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Near-wall streamwise vortices are closely related to the generation of high skin friction
in wall-bounded turbulent flows. A common feature of controlled, friction-reduced
turbulent flows is weakened near-wall streamwise vortices. In the present study, the
streak transient growth (STG) mechanism for generating near-wall streamwise vortices
by Schoppa & Hussain (J. Fluid Mech., vol. 453, 2002, pp. 57–108) is employed,
and the opposition control proposed by Choi, Moin & Kim (J. Fluid Mech., vol. 262,
1994, pp. 75–110) is imposed during the transient growth process of perturbations to
determine how active control affects the generation of quasi-streamwise vortices. In the
transient growth stage, when the detection plane is located near the wall (y+d = 15),
the control can suppress the production of streamwise vorticity by weakening the near-
wall vertical velocity; when the detection plane moves away from the wall (y+d = 28),
the control has the opposite effect. In the vortex generation stage, the control cannot
change the dominance of the stretching effect. Controls imposed at different stages
reveal the importance of the STG stage in vortex generation. Strengthened out-of-
phase control and lessened in-phase control are proposed as an extension of the
original opposition-control scheme. Application in a fully developed turbulent channel
flow shows that strengthened y+d = 10 control can yield an even higher drag reduction
rate than the original y+d = 15 control. Moreover, lessened y+d = 28 control can also
achieve drag reduction and turbulence suppression.

Key words: drag reduction, turbulence control, turbulent boundary layers

1. Introduction
Near-wall quasi-streamwise vortices play a dominant role in both turbulence

production and high skin-friction generation (Kim & Moin 1986; Kim, Moin & Moser
1987; Kravchenko, Choi & Moin 1993). Hence by active manipulation of these near-
wall coherent structures, sustained turbulence suppression and friction-drag reduction
may be achieved. Based on this scheme, Choi, Moin & Kim (1994) first proposed
opposition control, which reduced the friction drag and alleviated near-wall streamwise
vortices by applying instant blowing/suction velocity at the wall opposite to that
detected at a small distance from the wall. Several more practical control schemes
have been developed in accordance with this idea (Lee, Kim & Choi 1998; Endo,
Kasagi & Suzuki 2000). The vast majority of subsequent works demonstrate that all
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actively controlled friction-reduced flows share a common feature of weakened near-
wall streamwise vortices; for recent reviews see Kim (2003), Collis et al. (2004), Kim
& Bewley (2007), Kasagi, Suzuki & Fukagata (2009) and Kim (2011)). Nonetheless,
how the quasi-streamwise vortices are suppressed is still ambiguous.

Several studies have tried to explain the mechanism for attenuating streamwise
vortices by active opposition control. In addition to demonstrating the effectiveness of
opposition control in drag reduction and turbulence suppression, Choi et al. (1994)
also studied the influence of control on a two-dimensional vortex pair near the
wall. They proposed that the control prevented the lifting process of the vortex
pair and hence suppressed a source of new streamwise vortices above the wall. A
similar explanation has also been proposed by Koumoutsakos (1997). However, these
statements are based on a pair of two-dimensional vortices, thus ignoring the important
three-dimensional effect on vortex generation in real turbulence. Furthermore, no
attention was paid to the relation between control effect and detection location.
Hammond, Bewley & Moin (1998) found that the optimal location of the detection
plane, in terms of drag reduction rate, was around y+ = 15. In this case, the
maximum drag reduction rate of approximately 25 % was obtained and the near-wall
streamwise vortices were greatly weakened. When the detection plane moves farther
away from the wall (y+ = 25), the friction drag drastically increased, together with
the enhancement of streamwise vortices. Very recently, Chung & Talha (2011) studied
the effects of strength and phase of wall blowing/suction in opposition control, and
found that both amplitude and detection location play an important role in turbulence
suppression and skin-friction reduction. By reducing the amplitude, opposition control
with detection plane at y+ = 25 could also achieve drag reduction and streamwise
vortex attenuation. Hammond et al. (1998) and Chung & Talha (2011) both attributed
the mechanism for drag reduction to the establishment of a ‘virtual wall’ between the
real wall and the detection plane. The virtual wall concept can help us understand
turbulence suppression and drag reduction from the viewpoint of hindering the vertical
momentum transfer, but it can hardly explain the mechanism for streamwise vortex
attenuation.

To draw a clearer picture of how active controls influence the evolution of near-
wall streamwise vortices, a comprehensive understanding of the self-sustaining process
of wall turbulence is necessary. In the near-wall region, low-speed streaks flanked
by quasi-streamwise vortices are the predominant coherent structures. By ejecting
low-speed fluid away from the wall and sweeping high-speed fluid towards the wall,
the Reynolds shear stress is generated and turbulence is maintained. By gradually
reducing the computational domain to the minimum value in the direct numerical
simulation of turbulent Couette flow, Hamilton, Kim & Waleffe (1995) first observed a
remarkably well-defined, quasi-cyclic, and spatially organized process of regeneration
of these near-wall coherent structures. This process is composed of three distinct
phases: the formation of streaks by streamwise vortices, the breakdown of streaks,
and the regeneration of streamwise vortices. By artificially damping the fluctuations in
the y+ > 60 region, Jiménez & Pinelli (1999) further showed that the self-sustaining
process in turbulent channel flow was autonomous in the sense that it was local to the
near-wall region and did not depend on the outer flow. The existence of the near-wall
self-sustaining process was also verified by the nonlinear travelling wave solution to
the Navier–Stokes equations obtained in shear flows, which closely resembles the
coherent structures observed in the near-wall region of turbulent flows (Nagata 1990;
Waleffe 1998, 2001). Regarding the three stages in this self-sustaining process, the
quasi-streamwise vortices acting on the mean shear are generally believed to create the
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low-speed streaks (Waleffe 1997; Jiménez & Pinelli 1999; Panton 2001). However, no
consensus has yet been reached on how the streamwise vortices are regenerated.

According to Panton (2001) and Schoppa & Hussain (2002), the explanations for
the generation of streamwise vortices are categorized into two groups: the so-called
parent–offspring mechanism (Bernard, Thomas & Handler 1993; Brooke & Hanratty
1993; Smith & Walker 1995; Zhou et al. 1999) and the instability-based mechanism
(Swearingen & Blackwelder 1987; Robinson 1991; Hamilton et al. 1995; Waleffe
1997). In the parent–offspring mechanism, the new vortices are considered to be
produced by the already existing vortices via the inflectional flow (Smith & Walker
1995), intense local shear layers (Zhou et al. 1999), and streamwise vorticity sheets
(Bernard et al. 1993; Brooke & Hanratty 1993). The instability-based mechanism
attributes the generation of streamwise vortices to the local instability of a quasi-steady
base flow, without requiring the presence of parent vortices. The greatest concern is
the streak instabilities (Robinson 1991; Hamilton et al. 1995) with the most dangerous
perturbation of the sinuous streamwise mode (Waleffe 1997). Uniting the elements
of the parent–offspring and instability-based scenarios, Schoppa & Hussain (2002)
provided a more convincing mechanism, streak transient growth (STG), which was
considered to be far more prevalent and energetic than the normal-mode instability.
This STG-based scenario includes: (i) the transient growth of perturbations leading
to the formation of a sheet of streamwise vorticity ωx; (ii) growth of sinuous streak
waviness and, hence, ∂u/∂x as the STG reaches a nonlinear amplitude; and (iii) the ωx

sheet’s collapse via stretching by ∂u/∂x into streamwise vortices.
In the present study, this STG-based mechanism is employed to investigate how

active opposition control interrupts the generation of streamwise vortices, and why
the difference in detection location can have different – even opposite – effects on
the flow, by performing direct numerical simulation of flows in a minimal channel
(Jiménez & Moin 1991). The numerical method and STG problem formulation are
first described in § 2, and the general response of the disturbance energy and vortical
structure to control is introduced in § 3. The mechanism for control influencing the
STG-based generation of streamwise vortices is analysed in § 4. Controls imposed
at different stages are employed to validate the importance of the STG stage in § 5.
Based on the knowledge obtained thus far, an extension to the original opposition-
control scheme is proposed and tested in § 6. Finally, the summary and conclusion are
given in § 7.

2. Problem formulation
The influence of active blowing/suction at the wall on STG-based generation of

streamwise vortices is studied by performing direct numerical simulation of the
incompressible flow of Newtonian fluid in a minimal channel. The Navier–Stokes
equation written in rotational form

∂V
∂t
= V × ω −∇Π + 1

Re
∇2V , (2.1)

with the continuity constraint

∇ ·V = 0, (2.2)

is employed as the governing equation, in which V is the velocity vector, ω = ∇ × V
the vorticity vector, and Π = p/ρ + |V |2 /2 the total pressure. The equations are
non-dimensionalized by bulk mean velocity Um and channel half-width H, and hence
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Influence of control on streamwise vortex generation 237

the Reynolds number is defined as Re= UmH/ν, in which ν is the kinematic viscosity
of the fluid. The streamwise, wall-normal, and spanwise coordinates are represented by
x, y and z, respectively, and u, v, w are the corresponding velocity components.

In the streamwise and spanwise directions, the flow is assumed periodic over the
lengths of 2π/α and 2π/β, respectively, in which α and β are the basic wavenumbers
in the streamwise and spanwise directions. In the wall-normal direction y, a no-slip
condition is imposed at the walls, y = ±1. In the case of control, active blowing and
suction are enforced at the lower wall according to the opposition-control scheme, that
is, the wall-normal velocity component at y=−1 is specified to be the opposite of the
wall-normal velocity component detected at yd,

v(x,−1, z, t)=−v(x, yd, z, t). (2.3)

In the present study, two detection positions have been tested: y+d = 15, which is
considered to be the optimal position in terms of the drag reduction rate, and y+d = 28,
which can cause a drastic increase in friction drag (Hammond et al. 1998; Chung &
Talha 2011).

The governing equations (2.1) and (2.2) are solved by a pseudo-spectral method
for spatial discretization. The Fourier–Galerkin method is used in the streamwise and
spanwise directions, and the Chebyshev–tau method is adopted for the wall-normal
direction. Dealiasing is applied in the x and z directions using the 3/2 rule. The
third-order time-splitting method is employed for time advancement. The code has
been validated through the direct comparison of turbulence statistics with the results
from the literature (Kim et al. 1987), and has already been used in several applications
concerning direct numerical simulation of turbulent channel flows; see Xu et al. (1996)
and Cui et al. (2004) for related publications.

In the present study, the Reynolds number is chosen to be Re= 2800, corresponding
to the friction Reynolds number around Reτ = 180. According to Jiménez & Moin
(1991), the computational domain is selected to span π × 2 × 0.2π (approximately
560 × 360 × 110 wall units) in the streamwise, wall-normal, and spanwise directions,
respectively, to obtain sustained turbulence and isolate only one low-speed streak in
the domain. Accordingly, 32× 129× 32 grids are used.

According to Schoppa & Hussain (2002), the flow field is initialized by the single-
side turbulent profile with a low-speed streak as the base flow,

U(y, z)= U0(y)+ 1
21u cos(βz)g(y), V =W = 0, (2.4)

and the streamwise dependent spanwise velocity w′ is used as the perturbation referred
to as STG perturbation in Schoppa & Hussain (2002) and hereinafter:

u′ = 0, v′ = 0, w′ = A sin(αx)g(y). (2.5)

Here, the superscript ′ denotes the perturbations to the two-dimensional base flow
U(y, z).

In (2.4), U0(y) is composed of a laminar profile near the upper wall and a turbulent
profile near the lower wall, as was adopted by Schoppa & Hussain (2002):

U0(y)=


Uc

[
1−

( y

H
− 1
)2
]
, ym 6 y 6 2H,

uτ

[
2.5 ln(1+ 0.4y+)+ 7.8(1− e−y+/11)− y+

11
e−0.33y+

]
, 0 6 y< ym.

(2.6)
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FIGURE 1. (a) Time evolution of disturbance energy upon streaks with θ20 = 45, 55 and 60◦;
(b) histogram of streak lift angle θ20, conditionally sampled from DNS data of fully developed
turbulent channel flow at Reτ = 180. The bold line denotes the threshold θ20 for linear normal
mode instability.

Notably, the Reynolds number in the present study is almost twice as high as that
of Schoppa & Hussain (2002), while the parameters uτ , ym and Uc to determine
the distribution of U0(y) are recalculated to match the present Reynolds number
Reτ = 180. The profile on the turbulent side obtained according to (2.6) has been
compared with that obtained in the full-scale channel at the same Reynolds number
(Kim et al. 1987), and they show good agreement. The low-speed streak is represented
by 1u cos(βz)g(y), in which the spanwise wavenumber β is chosen to make the streak
span approximately 110 wall units in the spanwise direction, and g(y) takes the form
of y exp(−ηy2). We select η to make g(y) reach the maximum value at y+ = 20.
Once g(y) is fixed, 1u is determined by the streak strength. According to Schoppa
& Hussain (2002), the streak strength is quantified by the vortex line lift angle at
y+ = 20 as θ20 = tan−1 (|Ωy|max/|Ωz|)y+=20, with Ωy = ∂U/∂z and Ωz = −dU0/dy. In
the following, for the normal mode stability analysis, the frozen base flow is adopted
to determine the threshold streak strength. Because active control applied to the fully
developed turbulent channel flow can greatly change the mean value of wall skin
friction, that is, dU0/dy at the wall, to mimic this effect in minimal channel flow, no
body force is used to prevent the viscous diffusion of the initial profile U0(y) for STG
analysis.

To choose the streak strength θ20, the threshold streak strength for the linear normal-
mode instability at the present Reynolds number should be determined first. The
evolutions of the STG perturbation (2.5) with infinitesimal amplitude are studied by
direct numerical simulation upon frozen streaks with different θ20. Figure 1(a) shows
the time evolution of disturbance energy E3D = (u′2 + v′2 + w′2)/2 upon streaks with
θ20 = 45, 55 and 60◦. After transient growth, the disturbance energy for θ20 = 45◦

and θ20 = 60◦ experiences exponential decrease and increase, respectively, whereas that
for θ20 = 55◦ remains constant, indicating that the streak with θ20 = 55◦ is neutrally
stable. This value is slightly higher than that obtained by Schoppa & Hussain (2002)
(θ20 ≈ 50◦) at a relatively lower Reτ . Using the same conditional streak sampling
technique as that by Schoppa & Hussain (2002), the histogram of θ20 statistics in fully
developed turbulent channel flow at Reτ = 180 is obtained, as shown in figure 1(b).
Approximately 70 % of streaks are normal-mode stable. Although the ratio is a bit
lower than the 80 % obtained by Schoppa & Hussain (2002) at Reτ ≈ 90, this STG-
based vortex generation scenario is still prevalent.
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FIGURE 2. Time evolution of (a) E3D, (b) u′2, (c) v′2, and (d) w′2 in non-controlled and
opposition-controlled minimal channel flows.

As addressed above, the more prominent STG-based vortex generation mechanism is
considered in the present study. Hence, the normal-mode stable streak with θ20 = 45◦

and the initial STG perturbation at a magnitude of w+rms = 0.5 are chosen for the
detailed analysis presented in §§ 3 and 4. A streak with θ20 = 50◦ and w+rms = 0.3 is
also used to evaluate the influence of the initial conditions and to study the effect of
control imposed at different stages in § 5.

3. Evolution of disturbance energy and vortical structure

The time evolutions of disturbance energy E3D and its components u′2, v′2, and
w′2 in non-controlled and opposition-controlled minimal channel flows are shown
in figure 2. For all the cases, E3D undergoes transient growth before t+ = 20, and
fluctuates thenceforth. The periods of t+ < 20 and t+ > 20 are referred to as the STG
and the post-STG stages, respectively, as shown in figure 2(a). In the STG stage, the
transient growth of u′ is the dominant mechanism. u′ reaches a peak value at t+ = 20,
which is consistent with the time of maximum transient energy growth in work by del
Álamo & Jiménez (2006) and Pujals et al. (2009). The amplification of v′ is milder,
and reaches a far lower peak value later at t+ = 30. Unlike u′ and v′, w′ is almost
unchanged and keeps the initial amplitude until the end of the STG stage. The control
with y+d = 15 weakens the growth of E3D, but that with y+d = 28 strengthens it. At the
end of the STG stage, E3D reaches a different peak value of 0.67, 0.63 and 0.73 for the
cases of no control, y+d = 15 control and y+d = 28 control, respectively. In the post-STG
stage, the nonlinear effects play an important role and result in the generation of
quasi-streamwise vortices, as indicated by Schoppa & Hussain (2002). They are also
discussed in the next section. At this stage, the y+d = 15 control suppresses all three
components of E3D, which are enhanced by the y+d = 28 control.
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FIGURE 3. (Colour online) Iso-surface of λ2 = −3 at (ai–aiii) t+ = 40, (bi–biii) t+ = 65,
(ci–ciii) t+ = 88, (d i–d iii) t+ = 125, and (ei–eiii) t+ = 170 for (ai–ei) no control, (aii–eii)
y+d = 15 control, and (aiii–eiii) y+d = 28 control. Red (light), ωx > 0; blue (dark), ωx < 0.

The vortical structures are identified and visualized by the iso-surface of λ2 < 0
(Jeong & Hussain 1995). Figure 3 shows the iso-surface of λ2 = −3 at t+ = 40, 65,
88, 125 and 170 for the no-control and the two opposition-control cases, respectively,
to display the generation and evolution process of vortices. Notably, due to blowing
and suction at the wall, vortical structures that could be identified by negative λ2 are
generated adjacent to the wall. The vortical structures below y+ = 5 are removed in
figure 3 to clearly illustrate the effect of control on near-wall streamwise vortices. For
the no-control case, quasi-streamwise vortices are formed at t+ = 40, and gradually
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FIGURE 4. (Colour online) Iso-surface of λ2 =−1.5 at t+ = 170 for the no-control case:
(a) overview, (b) top view, and (c) side view. Red (light), ωx > 0; blue (dark), ωx < 0.

elongated in the streamwise direction (figure 3ai–ci). At t+ = 125, as shown by
figure 3(d i), the elongated streamwise vortices are lifted up from the wall and a
spanwise arc is produced from the lifted downstream end of the vortices, forming a
hook or asymmetric hairpin vortex, as named by Robinson (1991). At t+ = 170, the
spanwise arcs are connected to the lifted quasi-streamwise vortices at another side,
and the more symmetric hairpin vortices are formed (figure 3ei). The hairpin vortices
are more clearly displayed in figure 4 by the iso-surface of λ2 = −1.5. The side
view shown in figure 4(c) indicates that the arc head is formed around y+ = 100.
In the work of Schoppa & Hussain (2002), the formation of the spanwise arc head
was not reported. The reason may be that the maximum y+ on the turbulence side is
around 90 in their simulation; hence, there is not enough space for the development
of the arc head. This is consistent with the finding of Jiménez & Simens (2001)
that the formation of asymmetric hairpins by ejection was prevented by damping the
disturbances above y+ = 70 in a minimal turbulent channel flow. Compared with the
no-control case, the streamwise vortices are greatly attenuated by the y+d = 15 control
from the very beginning of the vortex generation process until the turbulence stage
(figure 3aii–eii). At t+ = 40, the vortices are too weak to be displayed by λ2 =−3 and
therefore no structures are shown in figure 3(aii). On the other hand, by the y+d = 28
control for t+ < 125, the streamwise vortices have a similar strength to the no-control
case (figure 3aiii–ciii), but with shorter streamwise length. At t+ > 125, the vortices
are evidently increased in number compared with the no-control case.

The response of the disturbance energy and streamwise vortices to opposition
control with different y+d in minimal channel flow are consistent with those in the
full-scale channel flow (Choi et al. 1994): the y+d = 15 control could attenuate the
near-wall streamwise vortices, reduce skin friction, and suppress turbulence intensity
(see figures 19 and 20), whereas the y+d = 28 control has the opposite effects.
The underlying mechanism for this observed scenario is explained in the following
section by analysing streamwise vorticity transport in the STG and post-STG stages,
respectively.

4. Mechanism for control influencing the generation of streamwise vortices
4.1. The STG stage

According to Schoppa & Hussain (2002), no streamwise vortices could be generated in
the STG stage, but the streamwise vorticity ωx and the spanwise meandering of low-
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speed streaks represented by ∂u′/∂x may be transiently amplified, which is necessary
to trigger the nonlinear stretching effect to form streamwise vortices in the post-STG
stage. The influence of control on the evolution and distribution of ωx and ∂u′/∂x is
discussed in the following. Because control is imposed through the vertical velocity
at the wall, its effect on v′ would be more straightforward and is analysed first. The
changes in ∂u′/∂x and ωx are then described subsequently.

The initial disturbance is of finite amplitude, and therefore the nonlinear equations
for perturbations with the continuity constraint are considered to analyse the behaviour
of the flow, as shown in the following:

∂u′

∂t
=−U

∂u′

∂x
− v′ ∂U

∂y
− w′

∂U

∂z
− ∂p′

∂x
−
(

u′
∂u′

∂x
+ v′ ∂u′

∂y
+ w′

∂u′

∂z

)
, (4.1)

∂v′

∂t
=−U

∂v′

∂x
− ∂p′

∂y
−
(

u′
∂v′

∂x
+ v′ ∂v

′

∂y
+ w′

∂v′

∂z

)
, (4.2)

∂w′

∂t
=−U

∂w′

∂x
− ∂p′

∂z
−
(

u′
∂w′

∂x
+ v′ ∂w′

∂y
+ w′

∂w′

∂z

)
, (4.3)

∂u′

∂x
+ ∂v

′

∂y
+ ∂w′

∂z
= 0. (4.4)

Notably, all the nonlinear terms are placed in the parentheses on the right-hand sides
of the equations, and the viscous terms are omitted because they are not essential to
the growth mechanism (Schoppa & Hussain 2002).

First, the distribution of v′ in the wall-normal direction is analysed. Initially,
u′ = v′ = 0, and we only have w′ in the form of (2.5) upon the base flow U(y, z).
In the early STG stage, the leading-order terms on the right-hand side of (4.1)–(4.3)
are the linear terms related to w′ and U, that is, −w′∂U/∂z and −U∂w′/∂x. The
DNS results show that all the other terms are at least one order of magnitude
smaller than these two terms at t+ = 1. According to (4.1), the generation rate of
u′ is nearly proportional to −w′∂U/∂z. Hence, ∂u′/∂x varies as −(∂w′/∂x)(∂U/∂z).
Viewing −w′∂U/∂z as an analogy to a body force in the streamwise direction, the
distribution of u′ is similar to the oblique perturbations that reach maximum energy
growth under a streamwise direction force in the work of Jovanovic & Bamieh (2005).
For w′, the dominant term on the right-hand side of (4.3) is −U∂w′/∂x, and therefore
∂w′/∂z ∼ −(∂w′/∂x)(∂U/∂z). Considering the continuity constraint, we could obtain
the Poisson equation for p′ as

∂2p′

∂x2
+ ∂

2p′

∂y2
+ ∂

2p′

∂z2
=−2

∂w′

∂x

∂U

∂z
. (4.5)

The above analysis shows that ∂v′/∂y ∼ −(∂u′/∂x + ∂w′/∂z) ∼ 2(∂w′/∂x)(∂U/∂z).
Considering the form of base flow and STG perturbation in (2.4) and (2.5), v′

should vary with x and z as cos(αx) and sin(βz), respectively. According to (4.2),
v′ ∼ −∂p′/∂y, hence the pressure p′ should take the form of p′ = p̂(y) cos(αx) sin(βz).
Considering (2.4) and (2.5), we can get

d2p̂

dy2
− (α2 + β2)p̂= Aαβ1ug2(y). (4.6)

Equation (4.6) is solved by the Chebyshev–tau method subjected to the boundary
condition of dp̂/dy = 0 at the walls. Figure 5 shows the distribution of
dp̂/dy normalized by its maximum value. The zero-crossing point of dp̂/dy is
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FIGURE 5. Distribution of dp̂/dy in the wall-normal direction.
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FIGURE 6. (Colour online) (ai–aiii) Iso-surface of |v′| = 0.01 and (bi–biii) contours of v′
on the (y, z)-plane across the second peak position in the x direction for (ai–bi) no control,
(aii–bii) y+d = 15 control and (aiii–biii) y+d = 28 control at t+ = 10. Red (light) or solid line,
v′ > 0; blue (dark) or dashed line, v′ < 0.

around y+ = 20, and the two extreme-value positions are located at y+ = 9 and
y+ = 35, respectively. The above analysis is confirmed by figures 6(bi) and 7(bi),
which show the contours of v′ on the (y, z)-plane across the second peak position in
the x direction at t+ = 10 and t+ = 20, respectively. Although, as time progresses, v′

deflects in the z direction, it is still obvious that v′ changes sign around y+ = 20, and
reaches extreme values near y+ = 9 and y+ = 35, respectively.

Distributions of v′ at t+ = 10 and 20 under the y+d = 15 and 28 controls are also
shown in figures 6 and 7, respectively. Evidently, the y+d = 15 control weakens v′

below y+ = 20, whereas the y+d = 28 control strengthens it. This phenomenon may be
explained by the wall-normal distribution of v′. It has been shown that v′ changes
sign in the y direction around y+ = 20. If the detection plane is located at y+d = 15,
the blowing/suction velocity on the wall determined by the opposition-control scheme
is in the opposite direction to v′ below y+ = 20. In this sense, the y+d = 15 control
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FIGURE 7. (Colour online) (ai–aiii) Iso-surface of |v′| = 0.02 and (bi–biii) contours of v′ on
the (y, z)-plane across the second peak position in the x direction at t+ = 20. For the legend,
see figure 6.

is a kind of out-of-phase control, and hence weakens v′ below y+ = 20, as shown
in figures 6(bii)–7(bii). However, when the detection plane is moved to y+d = 28, the
blowing/suction velocity on the wall is strong and its direction is the same as that of
v′ below y+ = 20. Hence, it is a kind of in-phase control and could enhance v′ below
y+ = 20, as verified in figures 6(biii)–7(biii).

The ∂u′/∂x responsible for the vortex stretching in the next stage is a simple
consequence of low-speed streak waviness generated naturally by the transient growth
of the STG perturbation. In the early STG stage, ∂u′/∂x mainly results from the linear
term −(∂w′/∂x)(∂U/∂z), and hence varies with x and z in the form of cos(αx) sin(βz),
as explained above. By the continuity constraint, v′ just follows the variation of ∂u′/∂x.
The iso-surface of v′ at t+ = 10 shown in figure 6 confirms the above analysis. As
time goes on, u′ is quickly amplified and w′∂u′/∂z reaches the amplitude of 0.9 at
the end of the STG stage, t+ = 20, whereas the linear term w′∂U/∂z still keeps the
early-time value around 0.5. Hence, the nonlinear term cannot be neglected any more
than the linear term in (4.1). The nonlinear term w′∂u′/∂z contributes to u′ in the form
of sin(αx) sin(αx) cos(βz); together with the contribution from w′∂U/∂z in the form of
sin(αx) sin(βz), it deflects the distribution of ∂u′/∂x in the z direction. As shown in
figure 7, the iso-surface of v′, a proxy for ∂u′/∂x, evidently deflects in the z direction
at t+ = 20.

Figure 8 shows the distribution of ∂u′/∂x on the same (y, z)-plane at t+ = 10
and 20 for the no-control and the two opposition-control cases. Notably, on this
plane only positive ∂u′/∂x is meaningful in the sense that it contributes favourably
to vortex stretching. At t+ = 10, the y+d = 15 control makes very little difference to
the distribution of ∂u′/∂x, compared with the no-control case. However, the y+d = 28
control strengthens the near-wall waviness of the streak. At t+ = 20, the distribution of
∂u′/∂x under y+d = 15 control still keeps a pattern similar to that in the no-control case,
but the magnitude in the positive region is obviously reduced. By the y+d = 28 control,
the magnitude of positive ∂u′/∂x is greatly enhanced, and the peak position moves
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FIGURE 8. (Colour online) Contours of ∂u′/∂x on the (y, z)-plane at (ai–aiii) t+ = 10 and
(bi–biii) t+ = 20 for (ai–bi) no control, (aii–bii) y+d = 15 control, and (aiii–biii) y+d = 28
control. Solid lines show positive contours and dashed lines show negative contours, with a
contour level increment of 0.1.

closer to the wall, compared with the other two cases. These different behaviours of
∂u′/∂x under control with different detection locations may also be explained by the
wall-normal distribution of v′. The above analysis shows that ∂u′/∂x ∼ ∂w′/∂z, and
according to the continuity equation ∂v′/∂y ∼ −∂u′/∂x. The y+d = 15 control weakens
v′ below y+ = 20, and ∂v′/∂y also becomes smaller than the no-control case, as does
∂u′/∂x. For the y+d = 28 control, the strengthened v′ below y+ = 20 makes ∂v′/∂y
larger than the no-control case, and hence ∂u′/∂x is amplified.

Consider the influence of control on ωx. According to Schoppa & Hussain (2002),
the transient growth of STG perturbations could lead to the formation of a z-localized
sheet of streamwise vorticity ωx. The evolution of streamwise vorticity ωx may be
described by

∂ωx

∂t
=− u

∂ωx

∂x︸ ︷︷ ︸
ADX

− v ∂ωx

∂y︸ ︷︷ ︸
ADY

−w
∂ωx

∂z︸ ︷︷ ︸
ADZ

+ ∂v
∂x

∂u

∂z︸ ︷︷ ︸
TI1

− ∂w

∂x

∂u

∂y︸ ︷︷ ︸
TI2

+ωx
∂u

∂x︸ ︷︷ ︸
ST

, (4.7)

in which ADX, ADY and ADZ denote the advection terms due to u, v and w, TI1
and TI2 represent the contributions from tilting, and ST represents that from stretching,
respectively. For linear perturbations, the generation of the ωx sheet is dominated by
the tilting term TI2, whereas the TI1 and ST terms are not important, as described
by Schoppa & Hussain (2002). For the present finite-amplitude perturbations, the
magnitudes of the terms in (4.7) are first checked. TI2 still dominates over other terms
in the STG stage. For example, at t+ = 10, the maximum amplitude of TI2 is around
3.1, whereas those of TI1 and ST are approximately 0.18 and 0.64. At the end of
the first stage, t+ = 20, TI2 decreased to 2.9, and TI1 and ST both increased to 0.91
and 1.5, respectively. TI2 could be further decomposed into linear and nonlinear parts,
−(∂w′/∂x)(∂U/∂y) and −(∂w′/∂x)(∂u′/∂y). The linear part is approximately 6 and 4
times larger than the nonlinear part at t+ = 10 and 20, respectively. Hence, generation
of the ωx sheet by the STG mechanism could still be considered as a linear process.
However, the nonlinear effects take up more and more partitions over time.

The streak vortex line coordinate system (x, n, s) is chosen to analyse the linear
evolution process of the streamwise vorticity perturbation ω′x, as done by Schoppa &
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FIGURE 9. Schematic plot of streak vortex line coordinates.
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FIGURE 10. (Colour online) Contours of ωx on the (y, z)-plane at (ai–aiii) t+ = 10 and
(bi–biii) t+ = 20 for (ai–bi) no-control, (aii–bii) y+d = 15 control, and (aiii–biii) y+d = 28
control. Contour levels are from −3 to 3 in increments of 0.3. Solid lines show positive
contours and dashed lines show negative contours.

Hussain (2002). The coordinates are schematically shown in figure 9; recall that both
the base-flow velocity U and vorticity Ω are single-component, i.e. u = U(n)x and
ω =Ω(n, s)s in this coordinate system. The linearized inviscid evolution equation for
streamwise vorticity perturbation ω′x can be written as ((14a) in Schoppa & Hussain
2002)

∂ω′x
∂t
+ U

∂ω′x
∂x
=Ω∂u′s

∂x
, (4.8)

in which u′s is the velocity component tangential to the vortex line, as shown in
figure 9. Initially, v′ = 0 and u′s primarily stem from the projection of w′. Because
of the sinusoidal x-variation of w′ and since Ω is much greater near the streak
trough than near the streak crest, ω′x is first generated in the streak trough region at
the streamwise position corresponding to the zero-crossing point of w′, and is then
advected in the streamwise direction by the mean flow. With increasing time, ω′x
can also be generated at the streak flank and crest, and forms a z-continuous sheet
(Schoppa & Hussain 2002). In the STG stage, v′ is gradually developed. If v′ is
negative near the left trough of the streak and positive near the right trough, as shown
in figure 9, it will result in a favourable contribution to u′s and vice versa.

Figure 10 shows the distribution of ω′x on the (y, z)-plane through the zero-crossing
position of w′ at t+ = 10 and 20 for the no-control and the two control cases,
respectively. In all three cases, a flat, z-localized elliptical patch of positive ω′x is
formed in the streak trough region at t+ = 10, as described by Schoppa & Hussain
(2002). At t+ = 20, ω′x is also pronounced at the streak flank and crest. The influence
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of control on the elliptical patch of ω′x in the streak trough region, which will be
stretched into a streamwise vortex in the post-STG stage, is not obvious at t+ = 10, but
can be distinguished at t+ = 20. At both t+ = 10 and 20, the distribution of v′ displays
a negative region near the left trough and a positive region near the right trough of
the streak for all three cases, but with different magnitudes, as shown in figures 6
and 7. The v′ < 0 region near the left trough and the v′ > 0 region near the right
trough are suppressed by the y+d = 15 control, but greatly enhanced by the y+d = 28
control. At t+ = 10, because ∂v′/∂x is negligible near the streamwise location where
w′ is zero and ∂w′/∂x takes the maximum value, the distribution of ω′x on the plane
at this streamwise position is unable to reveal the influence of the controls, as shown
in figure 10(ai–aiii). At t+ = 20, however, the y+d = 15 control and the y+d = 28 control
work together with the increased overlapping of the v′ and w′ distribution in the
streamwise direction, resulting in the attenuation and magnification of ω′x, respectively,
as verified by comparing figure 10(bii,biii) with figure 10(bi).

The influence of control on the ω′x very close to the wall is obvious: the magnitude
of ω′x is dramatically attenuated below y+ = 5 by the y+d = 28 control at both t+ = 10
and 20, as shown in figure 10(aiii,biii). For the no-control case, the negative ω′x
regions underneath the positive ω′x and closer to the wall are a kinematic consequence
of the wall no-slip condition, and are mainly composed of ∂w′/∂y < 0. In the case
of the y+d = 28 control, v′ near the wall is considerably strengthened, as depicted in
figures 6(biii) and 7(biii), generating ∂v′/∂z > 0 in the middle and ∂v′/∂z < 0 near
the two sides of the domain in the z direction. This counteracts the effect of ∂w′/∂y,
resulting in the attenuation of ω′x near the wall. Notably, although the vorticity adjacent
to the wall is suppressed by the y+d = 28 control, the streamwise vortices generated
later are not weakened compared with the no-control case, indicating that the lift-up
mechanism described by Koumoutsakos (1997) for the two-dimensional vortex dipole
is not dominant in the present three-dimensional vortex generation process.

4.2. The post-STG stage
After the transient growth in the STG stage, the nonlinear effects are triggered by
the greatly amplified perturbations and play an important role in the post-STG stage.
The streamwise vortices are generated by directly stretching the previously produced,
z-localized vorticity sheet, and the advection and tilting are not important in this
process (Schoppa & Hussain 2002). However, in the control cases, wall blowing and
suction alter the near-wall distribution of v′ and w′, which are directly related to the
advection and tilting contributions to ωx. Therefore it is necessary to check whether
the dominance of ST over other terms is changed by the control. If it is, then what is
the new dominator? If it is not, how does the control take effect through ST?

The inviscid evolution equation for streamwise vorticity ωx, (4.7), is employed
to investigate how the control influences the vortex formation in this nonlinearity-
dominated stage. Notably, according to (4.7), only the terms that have the same sign as
that of ωx at the same place can result in a favourable contribution to the generation
of streamwise vortices. ADX only advects ωx in the streamwise direction; as such, it
is not important to the generation of streamwise vortices. Therefore, only the spatial
correspondence of ADY, ADZ, TI1, TI2 and ST with streamwise vorticity ωx are
carefully checked. The vortices at t+ = 40 are studied first. Neither the ADY nor the
ADZ regions are in coincidence with the regions possessed by ωx with the same sign
in the uncontrolled flow. The situations for the two control cases are similar to the
no-control case, suggesting that regardless of whether control is applied or not, the
advection terms are not dominant in the generation of streamwise vortices. Compared
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FIGURE 11. Contours of TI2 on (ai–aiii) the (y, z)-plane and (bi–biii) the (x, y)-plane across
the vortex core at t+ = 40 for (ai–bi) no control, (aii–bii) y+d = 15 control, and (aiii–biii)
y+d = 28 control. The bold solid line is the iso-contour of ωx = 2, which identifies the vortex-
related ωx > 0 region. The black dot shows the position of the vortex core. The thin solid
lines depict positive TI2, and the thin dashed lines represent negative TI2 with contour level
increments of 1.

with the other terms, TI1 is too small to be taken into account. Detailed analysis is
conducted for the tilting term TI2, which plays an important role in producing the ωx

sheet in the STG stage, and the stretching term ST, which is considered to be directly
responsible for the generation of streamwise vortices by Schoppa & Hussain (2002).
The contours of TI2 and ST on the (y, z)-plane and (x, y)-plane across the vortex core
are depicted in figures 11 and 12.

At t+ = 40, the core of the vortex with positive ωx identified by the position of
minimum λ2, is located at (200, 17, 69) for the no-control case, (230, 20, 57) for
y+d = 15 control, and (230, 22, 65) for y+d = 28 control: see figure 3(ai–aiii) for
reference. In figures 11 and 12, the vortex cores are denoted by black dots. The bold
lines identify the vortex-related ωx > 0 regions, and the thin lines stand for the terms
concerned (solid for positive values and dashed for negative values). The distribution
of TI2 shows that although the ωx > 0 region remains enclosed by the positive TI2
region, it has already moved to a marginal area. In all three cases, the cores of the
positive TI2 are located underneath the elevated streamwise vortices. Notably, the TI2
term, responsible for the creation of the ωx sheet in the streak trough region in the
STG stage, as discussed in the previous section, gradually weakens its influence on
streamwise vortex generation in this nonlinearity-dominated stage. The distribution of
ST is shown in figure 12. The positive ST is consistently in good spatial accordance
with the positive ωx region on both the (y, z)-plane and the (x, y)-plane for both the
no-control and the two control cases, indicating that the control cannot change the
dominant position of ST in the formation of streamwise vortices. ST is obviously
weakened by the y+d = 15 control; the magnitude of ST is not drastically changed
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FIGURE 12. Contours of ST on (ai–aiii) the (y, z)-plane and (bi–biii) the (x, y)-plane across
the vortex core at t+ = 40 for (ai–bi) no control, (aii–bii) y+d = 15 control, and (aiii–biii)
y+d = 28 control. The bold solid line is the iso-contour of ωx = 2, which identifies the vortex-
related ωx > 0 region. The black dot shows the position of the vortex core. The thin solid
lines depict positive ST, and the thin dashed lines represent negative ST with contour level
increments of 0.5.

by the y+d = 28 control, but multiple extreme points appear within the vortex-related
ωx > 0 region. The spatial correspondence between streamwise vortices, and TI2 and
ST, at the later time t+ = 65 and 88 are also checked. At t+ = 88, the regions with
pronounced TI2 are almost completely separated from those occupied by streamwise
vortices; the regions with significant ST almost completely reside in streamwise
vortices for both the no-control and the two control cases. Therefore, the dominant
position of ST over other terms in streamwise vortex generation is not changed by the
control, regardless of where the detection planes are located.

The attenuation of ST by the y+d = 15 control is easily understood, according to the
analysis of the production of the streamwise vorticity sheet in the previous section.
The stretching term ST is the product of ωx and ∂u/∂x. Via the y+d = 15 control, ωx

generated at the end of the STG stage is smaller than that in the no-control case,
and ∂u/∂x is also slightly suppressed; these two effects cause the direct attenuation
of the ST term. The alleviated stretching effect weakens the production of streamwise
vorticity, and iteratively, ωx under y+d = 15 control does not have the opportunity
to grow as much as that in the no-control case. For the y+d = 28 control, ωx and
∂u/∂x produced in the STG stage are both stronger than those in the no-control case;
however, no obvious enhancement in ST is observed in the post-STG stage at t+ = 40
(the maximum ST for the no-control case is 4.0, for the y+d = 15 control it is 2.2,
and for the y+d = 28 control 4.1). In addition, at t+ = 88, it is even smaller than the
no-control case (the maximum ST for the no-control case is 7.1, for the y+d = 15
control it is 2.6, and for the y+d = 28 control 5.6). This implies that control in the
post-STG stage exhibits different effects from that in the STG stage. In order to clarify
the roles played by control, controls with different detection locations are imposed
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FIGURE 13. Time evolution of E3D under no control and opposition control with initial
θ20 = 50◦: (a) w+rms = 0.3 and (b) w+rms = 0.5.

at different stages, and their influence on the generation and evolution of streamwise
vortices is discussed in the following section.

5. Effects of control imposed at different stages
The conclusions drawn in § 4 are validated by simulations with different initial

conditions. Figure 13 shows the time evolution of perturbation energy E3D with initial
θ20 = 50◦ and w+rms = 0.3 and 0.5, which can be compared with figure 2 for the cases
with initial θ20 = 45◦ and w+rms = 0.5. Starting from all the initial conditions considered
in the present study, the perturbation energy experiences a similar time history. The
transient growth stage lasts until a later time at t+ = 30 for the smaller initial
perturbation w+rms = 0.3. For the larger initial perturbation w+rms = 0.5, the temporal
instant defining the end of the STG stage remains at t+ = 20 for the current θ20 = 50◦,
similar to those in the θ20 = 45◦ case. This is consistent with the result of Park, Hwang
& Cossu (2011), who noted that the time needed to reach the maximum energy growth
decreases as the initial perturbation energy increases. The responses of v′, ∂u/∂x, and
ωx in the STG stage, as well as TI2 and ST in the post-STG stage, to the controls
with θ20 = 50◦ are also similar to those with θ20 = 45◦, and will not be described again
here. In the following, all analyses of the minimal channel flow are based on the initial
conditions with θ20 = 50◦ and w+rms = 0.3.

In order to distinguish the effect of control in the STG stage from that in the
post-STG stage, controls that are only applied in 0 < t+ < 30 (STG control), t+ > 30
(post-STG control), and t+ > 0 (full-time control) are performed with y+d = 15 and 28,
respectively. The streamwise vortices at different times during 60 < t+ < 240 under
different controls are carefully scrutinized, as discussed below.

Figure 14 shows the evolution of streamwise vortices under various controls with
y+d = 15, and those in the no-control case are also shown for comparison. Vortical
structures in the no-control and full-time control cases with current initial conditions
are similar to those with θ20 = 45◦ and w+rms = 0.5 shown in figure 3. With increasing
time, streamwise vortices are generated and gradually elongated in the streamwise
direction, and arc heads appear and form hairpin-like structures in the no-control case;
the full-time y+d = 15 control greatly inhibits the growth of streamwise vortices. The
STG control is compared with the no-control case in figures 14(aiii–eiii) and 14(ai–ei).
Out-of-phase control with y+d = 15 attenuates the generation of ωx and ∂u′/∂x in the
STG stage; as such, ST is weaker and the streamwise vortices are obviously attenuated
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FIGURE 14. (Colour online) Iso-surface of λ2 = −2 at (ai–aiv) t+ = 60, (bi–biv) t+ = 110,
(ci–civ) t+ = 155, (d i–d iv) t+ = 205 and (ei–eiv) t+ = 240 for (ai–ei) no control, (aii–eii)
full-time control, (aiii–eiii) STG control, and (aiv–eiv) post-STG control with y+d = 15. Red
(light), ωx > 0; blue (dark), ωx < 0.

earlier in the stretching process (t+ = 60) compared with the no-control case. The
influence of STG control becomes weaker as time progresses, and after t+ = 155,
these structures under STG control are similar to those in the no-control case. When
the post-STG control and no-control cases are compared, as in figure 14(aiv–eiv)
and 14(ai–ei), post-STG control can also successfully suppress streamwise vortices.
However, due to the absence of the attenuation of ωx and ∂u′/∂x in the STG stage, the
vortices under post-STG control are slightly stronger than those under full-time control
in figure 14(aii–eii). Therefore, for y+d = 15, STG control and post-STG control are
both favourable in attenuating streamwise vortices.

Vortical structures under y+d = 28 controls, applied in different stages, are shown
in figure 15. The performance of full-time control with θ20 = 50◦ and w+rms = 0.3 is
also similar to that with θ20 = 45◦ (figure 3). Here, vortical structures are stronger
under control early in the stretching process, and increase in number later, when
compared with the no-control case. The influence of STG control and post-STG
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FIGURE 15. (Colour online) Iso-surface of λ2 = −2 at (ai–aiv) t+ = 60, (bi–biv) t+ = 110,
(ci–civ) t+ = 155, (d i–d iv) t+ = 205 and (ei–eiv) t+ = 240 for (ai–ei) no control, (aii–eii)
full-time control, (aiii–eiii) STG control, and (aiv–eiv) post-STG control with y+d = 28. Red
(light), ωx > 0; blue (dark), ωx < 0.

control are shown in figures 15(aiii–eiii) and 15(aiv–eiv). At t+ = 60, vortices are
notably strengthened by STG control, and are greatly weakened by post-STG control,
compared with the vortices in both the no-control and full-time control cases. The
different roles that control plays in the STG stage and post-STG stage are clearly
exposed by this comparison. In the STG stage, the in-phase control with y+d = 28
promoted the production of ωx and ∂u′/∂x (figures 8 and 10), therefore enhancing
the stretching effect, resulting in strengthened vortical structures. For example, at
t+ = 60, the maximum amplitude of the ST term in the no-control, full-time control,
STG control, and post-STG control cases are 2.21, 2.58, 3.54 and 1.56, respectively.
As soon as the vortices are generated, the opposite blowing/suction applied on the
wall counteracts the sweep and ejection motions caused by streamwise vortices
(Choi et al. 1994). Therefore, whether the detection plane is located at y+ = 15
or y+ = 28, opposition control in the post-STG stage favours the attenuation of
streamwise vortices. The full-time y+d = 28 control combines the opposite effects to
STG control and post-STG control, under which the vortical structures are stronger
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FIGURE 16. (v,w) vectors on the (y, z)-plane across the core of the positive streamwise
vortex at t+ = 60: (a) y+d = 15 full-time control; (b) y+d = 28 full-time control.

than post-STG control and weaker than STG control. At later times (t+ = 205 and
240), new streamwise vortices are regenerated by the post-STG y+d = 28 control, while
the control with y+d = 15 remains very effective in attenuating streamwise vortices.
In order to understand this different behaviour, velocity vectors on the (y, z)-plane
across the core of the positive streamwise vortices under y+d = 15 and 28 control are
examined. Figure 16 shows that the vertical velocity signals detected at y+ = 15 and
28 are of the same sign but different magnitude, indicating that proper control strength
in the post-STG stage is also significant for achieving sustained vortex suppression.

Control imposed at different stages confirms the importance of STG to streamwise
vortex generation. The y+d = 28 in-phase control can result in vortex augmentation,
while the y+d = 15 out-of-phase control is beneficial to the attenuation of streamwise
vortices. In addition, the effect of post-STG control is closely related to control
strength.

Notably, v′ at y+ = 10 is of the same sign as that at y+ = 15 and almost reaches
the maximum amplitude in the STG stage (figures 6 and 7). If the above analysis
is true, the out-of-phase control with y+d = 10 will be more effective than that with
y+d = 15 in suppressing the generation of the ωx sheet and the subsequent streamwise
vortices. To validate this assertion, the opposition controls are performed with y+d = 10
applied in full time, only in the STG stage and only in the post-STG stage, as
shown in figure 17. The attenuation of streamwise vortices by y+d = 10 STG control
in figure 17(aiii) is heavier than that by the y+d = 15 STG control in figure 14(aiii),
compared with the no-control case in figure 17(ai). When the STG stage is left free
of control, the post-STG y+d = 10 control is not as effective as the y+d = 15 control
shown in figure 14(aiv–eiv), although it still renders the streamwise vortices weaker
than those in the no-control case, as shown in figure 17(ai–ei). As discussed, once
the vortex is generated, v′ at y+ = 10 has the same sign as that at y+ = 15, but with
much lesser strength. The difference between the effects of the post-STG y+d = 10 and
y+d = 15 control on attenuating streamwise vortices can be attributed to the differences
in control strength.

6. Strengthened out-of-phase control and lessened in-phase control
The above analysis of the behaviour of control imposed at different stages shows

that the y+d = 10 control is superior to the y+d = 15 control in the STG stage due
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FIGURE 17. (Colour online) Iso-surface of λ2 = −2 at (ai–aiv) t+ = 60, (bi–biv) t+ = 110,
(ci–civ) t+ = 155, (d i–d iv) t+ = 205 and (ei–eiv) t+ = 240 for (ai–ei) no control, (aii–eii)
full-time control, (aiii–eiii) STG control, and (aiv–eiv) post-STG control with y+d = 10. Red
(light), ωx > 0; blue (dark), ωx < 0.

to its greater strength. On the other hand, the y+d = 10 control is surpassed by the
y+d = 15 control after the STG stage due to its lesser strength. As a result, we devise
a strengthened y+d = 10 control by applying wall blowing/suction according to the
amplified v′ signal sensed at y+ = 10. The vertical velocity imposed at the wall by the
y+d = 28 control is opposite in sign to that by the y+d = 15 control in the STG stage;
however, after the vortices are generated, the wall blowing/suction determined by the
signals sensed at y+d = 15 and 28 are of the same sign but with different strength, as
shown in figure 16. The opposition control using the signal at y+d = 28 but with a
reduced strength can be reasonably assumed to also suppress turbulence through the
attenuation of the extant streamwise vortices. The above analysis of the influence of
the y+d = 28 control in the STG stage is also in favour of the reduction of control
strength. Therefore, the strengthened out-of-phase control and the lessened in-phase
control are proposed as vwall = −Avyd with A > 1 for y+d < 15 and A < 1 for y+d > 15.
Notably, Chung & Talha (2011) also extended the opposition control to vwall = −Avyd ;
however, they set A 6 1 for all the detection positions.
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FIGURE 18. (Colour online) Iso-surface of (ai–bi) λ2 = −1.8 for the strengthened y+d = 10
control and (aii–bii) λ2 =−2 for the lessened y+d = 28 control at (ai–aii) t+ = 60 and (bi–bii)
t+ = 155. Red (light), ωx > 0; blue (dark), ωx < 0.

The new extensions of the opposition-control scheme are first tested in the minimal
channel flow. In the strengthened y+d = 10 control, we set A = 4, while in the lessened
y+d = 28 control, we set A = 0.3. The vortical structures at t+ = 60 and 155 under the
newly proposed control schemes are shown in figure 18. Compared with the normal
y+d = 10 control, the superiority of the strengthened y+d = 10 control is obvious in
attenuating streamwise vortices, as seen in figures 17(aii,cii) and 18(ai,bi). Notably,
the iso-surfaces of λ2 = −1.8 are adopted for the strengthened y+d = 10 control to
show the much weaker vortical structures, while those of λ2 = −2 were previously
used for the normal y+d = 10 control. The lessened y+d = 28 control is also effective
in weakening vortical structures compared with the no-control and the normal y+d = 28
control cases, as seen in figures 18(bii) and 15(ci,cii). Figure 19(a) shows the time
history of the plane-averaged wall skin friction under the normal y+d = 15 and 28
control, the strengthened y+d = 10 control, and the lessened y+d = 28 control. Skin
friction under the y+d = 15 control is almost identical to that without control until
t+ = 60, at which the friction for the no-control case begins to increase notably
while that under the y+d = 15 control varies a little and then decays towards the level
of laminar flow. Although the evolutions of E3D under the y+d = 28 control behave
similarly to those in the no-control case (figure 2a), the skin friction is much larger
than that without control from the beginning. The lessened y+d = 28 control follows
the curves of the no-control and the y+d = 15 control cases when t+ < 60, and then
grows slightly higher than the no-control case until t+ = 260. After that, it differs from
the no-control case, and evolves towards the y+d = 15 control case. The effectiveness
of the strengthened y+d = 10 control is displayed after t+ > 60. Skin friction under the
strengthened y+d = 10 control decays and tends to the laminar state much faster than
the normal y+d = 15 control.

The strengthened y+d = 10 control and the lessened y+d = 28 control are also
tested in the full-scale turbulent channel flow at Reτ = 180, and compared with the
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FIGURE 19. Time history of the plane-averaged wall shear stress: (a) minimal channel;
(b) full-scale channel.

original y+d = 15 control. A number of values of control strength are checked by
adjusting parameter A from 0.1 to 8. For the strengthened y+d = 10 control, the drag
reduction rate is notably increased by increasing A from 1 to 4; after that, it gradually
tends to a limit. At A = 8, the friction is reduced by approximately 29 % by the
strengthened y+d = 10 control, which is greater than the value of 25 % achieved by the
original opposition control with y+d = 15. For the lessened y+d = 28 control, the optimal
value of A is approximately 0.25 in terms of drag reduction rate, which is consistent
with the findings of Chung & Talha (2011). At A = 0.25, the friction is reduced by
approximately 12 % by the lessened y+d = 28 control. Notably, the cases studied by
Chung & Talha (2011) only correspond to the lessened in-phase control proposed here.
By amplifying the control strength with the detection position below y+ = 15, we
obtain a larger drag reduction rate than that by the y+d = 15 control, which was thought
to be the best result that could be achieved by opposition control (Choi et al. 1994;
Hammond et al. 1998; Chung & Talha 2011). Detailed analysis of more combinations
of A and y+d will be conducted in future work.

The root mean squares of velocity fluctuations and Reynolds shear stress are shown
in figure 20 for the two new control schemes; those of the no-control and original
y+d = 15 control cases are also shown for comparison. The suppression of turbulence
intensities and the Reynolds shear stress are remarkable for all three control cases.
In all the profiles, those obtained by the strengthened y+d = 10 control are the lowest,
considerably lower than those obtained by the original y+d = 15 control. This result
is also in accordance with the drag reduction rate achieved by the various control
schemes.

One more question, concerning the main conclusion drawn from the present study,
requires further elucidation. The above analysis indicates that the effect of opposition
control with different y+d on streamwise vortices strongly depends on the position
where v′ changes sign. In the present study, STG perturbation is set to reach maximum
value at y+ = 20; therefore, the wall-normal velocity changes sign at this position,
resulting in the opposite effects on ωx production by the control sensing at y+d = 15
and 28, respectively. The value of y+ = 20 is not chosen arbitrarily; statistically, the
cores of the streamwise vortices are located at approximately y+ = 20, as evidenced
by the second maximum position in the distribution of the root mean square of
streamwise vorticity (see figure 4b in Kim et al. 1987). The choice of the present
STG perturbation can ensure that the core of the generated vortices is located at
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FIGURE 20. Turbulence intensities and Reynolds shear stress in a full-scale turbulent channel
flow at Reτ = 180. (a) u+rms, (b) v+rms, (c) w+rms, and (d) −〈u′v′〉+. The quantities are non-
dimensionalized by uτ in the no-control case.

approximately y+ = 20, as shown by figure 4(c). Therefore, the conclusion in the
present work is meaningful in full-scale turbulence.

7. Summary and conclusion
The effect of opposition control on the STG-based generation of near-wall

streamwise vortices is studied by direct numerical simulation of minimal channel flow
at Reτ = 180. The normal-mode stable streaks with θ20 = 45 and 50◦ are considered
together with the initial STG perturbation at different magnitudes (w+rms = 0.3 and 0.5).
The initially imposed STG perturbation is set to reach maximum value at y+ = 20
to ensure that the generated streamwise vortices are near this position. According
to the evolution of perturbation energy and vortical structures, the entire process is
roughly divided into two stages: the STG stage and the post-STG stage. The analysis
of the magnitude of various terms in the transport equations for perturbation velocity
and streamwise vorticity in the STG stage indicates that the generation of streamwise
vorticity remains able to be approximated by a linear process although the initial
perturbation is of finite magnitude, while nonlinearity quickly grows in the formation
of streak waviness represented by ∂u/∂x.

In the STG stage, v′ changes sign near y+ = 20; hence, y+d = 15 control can
weaken v′ below y+ = 20, while y+d = 28 control can strengthen v′ there, resulting
in the respective suppression and enhancement of the streamwise vorticity produced
in the z-localized elliptical patch of the streamwise vorticity sheet. In the vortex
generation stage, the stretching effect remains dominant over advection and tilting
effects, regardless of whether or not control is imposed. Via the y+d = 15 control, the
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alleviated streamwise vorticity production in the STG stage takes effect directly in
the suppression of the stretching term, and iteratively causing the sustained overall
attenuation of streamwise vortex generation. Via the y+d = 28 control, however, no
obvious enhancement in the stretching term is observed, indicating that the mechanism
for control influencing the generation of streamwise vortices is different in the STG
and post-STG stages.

Controls that are only applied in the STG stage confirm that out-of-phase phase
control (y+d = 10 and 15) can suppress the generation of streamwise vortices, while
in-phase control (y+d = 28) can enhance it. Controls imposed only in the post-STG
stage show that detections at both y+d = 15 and 28 are in favour of attenuating the
extant streamwise vortices. The regeneration of streamwise vortices later, by control
with higher detection location, reveals the influence of control strength.

Based on this knowledge, an extension of the opposition-control scheme is proposed,
i.e. the strengthened out-of-phase control (y+d = 10) and the lessened in-phase
(y+d = 28) control. The new control schemes are tested in both minimal and full-
scale channel flows. The strengthened y+d = 10 control behaves even better in terms
of drag reduction and turbulence suppression than the original y+d = 15 control, which
is usually considered the most effective in opposition controls with various detection
positions.

The present study leaves a number of questions open. How hairpin vortices are
formed and how the controls influence their evolution require further investigation.
Increased combinations of detection position and control strength in the strengthened
out-of-phase control must also be studied in more detail.
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