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Abstract

The problem of nonlinear self-focusing of elliptic Gaussian laser beam in collisionless magnetized plasma is studied
using variation approach. The dynamics of the combined effects of nonlinearity and spatial diffraction is presented. With
a and b as the beam width parameters of the beam along x and y directions, respectively, the phenomenon of
cross-focusing is observed where focusing of a results in defocusing of b and vice versa. Although no stationary
self-trapping is observed, oscillatory self-trapping occurs far below the threshold. The regularized phase is always
negative.
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1. INTRODUCTION

In a nonlinear medium like dielectrics, semiconductors, and
plasmas, if a high power electromagnetic beam increases the
electric susceptibility, and thus index of refraction with
wave intensity, then in a region where the wave amplitude is
amplified, the refractive index is also enhanced. The beam
thus creates a refractive index profile across its wavefront
corresponding to its own intensity profile and focuses of its
own. Historically, this phenomenon was predicted by
Askar’yan ~1962! and named as self-focusing of radiation.
The possibility of self-focusing or self-trapping of a laser
beam in a solid has been further discussed by Chiao et al.
~1964! and Raizer ~1967!. Hora ~1969! treated the process
of self-focusing in a plasma in terms of the ponderomotive
acceleration due to the gradient of the light intensity. The
focusing of the laser beam within the first minima of dif-
fraction yields a lower limit to the laser power. The thresh-
old power was of the order of 1 MW for lasers if cut-off
density and plasma temperature of about 10 eV are consid-
ered. The value was confirmed by different derivations
~Palmer, 1971; Shearer & Eddleman, 1973; Kaw et al.,
1973! and in subsequent publications ~Jones et al., 1982;
Hauser et al., 1988, 1992; Bret et al., 2005; Beech & Osman,
2005; Anderson et al., 2005!. It has been extensively studied
in context of laser beam propagation since the earlier sixties
~Askar’yan, 1962; Akhmanov et al., 1968; Sodha et al.,

1976; Anderson et al., 1979; Berge, 1997!. In the plasma
based applications, it is required that intense laser light be
propagated through thousands of wavelengths of under-
dense plasma. Such situation is prone to vigorous growth of
laser plasma instabilities. Self-focusing and filamentation
are the key issues to be resolved, understood, and con-
trolled. Recently, these have attracted considerable attention
and have been studied extensively for improvement of the
uniformity in direct or indirect drive implosion ~Young
et al., 1995!, applications to soft X-ray lasers ~Clark &
Milchberg, 1997!, generation of high harmonics ~Milchberg
et al., 1995!, and fast ignitor concept.

These detrimental processes are most violent in the so-called
hot spots of the beam ~Russell et al., 1999!, where the laser
intensity is significantly higher than the average over the
focal spot. As far as hot spot dynamics is concerned, in the
region of higher laser intensity, increased thermal electron
pressure, and pondromotive force cooperate to expel the
plasma, increasing the refractive index and leading to still
higher intensity. Self-focusing and filamentation have been
related to the inhomogeneity of the absorption of laser
energy and to the nonuniformity in the target compression in
laser induced fusion, latter this triggers the hydrodynamics
instability of the target. Since very high power lasers are
involved in laser-plasma interaction, controlling self-focusing
is crucial to successful and sustainable laser fusion as well
as for application to modified fast ignitor schemes for con-
trolled fusion ~Hora, 2004, 2005; Badziak et al., 2005!.

Most of the theoretical investigations of self-focusing of
laser beams in nonlinear media including plasmas, have
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been carried out for cylindrically symmetric Gaussian beam
~Zakharov, 1972; Anderson et al., 1979; Anderson, 1983;
Kruglov & Vlasov, 1985; Manassah et al., 1988; Karlsson
et al., 1992; Subbarao et al., 1998!. Only in a few publica-
tions, cylindrical off modes ~Jones et al., 1988!, spiral
self-trapping ~Kruglov & Vlasov, 1985!, elliptic Gaussian
beam ~Anderson et al., 1980; Cornolti et al., 1990; Gill
et al., 2000, 2004!, and nonisotropic and gyrotropic media
~Karpman & Shagalov, 1992! were taken into account.
Cornolti et al. ~1990! have used Wentzel-Krammers-Brillouin
~WKB! and paraxial ray ~PR! approximations for investi-
gation of elliptic Gaussian beam in a Kerr-medium. The
main drawback of this theory is that it over emphasizes the
importance of field close to beam axis and lacks global
pulse dynamics. It has been recently pointed out that par-
axial ray theory ~PRT! is not applicable when high power
laser beams are used ~Subbarao et al., 1998!. Since intense
laser beams are usually used in laser plasma experiments, it
is pertinent to use some alternative approach based on the
invariants. Furthermore, PRT does not correctly predicts the
phase dynamics. The moment theory ~Zakharov, 1972!,
although remedies this shortcoming but is neither general-
ized nor does it include the phase dynamics. Variational
approach, although a crude one to describe, the singularity
formation, and collapse, is fairly general in nature to describe
the propagation and correctly predicts the self-phase mod-
ulation ~Karlsson et al., 1992!. We have used variational
approach using elliptic Gaussian beam as a trial function.
Since the laser systems usually generate a beam which is
rather more elliptical than circular in cross-section, it is
therefore worthwhile to undertake such realistic situation.
In Section 2, we have set up and derived the equations for
beam widths a and b using variational approach. Further, we
have also set up the equation for longitudinal phase. Sec-
tion 3 is devoted to the discussion of the important results.

2. BASIC FORMULATION

The fundamental equation which governs the evolution of
the field in plasma medium is the nonlinear wave equation.
In the slowly varying envelope approximation, the evolu-
tion of the electric field envelope in a collisionless magneto-
plasma is given by
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Herev0 is the angular frequency of the wave, e and m are the
electronic charge and mass, respectively, kB is the Boltz-
mann constant. We investigate elliptic Gaussian beam assum-
ing aberrationless propagation.
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where a and b are the width parameters of the beam in the x
and y directions, respectively. It may be noted that beam
widths a and b are all real functions of z. The exact solution
to Eq. ~1! is not available and we, therefore, seek numerical
or approximate analytical methods. We choose the latter
approach in this paper, using a powerful variational method
that has been used in several similar investigations ~Ander-
son et al., 1979; Karlsson et al., 1992!. We can reformulate
Eq. ~1! into a variational problem corresponding to a Lagrang-
ian L so as to make dL0dz � 0 equivalent to Eq. ~1!, thus,
Lagrangian L is given as
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Thus, the solution to the variational problem

d��� L dx dy dz � 0, ~5!
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also solves the nonlinear Schrodinger equation ~NLSE! ~1!.
Using the ansatz, Eq. ~3! as a trial function into the Lagrang-
ian L, of Eq. ~4!, we can integrate L to obtain
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We have arrived at a reduced variational problem. We solve
the integration in Eq. ~6! to get
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Variation with respect to A, A* , a, b, q1, q2 etc., and follow-
ing approach of Anderson et al. ~1979!, we obtain the
following equations for a, b, and f
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with g� 0.57721 being a Euler’s constant,
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Subscripts on the left-side of the above equation denote the
value at z � 0. Eqs. ~10! and ~11! can be manipulated
algebraically in the following form:
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For an initially parallel beam, initial conditions are
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The condition for stationary self-trapping is
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3. DISCUSSION

The first terms on the right-hand side of Eqs. ~10! and ~11!
represent spatial dispersion and are responsible for diffrac-
tional divergence. On the other hand, second terms, respec-
tively, are nonlinear in nature leading to self-focusing of the
beam. Moreover, these equations are coupled and analytical
solution for these equations is not possible. We seek numer-
ical computation of these equations using Runge-Kutta method.
The following parameters are chosen for the purpose of
numerical calculation a0 � 0.002 cm, b0 � 0.0012 cm, WPO
~� vp0v0! � 0.45, WCO ~� vc0v0! � 0.1, a0 E00

2 � 1.64
and k � 1.3 � 103 cm�1. The results are plotted in the form
of graphs. Figure 1 displays the variation of a and b with the
normalized distance of propagation j ~� kz!. The phenom-
enon of cross focusing where focusing of a leads to defocus-
ing of b and vice versa, is observed here for particular value
of intensity parameter a0 E00

2 � 1.64 and magnetic field
vc0v0 �0.1. This value corresponds to critical value of field
required for self-trapping. However, no self-trapping simi-
lar to cylindrically symmetric Gaussian beam is observed

for the present case of elliptic Gaussian beam. As apparent
from Figure 1, a as well as b keep on oscillating with the
distance of propagation.

In Figure 2, we observe the effect of ellipticity on the
self-focusing0defocusing of elliptic Gaussian beam with
distance of propagation. We have chosen two different val-
ues of initial a0 and b0 indicating the effect of ellipticity.
Increase in ellipticity results in large oscillatory self-focusing0
defocusing behavior which emanates disturbed delicate bal-
ance between nonlinear term and diffraction term.

Fig. 1. Variation of beam widths a and b with normalized distance
of propagation j ~� kz! for a0 E00

2 � 1.64, a0 � 2.0 � 10�3 cm, b0 �
1.2 � 10�3 cm, WCO ~� vc0v0! � 0.1, WPO ~� vp0v0! � 0.45 and
k � 1.3 � 103 cm�1.

Fig. 2. Variation of beam widths a and b with normalized distance of
propagation j for different ratio of a0 and b0. Curves for a1 and b1

correspond to a0 � 2.0 � 10�3 cm, b0 � 1.2 � 10�3 cm. Curves for a2 and
b2 correspond to a0 � 2.0 � 10�3 cm, b0 � 1.0 � 10�3 cm, and other
parameters are same as mentioned in Figure 1 caption.
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In Figure 3, we have shown the plots of beam width
parameters a and b for fixed intensity parameter with the
distance of propagation corresponding to two values of
externally applied magnetic fieldvc0v0 �0.01 andvc0v0 �
0.15, respectively. As obvious from the form of the graphs,
higher the value of the applied magnetic field, more oscil-
latory self-focusing is observed. As obvious from Figure 3b,
increase in magnetic field leads to enhanced self-focusing
resulting in large intensity. Such situation has potential
relevance to microwave emission in laser-plasma inter-
action and acting as a new source of radiation ~Dorranian
et al., 2005!. Smaller value of magnetic field leads to
oscillatory defocusing of the beam. The role of magnetic
field is to trap carriers and inhibit the resulting transport.
This decrease in vc0v0 results in decrease in nonlinear
terms in Eqs. ~10! and ~11!, leading to overall expansion of

the beam with nonmonotonic evolution of the width param-
eters as shown in Figure 3.

Eq. ~12! represents the phase change with distance of
propagation. As apparent from the form of this equation,
both a, b, magnetic field, and intensity of beam appear in
this equation. Since a and b are determined from Eqs. ~10!
and ~11!, therefore even though we can fix intensity and
magnetic field, therefore evolution of beam width param-
eters significantly affect the longitudinal phase delay with j.
Figure 4 displays such behavior where we have fixed exter-
nally applied but taken four different values of intensity
parameter a0 E00

2 . As apparent from the form of Eq. ~12!,
we find that longitudinal phase increases whenever a0 E00

2

decreases. From the form of the graphs representing curve 1
~a0 E00

2 �1.64!, the phase is always positive with distance of
propagation. However, when a0 E00

2 � 2.25 ~curve 2!, the
phase changes its sign during the course of its propagation.
Increase in intensity leads to decrease in nonlinear term with
dominance of self-focusing term over the spatial dispersion.
The overall effect is negative phase change with j ~Fig. 4,
curves 3 and 4 for other two values!. Wiggles infwith j are
due to oscillatory focusing0defocusing associated with a
and b. Almost similar behavior is observed when intensity
parametera0 E00

2 �1.64 fixed but the value of magnetic field
is increased, which is shown in Figure 5. The phase may be
positive or negative depending on the value of intensity
parametera0 E00

2 and magnetic field ~vc0v0! ~Figs. 4 and 5!.
However, the regularised phase, freg which is defined as

freg � f~j!� f~j!6a0 E00
2 �0,

is always negative. This aspect of the phase change is well
highlighted in Figure 6, where we have fixed the value of
magnetic field but plotted freg for three different values ofFig. 3. a: Variation of a and b with j for WCO�0.01 and other parameters

are the same as mentioned in Figure 1 caption. b: Variation of a and b with
j for WCO � 0.15 and other parameters are the same as mentioned in
Figure 1 caption.

Fig. 4. Plot of the longitudinal phase f~j! versus j for different values of
a0 E00

2 and other parameters are the same as mentioned in Figure 1 caption.
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a0 E00
2 . This feature confirms the finding of Karlsson et al.

~1992! and is contrary to the results of Manassah et al.
~1988!. The latter predicted results contrary to experimen-
tally observed fact. They predicted that regularized phase
may be positive or negative during the course of beam
propagation. However, it could imply change in wave num-
ber shift leading to erroneous calculation that blue may lead
the red in the supercontinuum. This inconsistent result stems
from the fact that paraxial ray approximation used by Manas-
sah et al. ~1988! does not correctly predict the regularised
freg and our results also reciprocate the findings of Karlsson
et al. ~1992!.
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