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We go back to the results of Poincaré [Poincare, H (1891) Sur lintegration des equations

differentielles du premier ordre et du premier degre I and II, Rendiconti del circolo matematico

di Palermo 5, 161–191] on the multipliers of a periodic orbit for proving the C1 non-

integrability of differential systems. We apply these results to Lorenz, Rossler and Michelson

systems, among others.
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1 Introduction and statements of main results

In these last years the Ziglin and the Morales–Ramis theories have been used for studying

the non-meromorphic integrability of an autonomous differential system. In some sense the

Ziglin theory is a continuation of Kovalevskaya’s ideas used for studying the integrability

of a rigid body because it relates the non-integrability of the considered system with

the behaviour of some of its non-equilibrium solutions as a function of complex time

using the monodromy group of their variational equations. Ziglin’s theory was extended

to the so-called Morales–Ramis’ theory, which replaces the study of the monodromy

group of variational equations by the study of the Galois differential group, which is

easier to analyse (see [8] for more details and the references therein). But like the Ziglin

theory, the Morales–Ramis theory can only study the non-existence of meromorphic first

integrals.

Kovalevskaya’s ideas and consequently the Ziglin and the Morales–Ramis theories

go back to Poincaré’s results (see Arnold [1]), who used the multipliers of the mono-

dromy group of variational equations associated to periodic orbits for studying the

non-integrability of autonomous differential systems. The main difficulty in applying

Poincaré’s non-integrability method to a given autonomous differential system is to find

for such an equation periodic orbits having multipliers different from 1.

It seems that Poincaré’s this result was forgotten by the mathematical community until

modern Russian mathematicians (specially Kozlov) wrote on it (see [1, 10]).
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We consider the autonomous differential system

ẋ = f(x), (1.1)

where f : U → �n is C2, U is an open subset of �n and the dot denotes the derivative

with respect to time t. We write its general solution as φ(t, x0) with φ(0, x0) = x0 ∈ U and

t belonging to its maximal interval of definition.

We say that the solution φ(t, x0) is T -periodic with T > 0 if and only if φ(T , x0) = x0

and φ(t, x0) � x0 for t ∈ (0, T ). The periodic orbit associated to the periodic solution

φ(t, x0) is γ = {φ(t, x0), t ∈ [0, T ]}. The variational equation associated to the T -periodic

solution φ(t, x0) is

Ṁ =

(
∂f(x)

∂x

∣∣∣∣
x=φ(t,x0)

)
M, (1.2)

where M is an n × n matrix. Of course, ∂f(x)/∂x denotes the Jacobian matrix of f with

respect to x. The monodromy matrix associated to the T -periodic solution φ(t, x0) is the

solution M(T , x0) of (1.2) satisfying that M(0, x0) is the identity matrix. The eigenvalues of

the monodromy matrix associated to the periodic solution φ(t, x0) are called the multipliers

of the periodic orbit.

The following proposition and theorem go back to Poincaré’s results (see [20]). Since

we cannot find their explicit proofs in the literature, we prove them in Section 2.

Proposition 1 Let φ(t, x0) be a T -periodic orbit of the C2 differential system (1.1). The

eigenvector tangent to the periodic orbit has an associated eigenvalue equal to 1. So the

periodic orbit has at least one multiplier equal to 1.

Let F : U → � be a non-constant function of class C1 such that

∇F(x) · f(x) = 0.

Then F is called the first integral of f, because F is constant in the solutions of system

(1.1). We note that · indicates the usual inner product of �n.

Given an n × n-matrix N, we denote its transpose by NT . The gradient of F is defined

as

∇F(x) =

(
∂F

∂x1
, . . . ,

∂F

∂xn

)
.

We say that first two integrals F : U → � and G : U → � are linearly independent if

their gradients are independent in all the points of U except into a set of the Lebesgue

measure zero.

Theorem 2 Let f : U → � be the C2 vector field associated to (1.1), and let Fk : U → � be

the first integral for k = 1, . . . , r with r < n. Assume that F1, . . . , Fr are linearly independent

in U. Let γ be a T -periodic orbit of the vector field f such that at every point x ∈ γ and

the vectors ∇F1(x), . . . ,∇Fr(x) and f(x) are linearly independent. Then 1 is a multiplier of

the periodic orbit γ with multiplicity of at least r + 1.

The following two results are the immediate consequences of Theorem 2.
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Corollary 3 Consider the C2 differential system (1.1). If there is a periodic orbit γ having

only s+1 multipliers equal to 1, then system (1.1) has at most F1, . . . , Fs C
1 linearly independ-

ent first integrals defined in the neighbourhood of γ satisfying that vectors ∇F1(x), . . . ,∇Fs(x)

and f(x) are linearly independent on the points x ∈ γ.

Corollary 4 Under the assumptions of Corollary 3 if s = 0, then system (1.1) has no C1 first

integrals F defined in a neighbourhood of γ such that vectors ∇F(x) and f(x) are linearly

independent on the points x ∈ γ.

These two corollaries give us a tool for studying the C1 non-integrability of system (1.1)

in the neighbourhood of the periodic orbit γ. Note that Corollary 4 prevents the existence

of C1 first integrals of system (1.1) defined in U.

Using Corollary 4 we will prove, under convenient assumptions, the non-existence of

C1 first integrals for systems having a zero-Hopf bifurcation (see Theorem 5). Later, using

Theorem 5 we will show the non-existence of C1 first integrals for the Lorenz system

(see Theorem 6) and for the Rössler system (see Theorem 7). Finally, we shall prove the

non-existence of C1 first integrals for the Michelson system (see Theorem 8), but for such

a system we will not be able to apply Theorem 5.

The following four theorems are proved in Section 3.

Now we present four applications of Corollary 4 showing the C1 non-integrability of

some differential systems in �3.

Theorem 5 Consider a C3 differentiable system in �3 having the origin as a singular point

with eigenvalues εa ± ci and εd. Then such a system can be written as

ẋ = p(x, y, z) = εax − cy +
∑

i+j+k=2

Aijkx
iyjzk + O3(x, y, z),

ẏ = q(x, y, z) = cx + εay +
∑

i+j+k=2

Bijkx
iyjzk + O3(x, y, z),

ż = r(x, y, z) = εdz +
∑

i+j+k=2

Cijkx
iyjzk + O3(x, y, z),

(1.3)

where O3(x, y, z) denotes the terms of order at least three in x, y, z. Let

F = A101 + B011,

G = C020 + C200,

D = c(−4aC002 + dF),

E = D2 + 8ac2F(−2aC002 + dF).

(1.4)

Assume that (E − D2)/(FG) > 0 and (D ±
√
E)/(2c2F) � 1. Then system (1.3) has a limit

cycle γε tending to the origin as ε tends to zero. Moreover, there exists ε0 > 0 such that

for either ε ∈ (−ε0, 0) or ε ∈ (0, ε0), system (1.3) has no C1 first integrals F defined in
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the neighbourhood of γε such that vectors ∇F(x, y, z) and (p(x, y, z), q(x, y, z), r(x, y, z)) are

linearly independent on the points of γε.

We should apply Theorem 5 to the Lorenz and the Rossler systems.

Theorem 6 (Lorenz system) Consider the Lorenz system

ẋ = σ(y − z), ẏ = rx − y − xz, ẏ = −bz + xy, (1.5)

with (x, y, z) ∈ �3 and the parameters σ, r, b ∈ �. We change parameters b and r by

parameters a and c through

b = −2aε +
(c + aε)2(σ − 1)

c2 + a2ε2 + 4aεσ + 2σ(1 + σ)
,

r = r1/r2,

r1 = (c2 + a2ε2)2 + (c2(3 + 2aε) + aε(−4 + aε(−5 + 2aε)))σ + (c2 + aε(−4aε))σ2,

r2 = c2(1 + 2aε − σ) + aε(2a2ε2 + 4σ(1 + σ) + a(ε + 7εσ)).

Set

K =
a(4 + c2 + 2σ − 2σ2)

c2 + σ − 2σ2 + σ3
.

If K > 0, then there exists ε0 > 0 such that for ε ∈ (−ε0, ε0) in the neighbourhood of singular

point q = (
√
br − b,

√
br − b, r − 1), and the Lorenz system has no limit cycles if ε < 0 and

has a unique limit cycle γε if ε > 0. Moreover, γε → q if ε → 0. For K < 0, the limit cycle

γε exists only for ε ∈ (−ε0, 0).

If (D ±
√
E)/(2c2F)� 1, with D,E, F given in (1.4) with

A101 =
Q1

(2 + c2 + 2σ)∆3/2Q
+ O(ε),

B011 =
Q2

(2 + c2 + 2σ)∆3/2Q
+ O(ε),

C200 = − Q3

∆1/2Q
+ O(ε),

C020 = 0,

C002 = − Q4

(2 + c2 + 2σ)∆3/2Q
+ O(ε),

where

∆ =
c2(c2 + (1 + σ)2)

c2 + 2σ(1 + σ)
,

Q = c6 + 12c2σ2(1 + σ)2 + 4σ2(1 + σ)4 + 4c4σ(1 + 2σ),

Q1 = c4(1 + σ)(c2 + (1 + σ)2)(c4 + 8c2σ + 4σ(1 + σ)2),

Q2 = c4(−1 + σ)(c2 + (1 + σ)2)(c4 − 2c2σ(1 + σ) − 4σ(1 + σ)3),

Q3 = σ2(2 + c2 + 2σ)(c2 + σ(1 + σ)2),

Q4 = c4σ(c2 − 2(σ − 2)(1 + σ))(c2 + (1 + σ)2)2,
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then the Lorenz system for ε ∈ (0, ε0) when K > 0, and for ε ∈ (−ε0, 0) when K < 0 has no

C1 first integrals F(x, y, z) defined in the neighbourhood of the zero-Hopf periodic orbit γε
satisfying that ∇F(x, y, z) and (σ(y − z), rx − y − xz,−bz + xy) are linearly independent on

the points of γε.

The Lorenz system (1.5) was defined in [12]. This system has been intensively studied

from the point of view of integrability using different integrability theories, and in

particular the Darboux integrability and analytic integrability (for example, see [3, 5–7, 9,

13, 16, 22–27]), but never from the point of view of C1 integrability.

The Rossler system (see (1.6)) was obtained in [21]. It is a well-known dynamical model

that has been intensively investigated mainly with respect to the notion of dynamical

chaos.

Theorem 7 (Rossler system) Consider the Rossler system

ẋ = −(y + z), ẏ = x + ay, ẏ = b − cz + xz, (1.6)

with (x, y, z) ∈ �3 and the parameters a, b, c ∈ �. We change the parameters a, b, c by the

parameters a, u, v through

b = − b1b2

(−1 + (a − εu)2 + v2)2
,

c = −a − 2εu + aε2u2 + av2 +
(a − 2εu)(1 + a2 − 2aεu)

−1 + (a − εu)2 + v2
,

b1 = (−1 + εu(a − εu))2 + (−2 + a2 − 2aεu + 2ε2u2)v2 + v4,

b2 = 2a2εu − a(1 + 4ε2u2) + 2εu(ε2u2 + v2).

Set

L = au(−2 + a2 + v2)Λ2,

with

Λ2 = −2 + 4a2 − 4a4 + a6 + 5v2 − 8a2v2 + 3a4v2 − 4v4 + 3a2v4 + v6.

If L > 0, there exists ε0 > 0 sufficiently small such that for ε ∈ (−ε0, ε0) in the neighbourhood

of the singular point

s =

(
c +

√
c2 − 4ab

2
,−c +

√
c2 − 4ab

2a
,
c +

√
c2 − 4ab

2a

)
,

the Rossler system (1.6) has no limit cycles if ε < 0 and has a unique limit cycle γε if ε > 0

that tends to q when ε → 0. For L < 0, the limit cycle only exists for ε ∈ (−ε0, 0).
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If (D ±
√
E)/(2c2F)� 1, with D,E, F given in (1.4) with

A101 = −a(∆1 − 1)(v2 + ∆1(a
2 + (−2 + a2)v2 + v4))

∆1(1 + (−2 + a2)v2 + v4)∆2
+ O(ε),

B011 =
a(∆1 − 1)3(a4 − v2 + v4 + 2a2(−1 + v2))

∆1(1 + (−2 + a2)v2 + v4)∆2
+ O(ε),

C200 =
a∆1(1 + (−2 + a2)v2 + v4)

v2(1 + (−2 + a2)v2 + v4)∆2
+ O(ε),

C020 = 0,

C002 =
a(∆1 − 1)

∆2
+ O(ε),

where

∆1 = a2 + v2,

∆2 = v2 + (−2 + a2 + v2)(a4 + v4 + 2a2(−1 + v2)),

Λ1 = 2u − 4uv2 + 2a2uv2 + 2uv4 + 2w − 4a2w + 4a4w − a6w

− 5v2w + 8a2v2w − 3a4v2w + 4v4w − 3a2v4w − v6w,

Λ3 = 1 − 2v2 + a2v2 + v4,

Λ4 = 4a2 − 4a4 + a6 + v2 − 6a2v2 + 3a4v2 − 2v4 + 3a2v4 + v6,

then the Rossler system for ε ∈ (0, ε0) when L > 0, and for ε ∈ (−ε0, 0) when L < 0 has no

C1 first integrals F(x, y, z) defined in the neighbourhood of the zero-Hopf periodic orbit γε
satisfying that ∇F(x, y, z) and (−(y+ z), x+ ay, b− cz+xz) are linearly independent on the

points of γε.

The Rossler system has been studied in [17] from the viewpoint of the Darbouxian

integrability and in [14] from the viewpoint of the analytic integrability but never from

the view point of the C1 integrability.

Note that Theorem 5 cannot be applied to the Michelson system defined in the next

theorem.

Theorem 8 (Michelson system) Consider the Michelson system

ẋ = y, ẏ = z, ż = c2 − y − x2

2
, (1.7)

with (x, y, z) ∈ �3 and the parameter c ∈ �. The Michelson system for c > 0 being

sufficiently small has no C1 first integrals F(x, y, z) defined in the neighborhood of the zero-

Hopf periodic orbit γ satisfying that ∇F(x, y, z) and (y, z, c2−y− x2

2
) are linearly independent

on the points of γ.

The Michelson system has been studied in [15] from the viewpoint of the analytic and

Darboux integrability but never from the view point of the C1 integrability.
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2 Proof of Proposition 1 and Theorem 2

Proof of Proposition 1 Let φ(t, x0) with t ∈ � and x0 ∈ U be the T -periodic solution of

the autonomous differential system (1.1). Clearly, we have

φ(τ, φ(t, x0)) = φ(t + τ, x0). (2.1)

Differentiating (2.1) with respect to t and setting t = 0 and τ = T , we get

∂φ

∂x
(T , x0)φ̇(0, x0) = φ̇(T , x0). (2.2)

Since φ(T , x0) = x0, we get φ̇(T , x0) = f(φ(T , x0)) = f(x0). In a similar way we have

φ̇(0, x0) = f(x0), and thus we can rewrite (2.2) in the following form

∂φ

∂x
(T , x0)f(x0) = f(x0). (2.3)

Note that differentiating equation (1.1) with respect to x, we have

∂

∂x

dφ(t, x)

dt
=

∂f(φ(t, x))

∂x

∂φ(t, x)

∂x
.

By Schwartz’s lemma, we can rewrite the above equation as

d

dt

∂φ(t, x)

∂x
=

∂f(φ(t, x))

∂x

∂φ(t, x)

∂x
,

which implies that ∂φ
∂x

(t, x) is a solution of (1.2). Note that since φ(0, x) = x, taking

derivative with respect to x, we obtain ∂φ(t,x)
∂x

= Id. Thus, ∂φ
∂x

(T , x0) is the monodromy

matrix associated to φ(t, x0). It follows from (2.3) that ∂φ
∂x

(T , x0) has 1 as an eigenvalue

with eigenvector f(x0) � 0 because x0 is not an equilibrium point. Furthermore, since

f(x0) = φ̇(0, x0), we get that the eigenvector f(x0) is tangent to the periodic orbit at

point x0. This completes the proof of the proposition. �

Proof of Theorem 2 Since for each k = 1, . . . , r, Fk is the first integral of system (1.1), we

have Fk(φ(t, x)) = Fk(x). Differentiating this relation with respect to x we get

∇Fk(φ(t, x))
∂φ(t, x)

∂x
= ∇Fk(x).

Then taking t = T and x = x0 in the previous equality, and since φ(T , x0) = x0, we obtain

∇Fk(x0)
∂φ(T , x0)

∂x
= ∇Fk(x0),

or equivalently, (
∂φ(T , x0)

∂x

)T

∇Fk(x0) = ∇Fk(x0).

Therefore, ∇Fk(x0) is an eigenvector of ( ∂φ(T ,x0)
∂x

)T with eigenvalue 1. On the other hand,
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from the proof of Proposition 1 we have

∂φ(T , x0)

∂x
f(x0) = f(x0).

Now ending the proof, since by assumption the vectors ∇F1(x0), . . . ,∇Fr(x) and f(x0)

are linearly independent on the points of the periodic orbit γ, there are at least r + 1

multipliers for the monodromy matrix equal to 1. �

3 Proof of Theorems 5, 6, 7 and 8

The proof of Theorem 5 is an immediate consequence of Corollary 4 and the following

theorem (together with its proof which is given in [11]).

Theorem 9 The following statements hold for system (1.3).

(a) If (E − D2)/(FG) > 0, then the differential system (1.3) has a limit cycle γε tending to

the origin as ε → 0.

(b) The multipliers of the limit cycle γε are 1 and (D ±
√
E)/(2c2F).

Proof of Theorem 6 The part of the proof of Theorem 6 concerning the existence of γε
follows from Theorem 2 in [11]. Computing the eigenvalues at the singular point q and

using Theorem 5 together with Corollary 4 the proof follows easily. �

Proof of Theorem 7 The part of the proof of Theorem 7 concerning the existence of γε
follows from Theorem 3 in [11]. Computing the eigenvalues at the singular point s and

using Theorem 5 together with Corollary 4 the proof follows easily. �

The Michelson system (1.7) was obtained by Michelson [19] in the study of the

travelling wave solutions of the Kuramoto–Sivashinsky equation. It is well known that

system (1.7) is reversible with respect to the involution R(x, y, z) = (−x, y,−z) and is

volume-preserving under the flow of the system. It is easy to check that system (1.7) has

two finite singularities,

p1 = (−
√

2c, 0, 0) and p2 = (
√

2c, 0, 0)

for c� 0, which are both saddle-foci. The singular point p1 has a two-dimensional stable

manifold and p2 has a two-dimensional unstable manifold. Note that when c = 0. the

Michelson system has a unique singular point at the origin with eigenvalues 0, ±i. In [18]

it is proved that for c > 0 being sufficiently small, the Michelson system (1.7) has a

Hopf-zero bifurcation at the origin for c = 0. Here we shall reproduce the short proof

of [18] because it is necessary for proving our result.

To prove Theorem 8 we need the following result essentially because of Malkin (1956)

and Roseau (1966) (see [4]). In [2], a new and shorter proof is given.

Theorem 10 (Perturbations of an isochronous open set) Consider a differential system

ẋ = F0(t, x) + εF1(t, x) + ε2F2(t, x, ε), (t, x, ε) ∈ � × Ω × (−ε0, ε0), (3.1)
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where Ω is an open subset of �n, and F0, F1 and F2 are C2 smooth and T -periodic in time

t. Let x(t, z) be a solution of (3.1) when ε = 0 such that x(0, z) = z. Denoted by Mz(t), the

fundamental solution matrix of the variational equation

ẏ = DxF0(t, x(t, z))y,

such that Mz(0) = Id. Assume that there exists an open and bounded subset V with its

closure cl (V ) ⊂ Ω such that for each z ∈ cl (V ), the solution x(t, z) is T -periodic. If a ∈ V

is a zero of the map F : cl (V ) → �n defined by

F(z) =

∫ T

0

M−1
z (t)F1(t, x(t, z)) dt, (3.2)

and det(DzF(a)) � 0, then for |ε| > 0, sufficiently small system (3.1) has a T -periodic

solution φ(t, ε) such that φ(0, ε) → a as ε → 0. Moreover, the periodic solution φ(t, ε) has

the same stability type as the singular point at the origin of the linear differential system

ẏ = (DzF(a))y if this singular point is hyperbolic.

Proof of Theorem 8 For any ε� 0 we take the change of variables

x = εx̄, y = εȳ, z = εz̄ and c = εd.

Then the Michelson system (1.7) becomes

ẋ = y, ẏ = z, ż = −y + εd2 − ε
x2

2
, (3.3)

where we still use x, y, z instead of x̄, ȳ, z̄. Now doing the change of variables

x = x, y = r sin θ and z = r cos θ,

system (3.3) goes over to

ẋ = r sin θ, ṙ =
ε

2
(2d2 − x2) cos θ, θ̇ = 1 − ε

2r
(2d2 − x2) sin θ. (3.4)

This system can be written as

dx

dθ
= r sin θ +

ε

2
(2d2 − x2) sin2 θ + ε2f1(θ, r, ε),

dr

dθ
=

ε

2
(2d2 − x2) cos θ + ε2f2(θ, r, ε),

(3.5)

where f1 and f2 are analytic functions in their variables.

For any given x0 and r0, system (3.5) in ε = 0 has the 2π-periodic solution

x(θ) = r0 + x0 − r0 cos θ, r(θ) = r0, (3.6)
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such that x(0) = x0 and r(0) = r0. It is easy to see that the variational equation of (3.5)

on ε = 0 along with solution (3.6) is⎛
⎜⎜⎝
dy1

dθ

dy2

dθ

⎞
⎟⎟⎠ =

(
0 sin θ

0 0

) (
y1

y2

)
.

It has the fundamental matrix solution

M =

(
1 1 − cos θ

0 1

)
,

which is independent of the initial condition (x0, r0). Using Theorem 10 we have

F(x0, r0) =
1

2

∫ 2π

0

M−1

(
(2d2 − x2) sin2 θ

(2d2 − x2) cos θ

)∣∣∣∣
(3.6)

dθ.

Then F(x0, r0) = (g1(x0, r0), g2(x0, r0)) with

g1(x0, r0) = 1
4

(
4d2 − 5r20 − 6r0x0 − 2x2

0

)
, g2(x0, r0) = 1

2
r0(x0 + r0).

Solving F(x0, r0) = 0 we get that it has a unique non-trivial solution x0 = −2d and

r0 = 2d. The eigenvalues of the Jacobian matrix on this solution are

λ1 = −d

2
(1 +

√
5)� 1 and λ2 = −d

2
(1 −

√
5)� 1,

taking d� 2/(1±
√

5). Therefore, by Theorem 10 the multipliers of this zero-Hopf periodic

orbit γ are

1, −d

2
(1 +

√
5)� 1 and − d

2
(1 +

√
5)� 1,

if d� 2/(1 ±
√

5). Consequently, by Corollary 4, system (1.7) has no C1 first integrals F

defined in the neighborhood of γ satisfying that

∇F(x, y, z) and

(
y, z, c2 − y − x2

2

)

are linearly independent on the points of γ. �
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