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   abstract 

 Embodied theories of language posit that the human brain’s adaptations for 

language exploit pre-existing perceptual and motor mechanisms for 

interacting with the world. In this paper we propose an embodied account of  

the linguistic distinction between singular and plural, encoded in the system 

of grammatical number in many of the world’s languages. We introduce a 

neural network model of  visual object classifi cation and spatial attention, 

informed by a collection of fi ndings in psychology and neuroscience. The 

classifi cation component of the model computes the type associated with a 

visual stimulus without identifying the number of  objects present. The 

distinction between singular and plural is made by a separate mechanism in 

the attentional system, which directs the classifi er towards the local or global 

features of the stimulus. The classifi er can directly deliver the semantics of  

uninfl ected concrete noun stems, while the attentional mechanism can 

directly deliver the semantics of  singular and plural number features.   

 keywords :     grammatical number  ,   visual attention  ,   object classifi cation  , 

  global precedence  .      

   1 .      A proposal  about  the perceptual  origin of  the 

l inguistic singular–plural  distinction 

 Language allows us to talk about objects both as individuals and as groups. 

In many languages, a distinction between objects and groups is encoded 

in syntax, in the grammatical distinction between  s ingular   and  plural  

(e.g., in English, the distinction between  dog  and  dogs ). In such languages, 
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it is not just possible to identify a referent as an individual or a group, but 

syntactically obligatory to do so. 

 Where does the deeply ingrained singular–plural distinction in language 

come from? Researchers have discovered several prelinguistic systems for 

representing number in the brain, but none of  these have quite the right 

properties to deliver the distinction between singular and plural found in 

language. In this paper we will make a novel proposal, namely that the 

linguistic singular–plural distinction has its origin in the visual attention 

system: specifi cally, in the system that allocates attention selectively to the 

local or global form of  a visual stimulus. Attention to local and global 

form was fi rst explored in the classic experiments of  Navon ( 1977 ), using 

stimuli of  the kind shown in  Figure 1 . Observers can identify either the 

global or local form of  such stimuli. The global form of  a stimulus is, 

roughly speaking, its shape: in  Figure 1 , ‘S’. The local form of  a stimulus 

is the shape of  the homogeneous elements from which it is composed: in 

 Figure 1 , ‘H’. When classifying a stimulus, an observer must choose 

whether to identify its global or local form, because these forms can diff er, 

as in  Figure 1 . The attentional mechanisms that implement this choice 

have been studied quite extensively. What is less commonly noted is that 

choosing to attend to the global or local form of  a stimulus commits the 

observer to a decision about the  number  of  objects of  the identifi ed form. 

When we classify the global form of  a stimulus, we necessarily identify a 

single instance of  this form: that is what ‘global form’ means. When we 

classify its local form, we necessarily identify more than one instance of  

this form. A stimulus only  has  a ‘local form’ if  it is composed of  a 

homogeneous group of  smaller forms.     

 In this paper, we propose that the linguistic distinction between singular 

and plural may have its origins in the neural circuitry that allocates attention 

to the local or global features of  a visual stimulus. We express the proposal 

within a computational model of  visual attention and object classifi cation, 

which can identify both objects and groups, and can recognize both the local 

and global form of  Navon stimuli. We begin in Sections 2 and 3 by situating 

our proposal within a wider account of  the representation of  type and number 

information in language and visual perception. In Section 4 we review 

existing proposals about how linguistic type and number representations 

may be grounded in perceptual representations, and introduce the main new 

features of  the model we propose: a novel model of  object classifi cation, and 

a novel model of  attention to spatial scale. In Sections 5 and 6 we give an 

overview of  the model; Section 7 describes its performance in two perceptual 

tasks. Sections 8 and 9 compare the model to existing models of  visual 

classifi cation and attention, and assess its potential as the basis for an account 

of  linguistic type and  number   information.   
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 2   .    Type and number information in language 

 Human language conveys information about the type and number of  objects 

quite separately. Information about object type is conveyed mainly through 

the system of  noun stems. Through this system a speaker can directly identify 

a large open-class set of  object categories, comprising classes of  concrete 

objects ( dog ,  cat ,  xylophone ), abstract objects ( peace ,  idea ), and other types of  

semantic object denoting times, places, activities, and so on. However, noun 

stems do not systematically convey information about the number of  objects 

whose type they denote. Number information is mostly provided by separate 

closed-class linguistic items, whose meanings must be combined with those 

of  noun stems in various ways. In standard models of  language semantics 

(see, e.g., Barwise & Cooper,  1981 ), a count noun stem contributes a  set  of  

objects (possibly empty) of  a given type to the semantic representation of  a 

sentence. We will call this set the ‘noun set’. The cardinality of  this set is 

determined by a combination of  other elements in the sentence. It could be 

exactly one ( A dog barks ) or more than one ( Ten dogs bark ), or even zero 

( No dogs bark ); the point is that elements other than the noun stem determine 

this cardinality. 

 There are two main systems in language for providing cardinality 

information to supplement the type information provided by noun stems. 

One is the system of  quantifying determiners. In a standard model of  

semantics (see again Barwise and Cooper,  1981 ), these off er ways of  precisely 

identifying the size of  a set of  individuals, either in absolute terms ( one , 

 twenty-fi ve ) or in relation to the size of  some other set ( every ,  exactly half ). 
They also off er ‘vague’ ways of  identifying group size, again either in absolute 

terms ( several ,  many ) or in relative terms ( most ). 
 A second linguistic number system is the grammatical system of   number  

features. In most European languages,  number   features are expressed in 

bound morphemes or closed-class words, and signal the alternative values 

 s ingular   and  plural  . (We will use small caps to denote syntactic feature 

  
 Fig. 1  .    A Navon stimulus, with global form ‘S’ and local form ‘H’.    
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names and their values.) For instance, the English morpheme  -s  marks a noun 

as having the  number   value  plural  ; the Italian morphemes  -o  and  -a  

mark a noun as  s ingular  . In many languages, the  number   feature has 

more than two possible values: for instance Polynesian and many Semitic 

languages include a  dual   class signalling ‘exactly two’, and in a few languages 

there is an additional  tr ial   class signalling ‘exactly three’. In these cases 

 plural   means ‘more than two’ or ‘more than three’ respectively (Corbett, 

 2000 ). 

  number   features have syntactic properties as well as semantic properties. 

In most European languages, for instance, within a noun phrase (NP) the 

 number   value of  the head noun must agree with that of  the determiner 

which introduces it, and the  number   of  the subject NP must agree with a 

 number   feature on the main verb. In fact, the role of   number   features is 

often  primarily  syntactic; they do not always convey semantic information 

about cardinality at all (see, e.g., Hurford,  2003 ). For instance,  No dogs bark  

has a syntactically  plural   subject, but asserts that the set of  dogs that 

barked is empty. Nonetheless, in NPs used referentially, to identify particular 

objects or groups,  number   features do frequently convey semantic 

information about number. Here are some examples:

   
     (1)      A dog walked in  

    (2)      The dog barked  

    (3)      John bought some cakes  

    (4)      The cakes were tasty   

   
  The  s ingular   subject NP in example (1) introduces a single dog into the 

domain of  discourse (Kamp & Reyle,  1993 ), and the  s ingular   subject NP 

in example (2) presupposes the existence of  a single dog (van der Sandt, 

1992). The  plural   object NP in Example (3) introduces a group of  cakes, 

and the  plural   subject NP in Example (4) presupposes such a group. In 

these cases, the syntactic features  s ingular   and  plural   directly deliver 

semantic information about the singularity or plurality of  referents. In fact, 

the semantic notions of  singularity and plurality do useful work even when 

they are not explicitly signalled. For instance, Chierchia ( 1998 ) argues that 

mass nouns (e.g.,  wine ,  sand ), while syntactically  s ingular  , denote 

semantically plural referents: this explains why they share many syntactic 

properties with  plural   count nouns (for instance, in English they can appear 

‘bare’, without a determiner). So in language there are both syntactic and 

semantic distinctions between singularity and plurality. 

 In summary, linguistic information about the type and number of  objects 

is conveyed by quite distinct components of  syntax. Open-class noun stems 
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convey type but not number, while quantifying determiners and  number  

features convey information about number but not type.   

 3   .    Type and number representations in the visual 

system 

 The primate visual system also computes information about object type and 

object number quite separately. In this section we review evidence for a 

distinction between type and number information in visual neural pathways, 

drawing on studies of  both monkeys and humans.  

 3 .1   .     r epresentat ions  of  ob ject  type  in  the  v i sual  system  

 The neural assemblies that represent concrete object categories in humans 

are multimodal, and distributed over several areas of  cortex, including 

superior and inferior frontal and parietal cortex (Just, Cherkassky, Aryal, & 

Mitchell,  2010 ; Sudre et al.,  2012 ). However, the visual properties of  objects 

which determine their category membership are primarily stored in the 

temporal and lateral occipital cortex (see Martin,  2007 , for a review). For 

instance, Kreiman, Koch, and Fried ( 2000 ) found that the responses of  single 

neurons in the medial temporal cortex are often specifi c to particular 

categories, such as faces, houses, and animals; in fMRI studies, Kriegeskorte 

et al. ( 2008 ) found distinctive patterns of  activation in inferior temporal 

cortex for animate and inanimate objects, and within animate objects for 

faces and body parts; Shinkareva, Mason, Malave, Wang, Mitchell, and Just 

( 2008 ) found patterns focused in ventral temporal cortex identifying the 

categories of  tools and dwellings; Connolly et al. ( 2012 ) found activation 

patterns in temporal cortex which distinguished six animal species. Polyn, 

Natu, Cohen, and Norman ( 2005 ) found neural patterns associated with 

visually presented faces, locations, and objects, in which fusiform and 

parahippocampal cortex played an important role. Signifi cantly, when 

subjects retrieved these object stimuli in a free recall task, the associated 

patterns in temporal cortex became active in advance of  recall, providing 

evidence that they are functionally involved in representing categories, rather 

than epiphenomenal. Xue, Dong, Chen, Lu, Mumford, and Poldrack ( 2010 ) 

extended this fi nding in an experiment where subjects memorized pictures of  

faces during a study period, and later had to distinguish these faces from 

unseen faces in a recognition task. They found the similarity between the 

neural patterns encoding individual presentations of  a given face during the 

study period predicted agents’ later success in recognizing that face. This was 

confi rmed separately for lateral occipital, ventral temporal, and fusiform 

gyri, again suggesting that patterns in these areas actively participate in 
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object representations. In macaque monkeys there is good evidence that cells 

in the anterior inferior temporal cortex (aITC) are sensitive to the visual 

properties of  objects such as shape and colour, which play an important role 

in determining their type (see, e.g., Tanaka,  1996 ; Conway, Moeller, & Tsao, 

 2007 ; Zhang, Meyers, Bichot, Serre, Poggio, & Desimone,  2011 ).   

 3 .2   .     r epresentat ions  of  number  in  the  v i sual  system  

 Three separate neural systems for representing number have been identifi ed 

(see, e.g., Feigenson, Dehaene, & Spelke,  2004 ). One is a system for gauging 

the approximate number of  items in a perceived group − a measure called 

‘numerosity’. The numerosity system operates on a logarithmic scale: it 

allows two groups to be distinguished if  the ratio between their cardinalities 

is suffi  ciently large (around 7:8 in adults; Barth, Kanwisher, & Spelke,  2003 ). 

Numerosity is computed in the intraparietal cortex, both in monkeys (Nieder 

& Miller,  2004 ) and humans (Cantlon, Brannon, Carter, & Pelphrey,  2006 ; 

Piazza, Izard, Pinel, Le Bihan, & Dehaene,  2004 ; Izard, Dehaene-Lambertz, 

& Dehaene,  2008 ). This is an area which is also heavily involved in computing 

representations of  spatial location supporting directions of  focal attention 

and visual search. A second number system is specialized for identifying the 

precise cardinality of  small groups of  up to four or fi ve. This is called the 

‘parallel individuation’ or ‘subitizing’ system. Its existence is motivated 

by two fi ndings. First, humans can count a group of  one to four objects in 

roughly constant time, suggesting that groups of  this size can be counted in 

parallel (Trick & Pylyshyn,  1994 ). Second, there is evidence that both human 

infants and monkeys can successfully discriminate between pairs of  numbers 

when they are both small (in the range one to three) but not when one is small 

and one is outside this range (Feigenson, Carey, & Hauser,  2002 ). This 

indicates that a system based on something other than ratios is being used to 

represent small numbers. The proposal is that small numbers in the range 

one to three are represented individually, in a scheme that does not encode 

the position of  these numbers on a continuous scale. There is some evidence 

that subitizing has its own neural substrate: in humans, Ansari, Lyons, van 

Eimeren, and Xu ( 2007 ) found that counting subitizable groups preferentially 

activated the right temporoparietal junction (TPJ) compared to counting 

larger groups. A fi nal number system, specifi c to humans, is the serial 

counting system. Counting involves systematically attending to each item in 

a group while engaging in a verbal counting routine; this allows identifi cation 

of  the exact cardinality of  groups of  arbitrary size. The counting system also 

recruits the attentional circuitry in intraparietal cortex, but relies in addition 

on superior lateral and medial precentral areas which are probably engaged in 

subvocal articulation and perhaps covert pointing gestures (Piazza, Mechelli, 
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Price, & Butterworth,  2006 ). There may also be learned associations between 

numbers in the counting system and points on a spatially arranged number 

line (see, e.g., Fias & Fischer,  2005 ).   

 3 .3   .     d i s so c iat ions  be tween  neural  representat ions  of 

type  and  number  

 While inferior temporal cortex is sensitive to the type of  visually presented 

objects, it appears quite insensitive to the number of  objects of  a given type 

which are presented, both in monkeys and humans. Nieder and Miller ( 2004 ) 

found that macaque aITC neurons are relatively insensitive to the cardinality 

of  groups. They presented monkeys with objects in groups ranging from one 

to fi ve in size. Animals were shown a sequence of  two groups, and had to 

judge whether the second group contained the same or a diff erent number 

of  items as the fi rst. Stimuli varied in number, but also in the type of  their 

constituent items (which could be circles or a mixture of  diff erent shapes). 

Relatively few aITC neurons (8%) were sensitive to the number of  objects in 

a stimulus display, and of  these, only half  (4%) were sensitive to number but 

not type. In another area, the intraparietal sulcus, 20% of  neurons were 

sensitive to the number of  objects in a display without regard for their type. 

(As discussed in Section 3, this area is involved in encoding the numerosity 

of  objects in a group.) Clearly, information about the number of  objects in a 

group stimulus is represented somewhat separately from information about 

the type of  these objects. 

 A similar dissociation has been found in imaging studies in humans (Cantlon 

et al.,  2006 ; Piazza et al.,  2004 ; Izard et al.,  2008 ). These studies use a 

habituation paradigm, identifying neural areas sensitive to selective changes 

in the number of  objects in a display or in their type. Subjects were presented 

with a series of  homogeneous group stimuli. Successive groups had diff erent 

global confi gurations, but each stimulus contained the same number of  items 

and the homogeneous groups all featured the same type of  item. At a certain 

point, a deviant stimulus was presented, which had either a diff erent number 

of  items (but of  the same type as previous stimuli) or items of  a diff erent type 

(but with the same cardinality as previous stimuli). This paradigm has been 

used with fMRI imaging, in both adults and four-year-old children (Cantlon 

et al.,  2006 ; see also Piazza et al.,  2004 , for additional adult data), and with 

ERP recordings, in infants aged 0;3 (Izard et al.,  2008 ). Cantlon et al. found 

that the intraparietal sulcus (IPS) responded selectively to deviations in 

number, while areas in the ventral and/or occipital temporal cortex responded 

selectively to deviations in shape, in both adults and four-year-olds. Izard et al. 

found a similar result with infants aged 0;3: deviations in number selectively 

activated intraparietal areas, while deviations in shape selectively activated 
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ventral temporal areas. These experiments provide support for the idea that 

number and type are computed in diff erent processing streams in the human 

visual system. 

 There is also evidence from behavioural experiments that the human 

object classifi er is relatively insensitive to the cardinality of  homogeneous 

groups. One piece of  evidence comes from an eff ect called ‘redundancy gain’: 

under some circumstances observers can be faster at classifying objects in 

a homogeneous group than individually (Theeuwes,  1994 ). This suggests 

minimally that objects in homogeneous groups can be classifi ed in parallel. 

But there are also conditions under which observers can identify the type of  

visually presented stimuli, but fail to distinguish between single and multiple 

instances of  this type. In a phenomenon called ‘spatial repetition blindness’, 

observers fail to distinguish between a single object and two objects of  a 

single given type when these are presented for a brief  period (Kanwisher, 

 1991 ). In patients with unilateral damage to parietal cortex, a related failure 

to compute cardinality is often manifested more persistently, in a variety of  

spatial neglect called ‘extinction’. Extinction occurs when a subject fails to 

notice a stimulus in the contralesional visual fi eld in the presence of  a stimulus 

in the ipsilesional fi eld. It is typically more severe if  the two objects are 

similar (Baylis, Driver, & Rafal,  1993 ): paradigmatic cases of  extinction 

involve an inability to distinguish between one and two instances of  a given 

object type. Again this fi nding suggests that type and number are computed 

separately from visual inputs, and implicates parietal cortex in the processing 

required to individuate tokens of  a given type.    

 4   .    A perceptually grounded account of  the semantics of  

noun stems and  N U M B E R   features 

 As just reviewed, the distinctions between type and number information in 

the brain’s perceptual pathways bear some resemblances to those encoded 

in language. In this section we discuss the possibility that the linguistic 

distinctions  originate in  the structure of  the perceptual system. The idea that 

structures in language supervene on structures in the perceptual and/or 

motor system has been articulated in several models, termed ‘embodied’ 

models of  language (see, e.g., Barsalou,  2008 ; Feldman & Narayanan,  2004 ; 

Lakoff ,  1987 ). These models posit that the human brain’s adaptations for 

language recruit pre-existing non-linguistic mechanisms for interacting with 

the world, so that processing sentences directly engages these general 

mechanisms in some way. Embodied accounts of  language pay particular 

attention to sentences that directly report the experience of  concrete events 

in the world, such as examples (1–4). A common suggestion is that processing 

a sentence describing a concrete event involves evoking the same sensory or 
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motor representations as are generated when the described event is actually 

experienced (see, e.g., Bergen & Chang,  2005 ; Zwaan & Taylor,  2006 ). In this 

section we will review existing suggestions about how linguistic representations 

of  type and number may have their origin in perceptual mechanisms, and 

introduce the novel features of  our own proposal.  

 4 .1   .     a  per ceptually  gr ounded  ac c ount  of  c oncre te  noun 

stem semantics  

 Nouns denoting concrete objects evoke patterns of  activity distributed over 

several cortical areas (see again Just et al.,  2010 ; Sudre et al.,  2012 ), but most 

theorists agree that the left temporal cortex plays a particularly important 

role in these patterns. In classic experiments, Damasio, Grabowski, Tranel, 

Hichwa, and Damasio ( 1996 ) showed that damage to the left temporal cortex 

selectively impairs the production of  concrete nouns describing pictures of  

objects, and damage to diff erent subregions of  this area selectively impairs 

production of  nouns describing objects of  diff erent types; Tranel, Adolphs, 

Damasio, and Damasio ( 2001 ) found this disruption even when subjects 

could identify the visually presented objects. Whether the temporal cortex is 

involved in representing the grammatical category of  nouns  in general  is still 

controversial (see Vigliocco, Vinson, Druks, Barber, & Cappa,  2011 ). For the 

moment, we will focus on representations of  concrete noun stems, in which 

temporal cortex uncontroversially plays an important role. 

 The observation we focus on in our model of  concrete noun stems is the 

fi nding that neural representations of  object type abstract away from number 

information, as just reviewed in Section 3. This fact is often overlooked in 

embodied accounts of  noun semantics, but it strongly supports models in 

which the semantics of  concrete noun stem semantics are read directly from 

object type representations. Like neural type representations, noun stems do 

not encode number information: for instance the noun stem  dog  is the same 

in the  s ingular   noun  dog  and the  plural   noun  dogs . This makes neural 

representations of  object type ideally placed to deliver the semantics of  

concrete noun stems. 

 However, in a model of the perceptual processes which deliver the semantics 

of  noun stems, it is important to provide an account of   how  the visual object 

classifi cation system can abstract away from number information. If  the 

human object classifi cation system is able to directly deliver the denotations 

of  noun stems, it must be able to classify homogeneous groups of  objects as 

well as single objects − for instance, when presented with a group of  dogs, 

it should be able to deliver the object type ‘dog’, just as it does when presented 

with a single dog. In fact, it must be relatively insensitive to cardinality, 

responding in essentially the same way to a group of  dogs as to a single dog, 
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since a noun stem reports type but not number. Most computational models 

of  human object classifi cation are designed to operate on single objects rather 

than groups. A novel aspect of  our computational model of  object classifi cation 

is that it can classify homogeneous groups as well as single objects, and is 

cardinality blind (see Section 6.1). We will argue that this classifi er has the 

right properties to directly deliver noun stem denotations.   

 4 .2   .     a  per ceptually  gr ounded  ac c ount  of  the  number 

feature  

 Where in the human cognitive system does the linguistic  number   feature 

come from? While its role is no longer purely semantic, it may be that its role 

in language was originally largely semantic. There are good indications that 

monkeys can also distinguish perceptually between single objects and groups 

(Barner, Wood, Hauser, & Carey,  2008 ); human infants are also able to do 

this, even before they acquire the linguistic distinction between  s ingular  

and  plural   (Li et al., 2009). One possibility is that the  number   feature 

has its origin in a non-linguistic perceptual or cognitive system which 

distinguishes between single objects and groups, or between single objects, 

pairs, triples, and larger groups. The question is then which non-linguistic 

system can contribute this information.  

 4.2.1  .   Subitization as a possible substrate for  number  

 The main proposal in the literature is that values of  the  number   feature can 

be read from the subitization system, i.e., the system which represents the 

size of  small groups in the range one to four. Hurford ( 2001 ) notes that 

language treats these numbers specially in several respects: for instance in 

many languages, the numerals one to four have idiosyncratic gender and case 

marking when used attributively to express a cardinality (as in  one dog ,  two 
cats ), and in many languages the ordinals for one to four have idiosyncratic 

forms (e.g., the English  fi rst  and  second ). Critically, he notes that grammatical 

 number   systems allow alternative values between one and ‘around three’ in 

the languages he surveys. While Hurford does not want to propose simple 

correspondences between neural systems and number systems in language, 

he does suggest an association between linguistic  number   features and the 

subitization system. 

 Sarnecka, Kamenskaya, Yamana, Ogura, and Yudovina ( 2007 ) also argue 

for a connection between  number   and the subitization system. They fi nd 

that infants whose native language contains an explicit  number   feature 

(English and Russian) are better at performing tasks requiring production or 

understanding of  the number words one, two, and tree than infants whose 
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language has no explicitly marked  number   (Japanese). Their explanation is 

that the meanings of  these number words are initially represented as values 

of  the grammatical  number   feature, again within the subitization system. 

 As Sarnecka et al. ( 2007 ) acknowledge, an obstacle for a subitization-based 

account of  number   features is the feature value  plural  . A simple suggestion 

that  plural   signals a non-subitizable group is clearly wrong: for instance in 

English, sets of  size two and three are  plural  , but still subitizable. In fact 

the concept of   plural   always encompasses a mixture of  subitizable and 

non-subitizable numbers. This is even true in languages where  plural  

means ‘more than three’, since the subitization limit is four on the most 

conservative estimates (see, e.g., Trick & Pylyshyn,  1994 ). If  the concept of  

 plural   has its origin in non-linguistic semantic number representations, 

it is not yet clear what these representations are. Until this issue is resolved, 

it is also unclear whether the other possible values of  the  number   feature 

( s ingular ,  dual ,   and  tr ial  ) denote representations within the subitization 

system: some connection would need to be found between the subitization 

system and the system representing  plural  , to explain why  s ingular , 

dual ,  tr ial ,   and  plural   are all possible values of  the  number   feature.   

 4.2.2  .   Local/global attention as a possible substrate for the distinction between 
 s ingular   and  plural  

 As discussed in Section 1, our novel proposal is that the grammatical 

distinction between  s ingular   and  plural   derives from the mechanism 

that allocates attention to the local or global form of  a visual stimulus. As 

already noted, classifying the global form of  a stimulus involves treating it as 

a single token, by defi nition. Classifying its local form requires treating it as 

a group, again by defi nition: a stimulus only  has  a ‘local form’ if  it is composed 

of  a homogeneous group of  smaller forms. 

 There is some interesting recent evidence that the neural processing of  

 s ingular   and  plural   features in language may coopt the neural system 

that allocates visual attention to local or global form. This comes in a recent 

study of  the neural processing of   number   information by Domahs, Nagels, 

Domahs, Whitney, Wiese, and Kircher ( 2012 ). Their study directly compared 

the brain activity elicited by  s ingular   and  plural   nouns. Subjects were 

presented with three types of  noun:  s ingular   and  plural   count nouns 

(e.g.,  dog  and  dogs ) and mass nouns (e.g.,  water ). Their fMRI responses to 

these nouns were analyzed. Domahs et al. found that  plural   count nouns 

elicited more activity in the left temporoparietal junction (specifi cally the left 

angular gyrus) than  s ingular   count nouns. (This was the only area where 

diff erences were found between  s ingular   and  plural   count nouns.) 

Interestingly, mass nouns also elicited more activity in the left TPJ than 
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 s ingular   count nouns; in fact the left TPJ response to mass nouns was 

indistinguishable from that of   s ingular   count nouns. Recall from Section 

2 that mass nouns behave syntactically much like  plural   count nouns, and 

many syntacticians regard them as semantically  plural  , even if  they do not 

carry  plural   infl ections (Chierchia,  1998 ). Given that the left TPJ selectively 

responds to  plural   count nouns and to mass nouns, Domahs et al. postulate 

that this area has a general role in representing semantically  plural   stimuli. 

 Domahs et al. ( 2012 ) suggest that the left TPJ’s involvement in representing 

plurality derives from its involvement in spatial processing, but they make no 

specifi c proposals about how this process may occur. However, our suggestion 

that a visual stimulus is represented as  plural   when an observer attends to 

its local form fi ts very well with Domahs et al.’s fi ndings. There is a large 

body of  evidence suggesting that the left TPJ is involved in allocating 

attention to local features of  Navon stimuli. This has been shown in analyses 

of  brain dysfunction (e.g., Robertson, Lamb, & Knight,  1988 ) as well as in 

PET and ERP studies (e.g., Fink, Halligan, Marshall, Frith, Frackowiak, & 

Dolan,  1996 ; Yamaguchi, Yamagata, & Kobayashi,  2000 ). Domahs et al.’s 

fi nding that the left TPJ is preferentially activated by  plural   nouns is exactly 

what our proposal predicts. If  subjects rehearse the attentional operations 

necessary to categorize the local form of  a visual stimulus when they hear 

a  plural   word, we expect to see activity in the left TPJ. So Domahs et al.’s 

fi ndings are consistent with the model we propose. 

 It is also interesting to note that the neural region associated with attention to 

the  global  form of a stimulus is the  right  TPJ (Robertson et al.,  1988 ; Fink et al., 

 1996 ; Yamaguchi et al.,  2000 ). As discussed in Section 3, the right TPJ is the 

region activated by counting numbers in the subitization range (Ansari et al., 

 2007 ). Several theorists have suggested that subitization works by recognizing 

characteristic shapes associated with small groups of particular cardinalities; for 

instance, three objects characteristically form a triangle (see Palomares & Egeth, 

 2010 ). Identifying these shapes would clearly require attention to the global form 

of  the group, so the involvement of  the right TPJ in attention to global form 

certainly supports shape-based accounts of subitization. In summary, the system 

which allocates attention to the local or global form of  a visual stimulus may 

provide the basis for an account not only of the distinction between  s ingular  

and  plural  , but also for an account of  the other possible values of  the 

 number   feature,  dual   and  tr ial  . In this paper, we will restrict our 

attention to the  s ingular  / plural   distinction.    

 4 .3   .     summary  

 In this section we introduced two new ideas about the perceptual mechanisms 

that underlie linguistic representations of  type and number. We proposed 
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that the denotations of  noun stems are delivered by an object classifi er that 

is insensitive to cardinality information. And we propose that the semantic 

singular/plural distinction encoded by the  number   feature is read from an 

attentional system allocating attention to the local or global features of  a 

visual stimulus. Note that these two proposals are linked. Classifying the 

local form of  a stimulus always involves classifying a homogeneous  group  of  

shapes. So an account of  the mechanism that selectively attends to the local 

and global form of  a stimulus must include an account of  a classifi er capable 

of  classifying both individuals and homogeneous groups. 

 In the remainder of  this paper, we express these proposals in more detail in 

a computational model of  how visual attention interacts with a cardinality 

blind object classifi er, to allow the perception of  both single objects and plural 

groups, and to recognize the diff erence between singular and plural stimuli. 

Our aim is to show that this model makes sense as a model of  visual perception 

in its own right, as well as an account of  the perceptual origin of  linguistic 

noun stem and  number   representations.    

 5   .    Model  overview and motivation 

 The basic structure of  our model follows the well-established proposal by 

Ungerleider and Mishkin ( 1982 ) distinguishing two streams of  visual 

processing: a ‘what’ stream in ventral cortex, subserving object classifi cation, 

and a ‘where’ stream in dorsal cortex, subserving (among other things) spatial 

attention. In our model, the  attentional subsystem  (modelling aspects of  

the dorsal pathway) determines the salient regions on the retina, and activates 

these regions one at a time. The  classifi cation subsystem  (modelling 

aspects of the ventral pathway) categorizes the retinal stimulus in the currently 

activated region; its output changes as diff erent regions are selected. This 

basic architecture is similar to many others; see, e.g., Wolfe ( 1994 ,  2007 ), 

Rolls and Deco ( 2006 ), Mozer and Sitton ( 1998 ), Mozer and Baldwin ( 2008 ), 

Itti and Koch ( 2000 ), Walther and Koch ( 2006 ), and Navalpakkam and Itti 

( 2005 ). 

 There are several lines of  evidence which support the idea that the dorsal 

visual processing stream computes a map of  salient locations; see, e.g., 

Gottlieb, Kusunoki, and Goldberg ( 1998 ) for evidence that intraparietal 

cortex computes salience, and Thompson and Bichot ( 2005 ) for evidence that 

the frontal eye fi elds do so. There is also good evidence that activity in this 

pathway modulates inputs to the object classifi cation pathway. For instance, 

Moore and Armstrong ( 2003 ) found that micro-stimulation of  a site in the 

frontal eye fi elds representing a particular retinal region selectively enhances 

visual responses in the corresponding region of extrastriate region V4, a key way 

station for visual information entering the object classifi cation pathway in 
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inferotemporal cortex (IT). To confi rm that attention aff ects representations in 

IT, Zhang et al. ( 2011 ) found that when monkeys covertly attend to an object 

in the presence of  distractor objects, the pattern of  neural activation in IT is 

shifted towards the pattern evoked when this object is presented in isolation. 

 In the attentional subsystem in our model, the saliency of  a region is 

determined by two factors: one is local contrast (how diff erent it is from the 

surrounding region), the other is homogeneity (how similar its texture 

elements are). Salient regions can contain isolated visual features that contrast 

with their surroundings, but also regions containing repeated visual features. 

Computations of  saliency are performed at multiple scales, so salient regions 

containing isolated visual features can be of  diff erent sizes. Salient regions 

containing repeated visual features (i.e., homogeneous textures) can also be 

of  diff erent sizes. 

 There are several existing computational models of  saliency that detect 

salient regions of  diff erent sizes (see in particular Kadir & Brady,  2001 ), and 

numerous models of  texture identifi cation which detect regions containing 

repeated visual features (particularly relevant is Kadir, Hobson, & Brady, 

 2005 ). There are also many existing computational models of  classifi cation 

that allow objects of  diff erent sizes to be classifi ed, by taking as input primitive 

visual features at a range of  diff erent scales (see, e.g., Riesenhuber & Poggio, 

 1999 ). The main innovations in our model are in how the saliency mechanism 

interacts with the classifi er. There are two innovations, which we will discuss 

in turn.  

 5 .1   .     s elect ion  of  a  class if icat ion  scale  

 One novel feature of  our system is that classifi cation is infl uenced not only by 

the location of  the currently selected salient region, but also by its size. Our 

classifi er can work with primitive features of  several diff erent scales as input, 

but at any given point the scale it uses, called the  classifi cation scale , is 

selected by the attentional system. By default, the classifi cation scale is a 

function of  the size of  the currently selected salient region, so that large 

regions are classifi ed using correspondingly large features, and small regions 

with correspondingly small ones. Our model is novel in proposing that the 

scale of  the salient region selected by the attentional system determines a 

default scale for the classifi er to use. 

 The idea of  establishing a default classifi cation scale for an attended region 

based on its size is illustrated in  Figure 2 . Two salient regions are shown in 

the fi gure: a large one and a small one. In order to recognize a fi gure within 

each region, the primitive visual features which the classifi er must use 

must be of  an appropriate spatial scale − not too large and not too small 

(see Sowden & Schyns,  2006 ). If  they are too large, they cannot be combined 
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to represent a complex shape within the region. (For instance, primitive 

features at the coarse-grained scale are of  no use in representing a shape in 

the small salient region.) And if  they are too small, then their combinations 

are not guaranteed to represent the global form of  the fi gure occupying the 

region. (For instance, primitive features at the fi ne-grained scale are of  no use 

in representing the ‘global’ shape of  a fi gure in the large salient region.) In 

our model we implement a very simple treatment of  the default classifi cation 

scale: there are only two classifi cation scales, which are appropriate for 

classifying ‘large’ and ‘small’ objects respectively. In reality, object classifi cation 

involves a range of  spatial scales rather than a single scale (Schyns & Oliva, 

 1999 ), so it would be more realistic to talk about a default  range  of  classifi cation 

scales. The important thing is that the relevant scales are specifi ed in relation 

to the size of  the object being classifi ed (see Sowden & Schyns,  2006 ).       

 5 .2   .     a lter ing  the  class if icat ion  scale  

 A second novel feature in our system is that the selected classifi cation scale 

can be changed  without changing the spatial region to be classifi ed , so that 

the classifi er can reanalyze the currently selected region using fi ner-grained 

visual features. In our model, this attentional operation is crucial for the 

classifi cation of  homogeneous groups, and for an account of  the diff erence 

between single objects and plural groups. The key idea is that in order to 

classify a group of  objects occupying a given salient region, the observer must 

attentionally select a classifi cation scale which is smaller than the scale 

established by default. 

 We suggest that the attentional mechanism which allows a choice between 

alternative classifi cation scales for a given salient region is what underlies 

the visual ability to distinguish between singular and plural groups. If  the 

classifi er is analyzing a salient region at the default classifi cation scale, any 

object type  T  it identifi es will indicate the presence of  a  single  object of  this 

type in the region. If  it is analyzing the region at a higher-than-default 

classifi cation scale, any type  T  it returns will indicate the presence of   multiple  

objects of  this type in the region. The key idea is that the distinction between 

singular and plural is read from the current classifi cation scale measured 

 in relation to  the default classifi cation scale for the currently attended region.   

 

Large salient region

Primitive visual feature at the fine classification scale

Primitive visual feature at the coarse classification scale

Small salient region

 
 Fig. 2  .    Salient regions of  diff erent sizes, and associated classifi cation scales.    

https://doi.org/10.1017/langcog.2014.9 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2014.9


342

walles et al.

 5.3   .     support  for  the  model  of  class if icat ion  scales  

 The model of  classifi cation scales just outlined is supported by several lines 

of  evidence. First, it is well known that observers can selectively attend to the 

global or local features of  visual stimuli (see, e.g., Fink et al.,  1996 ). There is 

good evidence that this attention involves selective activation of  particular 

‘spatial frequency channels’ (see, e.g., Robertson,  1996 ; Flevaris, Bentin, & 

Robertson,  2010 ), which are analogous to spatial scales in our model. These 

fi ndings motivate the mechanism in our model which selects a particular 

classifi cation scale. But in addition, it has recently been found that the spatial 

frequency channels associated with local and global features of  an object are 

defi ned in relative not absolute terms. Flevaris, Bentin, and Robertson ( 2011 ) 

conducted a priming study, where the primes were Navon stimuli, and the 

probes were stimuli containing both higher- and lower-frequency patterns. 

They found that attention to the local form of  a Navon stimulus primed 

perception of  the higher-frequency pattern, while attention to the prime’s 

global form primed perception of  the lower-frequency pattern, regardless of  

the absolute sizes (and retinal locations) of  the patterns. Our model makes 

use of  this notion of  relative classifi cation scale to support an account of  

group classifi cation and of  the distinction between singular and plural in the 

visual system.    

 6   .    Components  of  the model 

 The architecture of  our model of  visual attention and classifi cation is shown 

in  Figure 3 . The classifi cation subsystem is on the right; the attentional 

subsystem is on the left. In this section we describe these two subsytems in 

more detail. Technical details of  both subsystems are given in the ‘Appendix’.      

 6 .1   .     the  class if icat ion  subsystem  

 The visual classifi cation subsystem is modelled by a convolutional neural 

network (CNN) based on that described in Walles, Knott, and Robins ( 2008 ) 

with a few refi nements; see ‘Appendix A.1’ for details of  the classifi er’s 

architecture and training scheme. It takes as input retinotopic maps of  simple 

oriented visual features at one of  two possible classifi cation scales; the 

attentional system selects either large-scale or small-scale visual features. 

Activity in these input layers is propagated through subsequent layers which 

alternately combine features together in local regions of  the input image and 

abstract over local regions of  space. Responses of  units in these layers model 

those of  neurons in the ventral object processing pathway, which respond 

to progressively more complex shapes, over progressively wider areas of  the 

visual fi eld (see, e.g., Riesenhuber and Poggio,  1999 ). 
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 The classifi er was trained with six shapes, each of  which was presented at 

two diff erent sizes, and at a range of  locations (see  Figure 4 ). The primitive 

visual elements of  the small shapes are expressed at the fi ne-grained 

classifi cation scale, and those of  the large shapes are expressed at the coarse-

grained classifi cation scale. The large shapes were presented at varying pixel 

densities during training.     

 The classifi er has seven output units: six of  these provide localist encodings 

of  the six shape categories and the seventh encodes the verdict ‘unknown 

category’. The units have activations ranging from zero to one. We defi ne the 

 

early vision

retina

representation
saliency

saliency
analysis

classifier

small
features

large
features

spatial attention gating

Serial processing

Parallel processing

selection
mechanism

scale attention gating

 
 Fig. 3  .    Structure of  the computational model. Boxes with rounded corners indicate 
representations and those with square corners indicate processes. Dashed boxes indicate 
gating to restrict the output to a subset of  the input. Arrows indicate fl ow of  information.    
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classifi er’s decision to be the strongest output over 0.5. If  no unit’s activation 

exceeds 0.5, the classifi er’s decision is assumed to be ‘unknown category’. 

In summary, the classifi er provides two pieces of  information: fi rst, whether 

classifi cation is possible, and, if  so, what that classifi cation is. 

 After training, the classifi er exhibits two types of  invariance which have 

been observed in the ventral visual system, in inferotemporal (IT) cortex 

(Logothetis & Sheinberg,  1996 ), and which are generally acknowledged to be 

crucial for a model of  vision (Riesenhuber & Poggio,  2002 ; Ullman,  1996 ) − 

namely location (or translation) invariance and scale invariance. Location 

invariance is a result of  the architecture of  the CNN, which intersperses 

feature combination layers with layers that abstract over space (see Walles et 

al.,  2008 ). Scale invariance depends on the input having been prefi ltered for 

the desired scale. To classify the small shapes the fi ne-grained visual features 

must be used, and to classify the large shapes the coarse-grained features 

must be used. The attention system can select either the fi ne-grained or 

coarse-grained visual features. This allows the attention system to present an 

  
 Fig. 4  .    The shapes used in the experiments. (a)–(f) show the shapes at the two sizes used. (g) 
shows how the large shapes were presented at four diff erent densities.    
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input and ask the classifi er if  it can see anything familiar at a particular scale 

without interference from the other scales. 

 Most relevantly for the current paper, the classifi er is also invariant to the 

cardinality of  small shapes. (Cardinality invariance cannot be tested with 

large shapes because they are too big to present in groups.)  Table 1  provides 

evidence of  cardinality invariance for groups containing up to fi ve items. For 

groups of  two or more each input was formed by placing several small shapes 

on the retina with the constraint that no two shapes were less than two pixels 

apart. For each test example the units that passed the 0.5 threshold were 

tallied. For homogeneous groups of  input type X, the number of  times 

output X was over the threshold (correct group classifi cations) was recorded 

and is shown in the top part of   Table 1 . The number of  times any output 

other than X was over the threshold (false positives) was also recorded; this is 

shown in the bottom part of   Table 1 . Clearly, the classifi er is capable of  

identifying the type of  items in homogeneous groups as well as the type of  

single items. In fact it is better at classifying groups than single items − a 

redundancy gain eff ect similar to that found in humans (see Section 3).       

 6 .2   .     the  attentional  subsystem   

 6.2.1  .   Overview 

 As shown in  Figure 3 , the attentional subsystem can be divided into two 

interacting stages: a preattentive, or parallel, stage and an attentive, or serial, 

stage. 

 The preattentive stage includes an operation called ‘saliency analysis’. The 

job of  saliency analysis is to identify regions in the visual fi eld that warrant 

individual processing: these regions are stored in a  saliency map , which is 

computed in parallel across the visual fi eld (Koch & Ullman,  1985 ; Itti & 

Koch,  2000 ; Walther & Koch,  2006 ). This map provides input to a serial 

selection mechanism which picks the most salient region in the map and 

allows the classifi er to process information from this region. Once the classifi er 

has processed the selected region, the saliency map is updated and a new 

salient region is selected. 

 In our model, the saliency map is called the  saliency representation . 

Salient regions are identifi ed as regions with high local contrast and high 

textural homogeneity. The former criterion is standard in saliency maps; the 

latter is novel in our system. The most salient location fi lters or ‘gates’ retinal 

input into the classifi er, so that only visual features from this location are 

processed by the classifi er. 

 The idea of  restricting the classifi er’s inputs to a selected salient location is 

a well-known idea (see, e.g., Walther & Koch,  2006 ). In our model, the 

classifi er’s inputs are also independently gated by spatial scale. Given the 
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region and scale corresponding to the currently attended salient region, only 

primitive features corresponding to the selected region  and the selected scale  

will reach the classifi er from early vision. The novel aspect of  the attention 

system is that a single selected spatial location can be classifi ed fi rst at a 

coarse-grained spatial scale and then later at a fi ne-grained one.   

 6.2.2  .   Parallel attention component: saliency analysis 

 The saliency analysis module parses the visual fi eld and produces a saliency 

representation − basically a saliency map, which identifi es salient regions 

at one of  two spatial scales. Each region contains either a single shape, or a set 

of  shapes which are treated as a single item (i.e., grouped) due to their 

proximity and/or similarity. 

 We determine saliency through a mixture of  local contrast and texture 

homogeneity information. Two  local contrast maps  are computed, using 

Laplacian of  Gaussian (LoG) fi lters tuned to two diff erent spatial scales. 

A single  texture homogeneity map  at the fi ne-grained spatial scale is 

computed using the statistical histogram-based system of  Liu and Wang 

( 2000 ). These maps are combined to produce the saliency representation. 

 Prima facie, there may seem to be a confl ict between local contrast and 

homogeneity as indicators of  saliency. Saliency computed from contrast, and 

saliency computed from homogeneity (which implies  no  contrast) seem to 

push in opposite directions. However, while the principles may be in confl ict 

at a single spatial scale, they are complementary at diff erent spatial scales. 

Salient stimuli are those which contrast from their background  as wholes , 
but whose  parts  show textural uniformity. Thus uniformity is required at a 

fi ner-grained spatial scale than contrast. Details of  how the local contrast and 

  table   1.      The classifi er’s performance on homogeneous groups of  diff erent sizes. 
The fi rst fi ve rows describe the response of  the output unit  X  when presented 

with a homogeneous groups of  one to fi ve  X s. The second fi ve rows describe the 
responses of  the unit  X  to homogeneous groups of  non- X s.  

Pattern  Responses of  unit X Number of  examples presented Percentage  

X  4493 4704 95.5% 
XX 2958 3000 98.6% 
XXX 2964 3000 98.8% 
XXXX 2942 3000 98.1% 
XXXXX 2912 3000 97.1% 
Y 188 4704 4.0% 
YY 79 3000 2.6% 
YYY 105 3000 3.5% 
YYYY 72 3000 2.4% 
YYYYY 90 3000 3.0%  
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homogeneity maps are produced and combined into fi ne-grained and coarse-

grained saliency maps are given in ‘Appendix A.2’, as are details of  how the 

two saliency maps are combined into the master saliency representation. 

 Some illustrations of  the regions found by the saliency analysis module are 

given in  Figure 5 . These demonstrate the module’s ability to identify salient 

regions of  diff erent sizes: the input stimuli in  Figure 5a  are grouped into a 

single large region, those in  Figure 5b  are grouped into two medium-sized 

regions, and those in  Figures 5c and 5d  are identifi ed as four small regions. 

They also show how the module reconciles confl icting local contrast and 

homogeneity cues to salience. If  items are close enough ( Figure 5a ) then 

grouping can occur even among heterogeneous items. At an intermediate 

separation, grouping is determined by homogeneity: homogeneous stimuli 

are grouped ( Figure 5b ) and heterogeneous stimuli are not ( Figure 5c ). Finally, 

if  items are separated widely enough, they are not grouped even if  they are 

homogeneous ( Figure 5d ).     

 The contributions of  the local contrast and homogeneity maps to overall 

salience are determined by the weights of  two parameters, whose relative 

value determines the separation at which homogeneous stimuli are grouped. 

These parameter settings can be related to individual variations in grouping 

behaviour found in experiments on human subjects. Quinlan and Wilton 

( 1998 ) explored the interaction of  the Gestalt properties of  similarity and 

proximity in humans. They found that proximity always dominates similarity 

if  stimuli are suffi  ciently close, but that the distance at which this happens 

varies from subject to subject. The ratio between contrast and homogeneity 

weights in the computation of  salience directly models this parameter of  

variation between subjects.   

 6.2.3  .   Serial attention component: the selection mechanism 

 The master saliency representation just described provides input to the serial 

attention component of our model, whose role is to selectively deliver bottom-up 

information from the retina to the classifi cation subsystem (see the right of  

 Figure 3 ). Selection occurs in two diff erent attentional media. One is spatial 

location: the classifi er can be restricted to receive input only from a particular 

region of  the visual fi eld. The other is classifi cation scale: the classifi er can be 

restricted to receive input from visual features at a particular spatial scale 

(fi ne-grained or coarse-grained). The way selection is implemented in each 

medium is described in ‘Appendix A.3’. 

 Processing in the serial attention component takes the form of  a sequence 

of   attentional operations . There are two types of  operation. One is the 

selection of a new salient region to attend to. When this happens, an appropriate 

classifi cation scale is also automatically selected, namely the default classifi cation 
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scale for that region. The other is the selection of  a new classifi cation scale, 

 without  a change in the currently attended location. Each attentional operation 

has lasting side eff ects on the master saliency representation. Selection of  a new 

salient region involves inhibiting the currently selected salient region (if  there 

is one), a process analogous to the spatial inhibition-of-return found in humans 

(Posner,  1980 ). Selection of  a new classifi cation scale also involves inhibition, 

namely inhibition of the currently selected classifi cation scale. The way inhibition 

is implemented in each case is described in ‘Appendix A.2.5’. 

 When a display is presented to the system, the fi rst attentional operation is 

the selection of  a random salient region in the master saliency representation, 

and the classifi cation of  this region at its default classifi cation scale. The 

region’s default classifi cation scale is a function of  its size: if  it is large, the 

coarse-grained classifi cation scale is the default; if  it is small, the fi ne-grained 

scale is the default. If  the region is large, it is then reanalyzed at the fi ne-

grained classifi cation scale, after which a new salient region is selected, by 

inhibiting the currently selected region and picking another one at random. 

If  the region is small, it is not reanalyzed at a fi ner classifi cation scale, since 

the model only features two spatial scales; instead, a new salient region is 

selected immediately. Thus each large region is analyzed successively at two 

spatial scales, while each small region is analyzed at just one. This cycle 

continues until all the salient regions in the original stimulus have been 

selected and inhibited. 

 There is one important point to note about the group classifi cation of  the 

local form of  a large salient region. The classifi er will only be able to provide 

  
 Fig. 5  .    Results of  similarity−proximity confl ict tests.    
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information about the form of  these visual elements if  they are  homogeneous : 
as noted in Section 6.1, group classifi cation is only possible if  all objects are 

of  the same type. But since textural homogeneity is one of  the properties 

used to determine salient regions, as discussed in Section 6.2.2, this will quite 

frequently be the case.  1   By using homogeneity as a cue to the formation of  

salient regions, and by allowing salient regions to be reparsed at a fi ner 

classifi cation scale, the attentional system naturally exploits the classifi er’s 

ability to operate on homogeneous groups.     

 7   .    Experiments and discussion 

 We now discuss the performance of  our complete system, combining the 

attentional and classifi cation subsystems, in two experiments, one to test its 

performance on Navon stimuli, the other to test its ability to distinguish 

between singular and plural stimuli. The system in both experiments uses a 

classifi er which was trained on the simple large and small shapes described in 

Section 6.1.  

 7 .1   .     performance  on  navon  st imul i  

 The system was fi rst tested on unseen hierarchically structured stimuli: large 

shapes made up of  small shapes, as illustrated in  Figure 6a . We created 90 

unseen stimuli of  this kind, formed from homogeneous groups of  fi ve small 

shapes each. In these groups, the small shapes were positioned closely enough 

together for the attentional system to recognize them as a single salient region, 

but otherwise as far apart as possible.     

 The system’s typical performance is illustrated in  Figures 6b and 6c . It 

fi rst identifi es the stimulus as a single (large) salient region, selects the default 

classifi cation scale for a large region and classifi es the stimulus at this scale, to 

identify its global form, as shown in  Figure 6b . A successful classifi cation at 

this scale indicates the presence of  a single object in the attended region. The 

system then selects a fi ner classifi cation scale and reclassifi es the stimulus to 

identify its local form, as shown in  Figure 6c . A successful classifi cation at 

this scale indicates the presence of  multiple objects of  the given class, i.e., of  

a plural group. Over the 90 unseen Navon stimuli, the system successfully 

identifi ed both the global and local shape of  the stimulus in 78% of  cases. 

  [  1  ]    The local visual elements in the selected region could also be heterogeneous, if  they are 
grouped closely enough, as in the stimulus shown in  Figure 5 . But in fact our classifi er 
provides useful information about this case too, by failing to off er a classifi cation at all. 
In this case an additional attentional routine can be planned to analyze each local element 
of  the region in turn. We have implemented this operation, but it goes beyond the scope 
of  the current paper.  
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 Note that our system’s serial attentional algorithm processes global 

form before local form, in line with Navon’s ( 1977 ) classic fi nding of  global 

precedence. However, this precedence of  global form over local form is 

simply stipulated in our algorithm; we do not want to draw any conclusions 

from this aspect of  system performance. In fact, as noted in Section 5, global 

precedence can be modulated or reversed by priming particular spatial 

frequencies, as shown by Flevaris et al. ( 2011 ). When examining our system’s 

performance on Navon stimuli, our main concern is not to show a particular 

ordering of  local and global classifi cation, but just to show that our system 

can classify a stimulus at two spatial scales, one after another. This capacity 

is not stipulated; it results from interactions between several diff erent 

independently motivated system components: the saliency module’s use of  

textural homogeneity in identifying salient regions, the attentional module’s 

implementation of  two competing classifi cation scales, and the classifi er’s 

cardinality blindness. 

 The system’s performance in classifying the local and global form of  

homogeneous stimuli (Navon stimuli) is somewhat worse than its performance 

in classifying group stimuli and large shapes by themselves (see Section 6.1). 

Its lower group classifi cation performance is due to small shapes being packed 

closer together than is optimal in the current experiment. This creates 

artifactual shapes at positions in between the small shapes, which can confuse 

  
 Fig. 6  .    Illustration of  the system’s performance on Navon stimuli. (a) A Navon stimulus 
(an arm formed from ells). (b) The attentional system initially identifi es the stimulus as a 
single region and applies the default classifi cation scale (indicated by the thick border); at this 
scale the classifi er responds with  ARM , indicating the presence of  a single arm. (c) The 
attentional system then selects a fi ner classifi cation scale for the same region (indicated by the 
thin border); at this scale the classifi er responds with  ELL , through group classifi cation, 
indicating the presence of  plural ells.    
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the classifi er. By contrast, the system’s lower performance in classifying large 

shapes is due to small shapes being packed together more sparsely than is 

optimal for this task. In fact, the large shapes the system was tested on in the 

current experiment are quite diff erent from the large shapes it was trained on. 

We expect that the system’s performance on Navon stimuli would improve if  

it were explicitly trained on large shapes formed from smaller shapes. But our 

main purpose in the current paper is just to demonstrate that an ability to 

process such stimuli emerges reasonably naturally from the system without 

any specifi c training.   

 7 .2   .     performance  in  d i st inguishing  be tween  s ingular  and 

plural  st imul i  

 Our second experiment tested the system’s ability to distinguish between 

single and plural visual stimuli within the subitization range more systematically. 

The system was presented with unseen stimuli consisting either of  a single 

small shape or of a group of two, three, four, or fi ve small shapes. If the system 

can distinguish between singular and plural, it should be able to classify 

individual small shapes at the default classifi cation scale, thus recognizing these 

as singular instances of  a given class, and to classify groups of  size two to fi ve 

at the fi ner-than-default classifi cation scale, uniformly recognizing them as 

plural instances of  a given class. (Its ability to classify the global form of  

group stimuli is not at issue here; this was assessed in the previous experiment.) 

 Each individual stimulus was a single small shape of  some given category 

 C  presented at a random location on the retina. Each group stimulus was 

a homogeneous group of  small shapes of  category  C , arranged in a random 

confi guration, again placed at a random location on the retina. The density 

of  group stimuli was again controlled, so that each group stimulus would be 

identifi ed by the attentional system as a single salient region: in each group, 

no small shape was more than three pixels distant from some other shape, and 

each shape was at least two pixels distant from all other shapes. The category 

 C  varied over all the shapes the classifi er was trained on. Plural stimuli ranged 

in size from two to fi ve small shapes. There were twenty stimuli of  each 

cardinality. Example stimuli are shown in  Figure 7 .     

 The system’s ability to identify single  C s and plural groups of   C s in our 

test stimuli is charted in  Table 2 . As the table shows, the system reliably 

identifi es single stimuli as singular; for groups of size two to fi ve its performance 

varies from 95% to 83%. The limiting factor in identifying plural stimuli 

is the performance of  group classifi cation, which is markedly worse in the 

current experiment than when the classifi er operates by itself, when it has 

an accuracy of  97–98% (see Section 6.1). This drop in performance is again 

because the shapes in the group stimuli in the current experiment are packed 
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more densely than is optimal for group classifi cation. This is necessary in order 

for the attentional system to identify each group as a single salient region.     

 How to improve the classifi er’s performance on tightly packed groups is 

a matter for further research. It may be that tightly packed homogeneous 

groups are recognized as much by their visual texture as by the form of  

individual elements; indeed the boundary between texture classifi cation and 

group classifi cation is still unclear. Our present purpose is to demonstrate 

with some simple examples how our model of  visual attention and classifi cation 

delivers judgements about singular and plural visual stimuli. The key result 

in the current experiment is that the model has a qualitatively diff erent response 

to individual  C s and to groups of  two to fi ve  C s: in the former case, the 

classifi er outputs  C  when using the default classifi cation scale, identifying the 

stimulus as singular; in the latter cases, it outputs  C  when using a fi ner-than-

default scale, identifying these stimuli uniformly as plural.    

 8   .    Comparisons with existing visual  models 

 There are many existing models of the relationship between visual attention and 

object classifi cation. In this section, we discuss how our model compares to these. 

 A key point of  variation among models of  visual attention and object 

classifi cation is whether these processes take place in separate pathways or 

a single pathway. Some models see attention and object classifi cation as 

happening in two separate processing streams, so that attentional eff ects result 

from modulation of  a ‘classifi cation stream’ by an ‘attentional stream’. Others 

see object classifi cation and attention as happening in a single stream, so that 

attentional eff ects emerge naturally within the processing stream which 

computes the properties of  objects. Our model clearly falls into the former 

camp. It is closely related to several other two-stream models in which a map 

of salient locations functions to bias processing in a separate object classifi cation 

pathway. The closest model is probably that of  Walther and Koch ( 2006 ), 

which uses a modifi ed saliency map for the attentional processing stream and 

a variety of  convolutional neural network (Riesenhuber & Poggio,  1999 ) for 

  table   2.      Singular−plural attribution performance for a range of  stimuli of  
diff erent cardinalities  

Group size  Desired number judgement Performance  

1  singular 100% 
2 plural 95% 
3 plural 85% 
4 plural 90% 
5 plural 83%  
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the classifi cation stream. Our modifi cation of  the saliency computation is also 

somewhat similar to that of  Walther and Koch ( 2006 ), in that it computes 

salient regions of  arbitrary shapes, intended to correspond to the shapes of  

the actual objects in the scene which are to be classifi ed. Walther and Koch’s 

method for establishing a salient region is to identify a salient point, determine 

the low-level visual features most responsible for its salience, and then spread 

activity to neighbouring points with similar low-level visual features. Our 

method achieves a similar eff ect by according salience to neighbouring points 

with similar low-level features. 

 Another type of  two-stream model is the ‘dynamic routing’ model of  

Olshausen, Anderson, and van Essen ( 1993 ) (see Heinke & Humphreys,  2003 , 

for an implementation and extension). While a convolutional neural network 

interleaves the computations involved in classifi cation and abstraction 

over retinal location, the dynamic routing model sees these processes as more 

separable, with spatial abstraction happening at a particular stage relatively 

early in the processing pipeline, to create an ‘object-centred’ image representation 

which forms the input to a separate object classifi cation system. Spatial 

abstraction is eff ected by a network with a very rich system of  connections, 

which can ‘route’ information from any region of  the retina to the object-

centred medium. The attentional system selectively gates these connections, 

so that information from only one region is routed. In fact, the diff erence 

between a gated convolutional network and selective routing is qualitative 

rather than quantitative. While the implementations of  Olshausen et al. 

( 1993 ) and Heinke and Humphreys ( 2003 ) route low-level information about 

luminance on the retina, they both allow that the information which is routed 

could also be about higher-level visual features. In a convolutional neural 

network, each spatial abstraction layer implements something like a (very 

local) routing operation. However, the mechanism for selecting a salient 

region must be implemented diff erently in the two models. In our model, 

attention just modulates the input to the classifi er, so that information only 

enters from a selected area. In selective routing, what is selected is not a 

retinal region but a whole mapping from retinal to object-centred coordinates. 

This involves modulation of  a complex system of synaptic connections, which 

must be defi ned by their lateral relationships with one another, rather than 

just their retinotopic location. Selective routing is very good at modelling 

  
 Fig. 7  .    Example stimuli used in assessing plurality and singularity.    
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some interactions between attention and object classifi cation, in particular 

object-centred neglect (see Heinke & Humphreys,  2003 ). But it is not clear 

how it would model the processing of  homogeneous group stimuli of  the 

kind discussed in the current paper. Presumably, each stimulus in a homogeneous 

group would have to be mapped to the same object-centred representation. 

But in selective routing, alternative mappings normally inhibit one another, 

so that exactly one is picked. Some mechanism would have to be able to 

override this inhibition to allow identical tokens in a homogeneous group to 

be processed in parallel. 

 A representative single-stream model is the selective tuning model of  

Tsotsos and colleagues (see Tsotsos, Culhane, Wai, Lai, Davis, & Nufl o, 

 1995 , for the original proposal, and Rothenstein & Tsotsos,  2008 , for a recent 

exposition). This model uses a structure somewhat similar to a convolutional 

neural network: it features a hierarchy of  processing layers, modelling 

processing in the ventral pathway, computing progressively more complex 

features, with increasingly coarse spatial resolution. However, in this system, 

each layer also functions as a saliency map in its own right. At each layer, 

beginning with the highest, a winner-take-all (WTA) mechanism operates to 

select a single region of  the retina. WTA mechanisms at lower levels only 

operate over units which contribute to the selected region at the layer above, 

so that attentional eff ects percolate from the highest layer down. This model 

is attractive in that it allows attention to select visual features of  diff erent 

degrees of  complexity, from very simple to very abstract. It also supports an 

interesting model of  attentional grouping: the top-down constraints on WTA 

allow groups of  stimuli to be selected in a given layer even if  they are not 

spatially contiguous, if  these stimuli all contribute to the winning units in the 

layer above. This allows a good account of  how the discontiguous elements 

of  an object can be selected if  it is partially occluded. However, it is not clear 

how it should be extended to model the cardinality eff ects we discuss in the 

current paper. In our model, having two streams allows two distinct notions 

of  spatial scale, which can vary independently: the dorsal stream represents 

the size of  an attended region, while the ventral stream represents the size 

of  the primitive visual features used to classify the contents of  this region. 

We suggest that any account of  the distinction between singular and plural 

cardinality must make reference to these two distinct notions of  scale. If  

salient regions are identifi ed internally to the object classifi cation pathway, it 

is less easy to keep them separate. It may be possible to restrict the WTA 

process in given layers to units with a particular selected scale, but it is not 

clear at which layer this should apply. In any case, we have already reviewed 

evidence that cardinality is primarily computed in the dorsal visual pathway, 

so whatever mechanisms are responsible for computing cardinality seem 

likely to involve a separate processing stream.   
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 9   .    Summary and further work 

 In this paper we proposed that the semantics of  concrete noun stems and 

their number infl ections can be read directly from the perceptual system, 

from the representations generated by the visual object categorization 

system and the visual attention system. We expressed this hypothesis in 

a model of visual object categorization and visual attention with two innovative 

features: fi rst, the categorization system can classify homogeneous groups as well 

as individual objects; second, the attentional system can specify the scale at which 

the categorization system operates on a given salient region. Both these features 

are well motivated empirically in their own right; in combination, they result in 

a system that economically explains the dissociation of type and number 

information in language, and provides the fi rst embodied account of the 

semantics of  number   features. However, there are many issues still to be 

explored; we conclude by briefl y noting some of  these. 

 First, our hypothesis about a link between linguistic number and local/

global visual attention generates several predictions that could be tested 

empirically. Domahs et al.’s ( 2012 ) fi nding that the left TPJ is activated both 

during interpretation of   plural   nouns and during attention to the local 

form of  visual stimuli (see Section 4.2.2) is consistent with our hypothesis, 

but its involvement in these two processes may just be a coincidence, and the 

TPJ has many subregions, with many functions. An fMRI study explicitly 

comparing activity due to  plural   nouns and to local visual attention (in the 

same subjects) would provide a better indication of  whether the same neural 

region is involved in the two processes. A priming paradigm may also be 

able to test our proposal: if  the semantic representations of   s ingular   and 

 plural   nouns endure in time, our model predicts that interpreting  s ingular  

and  plural   nouns will bias visual attention towards the global and local 

form of  subsequently presented Navon stimuli. 

 Second, the visual model presented in this paper is quite simple: several 

improvements are required. An important extension is to enable processing 

of  more naturalistic images, both in the saliency and classifi cation pathways, 

and to simulate more spatial scales, simulating the spatial frequency channels 

found in actual human vision (see, e.g., Hughes, George, & Kitterle,  1996 ). 

Another important extension is to include a mechanism for representing 

subitizable numbers as individuals, so that our account of the perceptual origin 

of  the  number   feature can include the values  dual   and  tr ial  . A further 

extension is to provide an account of  texture classifi cation and its relationship 

with group classifi cation, to improve performance of  the classifi er on densely 

packed groups, and on groups with large cardinalities. 

 Third, the present account of  noun stems and their number infl ections 

must be extended to cover perceptual modalities other than vision − and also 
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to cover abstract uses of  nouns. The classifi cation of  homogeneous groups 

of  objects in other modalities has not yet been studied, to our knowledge. 

Hearing is a modality where group classifi cation seems possible. Agents can 

use hearing to classify a single dog, for instance by its bark: Is the sound of many 

dogs barking simultaneously classifi ed any diff erently? How is the distinction 

between one and many made here? Abstract nouns require further extensions 

to the theory, but here there are many accounts to draw on; the basic proposal 

is likely to echo the general proposal espoused by embodied semanticists, that 

the meanings of  abstract words are grounded in concrete sensorimotor domains 

(see Lakoff  & Johnson,  1980 , and much subsequent work). 

 Finally, our embodied model of   number   features needs to consider the 

syntactic role that these features play, as well as their semantics. As discussed 

in Section 2, the syntax of  a language often requires agreement between the 

 number   features of  words within a noun phrase or clause, indicating that 

number features have a syntactic domain which extends beyond the words 

they appear in. Is there anything in our perceptually grounded account of  

 number   features which helps to explain their extended syntactic domain? If  

there is, this would supply interesting additional evidence for our proposal. 

 In summary, there are many directions for further development of  our 

implemented model, and of  the embodied theory of  nouns which it expresses. 

The model nonetheless provides a useful platform on which more detailed 

and comprehensive hypotheses about the perceptual origins of  nouns can be 

developed and quantitatively tested.    
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   Appendix:  technical  details  of  the visual  model 

 The model of  the classifi cation and attentional subsystems can be thought of  

as a collection of  retinotopic map representations. We implement a map as a 

matrix. The input map  I  is a greyscale image measuring 128 × 128 pixels, 

with element values in the range 0 to 255. The input is read directly from 

bitmap image fi les. Other maps are computed from this using a variety of  

operations. Most of  these maps also measure 128 × 128 pixels with the 

exception of  some employed by the classifi er (see Section A.1). Except where 

noted it is safe to assume that the output of  a map operation has the same 

dimensions as its inputs. Because of  this we sometimes refer to pixels in maps 

other than  I  even though they do not, strictly speaking, form an image. 

 The map operations used are convolution (matrix convolution, denoted * 

with pixels lying beyond the map edge assumed to be white unless noted 

otherwise), addition, subtraction, and scalar multiplication (computed as for 

their matrix equivalents), modulus (denoted  X , computed by taking the 

modulus of  each element), and some more complicated operations which will 

be defi ned where they occur. The matrix or map element at the  i th row and 

 j th column of   X  is denoted  X   i,j  . 

 Some special maps have additional information associated with them, such 

as regions. Regions are sets of  contiguous pixels in a map and we implemented 

these as either maps with characteristic pixel values for each region or as sets 

of  maps, one per region, depending on which was more convenient. The map 

itself  can still be considered just a matrix, with this extra information 

represented separately and bound to the map. 

     A.1. The classifi er  

 A.1.1. Classifi er structure 

 The classifi er used was a convolutional neural network which takes a set of input 

maps and activates a set of output category units via a series of layered plies 

which alternately combine visual features from the ply below into more complex 

features and abstract over the spatial location of visual features. The CNN was 

mostly as described in Walles et al. ( 2008 ), except that the number of features 

used in each ply was diff erent and there was some additional input preprocessing. 

  Figure 8  illustrates the overall structure of  our CNN.     

 The  units  of  the network are arranged in a series of   plies , with units 

in each ply connected to units in the one above by a  layer  of   weights . 
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Our network had nine plies and eight layers. Units within each ply are 

clustered into  cells , which are arranged retinotopically. Every cell in a 

particular ply contains the same number of  units, one for each feature that 

the ply represents. Each unit in a cell represents the strength of  its associated 

feature at the cell’s location, and so each cell in a ply represents in parallel the 

presence of  a set of  features at the corresponding location in the input fi eld. 

The successive plies of  our network (going from input to output, measured 

in terms of cells) are 31 × 31, 30 × 30, 15 × 15, 14 × 14, 7 × 7, 6 × 6, 3 × 3, 2 × 2 ,  

and 1 × 1. 

 The features in the fi rst (input) ply were divided into two groups. One 

feature was provided for high-frequency input which represented luminance 

directly. Four features represented low-frequency input: these were obtained 

with 9 × 9 convolution fi lters tuned to horizontal, vertical, and diagonal 

black-on-white lines. 

 Units receive input from a small square region of  the ply beneath, the 

 integration window , meaning they are connected locally and can only make 

use of  local features. We used a window measuring 2 × 2 cells in all layers. All 

units in a cell have the same window, which can thus also be called the cell’s 

window. The region of  the retina that contributes to a unit’s input is its 

 

Eighth ply 2 cells x 2 cells

(convolving)
First layer

(abstracting)
Second layer

(convolving)
Third layer

Fourth layer
(abstracting)

(convolving)
Fifth layer

(abstracting)
Sixth layer

(convolving)
Seventh layer
(abstracting)
Eighth layer

Ninth ply 1 cell x 1 cell

Seventh ply 3 cells x 3 cells

Sixth ply 6 cells x 6 cells

Fifth ply 7 cells x 7 cells

Fourth ply 14 cells x 14 cells

Third ply  15 cells x 15 cells

Second ply  30 cells x 30 cells

First ply 31 cells x 31 cells

 
 Fig. 8  .    The general structure of  our convolutional neural network. Plies of  cells are connected 
by layers of  weights. Each cell contains one unit for every feature represented by that ply.    
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 receptive fi eld . In addition, the weights for corresponding units in diff erent 

cells of  a ply are constrained to be the same, eff ectively sharing the weights. 

This means that the response to activity inside a cell’s window will be the 

same irrespective of  where in a ply the cell is located. 

 Successive plies divide the visual fi eld more and more coarsely, so contain 

fewer cells than their predecessors, each of  which has a wider receptive fi eld 

than those in earlier plies. However, later plies generally represent more features 

than earlier plies, and therefore contain more units per cell. 

 The function and structure of  the weight layers alternates throughout the 

network between convolution and abstraction. Convolving layers compute 

combinations of  features in the previous ply with little change in the number 

of  cells between plies, while abstracting layers reduce the number of  cells of  

the input ply without interaction between diff erent features. 

 In convolving layers, an output unit receives input from every unit within 

its 2 × 2 integration window. A unit receiving input from a ply representing 

 n  features will have 4 n  + 1 inputs (including a bias). 

 Weights in abstracting layers are simpler. Input and output plies contain 

the same number of  features and there is no interaction between features. 

A unit receiving input from its 2 × 2 window will have fi ve inputs (including 

a bias). The window of  a cell in the output ply precisely abuts but does not 

overlap with the windows of  neighbouring cells. The eff ect is that the 

integration windows of  cells in the output ply tile the input ply. Weights are 

shared even further within abstracting layers, with all weights for a feature 

constrained to be identical. This means that each abstracting layer really has 

only two variable parameters per feature: one weight shared among all the 

inputs units, and the bias. 

 Apart from the varying structure of  the layers, unit activation is computed 

in the same way throughout the network. For a unit with  n  inputs  p  1 ... p   n   

(excluding the bias) and  n  + 1 weights (including the bias)  w  1 ... w   n +1  the unit’s 

 activation , a weighted sum,    σ    is computed:

 
1

σ
n

i i n

i

p w w
+1

=

= +  

 which, for an abstracting unit, can be simplifi ed further to:

 σ
n

ply i bias

i

w p w
=1

= +  

   because of  weight sharing. 

 The output of  the unit is then computed via the logistic function:

 σ−f
e

1
=
1+

 

   This is conventional for feed-forward networks. 
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 Going from the input ply to the output ply the number of  features in each 

ply were 5, 25, 25, 32, 32, 32, 32, 7, and 7. 

 Although inputs to the system as a whole measure 128 × 128 pixels, 

inputs to the classifi er always measure 31 × 31 pixels as in our original 

design. This is a practical limitation of  the classifi er to allow training in 

reasonable time, and the disparity is resolved by always centring the 

attended region in the classifi er’s input for classifi cation purposes. This 

ensures that the bounding rectangle of  the attended region is centred in 

the classifi er’s input.   

 A.1.2. Training regime 

 The network was trained using the  rpr op   algorithm (Riedmiller,  1994 ). 

This is a variation of  the  backpr op   algorithm (Rumelhart, Hinton, & 

Williams,  1986 ). The training algorithm is described in more detail in Walles 

et al. ( 2008 ). 

 We trained with small (high-frequency) shapes, each presented at a 

randomly chosen third of  possible retinal locations. We also trained with 

large (low-frequency) shapes each at a random third of  all possible retinal 

locations for each of  four densities. These included solid shapes as well as 

large shapes with pixels randomly ablated to the background colour with 

probabilities  1

6

  ,  1

3

  , or  1

2

  . Thus, for the low-frequency training, total spatial 

coverage was likely. The small shapes were presented at the high-frequency 

inputs only and the large shapes at the low-frequency inputs only. During 

operation only one of  the sets of  inputs is used at a time, the other being 

suppressed entirely. There were 1566 high-frequency training examples and 

2152 low-frequency training examples. As in Walles et al. ( 2008 ), these 

included 371 noise examples which were each fed to the low- and high-

frequency inputs in turn. New noise examples were generated on each cycle 

of  training. In other respects the architecture and training of  the CNN was 

as described in Walles et al. ( 2008 ).        

 A.2. Parallel attention component: saliency analysis 

 Saliency analysis is based on the model presented by Itti and Koch ( 2000 ) 

and Walther and Koch ( 2006 ), modifi ed to fi t the size constraints of  the 

classifi er and support scale-based attention in the selection mechanism.  

 A.2.1. Local contrast 

 Local contrast computation begins by taking the input image (a luminance 

image) and stretching the values into the range −128 (black) to 127 (white).

 ′ −stretch= ( , 128,127),whereI I  (5) 
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  ( ) ( )( )
( ) ( )

− −
−

i j

i j

min U L
stretch LU L

max min

,

,

( )
, , = +

X X
X

X X
 (6) 

 and  min  and  max  are functions that produce the minimum and maximum 

element values, respectively, of  a matrix or map. Local contrast is then 

computed by convolving with two normalized Laplacian of  Gaussian fi lters, 

one for each spatial frequency ( σ  = 1 and  σ  = 15 , chosen by trial and error 

to produce strong response to shapes of  the relevant scale while trying to 

minimize response to shapes at the other scale). The absolute value of  these 

results is then taken. Given
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LoG e σσ
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   and normalization was achieved using
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i j
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X

X  (9) 

  i j

i j

s X
,

= | | 

   we compute the high-frequency local contrast  C  hi  and low-frequency local 

contrast  C  lo  using

 ( ( ))σ ′norm LoG
hi
=| =1 * |C I  (10) 

  ( ( ))σ ′norm LoG
lo
=| =15 * |C I  (11) 

   We use LoG fi lters here rather than the orientation-specifi c fi lters used in 

the classifi er for two reasons. First, the orientation-specifi c fi lters used in the 

classifi er grew out of  the existing orientation-specifi c features used by Mozer 

and Sitton ( 1998 ), which our classifi er is based on. Second, while one of  the 

purposes of  fi ltering the classifi er inputs is to provide directed information 

(orientation) to aid classifi cation, here we are only interested in contrast of  

suitably-sized shapes whatever their orientation. Having said that, it would 

be desirable in future to fi nd a way to use the classifi er’s fi lters to produce 

these contrast maps instead of  the LoG.   
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 A.2.2. Homogeneity 

 The similarity measure is computed by the procedure described in Liu and 

Wang ( 2000 ). This procedure samples a small 7 × 7 pixel region around each 

pixel in the input image, computing its spectral histogram which can be 

thought of  as a high dimensional feature vector, and fi nally fi nds the closest 

match to this histogram among those belonging to a set of  texture templates 

derived from images of  the small shapes used in the experiment both closely 

packed and sparsely scattered. 

 The spectral histogram is constructed by fi rst convolving the 7 × 7 window 

with each of  seven normalized fi lter matrices. The fi rst three are the 

Kronecker    δ    fi lter, which constitutes an identity operation in this instance 

and the  D  xx  and  D  yy  fi lters:

 [ ]δ = 1  (12) 

  [ ]− −
xx

D = 1 2 1  (13) 

  
yy

D

1

= 2

1

 (14) 

   There are also two Laplacian of  Gaussian fi lters (see  equation (7) )  LoG (  σ   = 1) 

and  LoG (  σ   = 2). 

 Finally there are three Gabor fi lters  ( )
πσ θG =2, =
6

  ,  ( )
πσ θG =2, =
2

   and 

 ( )
πσ θG
5

=2, =
6

   where

 ( ) ( (( ) ( ) ))
r

i j
G e j o i oσ πσ θ θ θ

σ
2

1

2

,

2
, = cos cos + sin

−
−

− −  (15) 

  
σ

≤ i j w
8

0 , < =

2
 

  
w

o=
2

 

  ( ) ( )( ) ( ) ( )( )θ θ θ θ− − − −r j o i o o j i o
2 2

= cos + sin + sin + cos       

   The fi lter matrices are each normalized with the  norm  function given in 

 equation (9) . Their choice is justifi ed by Liu and Wang ( 2000 ). The window 

is convolved with each normalized fi lter with pixels at the edge of  the map 

replicated to infi nity to ensure a result for every pixel in the input. The 

histograms of  the resulting maps (with unit-sized bins) are concatenated to 

produce the spectral histogram. Spectral histograms are compared using the 
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  χ   2  value. If   H  1  and  H  2  are two spectral histograms, and  H  ( i ) is the  i th element 

of  the histogram  H  then this is computed as follows.

 
( ) ( )( )
( ) ( )χ

−
2

1 22

1 2

=
+i

H i H i

H i H i
 (16) 

   For each pixel’s associated histogram, the template histogram which has the 

lowest   χ   2  value relative to it determines the category assigned to the pixel. 

 Once each pixel is assigned a category (square, ell, etc. or background), 

boundaries are determined by comparing each pixel with its four-neighbours. 

The four-neighbours of  a pixel at coordinates ( i , j ) are the pixels at coordinates 

( i  − 1,  j ), ( i  + 1,  j ), ( i ,  j  − 1), and ( i ,  j  + 1). Whenever a pair of  pixels diff ers in 

category, the pixel that was least certainly classifi ed (measured by the   χ   2  of  its 

histogram relative to its category’s template) is marked as a texture boundary. 

In the resulting boundary map  B  homogeneous regions are marked with zero, 

boundaries with one. 

 For the experiments presented here we wanted some stimuli to be 

considered similar enough for saliency analysis to group them even though 

they were distinct. To this end we defi ned that boundaries between ells and 

squares, crosses and arrows, arrows and arms, arrows and triangles and 

triangles and arms would not be marked in the boundary map. 

 This confusion of  types was based on the confusion patterns of  the CNN 

but is eff ectively arbitrary. It is intended to model the Gestalt principle of  

similarity between types. We would have preferred to model this confusion 

using comparisons between the histograms of  neighbouring pixels directly 

but the small size of  the retina made this impractical (we consider this to be 

just an implementation detail).   

 A.2.3. Partial saliency maps 

 The boundary map  B  is combined with the low-frequency local contrast map 

 C  lo  by a weighted sum and thresholded to produce the low-frequency saliency 

map  S  lo :

 ( )τ α β−S C B
lo lo lo
= ;H  (17) 

 where

 
τ

τ i j

i j
H

,

,

1 if
; =

0 otherwise

X
X  (18) 

  τ
lo
= 0.060 (19) 

  α =15.5 (20) 

  β =1.45 (21) 
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   These scalings were chosen by trial and error so that contrast and homogeneity 

would interact without one dominating all the time. The high-frequency saliency 

map  S  hi  is just the same as high-frequency local contrast map, thresholded:

 ( )τH
hi hi hi
= ;S C  (22) 

 where

 τhi
= 0.4 (23) 

   The threshold values were chosen by trial and error so that regions of  both 

frequencies at a reasonable contrast would become salient. 

 The ratio between contrast and homogeneity weights (  α   and   β   in  equation 

(17) ) determines the relative contributions of  contrast and homogeneity to 

overall salience.  Table 3  shows the eff ect on grouping behaviour of  changing 

  β   while keeping   α   constant. Column 3 shows the maximum separation 

between heterogeneous stimuli for which they are grouped together, and 

column 4 shows the minimum separation between homogeneous stimuli for 

which they are treated as separate regions, for a range of  diff erent weight 

ratios. Distances are measured in pixels. The second row shows the parameter 

values used in the experiments in the current paper.       

 A.2.4. Combination of  partial saliency maps 

 Regions which are four-neighbour contiguous are next identifi ed and labelled by 

region merging (Gonzalez & Woods,  1992 , see Section LABEL:sec:homogeneity 

for a defi nition of  four-neighbouring pixels). Any labelled region in the low-

frequency map containing fewer than 55 pixels is discarded, yielding a new 

low-frequency saliency map  S  ′  lo  which is used for further operations:

 ( )′ F
lo lo
=S S  (24) 

 where  F  is a function that just sets pixels belonging to such regions in the 

input to zero. 

 This was done to remove high-frequency objects strong enough to 

stimulate the low-frequency saliency map as well as occasional artefacts 

between objects, both of  which we consider to be noise. It acts as a kind of  

low-pass fi lter, removing regions too small to be of  interest to the low-

frequency map. The point-wise sum of  these maps yields the master saliency 

map in which contiguous regions are also identifi ed and labelled.

 ′
lo hi

= +S S S  (25) 

     A.2.5. Inhibition and suppression 

 The preceding operations have been all bottom-up, but further computation 

relies on some top-down infl uence in the form of   inhibition . A map is inhibited 
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by combining a top-down  inhibition map  with its bottom-up activation. It can 

be thought of  as an additional factor in the computation of  the map. If   X  is a 

map and  X   I   its corresponding inhibition map then the inhibited version of  

the map  X  ′  (its eff ective value, used by operations which depend on the map) 

is given by

 
I

i j i j

i j

, ,

,

if = 0
=

0 otherwise

X X
X  (26) 

   It is also possible to inhibit an entire map at once, equivalent to inhibiting 

with a map containing no zero elements. 

 In this paper we use the term  suppression  where inhibition is only 

temporary as part of  a computation. Where applicable, inhibition and 

suppression are governed by independent inhibition maps associated with 

the primary map.   

 A.2.6. Computation of  salient regions 

 The fi nal stage of  saliency analysis is the extraction of  a well-defi ned set of  

salient regions, each tagged with a default classifi cation scale based on its size. 

In our implementation these are represented in a series of  maps, one for each 

salient region − though a single map with an appropriate coding could be 

used because the regions do not overlap. First, any of  the most strongly 

activated pixels in the master saliency map is chosen (we used the left- and 

top-most such point but this is arbitrary). If  there is a low-frequency salient 

region at that point, the low frequency is selected as the salient scale, otherwise 

the high frequency is selected. Standard morphological dilation (Gonzalez & 

Woods,  1992 ) is then applied to the corresponding region (radius 2 pixels for 

high frequency, 4 pixels for low frequency). Finally, pixels are removed from 

the region if  they overlap salient regions that have already been computed, 

other active pixels in the master saliency map or pixels inhibited by attention 

operations (for which the associated inhibition map will be active). 

 The resulting region is added to the set of  salient regions, tagged with its 

associated scale. The region is suppressed in the corresponding scale saliency 

  table   3.      The eff ect of  changing homogeneity weight on grouping behaviour  

Contrast weight (   α   )  
Homogeneity 

weight (   β   )

Maximum separation 
between grouped 

heterogeneous stimuli

Minimum separation 
between separate 

homogeneous stimuli  

15.5  0.8 3 4 
15.5 1.45 1 3 
15.5 2.5 1 1  
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map and the master saliency map and any overlapping regions in the non-

selected scale saliency map are also suppressed. The above process is repeated 

until all activity in the master saliency map has been suppressed. 

 Once the set of  salient regions is computed, one is chosen at random by the 

selection mechanism and the associated region and scale become the subjects 

of  attention. We do not select salient regions by decreasing order of  saliency, 

as is typically done, because our stimuli are very simple and the standard 

measure of  ‘degree of  saliency’ does not really apply. The randomization of  

selection can be viewed as the addition of  noise to simulate the variation of  

saliency found in real-world stimuli. 

 After the winner is selected, suppression of  the saliency maps introduced 

during computation of  salient regions is then removed. Salient regions are 

recomputed whenever there is a change to the maps that the computation 

depends on, which happens when the selection mechanism inhibits the 

saliency maps.        

 A.3. Attentional selection operations 

 There are two kinds of  gating operation: gating by location and gating by 

scale. A map  Y  containing a salient location spatially gates another map  X  

with the result given by the  gate  function:

 
i j i j

i j
gate

, ,

,

if 0
, =

0 otherwise

X Y
X Y  (27) 

   Gating by scale is achieved by entirely inhibiting a scale-specifi c set of  

classifi er input maps (equivalent to gating the maps with a map containing 

only zero elements). When the low frequency is selected, the high-frequency 

maps are entirely gated off  and vice versa.      
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