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This paper develops an empirical likelihood approach for regular generalized auto-
regressive conditional heteroskedasticity ~GARCH! models and GARCH models
with unit roots+ For regular GARCH models, it is shown that the log empirical
likelihood ratio statistic asymptotically follows a x2 distribution+ For GARCH
models with unit roots, two versions of the empirical likelihood methods, the least
squares score and the maximum likelihood score functions, are considered+ For
both cases, the limiting distributions of the log empirical likelihood ratio statis-
tics are established+ These two statistics can be used to test for unit roots under
the GARCH framework+ Finite-sample performances are assessed through simu-
lations for GARCH models with unit roots+

1. INTRODUCTION

For independent and identically distributed ~i+i+d+! random variables y1, + + + , yn,
the distribution F of yi is usually estimated by the empirical distribution func-
tion Fn �(i�1

n pi I$ yi�x% subject to the constraints (i�1
n pi � 1 and pi � 0+ This

empirical distribution is maximized at pi � 10n, i � 1, + + + , n+ Owen ~1988, 1990!
defines the empirical likelihood ratio as

R~F! � )
i�1

n

npi ,

where pi � dF~ yi ! � P~Y � yi !+ If the distribution function F is characterized
by an unknown parameter l, then the probabilities pi should be subject to some
restrictions on the parameter l+ For example, when F is characterized by the
mean m, then pi needs to satisfy the first-order restriction (i�1

n pi ~xi � m!� 0+
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More generally, if l satisfies a k-dimensional vector equation g~xi ,l!� 0, then
the first-order restriction on pi is

(
i�1

n

pi QQQ̆QQg~xi ,l! � 0+ (1.1)

For this restriction, the ~profile! empirical likelihood ratio is given by

R~l! � sup�)
i�1

n

npi : pi � 0,(
i�1

n

pi � 1,(
i�1

n

pi g~xi ,l!� 0� +
For a given l, a unique maximum exists if zero lies inside the convex hull of
the points g~xi ,l!, i � 1, + + + , n+ The maximum of R~l! can be found via a sim-
ple Lagrange multiplier argument+ Let

L~l! � (
i�1

n

log pi � a�1 �(
i�1

n

pi�� nb '(
i�1

n

pi g~xi ,l!,

where a and b are Lagrange multipliers+ Taking derivatives with respect to pi

and using the restriction ~1+1! and (i�1
n pi � 1, one obtains

(
i�1

n g~xi ,l!

1 � b 'g~xi ,l!
� 0+ (1.2)

As shown in Qin and Lawless ~1994!, if the k � k matrix (i�1
n @g~xi ,l!

g '~xi ,l!# is positive definite, by the inverse function theorem there exists a
continuous differentiable function b~l! of l such that

(
i�1

n g~xi ,l!

1 � b '~l!g~xi ,l!
� 0+ (1.3)

The ~profile! log empirical likelihood function can be defined as

LE ~l! � (
i�1

n

log@1 � b '~l!g~xi ,l!# +

Its minimizer Zln is called the maximum empirical likelihood estimator ~MELE!+
In practice, one is mainly interested in the value of the MELE Zln evaluated at
the corresponding empirical likelihood ratio statistic defined by

WE ~l0 ! � �2@LE ~ Zln !� LE ~l0 !# +

This statistic can be used to test for the hypothesis H0 : l � l0+ Owen ~1988!
demonstrates that the empirical likelihood approach provides an accurate con-
fidence region for the parameter in finite-sample cases+

When g~x,l!� x � m and under some mild conditions, Owen ~1988, 1990!
proves that WE ~m0! converges in distribution to xp

2 as n r `, where p is the
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dimension of m+ Owen ~1991! and Kolaczyk ~1994! extend this methodology
to general regression problems including linear, generalized linear, and projec-
tion pursuit models, Qin and Lawless ~1994! to general independent unbiased
estimating functions, and more recently Chuang and Chan ~2002! to unstable
autoregressive models studied in Chan and Wei ~1988!+

As pointed out in Owen ~1990!, the empirical likelihood approach plays a
similar role to the bootstrap method+ On the other hand, it is also well known
that bootstrap methods work less efficiently for serially correlated data than for
independent data+ It is therefore interesting to explore whether the empirical
likelihood approach provides another feasible means to supplement the boot-
strap methodology to conduct statistical inference for time series data+

The main goal of this paper is to study the effect of the empirical methodol-
ogy for unit root models with generalized autoregressive conditional heteroske-
dasticity ~GARCH! errors+ It is well known that unit root testing has played an
important role in econometrics during the last two decades+ Although one can
apply the Dickey–Fuller tests for unit root models with GARCH errors ~see
Pantula, 1989!, by accounting for the heterogeneity presented in the GARCH
component, more powerful unit root tests based on the quasi-maximum likeli-
hood estimator ~QMLE! can be constructed ~see Ling and Li, 1998, 2003; Seo,
1999!+ Simulation studies based on quasi-maximum likelihood estimation can
be found in Seo ~1999! and Ling, Li, and McAleer ~2003!+ Given these find-
ings, it is interesting to examine unit root tests based on the empirical method
~see, e+g+, Wright, 1999!+

This paper proceeds as follows+ Section 2 develops the empirical likelihood
for GARCH models and gives its asymptotic properties+ Section 3 studies the
empirical likelihood for the unit root with GARCH models+ The asymptotic
properties of the MELEs are obtained, and the unit root test statistics using the
empirical likelihood are proposed+ Section 4 reports simulation results, and Sec-
tion 5 concludes+ Proofs of the results are given in the Appendix+

Throughout the paper, the following notation will be used: o~1! ~op~1!! denotes
a term ~a random variable! that converges to zero ~in probability!; O~1! ~Op~1!!
denotes a term ~a random variable! that is bounded ~in probability!; 7{7 denotes
the Euclidean norm; andrL denotes convergence in distribution as the sample
size n tends to infinity+

2. EMPIRICAL LIKELIHOOD FOR GARCH MODELS

Consider the GARCH model defined by the equation

«t � htMht , ht � v�(
i�1

r

ai «t�i
2 �(

i�1

s

bi ht�i , (2.1)

where ht are i+i+d+ random variables with mean zero and variance 1+ Let l �
~v,a1,a2, + + + ,ar ,b1, + + + ,bs!

' and let the parameter space Q be a compact sub-
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set of Rr�s�1 + Let l � l0 � Q be the true parameter+ Assume that l0 is an
interior point and for each l � Q, it satisfies the following conditions+

Assumption 2+1+ v � 0, ai , bi � 0, (i�1
r ai � (i�1

s bi � 1, and (i�1
r ai z i

and 1 � (i�1
s bi z i have no common roots+

Given the observations «n, + + + ,«1 and the initial value S«0 � $«t : t � 0% , the
log-likelihood function ~modulus of a constant! can be written as

Ln~l! � (
t�1

n

lt ~l! and lt ~l!� �
1

2
log ht ~l!�

«t
2

2ht ~l!
, (2.2)

where ht~l! is a function of «t and l is the vector of parameters defined in
~2+1!+ Because ht may not be normally distributed, strictly speaking, the func-
tion ~2+2! is the quasi-likelihood function and its maximizer is the QMLE+ The
score function and the information matrix are, respectively,

]lt ~l!

]l
�

1

2ht ~l!

]ht ~l!

]l
� «t

2

ht ~l!
� 1� and

]2lt ~l!

]l]l'
� �

«t
2

2ht
3~l!

]ht ~l!

]l

]ht ~l!

]l'

�
1

2ht ~l!
� ]2ht ~l!

]l]l'
�

1

ht ~l!

]ht ~l!

]l

]ht ~l!

]l'
��1 �

«t
2

ht ~l!
� +

Let Dt~l!� ]lt~l!0]l and Pt~l!� ]
2lt~l!0]l]l' + The QMLE is the solution of

the score function (t�1
n Dt ~l!+ Using this score function Dt~l!, the ~profile!

log empirical likelihood function can be constructed as follows:

LE ~l! � (
t�1

n

log@1 � b '~l!Dt ~l!# , (2.3)

where b~l! is the Lagrange multiplier, that is, a solution to the equation

(
t�1

n Dt ~l!

1 � b '~l!Dt ~l!
� 0+

The global minimizer Zln of ~2+3! is the QMLE and b~ Zln!� 0+ Define the empir-
ical likelihood ratio statistic for testing H0 : l � l0 as

WE ~l0 ! � �2@LE ~ Zln !� LE ~l0 !# +

We have the following result+

THEOREM 2+1+ If Assumption 2.1 holds and Eht
4 � `, then WE ~l0! rL

xr�s�1
2 under H0.
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Remark 2+1+ If one is only interested in testing for a subset of parameters,
one can construct the empirical likelihood ratio statistic along the lines of Theo-
rem 1 in Kitamura ~1997!+ See Kitamura ~1997! and Kitamura, Tripathi, and
Ahn ~2004! for a proof of consistency of the global minimizer of the log empir-
ical likelihood function+

3. UNIT ROOT WITH GARCH MODELS

Consider the following unit root with GARCH~1,1! model:

yt � yt�1 � «t , (3.1)

«t � htMht and ht � v� a«t�1
2 � bht�1,

where ht are i+i+d+ random variables with mean zero and variance 1+ Let d �
~v,a,b!' and let the parameter space Q be a compact subset of R3 and d �
d0 � Q be the true parameter+ Assume that d0 is an interior point in Q and for
each d � Q, it satisfies the following conditions+

Assumption 3+1+ v,a,b � 0 and a � b � 1+

The results of this section can be extended to a higher order GARCH~r, s!
model by means of the results in Ling and Li ~1998!+ It is also straightforward
to extend the results of this section to the nearly unit root case as in Chan and
Wei ~1987! and Chuang and Chan ~2002!+

In general, the autoregressive parameter f can be estimated by two methods:
least squares estimator ~LSE! and QMLE+ When the LSE is used, the score
function is given by

ut ~f! � ~ yt � fyt�1!yt�1+

As in Section 1, this equation gives the form of the empirical likelihood func-
tion as

LE ~f! � (
t�1

n

log@1 � b~f!ut ~f!# , (3.2)

where b~f! is the Lagrange multiplier, which is a solution to the equation

(
t�1

n

ut ~f!0@1 � b~f!ut ~f!# � 0+

The minimizer Zfn of ~3+2! is the LSE of f0 � 1+ The empirical likelihood ratio
statistic for testing H0 :f0 � 1 is

WE ~f0 ! � �2@LE ~ Zfn !� LE ~f0 !# +

The following theorem gives the limiting distribution of WE ~f0!+

EMPIRICAL LIKELIHOOD FOR GARCH MODELS 407

https://doi.org/10.1017/S0266466606060208 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060208


THEOREM 3+1+ If Assumption 3.1 holds, then

WE ~f0 !rL ��
0

1

B2~t! dt��1��
0

1

B~t! dB~t!�2

,

as n r `, where B~t! is a standard Brownian motion.

Consider now the empirical likelihood ratio statistic based on the quasi-
likelihood score+ The quasi-likelihood function conditional on the initial value
y0 � 0 can be written as

Ln~l! � (
t�1

n

lt ~l! where lt ~l!� �
1

2
log ht ~l!�

«t
2~l!

2ht ~l!
,

where l � ~f,d! and «t~l! � yt � fyt�1 is a function of yt and l+ Then

]lt ~l!

]l
� �

«t ~l!

ht ~l!

]«t ~l!

]l
�

1

2ht ~l!

]ht ~l!

]l
�«t

2~l!

ht ~l!
� 1�,

]2lt ~l!

]l]l'
� �

1

ht ~l!

]«t ~l!

]l

]«t ~l!

]l'
�

2«t ~l!

ht
2~l!

]«t ~l!

]l

]ht ~l!

]l'

�
«t

2~l!

2ht
3~l!

]ht ~l!

]l

]ht ~l!

]l'

�
1

2ht ~l!
� ]2ht ~l!

]l]l'
�

1

ht ~l!

]ht ~l!

]l

]ht ~l!

]l'
��1 �

«t
2~l!

ht ~l!
� +

Let Dt~l! � ]lt~l!0]l and Pt~l! � ]
2lt~l!0]l]l' + Using this score function as

in Section 1, the empirical likelihood function can be constructed as

LE ~l! � (
t�1

n

log@1 � b '~l!Dt ~l!# , (3.3)

where b~l! is the Lagrange multiplier that is a solution to the equation

(
t�1

n Dt ~l!

1 � b '~l!Dt ~l!
� 0+

The minimizer Zln of ~3+3! is the QMLE of l0, the true parameter of l+ The
empirical likelihood ratio statistic for testing H0 : l0 � ~1,d0

' !' is

WE ~l0 ! � �2@LE ~ Zln !� LE ~l0 !# +
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THEOREM 3+2+ If Assumption 3.1 holds and E6ht 64�i � ` for some i � 0,
then

WE ~l0 !rL �K�
0

1

v1
2~t! dt��1��

0

1

v1~t! dv2~t!�2

� x3
2 under H0 ,

as n r `, where V and k are defined as in Lemma A.2 with r � s � 1 and
the two components in the limiting distribution are independent. Herein,
~v1~t!,v2~t!! is a bivariate Brownian motion with covariance

tS � t�Eht 1

1 K
�,

where F � E~10ht ! � 2a 2(k�1
` b2~k�1!E~«t�k

2 0ht
2! and K � E~10ht ! � ka 2

(k�1
` b2~k�1!E~«t�k

2 0ht
2! .

If we are interested in testing the unit root model ~3+1!, we have to find the
constrained empirical likelihood minf�1 LE ~l!+ The empirical likelihood test
for testing f � 1 is defined as

GWn � �2�LE ~ Zln !� min
f�1,d�Q

LE ~l!� +
Let LE ~d! � LE ~l!6l�~1,d! and its minimizer be denoted by Zdn+ Here, the num-
ber of estimating equations is four, whereas that of unknown parameters is three+
Thus, Zdn is no longer the same as the QMLE of d0 in the finite sample+ The
following lemma gives the existence of Zdn+

LEMMA 3+1+ If Assumption 3.1 holds and E6ht 64�i � ` for some i � 0,
then there exists a point Zdn in the interior of the ball Vn � $d : 7d � d07 �
n�0+5� Ii % for some Ii � ~0, i! such that ]LE ~ Zdn!0]d� 0 with probability approach-
ing 1 and limnr`P $LE ~ Zdn! � mind�Vn

LE ~d!% � 1.

Because LE ~ Zln! is always zero, we only need to find Zdn numerically+ The
following corollary gives the limiting distributions of the GWn+

COROLLARY 3+1+ Under the assumptions of Lemma 3.1, it follows that

GWn
102rL

r�
0

1

B~t! dB~t!

��
0

1

B2~t! dt�102 � $1 � r2 %102j,

as nr `, where r2 � 10~s 2K ! � ~0,1! , s 2 � Eht , j ; N~0,1! , and B~t! is a
standard Brownian motion that is independent of j.
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Remark 3+1+ F � K when k � 2+ The limiting distributions in Corollary 3+1
are the same as those given in Seo ~1999! and Ling and Li ~2003!+ Some of the
critical values can be found in Ling et al+ ~2003!+

4. SIMULATIONS

Finite-sample performances of the unit root tests based on the QMLE and the
MELE are examined via Monte Carlo experiments in this section+

The model is given in ~3+1! with ht ; N~0,1! and the parameters ~v,a,b!
assume the same values given in Table 1+ Furthermore, the parameter f
takes the values f� 1+0,0+99,0+95, and 0+9+ The sample size is 200, and 1,000
replications are conducted in all cases+ Let [tQEn

2 denote the square of the
t-test based on the QMLE given in Ling and Li ~1998!, that is, [tQEn

2 � $~10sr!
~(t�2

n yt�1
2 !102~ ZfMLE � 1!%2 , which has the same asymptotic distribution as GWn

in Corollary 3+1+ The critical values of [tQEn
2 and GWn are computed by 20,000

replications of the integral of standard Brownian motion appearing on the right-
hand side of Corollary 3+1, which is approximated by a discrete random walk
model using normal errors+ From Table 1, we see that the sizes of both tests
are almost identical and are very close to the nominal level 0+05+ This is sim-
ilar to the results reported by Chuang and Chan ~2002!, who compare the unit
root tests based on the empirical likelihood and the LSE methods for the auto-
regressive ~AR! model with i+i+d errors+ The powers of GWn are smaller than

Table 1. Powers of lower tail unit root tests at 5% level
for AR~1!-GARCH~1,1! models based on empirical criti-
cal values with standard normal errors: n � 200 and 1,000
replications

f0 0+900 0+950 0+990 1+000

~v,a,b! � ~0+1,0+4,0+5!
[tQEn
2 1+000 0+938 0+778 0+054

GWn 0+981 0+847 0+705 0+056

~v,a,b! � ~0+1,0+3,0+6!
[tQEn
2 0+999 0+910 0+715 0+066

GWn 0+974 0+798 0+625 0+063

~v,a,b! � ~0+3,0+2,0+75!
[tQEn
2 0+996 0+892 0+690 0+059

GWn 0+985 0+807 0+586 0+057

~v,a,b! � ~0+4,0+5,0+2!
[tQEn
2 0+998 0+932 0+703 0+050

GWn 0+993 0+890 0+640 0+060
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those of [tQEn
2 , however+ One possible explanation is that the calculation of the

MELE of d0 is not as efficient as the QMLE in finite samples+ We need to
solve seven highly nonlinear equations to obtain the minimum of LE ~d! in GWn

when evaluating the MELE+
In Table 2, we repeat the simulations with the distribution of ht being replaced

by t5 in Table 1+ It is now observed that the sizes of both tests are distorted,
with the MELE test GWn suffering more seriously+ As in the normal error case,
the powers of GWn are lower than those of [tQEn

2 , except for f � 0+99+ When the
sample size is increased to 600 in Table 3, the sizes of both tests become much
better, and powers have also been increased+ Differences between the powers
of two tests become smaller and for f� 0+99, the power of GWn becomes lower
than [tQEn

2 + Because f� 0+99 is so close to the unit root case, the power of GWn is
affected by its overrejection when the sample size n is 200, but this overrejec-
tion becomes less serious when n is increased to 600+

In general, the unit root test based the MELE does not perform better than
that based on the QMLE in finite samples+ Although the simulation results are
somewhat disappointing, if it were not for the asymptotic results established in
Theorem 3+2, it would not be possible to conduct the comparison between the
empirical likelihood and MLE methods, so we would never know how they
perform relative to each other+ The knowledge gained by conducting this study
is valuable+ In the i+i+d+ case, Kitamura ~2001! showed that the empirical like-
lihood ratio test is no less powerful than any regular test as the sample size
goes to infinity+ Our finding only reveals finite-sample situations, which cannot

Table 2. Powers of lower tail unit root tests at 5% level
for AR~1!-GARCH~1,1! models based on empirical criti-
cal values with t5 errors: n � 200 and 1,000 replications

f0 0+900 0+950 0+990 1+000

~v,a,b! � ~0+1,0+4,0+5!
[tQEn
2 0+991 0+879 0+265 0+085

GWn 0+935 0+777 0+275 0+124

~v,a,b! � ~0+1,0+3,0+6!
[tQEn
2 0+984 0+850 0+247 0+068

GWn 0+926 0+739 0+242 0+091

~v,a,b! � ~0+3,0+2,0+75!
[tQEn
2 0+988 0+824 0+236 0+073

GWn 0+946 0+732 0+246 0+123

~v,a,b! � ~0+4,0+5,0+2!
[tQEn
2 0+991 0+852 0+223 0+067

GWn 0+953 0+793 0+276 0+116
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be considered evidence contradictory to his findings+ It remains, however, a
challenging theoretical problem to derive a similar conclusion as in Kitamura
~2001! for the MELE in the unit root case+

5. CONCLUDING REMARKS

This paper develops the empirical likelihood approach for GARCH models
and GARCH models with unit roots+ For GARCH models, it is shown that the
log empirical likelihood ratio statistic asymptotically follows a x2 distri-
bution+ For GARCH models with unit roots, the empirical likelihood method
based on the least squares score and the maximum likelihood score functions
is investigated+ In both cases, the limiting distributions of the log empirical
likelihood ratio statistics are established and the unit root tests based on the
MELEs are constructed+ Numerical simulations are conducted to assess the
finite performance+

REFERENCES

Chan, N+H+ & C+Z+ Wei ~1987! Asymptotic inference for nearly nonstationary AR~1! processes+
Annals of Statistics 15, 1050–1062+

Chan, N+H+ & C+Z+ Wei ~1988! Limiting distributions of least squares estimates of unstable auto-
regressive processes+ Annals of Statistics 16, 367– 401+

Table 3. Powers of lower tail unit root tests at 5% level
for AR~1!-GARCH~1,1! models based on empirical criti-
cal values with t5 errors: n � 600 and 1,000 replications

f0 0+900 0+950 0+990 1+000

~v,a,b! � ~0+1,0+4,0+5!
[tQEn
2 1+000 0+999 0+671 0+064

GWn 0+995 0+993 0+607 0+083

~v,a,b! � ~0+1,0+3,0+6!
[tQEn
2 1+000 1+000 0+624 0+064

GWn 0+994 0+971 0+561 0+072

~v,a,b! � ~0+3,0+2,0+75!
[tQEn
2 0+998 0+999 0+629 0+075

GWn 0+994 0+980 0+522 0+079

~v,a,b! � ~0+4,0+5,0+2!
[tQEn
2 1+000 1+000 0+626 0+054

GWn 0+997 0+989 0+600 0+084

412 NGAI HANG CHAN AND SHIQING LING

https://doi.org/10.1017/S0266466606060208 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060208


Chuang, C+S+ & N+H+ Chan ~2002! Empirical likelihood for autoregressive models with applica-
tions to unstable time series+ Statistica Sinica 12, 387– 407+

Chung, K+L+ ~1968! A Course in Probability Theory. Academic Press+
Francq, C+ & J+M+ Zakoïan ~2004! Maximum likelihood estimation of pure GARCH and ARMA-

GARCH processes+ Bernoulli 10, 605– 637+
Kitamura, Y+ ~1997! Empirical likelihood methods with weakly dependent processes+ Annals of

Statistics 25, 2084–2102+
Kitamura, Y+ ~2001! Asymptotic optimality of empirical likelihood for testing moment restrictions+

Econometrica 69, 1661–1672+
Kitamura, Y+, G+ Tripathi, & H+ Ahn ~2004! Empirical likelihood-based inference in conditional

moment restriction models+ Econometrica 72, 1667–1714+
Kolaczyk, E+D+ ~1994! Empirical likelihood for generalized linear models+ Statistica Sinica 4, 199–

218+
Lee, S+-W+ & B+E+ Hansen ~1994! Asymptotic theory for GARCH~1,1! quasi-maximum likelihood

estimator+ Econometric Theory 10, 29–52+
Ling, S+ ~2006! Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH
0IGARCH models+ Journal of Econometrics, submitted+

Ling, S+ & W+K+ Li ~1998! Limiting distributions of maximum likelihood estimators for unstable
autoregressive moving-average time series with general autoregressive heteroskedastic errors+
Annals of Statistics 26, 84–125+

Ling, S+ & W+K+ Li ~2003!Asymptotic inference for unit root with GARCH~1,1! errors+ Economet-
ric Theory 19, 541–564+

Ling, S+,W+K+ Li, & M+McAleer ~2003! Estimation and testing for unit root processes with GARCH
~1,1! errors: Theory and Monte Carlo study+ Econometric Reviews 22, 179–202+

Owen, A+ ~1988! Empirical likelihood ratio confidence intervals for a single functional+ Biometrika
75, 237–249+

Owen, A+ ~1990! Empirical likelihood ratio confidence regions+ Annals of Statistics 18, 90–120+
Owen, A+ ~1991! Empirical likelihood for linear models+ Annals of Statistics 19, 1725–1747+
Qin, J+ & J+ Lawless ~1994! Empirical likelihood and general estimating equations+ Annals of Sta-

tistics 22, 300–325+
Pantula, S+G+ ~1989! Estimation of autoregressive models with ARCH errors+ Sankhyā B 50, 119–138+
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APPENDIX: Proofs

For ease of reference, Lemma A+2 of Ling ~2006! is repeated as follows+ In the lemma,
«t and ht~l! are defined as in Section 2+ Proof of this statement can be found in Ling
~2006!+

Lemma A+2 of Ling ~2006!+ If Assumption 2.1 holds, then there exist a neighborhood
Q0 of l0, a constant C � 0, and a constant r � ~0,1! such that for any constant i1 � 0,
it follows that

~a! sup
Q0
�� 1

ht ~l!

]ht ~l!

]l �� � C�1 �(
j�1

`

r j 6«t�j 6�i1,
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~b! sup
Q0
�� 1

ht ~l!

]2ht ~l!

]l]l' �� � C�1 �(
j�1

`

r j 6«t�j 6�i1+
The proof of Theorem 2+1 follows a similar idea as in Owen ~1990! and Qin and

Lawless ~1994!+ We first present two lemmas+

LEMMA A+1 If Assumption 2.1 holds and Eht
4 � `, then

~a! E sup
Q0

7Dt ~l!72 � `,

~b! E sup
Q0

7Pt ~l!7 � `,

~c! E sup
Q0
� ]

3lt ~l!

]li ]lj ]lk
� � `,

where i, j, k � 1, + + + , r � s � 1 and Q0 is some neighborhood of l0.

Proof. By Lemma A+2 of Ling ~2006!, we have

sup
Q0
�� 1

ht ~l!

]ht ~l!

]l �� � jht�1 and sup
Q0
�� 1

ht ~l!

]2ht ~l!

]l]l' �� � jht�1,

where jht�1 � C~1 �(j�1
` r j 6«t�j 6!i1 for some constants r � ~0,1! and C � 0 and for

any i1 � 0+ By the two inequalities, it is easy to show that ~a! and ~b! hold+ Using the
same method as in Lemma A+2 of Ling ~2006!, it follows that

sup
Q0
�� 1

ht ~l!

]3ht ~l!

]li ]lj ]lk
�� � jht�1,

from which part ~c! follows+ �

LEMMA A+2+ If Assumption 2.1 holds and Eht
4 � `, then

~a! max
1�t�n

7Pt ~l!7 � op~n!,

~b! max
1�t�n

7Dt ~l!7 � op~n
0+5 !,

~c! n�1(
t�1

n

Pt ~l! � V� op~1!,

~d ! n�1(
t�1

n

@Dt ~l!Dt
'~l!# �

k

2
V� op~1!,

where op~1! terms hold uniformly in l � V0n � $l : 7l � l7 � n�0+5M % for each con-
stant M � 0, V � E$@]ht ~l!0]l#@]ht ~l!0]l'#02ht

2~l!#%6l�l0
and k � Eh t

4 � 1+
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Proof. By part ~b! of the preceding lemma, E~supQ0
7Pt ~l!70+5 !2 �` for some neigh-

borhood Q0 of l0+ Furthermore, because $supQ0
7Pt ~l!7% is strictly stationary, it follows

that

n�0+5 max
1�t�n

sup
Q0

7Pt ~l!70+5 � op~1!+

Here, we use the fact that, if $Xn% is an identically distributed sequence with EXt
2 � `,

then max1�t�n6Xt 6 � op~n�0+5!; see, for example, Chung ~1968, p+ 93!+ Thus,

n�1 max
1�t�n

sup
Q0

7Pt ~l!7 � �n�102 max
1�t�n

sup
Q0

7Pt ~l!70+5�2
� op~1!+

Part ~a! follows+
Now consider part ~b!+ By part ~a! of the preceding lemma, E7Dt~l0!72 � `+ Simi-

lar to part ~a!, we have

n�0+5 max
1�t�n

7Dt ~l0 !7 � op~1!+

By the previous two equations,

n�0+5 max
1�t�n

sup
V0n

7Dt ~l!7 � n�0+5 max
1�t�n

7Dt ~l0 !7� n�1 max
1�t�n

sup
Q0

7Pt ~l!7� op~1!+

Part ~b! follows+
For part ~c!, let e � 0 be given+

P�1

n (t�1

n

sup
V0n

7Pt ~l!� Pt ~l0 !7 � e� �
1

e
E sup

V0n

7Pt ~l!� Pt ~l0 !7r 0,

as nr `, by means of part ~b! of the preceding lemma and the dominated convergence
theorem+ By the ergodic theorem,

n�1(
t�1

n

Pt ~l0 ! � V� op~1!+

By the previous two equations, ~c! holds+
Finally, by Taylor’s expansion, and parts ~a!–~c! of this lemma, when l � V0n, it

follows that

n�1��(
t�1

n

@Dt ~l!Dt
'~l!� Dt ~l0 !Dt

'~l0 !#��
� 2n�1(

t�1

n

7n�0+5Dt ~l0 !77Pt ~l
* !7� n�2(

t�1

n

7Pt ~l
* !72

� 2 max
1�t�n

7n�0+5Dt ~l0 !7
1

n (t�1

n

7Pt ~l
* !7

� max
1�t�n

7n�1Pt ~l
* !7

1

n (t�1

n

7Pt ~l
* !7� op~1!,
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where the op~1! term holds uniformly in V0n and l* lies between l0 and l+ By the ergo-
dic theorem,

n�1(
t�1

n

Dt ~l0 !Dt
'~l0 ! �

k

2
V� op~1!+

By the previous two equations, part ~d! follows+ �

Proof of Theorem 2.1. Denote

Q1n~l,b! �
1

n (t�1

n Dt ~l!

1 � b 'Dt ~l!
+ (A.1)

Let b � ru with 7u7 � 1+ Observe that

0 � 7Q1n~l,ru!7� 7u 'Q1n~l,ru!7

� � 1

n (t�1

n

u 'Dt ~l!�
1

n
r (

t�1

n u 'Dt ~l!Dt
'~l!u

1 � ru 'Dt ~l! �
� �

1

n �(t�1

n

u 'Dt ~l!��
ru 'Sn~l!u

1 � rZn~l!
, (A.2)

where Sn~l! � n�1(t�1
n Dt ~l!Dt

'~l! and Zn~l! � max1�t�n7Dt~l!7+ By the central
limit theorem, n�0+5(t�1

n Dt ~l0 ! � Op~1!+ Furthermore, by Lemma A+2~c!, we have

n�1�(
t�1

n

u 'Dt ~l!� � n�1�(
t�1

n

u 'Dt ~l0 !�� n�1�(
t�1

n

u 'Pt ~l
* !�7l� l07

� n�1�(
t�1

n

u 'Dt ~l0 !�� n�1 sup
V0n

(
t�1

n

6Pt ~l! 67l� l07

� Op~n
�0+5 !, (A.3)

uniformly in l � V0n where V0n is defined in Lemma A+2+ By Lemma A+2~d!, u 'Sn~l!u�
ka02 � op~1! uniformly in l � V0n, where a is the smallest eigenvalue of V+ By virtue
of equations ~A+2! and ~A+3! and this fact, we have

ru 'Sn~l!u

1 � rZn~l!
� Op~n

�0+5 !,

uniformly in l � V0n+ Furthermore, by part ~b! of our Lemma A+2, we have

r � 7b7� Op~n
�0+5 !,
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uniformly in l � V0n+ Let gt � b 'Dt~l!, where b is the solution of equation Q1n~l,b!� 0+
By part ~b! of our Lemma A+2,

max
1�t�n

6gt 6 � Op~n
�0+5 ! max

1�t�n
7Dt ~l!7� op~1!, (A.4)

uniformly in l � V0n+ Let Q2n~l,b! � n�1(t�1
n Pt ~l!b0@1 � b 'Dt~l!# + Taking the de-

rivative with respect to li ~the ith element of l!, we have

]Q2n~l,b!

]li

�
1

n (t�1

n � @]Pt ~l!0]li #b

1 � b 'Dt ~l!
�

Pt ~l!bb ' @]Dt ~l!0]li #

@1 � b 'Dt ~l!#
2 � +

By virtue of the previous equation, Lemma A+1~c!, and our Lemma A+2~a! and ~c!, it
follows that

�� ]Q2n~l,b!

]li
�� �

7b7

1 � max
1�t�n

6gt 6

1

n (t�1

n

�� ]Pt ~l!

]li
��

�

max
1�t�n

7Pt ~l!77b72

�1 � max
1�t�n

6gt 6�2

1

n (t�1

n

7Pt ~l!7

� op~1!, (A.5)

where gt is defined as in ~A+4!+ Taking the derivative with respect to b,

]Q2n~l,b!

]b '
�

1

n (t�1

n � Pt ~l!

1 � b 'Dt ~l!
�

Dt ~l!@Pt ~l!b#
'

@1 � b 'Dt ~l!#
2 � +

Furthermore, by Lemma A+2~c!, we have

�� ]Q2n~l,b!

]b '
�V�� � �� 1

n (t�1

n b 'Dt ~l!Pt ~l!

1 � b 'Dt ~l! ��� �� 1

n (t�1

n

@Pt ~l!�V#��

�

max
1�t�n

6gt 6

�1 � max
1�t�n

6gt 6�2

1

n (t�1

n

7Pt ~l!7

�

max
1�t�n

6gt 6

1 � max
1�t�n

6gt 6

1

n (t�1

n

7Pt ~l!7� op~1!

� op~1!+ (A.6)
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Note that op~1! in ~A+5! and ~A+6! holds uniformly in V0n+ Similarly, we can show that

]Q1n~l,b!0]l' � V� op~1! and ]Q1n~l,b!0]b ' � �
k

2
V� op~1!,

where op~1! holds uniformly in V0n+ By virtue of this fact and equations ~A+5! and ~A+6!,
it follows that

�]Q1n~l,b!0]b ' ]Q1n~l,b!0]l'

]Q2n~l,b!0]b ' ]Q2n~l,b!0]l'
� � ��kV02 V

V 0
�� op~1!, (A.7)

where op~1! holds uniformly in V0n+
By Lemma A+2~d!, it follows that

0 � Q1n~l,b!�
1

n (t�1

n

Dt ~l!� Sn~l!b �
1

n (t�1

n Dt ~l!gt
2

1 � gt

�
1

n (t�1

n

Dt ~l!� Sn~l!b �

7b7 max
1�t�n

6gt 6

1 � max
1�t�n

6gt 6

1

n (t�1

n

7Dt ~l!72

�
1

n (t�1

n

Dt ~l!� Sn~l!b � op~n
�0+5 !,

uniformly in l � V0n+ Thus,

b0 � @nSn~l0 !#
�1(

t�1

n

Dt ~l0 !� op~n
�0+5 !+

Because Zln is the QMLE, by Theorem 2+2 in Francq and Zakoïan ~2004! ~see also Lee
and Hansen, 1994!, we have that

Mn ~ Zln � l0 ! � �V�1MnQ1n~l0 ,0!� op~1!rL N~0,kV�102!+ (A.8)

Using Taylor’s expansion at ~ Zln, Zbn!, ~A+7!, and the preceding two equations, we have

WE ~l0 ! � �2@LE ~ Zln !� LE ~l0 !#

� n@~ Zbn � b0 !
', ~ Zln � l0 !

' #���kV02 V

V 0
�� op~1!� @~ Zbn � b0 !

', ~ Zln � l0 !
' # '

� nQ1n
' ~l0 ,0!� 2

k
V��1

Q1n~l0 ,0!� op~1!

rL xr�s�1
2 , (A.9)
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as n r `, where the last step follows in view of ~A+8!+ This completes the proof of
Theorem 2+1+ �

The proof of Theorem 3+1 is similar to Theorem 3+2+ Thus, we only present the proof
of Theorem 3+2+ We first need two preliminary lemmas+

LEMMA A+3+ If Assumption 3.1 holds and Eht
4 � `, then it follows that

(a) �n�102(
t�1

n

@Nn Dt ~l0 !#rL ��
0

1

w1~t! dw2~t!,N�0,
k

2
V�� ,

(b) n�1(
t�1

n

Nn Pt ~l0 !NnrL diag�F�
0

1

w1
2~t! dt,V� ,

(c) n�1(
t�1

n

@Nn Dt ~l0 !Dt
'~l0 !Nn #rL diag�K�

0

1

w1
2~t! dt,

k

2
V� ,

where Nn � diag$n�0+5, I3% and F and K are defined in Theorem 3.2.

Proof. Parts ~a! and ~b! follow from Lemmas 4+7 and 4+8 in Ling and Li ~2002! and
Theorem 2+2 in Ling et al+ ~2003!+ The proof of part ~c! is similar to that of Lemma 4+7
in Ling and Li ~2003! and Theorem 2+2 in Ling et al+ ~2003!, and hence the details are
omitted+ �

LEMMA A+4+ If Assumption 3.1 holds and E6ht 64�i � ` for some i � 0, then it
follows that

(a) max
1�t�n

7Nn Pt ~l!Nn7 � op~n
1�2 Ii !,

(b) max
1�t�n

7Nn Dt ~l!7 � op~n
0+5� Ii !,

(c) n�1(
t�1

n

Nn Pt ~l!Nn � n�1(
t�1

n

Nn Pt ~l0 !Nn � op~1!,

(d) n�1(
t�1

n

@Nn Dt ~l!Dt
'~l!Nn # � n�1(

t�1

n

@Nn Dt ~l0 !Dt
'~l0 !Nn #� op~1!,

where op~1! holds uniformly in l � V1n � $l : n 6f� 16� M and 7d� d7� n�0+5� Ii % for
each constant M � 0 and some constant Ii � ~0,0+5! .

Proof. By Lemma 4+2 of Ling and Li ~2003! and the continuous mapping theorem, it
follows that max1�t�n6yt 6 � Op~n102!+ Thus,

«t ~l! � «t � @n~f� 1!# ~n�0+5 yt�1!n
�0+5 � «t � Op~n

�0+5 !, (A.10)
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where Op~n�0+5! holds uniformly in V1n and in t � 1, + + + , n+ Using a similar method as
for Lemma A+6~ii! in Ling ~2006!, we can show that

ht ~l! � ht � op~1!ht , (A.11)

where op~1! holds uniformly in V1n and in t � 1, + + + , n, and ht is defined as in ~2+1! with
r � s � 1 and l � d0+ Because E6ht 64�i � `, there is a small Ii � @0, i! such that
E6ht 6~2�2i0 !0~0+5�2 Ii! � E6ht 6~4�4i0 !0~1�4 Ii! � ` and Eht

i0 0~0+5�2 Ii! � ` as i0 is zero or small
enough+ Hence,

n�0+5�2 Ii max
1�t�n

~ht
2�2i0 ht

i0! � �n�102 max
1�t�n

~ht
~1�i0 !0~0+5�2 Ii!ht

i0 02~0+5�2 Ii! !�2~0+5�2 Ii!

� op~1!+ (A.12)

Because 6«t�k~l!6ht
�102~l! � O~b�k02! as k � 1, and max1�t�n6yt 6 � Op~n102!, we

have

max
1�t�n

�ht ~l!
�102]ht ~l!0]f � � O~1! max

1�t�n�ht ~l!
�102�(

i�1

t�1

b i�1 yt�i�1«t�i ~l!��
� O~1! max

1�t�n
6yt 6� Op~n

102 !, (A.13)

max
1�t�n� ]

2ht ~l!

]f2 � � O~1! max
1�t�n�(i�1

t�1

b i�1 yt�i�1
2 �� Op~n!, (A.14)

where Op~{! holds uniformly in l � V1n+

]2lt ~l!

]f2
� �

yt�1
2

ht ~l!
�
«t

2~l!

2ht
3~l!

� ]ht ~l!

]f
�2

� � «t
2~l!

ht ~l!
� 1� ]

]f
� 1

2ht ~l!

]ht ~l!

]f
�� 2

«t ~l!yt�1

ht
2~l!

]ht ~l!

]f
+

Note that ht~l! � v002 as l � V1n and n is large enough+ By equations ~A+10!–~A+14!,

max
1�t�n

sup
V1n
� ]

2lt ~l!

]f2 � � Op~n!� Op~n! max
1�t�n

sup
V1n

6«t ~l!62

ht ~l!

� Op~n!� Op~n! max
1�t�n

sup
V1n

6«t 62 � op~1!

ht � op~1!ht

� Op~n!� Op~n! max
1�t�n

ht
2 � op~n

2�2 Ii !, (A.15)
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as Ii is small enough+ Using the identity x0~a � x!� x i0 02 for any i0 � 0 as a, x � 0, we
have

1

ht ~l!

]ht ~l!

]a
�

(
i�1

t�1

b i«t�i
2 ~l!

a�c �(
i�1

t�1

b i«t�i
2 ~l!� � Op~1! (

i�1

t�1

r i 6«t�i ~l!6i0,

for any i0 � 0 and a constant 0 � r � 1, where c � v~(i�0
t�1 b i !0a+ Similarly, it can be

easily seen that

1

ht ~l!

]ht ~l!

]b
�
(
i�1

t�1

ib i«t�i
2 ~l!

c �(
i�1

t�1

b i«t�i
2 ~l!

� Op~1! (
i�1

t�1

r i 6«t�i ~l!6i0,

]2lt ~l!

]d]d '
� �

«t
2~l!

2ht
3~l!

]ht ~l!

]d

]ht ~l!

]d '

�
1

2ht ~l!
� ]2ht ~l!

]d]d '
�

1

ht ~l!

]ht ~l!

]d

]ht ~l!

]d '
��1 �

«t
2~l!

ht ~l!
� +

In view of equations ~A+10!–~A+12! and the previous three equations, it follows that

max
1�t�n

sup
V1n
�� ]

2lt ~l!

]d]d ' �� � Op~1! max
1�t�n

sup
V1n

6«t ~l!62�2i0

ht ~l!

� Op~1! max
1�t�n

sup
V1n

6«t 62�2i0 � op~1!

ht � op~1!ht

� op~1!� Op~1! max
1�t�n

6ht 62�2i0ht
i0 � op~n

1�2 Ii !, (A.16)

for some small Ii+ Similarly, it follows that

max
1�t�n

sup
V1n
�� ]

2lt ~l!

]d]f �� � op~n
302�2 Ii !+

Using this equation with ~A+15! and ~A+16!, part ~a! follows+
For part ~b!, because «t

2~l0 !0ht ~l0 !� ht
2 and max1�t�n 6yt 60Mn � Op~1!, by ~A+12!,

it follows that

max
1�t�n� ]lt ~l0 !

]f � � O~1! max
1�t�n

6yt 6�max
1�t�n

ht
2 � 1�� op~n

1� Ii !+ (A.17)
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Furthermore, it is straightforward to show that

max
1�t�n�� ]lt ~l0 !

]d �� � O~1! max
1�t�n

6«t 6i0 max
1�t�n

~ht
2 � 1!� op~n

0+5� Ii !+

By means of ~A+17! and this fact, we have

max
1�t�n

7Nn Dt ~l0 !7 � op~n
0+5� Ii !,

for a sufficiently small Ii � 0+ Using Taylor’s expansion and part ~a! of this lemma, part
~b! is established+

For part ~c!, using ~A+10!–~A+12! and the same arguments used in Theorem C of
Ling and Li ~2003!, it can be shown that

sup
V1n

n�1��(
t�1

n

Nn @Pt ~l!� Pt ~l0 !#Nn�� � op~1!+

Part ~c! follows+ Finally, using parts ~a!–~c! of this lemma and Lemma A+3~b!, we can
show that ~d! holds+ This completes the proof+ �

Proof of Theorem 3.2. Using the idea in Chuang and Chan ~2002!, let Db � bNn
�1 ,

EDt~l!� Nn Dt~l!, and EPt~l!� Nn Pt~l!Nn+ Furthermore, let Db � ru with 7u7� 1+ Denote

Q1n~l, Db! �
1

n (t�1

n EDt ~l!

1 � Db ' EDt ~l!
+ (A.18)

Similar to proving equation ~A+2!, it can be shown that

0 � 7Q1n~l,ru!7� �
1

n �(t�1

n

u ' EDt ~l!��
ru ' DSn~l!u

1 � r EZn~l!
, (A.19)

where DSn~l!� n�1(t�1
n EDt ~l! EDt

'~l! and EZn~l!� max1�t�n7 EDt~l!7+ By Lemmas A+3~a!
and ~b! and Lemma A+4~c!, we have

n�1�(
t�1

n

u ' EDt ~l!� � n�1�(
t�1

n

u ' EDt ~l0 !�� n�1 sup
V1n

(
t�1

n

7 EPt ~l!77Nn
�1~l� l0 !7

� Op~n
�0+5 !, (A.20)

uniformly in l � V1n defined in Lemma A+4+ By Lemmas A+3~c! and A+4~d!, u ' DSn~l!u�
a � op~1! for a positive random variable a, as l � V1n+ Thus, using equations ~A+19!
and ~A+20!, we have

ru ' DSn~l!u

1 � r EZn~l!
� Op~n

�0+5 !+

Furthermore, by Lemma A+4~b!, it is seen that

r � 7 Db7� Op~n
�0+5 !,

422 NGAI HANG CHAN AND SHIQING LING

https://doi.org/10.1017/S0266466606060208 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060208


uniformly in l � V1n+ Let Jgt � Db ' EDt~l!, where Db is the solution of Q1n~l, Db!� 0+ Then

max
1�t�n

6 Jgt 6 � n�0+5 max
1�t�n

7 EDt ~l!7� op~1!,

uniformly in l � V1n+
Let Q2n~l, Db!� n�1(t�1

n EPt ~l! Db0@1 � Db ' EDt~l!# + Following the same procedure as in
the proof of Theorem 2+1,

]Q2n~l, Db!

]li

� op~1! and
]Q2n~l, Db!

] Db '
�

1

n (t�1

n

EPt ~l0 !� op~1!

and

]Q1n~l, Db!

]l'
�

1

n (t�1

n

EPt ~l0 !� op~1! and
]Q1n~l, Db!

] Db '
� � DSn~l0 !� op~1!,

uniformly in l � V1n+
In view of this fact, Lemma A+3~c!, and Lemma A+4~d!, it follows that

0 � Q1n~l, Db!�
1

n (t�1

n

EDt ~l!� DSn~l! Db � op~n
�0+5 !,

uniformly in l � V1n+ By Lemma A+3~a! and ~b! and Lemma A+4~c!, we have

Db0 � @n DSn~l0 !#
�1(

t�1

n

EDt ~l0 !� op~n
�0+5 !+

Because Zln is the QMLE of l0, by Theorem 3+2 in Ling, Li, and McAleer ~2003!, we
have

Mn ~ Zln � l0 ! � �� 1

n (t�1

n

EPt ~l0 !��1

Q1n~l0 ,0!� op~1!+

Using a Taylor’s expansion at ~ Zln, Zbn!, the previous two equations, and Lemma 6+3
with the same method as for Theorem 2+1, we can show that

WE ~ Zln ! � �2@LE ~ Zln !� LE ~l0 !#

� nQ1n
' ~l0 ,0! DSn

�1~l0 !Q1n~l0 ,0!� op~1!

rL �K�
0

1

v1
2~t! dt��1��

0

1

v1~t! dv2~t!�2

� x3
2 , (A.21)

as n r `, where the last two steps follow from Lemma A+3+ This completes the proof+
�
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Proof of Lemma 3.1. Using the idea in Chuang and Chan ~2002!, let Db � bNn
�1 and

EDt~d! � Nn Dt~l!6l�~1,d!+ Furthermore, let Db � ru with 7u7 � 1+ Denote

Q1n~d, Db! �
1

n (t�1

n EDt ~d!

1 � Db ' EDt ~d!
+ (A.22)

Similar to proving equation ~A+2!, it can be shown that

0 � 7Q1n~d,ru!7� �
1

n �(t�1

n

u ' EDt ~d!��
ru ' DSn~d!u

1 � r EZn~d!
, (A.23)

where DSn~d! � n�1(t�1
n EDt ~d! EDt

'~d! and EZn~d! � max1�t�n7 EDt~d!7+ Let EDt~d! �
@ ED1t ~d!, ED2 t

' ~d!# ' , where ED1t~d! is the first element of EDt~d!+ Denote EPt~d! � @] ED1t ~d!0
]d,] ED2 t

' ~d!0]d# ' + By Lemma A+3~a! and ~b! and Lemma A+4~c!, we have

n�1�(t�1

n

u ' EDt ~d!� � n�1�(t�1

n

u ' EDt ~d0 !�� n�1 sup
V1n

(
t�1

n

�� 1

Mn
EPt ~d!��7Mn ~d� d0 !7

� Op~n
�0+5� Ii !, (A.24)

uniformly in l � V1n+ By Lemmas A+3~c! and A+4~d!, u ' DSn~d!u � a � op~1! for a pos-
itive random variable a, uniformly in l � V1n+ Thus, using equations ~A+23! and ~A+24!,
we have

ru ' DSn~d!u

1 � r EZn~d!
� Op~n

�0+5� Ii !+

Furthermore, by Lemma A+4~b!, it is seen that

r � 7 Db7� Op~n
�0+5� Ii !,

uniformly in d � V1n+ Let Jgt � Db ' EDt~d!, where Db is the solution of Q1n~d, Db! � 0+ Then

max
1�t�n

6 Jgt 6 � n�0+5� Ii max
1�t�n

7 EDt ~d!7� op~1!,

uniformly in d � V1n+

0 � Q1n~d, Db!�
1

n (t�1

n

EDt ~d!� DSn~d! Db �
1

n (t�1

n EDt ~d! Jgt
2

1 � Jgt

�
1

n (t�1

n

EDt ~d!� DSn~d! Db �

7 Db7 max
1�t�n

6 Jgt 6

1 � max
1�t�n

6 Jgt 6

1

n (t�1

n

7 EDt ~d!72

�
1

n (t�1

n

EDt ~d!� DSn~d! Db � op~n
�0+5� Ii !,
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uniformly in d � V1n+ By Lemma A+3~a!, (t�1
n EDt ~d0 ! � Op~n0+5!+ Furthermore, by

Lemma A+4~c!,

Db � @n DSn~d!#
�1(

t�1

n

EDt ~d!� op~n
�0+5� Ii !

� @n DSn~d0 !#
�1(

t�1

n

EDt ~d0 !� @n DSn~d0 !#
�1(

t�1

n

EPt ~d
* !~d� d0 !� op~n

�0+5� Ii !

� op~n
�0+5� Ii !, (A.25)

uniformly in d � V1n+ By Taylor’s expansion,

LE ~d! � (
t�1

n

log~1 � Jgt !�(
t�1

n

Jgt �
1

2 (t�1

n

Jgt
2 �(

t�1

n

Ivt , (A.26)

where, for some finite B � 0,

P~6 Ivt 6 � B 6 Jgt 63,1 � t � n!r 1, (A.27)

as n r `+ Thus, by Lemmas A+3~c! and A+4~d!, it follows that

6(
t�1

n

Ivt 6 � Bn�1�2 Ii max
1�t�n

6 Jgt 6(
t�1

n

7 EDt ~d!72 � op~n
2 Ii !, (A.28)

uniformly in d � V1n+ Denote d� d0 � un�0+5� Ii for d � $d : 7d� d07� n�0+5� Ii % , where
7u7 � 1+ By means of equations ~A+25!–~A+28! and Lemmas A+3~b! and ~c! and A+4~c!
and ~d!, we have

LE ~d! � (
t�1

n

log~1 � Jgt !

�
n

2
� 1

n (t�1

n

EDt ~d!� ' DSn
�1~d!� 1

n (t�1

n

EDt ~d!�� op~n
2 Ii !

�
n

2
� 1

n (t�1

n

EDt ~d0 !�
1

n (t�1

n

EPt ~d0 !un�0+5� Ii � op~n
�0+5� Ii !� ' DSn

�1~d0 !

� � 1

n (t�1

n

EDt ~d0 !�
1

n (t�1

n

EPt ~d0 !un�0+5� Ii � op~n
�0+5� Ii !�� op~n

2 Ii !

�
n

2
@Vun�0+5� Ii � op~n

�0+5� Ii !# '�k
2
V��1

@Vun�0+5� Ii � op~n
�0+5� Ii !#� op~n

2 Ii !

� ~c � e!n2 Ii, (A.29)

uniformly in u, which happens with probability at least 1 � e for any given e � 0,
where c � dmin0k and dmin is the smallest eigenvalue of V+ Let Db0 be the solution of
Q1n~d0, Db! � 0+ By ~A+23! and Lemma A+4~b! and ~d!, it is not difficult to see that
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Db0 � @n DSn~d0 !#
�1(

t�1

n

EDt ~d0 !� op~n
�0+5 !+ (A.30)

Similar to ~A+29!, we can show that

LE ~d0 ! �
n

2
� 1

n (t�1

n

EDt ~d0 !� ' DSn
�1~d0 !� 1

n (t�1

n

EDt ~d0 !� ' � op~1!� Op~ log log n!+ (A.31)

Because LE ~d! is continuous in d, by ~A+29! and ~A+31!, LE ~d! achieves its minimum
value in the interior of Vn so that the minimizer Zdn satisfies ]LE ~d!0]d � 0+ Finally,
because limnr`P~LE ~ Zdn! � mind�Vn

LE ~d!! � 1, the proof is complete+ �

Proof of Corollary 3.1. Let Q2n~d, Db! � n�1(t�1
n EPt ~d! Db0@1 � Db ' EDt~d!# and Zbn �

Db~ Zdn!, where Db is defined as in ~A+22!+ Then ]LE ~ Zdn!0]d � 0 if and only if

Q1n~ Zdn , Zbn ! � 0 and Q2n~ Zdn , Zbn !� 0,

where Q1n~d, Db! is defined as in ~A+22! and EPt~d! is defined as in ~A+24! +
Following the same method as for Theorem 2+1 and using Lemmas A+3 and A+4, we

can show that

]Q1n~d, Db!

]d '
� �O,

1

n (t�1

n ] ED2 t
' ~d0 !

]d
� ' � op~1!� @O,V# ' � op~1!,

]Q1n~d, Db!

] Db '
� � DSn~d0 !� op~1!� �diag� DSfn~d0 !,

k

2
V� � op~1!,

]Q2n~d, Db!

]di

� op~1!,

]Q2n~d, Db!

] Db '
� �O,

1

n (t�1

n ] ED2 t
' ~d0 !

]d
�� op~1!� @O,V#� op~1!,

uniformly in d � Vn, where O � ~0,0,0!' and DSfn~d0! is the ~1,1!th element of DSn~d0!
defined following ~A+23!+ Using Taylor’s expansion, we have

0 � Q1n~ Zdn , Zbn !

� Q1n~d0 ,0!� @O,V# '~ Zdn � d0 !���diag� DSfn~d0 !,
k

2
V� � op~1!�~ Zbn � 0!,

(A.32)

0 � Q2n~ Zdn , Zbn !� Q2n~d0 ,0!� op~1!~ Zdn � d0 !� @O,V#~ Zbn � 0!+ (A.33)
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Let Zbn � ~ Zb1n , Zb2n
' !' and Q1n~d0,0! � ~Q11n ,Q12n

' !' , where Zb1n and Q11n are the first ele-
ment of Zbn and Q1n~d0,0!, respectively+ By ~A+32! and ~A+33!, it follows that

Zb1n � DSfn
�1~d0 !Q11n � op� 1

Mn
�,

Zb2n � op� 1

Mn
�,

Zdn � d0 � V�1Q12n � op� 1

Mn
�+

Furthermore, by ~A+30! and Lemma A+3, we have

Zbn � Db0 � @0,�~V�1Q12n !
' # ' � op~n

�0+5 !+

Using a Taylor’s expansion at ~ Zdn, Zbn! and the previous equations, we can show that

�2@LE ~ Zdn !� LE ~d0 !# � n@~ Zbn � Db0 !
', ~ Zdn � d0 !

' #

� 	

� DSfn~d0 ! O O

O �kV02 V

O V O
� � op~1!�

� @~ Zbn � Db0 !
', ~ Zdn � d0 !

' # '

� nQ12n
' �k

2
V��1

Q12n � op~1!+ (A.34)

By the expansion in ~A+21! and ~A+34!, it follows that

WE ~ Zdn ! � �2@LE ~ Zln !� LE ~dn !#

� �2@LE ~ Zln !� LE ~l0 !#� 2@LE ~ Zdn !� LE ~l0 !#

� nQ11n
' ~l0 ,0! DS1fn

�1 ~l0 !Q11n~l0 ,0!� op~1!

rL �K�
0

1

v1
2~t! dt��1��

0

1

v1~t! dv2~t!�2

as nr `+ (A.35)

Let B1~t! � v1~t!0s and B2~t! � �s�1~s2K � 1!�102v1~t! � s~s2K � 1!�102

v2~t!, where s2 � Eht + Then B1~t! and B2~t! are two independent standard Brownian
motions+ Denote the limiting distribution in ~A+35! by z 2 + As shown in Ling and Li
~1998!, we obtain that
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z �

�
0

1

B1~t! dB1~t!

s 2F�
0

1

B1
2~t! dt

� ~s 2K � 1!102
�

0

1

B1~t! dB2~t!

s 2F�
0

1

B1
2~t! dt

+

The second term of this equation can be simplified as @~s2K � 1!1020~Fs2!# ~*0
1 B1

2~t!
dt!�102j, where j is a standard normal random variable that is independent of
*0

1 B1
2~t! dt ~see Phillips, 1989!+ Then

z �
1

c 
 r�0

1

B1~t! dB1~t!

�
0

1

B1
2~t! dt

� ~1 � r2 !102��
0

1

B1
2~t! dt��102

j� ,
where c � sF

MK + Furthermore, by ~A+35!, we have

GWn �rL
F

K
�F�

0

1

v1
2~t! dt�z 2 � ��

0

1

B1
2~t! dt�~cz!2+

This completes the proof of Corollary 3+1+ �
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