of Weak Kleene Illative Algebras is nonempty.

Proof. Let Iw = 〈C, T, F〉, where T = Tα = Tα+1 and F = Fα = Fα+1.21 Letting
n = [¬], v = [∨] and p = [Prop], we verify that this structure satisfies conditions (i)–
(vii).

We have that Iw satisfies condition (i), by 4.12. For conditions (ii)–(v) we note that,
given our construction, we immediately have the right-to-left direction of these bicondi-
tionals. And the left-to-right directions follow from the fact that, given 3.10, at most one
of (a) X =β p, for some p ∈ P, (b) X =β ∨ZQ, for some terms Z and Q, (c) X =β ¬Z,
for some term Z, or (d) X =β Prop(Z), for some term Z can obtain. Thus consider the case
of (ii). Suppose that we have [∨ZQ] ∈ T = Tα+1. Then, given our construction and the
above fact, the only way that this could obtain is if [Z], [Q] ∈ T ∪ F = Tα ∪ Fα and either
[Z] ∈ T = Tα or [Q] ∈ T = Tα . And so we have the left-to-right direction of (ii). Cases
(iii)–(v) may be justified in the same manner.

To see that (vi)–(vii) hold note that, given 4.11, it follows that H = T ∪ F. Moreover it
follows given our construction and 3.10 that we have [Prop(X)] ∈ T just in case [X] ∈ H
and [Prop(X)] ∈ F just in case [X] �∈ H. But then we have that [Prop(X)] ∈ T just in case
[X] ∈ T ∪ F and [Prop(X)] ∈ F just in case [X] �∈ T ∪ F. Thus conditions (vi)–(vii) are
satisfied. �

COROLLARY 4.14. (Ax), (Eq), (→ E), (→ Iw), (Prop 1), (Prop 2), and (Prop →) are
jointly consistent.

Proof. Given the existence of Weak Kleene Illative Algebras, it follows that there are
Weak Kleene Illative Models. The joint consistency of (Ax), (Eq), (→ E), (→ Iw), (Prop
1), (Prop 2), and (Prop →) follows from 4.4. �

§5. Weak Kleene Illative Logic. Let �wk be the smallest relation satisfying the fol-
lowing postulates:

21 The existence of such an ordinal is ensured by 4.10. In particular, we can let α be ω or any other
ordinal greater than ω.
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(Ax)
�, X �wk X � �wk X X =β Y

(Eq)
� �wk Y

� �wk A �′, A �wk X
(Cut)

�, �′ �wk X

� �wk A �′ �wk ¬A
(¬E)

�, �′ �wk X

(DN 1)
�, ¬¬X �wk X

(DN 2)
�, X �wk ¬¬X

� �wk X ∨ Y �′, X, Y �wk Z �′′, X, ¬Y �wk Z �′′′, ¬X, Y �wk Z
(∨E)

�, �′, �′′, �′′′ �wk Z

� �wk X �′ �wk Prop(Y)
(∨I1)

�, �′ �wk X ∨ Y

� �wk Y �′ �wk Prop(X)
(∨I2)

�, �′ �wk X ∨ Y

� �wk ¬(X ∨ Y)
(∨/¬1)

� �wk ¬X
� �wk ¬(X ∨ Y)

(∨/¬2)
� �wk ¬Y

� �wk ¬X �′ �wk ¬Y
(∨/¬3)

�, �′ �wk ¬(X ∨ Y)

� �wk X
(Prop 1)

� �wk Prop(X)

(Prop 2)
� �wk Prop(Prop(X))

�, A �wk ¬(X ∨ ¬X) �′, ¬A �wk ¬(X ∨ ¬X)
(Prop 3)

�, �′ �wk ¬Prop(A)

� �wk Prop(X)
(Prop 4)

� �wk X ∨ ¬X
� �wk Prop(X ∨ Y)

(Prop 5)
� �wk Prop(X)

� �wk Prop(X ∨ Y)
(Prop 6)

� �wk Prop(Y)

� �wk Prop(X) �′ �wk Prop(Y)
(Prop 7)

�, �′ �wk Prop(X ∨ Y)

In this section we will show that �wk is sound and complete with respect to |�wk, i.e.,
the semantic consequence relation characterized by the (nonempty) class of Weak Kleene
Illative Models.22

THEOREM 5.1. If � �wk X, then � |�wk X.

Proof. The can be proved by a simple induction. �
Next we will prove the converse of this result. To this end, we first first introduce some

definitions and prove a lemma.

22 See Czajka (2015) for sound and complete semantics for other illative logical systems.
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DEFINITION 5.2. We say that � ⊆ T
V
� is closed (with respect to �wk) just in case if

� �wk X, then X ∈ �.

DEFINITION 5.3. We say that � ⊆ T
V
� is consistent (with respect to �wk) just in case if

� ��wk ¬(X ∨ ¬X).

DEFINITION 5.4. We say that � ⊆ T
V
� is full (with respect to �wk) just in case if � ��wk Y

and � ��wk ¬Y, then �, Y �wk ¬(X ∨ ¬X) and �, ¬Y �wk ¬(X ∨ ¬X).

DEFINITION 5.5. We say that � ⊆ T
V
� is disjunctively complete (with respect to �wk) just

in case if � �wk X ∨ Y, then either � �wk X or � �wk Y.

LEMMA 5.6. Let � ��wk N. Then there is some closed, consistent, full and disjunctively
complete �′ ⊇ � such that �′ ��wk N.

Proof. Consider the set: {� ⊇ � : � ��wk N}. Every chain C in this set has an upper
bound, viz., ∪C. By Zorn’s Lemma, then, there is a maximal element of this set. Call it �′.
We will show that �′ is closed, consistent, full and disjunctively complete.

(a) �′ is closed. Let �′ �wk X. We can show that �′, X ��wk N. Suppose, then, that
�′, X �wk N. Then since �′ �wk X and since �wk satisfies (Cut), we have �′ � N. It
follows that �′, X ��wk N. Since �′ is maximal amongst {� ⊇ � : � ��wk N}, we have
X ∈ �′.

(b) �′ is consistent. Since �′ ��wk N it follows that �′ ��wk ¬(X ∨ ¬X). For suppose
�′ �wk ¬(X ∨ ¬X). Then we have �′ �wk Prop(¬(X ∨ ¬X)). And so we have �′ �wk

Prop(X ∨ ¬X), which gives us �′ �wk Prop(X), and so �′ �wk X ∨ ¬X, which together
with �′ �wk ¬(X ∨ ¬X), gives us �′ �wk N, which cannot obtain.

(c) �′ is full. Suppose that � ��wk Y and � ��wk ¬Y . We will show �, Y �wk ¬(X ∨ ¬X)
and �, ¬Y �wk ¬(X ∨ ¬X). Since � ��wk Y and � ��wk ¬Y , we have Y �∈ �′ and ¬Y �∈ �′.
Since �′ is maximal in {� ⊇ � : � ��wk N}, it follows that �′, Y �wk N and �′, ¬Y �wk N.
Now we can prove by a simple induction that, in general, if �′, Y �wk N and �′, ¬Y �wk N,
and �′ ��wk N, then �, Y �wk ¬(X ∨ ¬X) and �, ¬Y �wk ¬(X ∨ ¬X). Thus it follows that
we have �, Y �wk ¬(X ∨ ¬X) and �, ¬Y �wk ¬(X ∨ ¬X).

(d) �′ is disjunctively complete. Let � �wk X ∨ Y . Suppose � ��wk X and � ��wk Y . We
have then that X �∈ �′ and Y �∈ �′. Since �′ is maximal in {� ⊇ � : � ��wk N}, it follows
that �′, X �wk N and �′, Y �wk N. But then it follows that we have �′, X ∨ Y �wk N, and
so, by (Cut), we have �′ �wk N, which cannot hold. �

THEOREM 5.7. If � |�wk X, then � �wk X.

Proof. We will prove this by proving the contrapositive: If � ��wk X, then � �|�wk X. To
this end let us assume: � ��wk X. We will show that there is a Weak Kleene Illative model
which satisfies every member of � and fails to satisfy X.

By 5.6, it follows from our assumption that � ��wk X that there is a consistent, closed,
full and disjunctively complete �′ ⊇ � such that �′ ��wk X. Let C, then be the set of β-
equivalence classes of TV

� , and let [Y] · [Z] = [YZ]. We let T = {[Z] : �′ �wk Z}, and
F = {[Z] : �′ �wk ¬Z}. We let n =df [¬], v =df [∨], and p =df [Prop].

We first show 〈C, ·, T, F〉 is a Weak Kleene Illative Algebra. By 2.13 we have that
〈C, ·〉 is a λ-algebra. We then simply need to show that T and F satisfy conditions (i)–(vii)
of 4.1.
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(i) T, F ⊆ C, and T ∩ F = ∅. This follows from the consistency of �′.
(ii) [∨AB] ∈ T iff [A], [B] ∈ T∪F and either [A] ∈ T or [B] ∈ T . We have that [∨AB] ∈

T if and only if �′ �wk A ∨ B. And we have �′ �wk A ∨ B if and only if either
(�′ �wk A and �′ �wk Prop(B)) or (�′ �wk B and �′ �wk Prop(A)). The right-to-
left direction of this biconditional is obvious. To see that the left-to-right direction
holds assume �′ �wk A∨B. Then, since �′ is disjunctively complete we have either
�′ �wk A or �′ �wk B. And we have �′ �wk Prop(A ∨ B), and so �′ �wk Prop(A),
and �′ �wk Prop(B), which suffices to establish the left-to-right direction. Finally,
we have (�′ �wk A and �′ �wk Prop(B)) or (�′ �wk B and �′ �wk Prop(A)) if
and only if either ([A] ∈ T and [B] ∈ T ∪ F] or ([B] ∈ T and [A] ∈ T ∪ F), which
holds if and only if [A], [B] ∈ T ∪ F and either [A] ∈ T or [B] ∈ T .

(iii) [∨AB] ∈ F if and only if [A] ∈ F and [B] ∈ F. We have [∨AB] ∈ F if and only if
�′ �wk ¬(A ∨ B). And we have �′ �wk ¬(A ∨ B) if and only if �′ �wk ¬A and
�′ �wk ¬B, which holds if and only if [A] ∈ F and [B] ∈ F.

(iv) [¬A] ∈ T if and only if [A] ∈ F. We have [¬A] ∈ T if and only if �′ �wk ¬A,
which holds if and only if [A] ∈ F.

(v) [¬A] ∈ F if and only if [A] ∈ T . We have [¬A] ∈ F if and only if �′ �wk ¬¬A,
which holds if and only if �′ �wk A, which hold if and only if [A] ∈ T .

(vi) [Prop(A)] ∈ T iff [A] ∈ T ∪ F. We have [Prop(A)] ∈ T if and only if �′ �wk

Prop(A), which hold if and only if �′ �wk A ∨ ¬A, which, since �′ is disjunctively
complete, holds if and only if either �′ �wk A or �′ �wk ¬A which holds if and
only if [A] ∈ T ∪ F.

(vii) [Prop(A)] ∈ F iff [A] �∈ T ∪ F. We have [Prop(A)] ∈ F if and only if �′ �wk

¬Prop(A). Will show that this holds if and only if �′ ��wk A and �′ �wk ¬¬A,
and so if and only if [A] �∈ T ∪ F. First we establish that if �′ �wk ¬Prop(A),
then �′ ��wk A and �′ �wk ¬¬A, by establishing the contrapositive. To this end
assume that either �′ �wk A or �′ �wk ¬A. From this it follows that we have
�′ �wk Prop(A). And so, since �′ is consistent we have �′ ��wk ¬Prop(A). Next
assume �′ ��wk A and �′ �wk ¬¬A. Since �′ is full, we have �′, A �wk ¬(X ∨¬X)
and �′, ¬A �wk ¬(X ∨ ¬X). And so we have �′ �wk ¬Prop(A). �

§6. Conclusion. We’ve seen that there are at least two prima facie plausible ways of
responding to Bunder’s Paradox. On the one hand, we can hold on to certain principles
concerning the logic of → while weakening certain principles concerning Prop. On the
other hand, we can weaken certain principles concerning → in order to hold on to certain
prima facie plausible principles concerning Prop.

To fully assess the merits of these two possible responses to this paradox, we would
need to consider what sorts of stronger illative logical systems these respective responses
are compatible with. In the case of the first response, this question has been addressed in
Czajka (2015). In the case of the second response, this question remains open, and must be
left for future work.

In closing, let us note some prima facie attractive and unattractive features of the second
response to Bunder’s Paradox.

This response can be seen as following from a general theory—the Weak Kleene Illa-
tive Logic—that has a number of attractive features. First, according to this account, the
Boolean operators are, roughly put, such as to make propositions from, but only from,
other propositions. More precisely, given (Prop 1)–(Prop 7), we have that Prop(X ∨ Y)
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will be provable, given some assumptions, just in case both Prop(X) and Prop(Y) are so
provable, and Prop(X) will similarly be provable, given some assumptions, just in case
Prop(¬X) is so provable. We can see this theory, then, as making precise a certain, to my
mind, attractive picture according to which, with respect to the Boolean operators, failing
to be a proposition is contagious. Within an illative logical framework, this strikes me as a
simple and principled picture of how logically complex propositions may be built up from
logically simpler propositions.

In addition, given the logic validated by the Weak Kleene Illative Models, we have as a
validity a principle we might call Propositional Excluded Middle: Prop(X) ∨ ¬Prop(X).
This principle, however, is not consistent with the logic validated by the Strong Kleene
Illative Models.

One disconcerting feature of the Strong Kleene Illative Models is that there is an ap-
parent gap between the notion of propositionhood as used in the model and the notion of
propositionhood expressed by Prop given such models. Such a discrepancy, however, does
not arise in the case of the Weak Kleene Illative Models. To see this, first note that, in
working with either the Strong or the Weak Kleene Illative Models, it is natural to interpret
the set T ∪F as the set of propositions. And so, it is natural to say that, for each x ∈ T ∪F, x
is a proposition, and for each y �∈ T ∪F, y is not a proposition. In the case of Strong Kleene
Illative Models, however, there can be no element of the underlying algebra e, which is a
propositional function—that is, is such that in general we have e · a ∈ T ∪ F—and is such
that in general we have e · a ∈ T just in case a ∈ T ∪ F.23 For this reason, if we interpret
Prop in a Strong Kleene Illative Model, it cannot denote a element of the model that results
in a true proposition when applied to a proposition, i.e., a member of T ∪F, and that results
in a false proposition when applied to a nonpropositions, i.e., a nonmember of T ∪ F. As
we’ve seen, though, the same is not true in the case of Weak Kleene Illative Models. In this
case, there can be a propositional function that maps every member of T∪F to a member of
T , and every nonmember of T ∪ F to a member of F, and we can take such a propositional
function to be the denotation of Prop. This strikes me as being an attractive feature of this
class of models, and so gives us some reason to like the theory that such a class of models
gives rise to.

While all of these strike me as being attractive features of the second response to Bun-
der’s Paradox there are, of course, some downsides to this account. First, the logic govern-
ing the Boolean connectives validated by the Strong Kleene Illative Models is stronger than
the logic validated by our Weak Kleene Illative Models. For example, the former validates
(→ Is), while the latter only validates the weaker (→ Iw). And there is a notable difference
between (→ Is) and (→ Iw). For the latter but not the former demands, in addition to a
propositional typing restriction on the antecedent, a propositional typing restriction on the
consequent. If, then, one is inclined to minimize such typing restrictions in formulating an
illative logic, then one has reason to prefer (→ Is) to (→ Iw). Finally, it is worth noting
that the (Cut) rule may be derived in an illative logic with (→ Is).24 In our illative logic
with (→ Iw), however, it needs to be postulated separately.

It seems to me, then, to be a delicate question what the right response is to Bunder’s
Paradox. I think, though, that there is good reason to take seriously the idea that the correct
response to this paradox is that we should weaken certain principles concerning → in order
to hold on to a number of plausible principles concerning Prop.

23 See Aczel (1980) for a proof of a closely related result in the context of his Frege Structures.
24 See Czajka (2015).
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