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Hydrodynamic diffusion in the absence of Brownian motion is studied via active
microrheology in the ‘pure-hydrodynamic’ limit, with a view towards elucidating
the transition from colloidal microrheology to the non-colloidal limit, falling-ball
rheometry. The phenomenon of non-Brownian force-induced diffusion in falling-ball
rheometry is strictly hydrodynamic in nature; in contrast, analogous force-induced
diffusion in colloids is deeply connected to the presence of a diffusive boundary
layer even when Brownian motion is very weak compared with the external force
driving the ‘probe’ particle. To connect these two limits, we derive an expression for
the force-induced diffusion in active microrheology of hydrodynamically interacting
particles via the Smoluchowski equation, where thermal fluctuations play no role.
While it is well known that the microstructure is spherically symmetric about the
probe in this limit, fluctuations in the microstructure need not be – and indeed lead to
a diffusive spread of the probe trajectory. The force-induced diffusion is anisotropic,
with components along and transverse to the line of external force. The latter is
identically zero owing to the fore–aft symmetry of pair trajectories in Stokes flow. In a
naïve first approach, the vanishing relative hydrodynamic mobility at contact between
the probe and an interacting bath particle was assumed to eliminate all physical
contribution from interparticle forces, whereby advection alone drove structural
evolution in pair density and microstructural fluctuations. With such an approach,
longitudinal force-induced diffusion vanishes in the absence of Brownian motion, a
result that contradicts well-known experimental measurements of such diffusion in
falling-ball rheometry. To resolve this contradiction, the probe–bath-particle interaction
at contact was carefully modelled via an excluded annulus. We find that interparticle
forces play a crucial role in encounters between particles in the hydrodynamic limit
– as they must, to balance the advective flux. Accounting for this force results
in a longitudinal force-induced diffusion D‖ = 1.26aUSφ, where a is the probe
size, US is the Stokes velocity and φ is the volume fraction of bath particles, in
excellent qualitative and quantitative agreement with experimental measurements in,
and theoretical predictions for, macroscopic falling-ball rheometry. This new model
thus provides a continuous connection between micro- and macroscale rheology, as
well as providing important insight into the role of interparticle forces for diffusion
and rheology even in the limit of pure hydrodynamics: interparticle forces give
rise to non-Newtonian rheology in strongly forced suspensions. A connection
is made between the flow-induced diffusivity and the intrinsic hydrodynamic
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microviscosity which recovers a precise balance between fluctuation and dissipation
in far from equilibrium suspensions; that is, diffusion and drag arise from a common
microstructural origin even far from equilibrium.

Key words: complex fluids, rheology, suspensions

1. Introduction
Hydrodynamic diffusion is a topic of ongoing interest in the study of multiphase

flows, and in flowing suspensions enables the bulk migration or mixing of particles,
even in the absence of Brownian motion. One well-known manifestation of lateral
migration of neutrally buoyant rigid particles under flow is the Segré–Silberberg
effect, where particles in Poiseuille tube flow accumulate in a thin annular region,
avoiding both the wall and the centre region of the channel (Segré & Silberberg
1961). While this phenomenon results from a competition between inertial lift forces
and viscous drag (Ho & Leal 1974), flow-induced migration and non-Brownian
diffusion can (and do) persist even at zero Reynolds number. In Stokes flow,
non-colloidal particles can migrate laterally relative to the bulk flow, first noted in
shear flows by Eckstein, Bailey & Shapiro (1977), who computed lateral shear-induced
diffusion by monitoring a marked tracer particle in a Couette viscometer in the
velocity-gradient direction. Leighton & Acrivos (1987a) refined the measurement
of lateral shear-induced diffusion, inferring the diffusivity from the time elapsed
for a marked particle to complete a circuit of the Couette device. The elapsed
time can be obtained with higher precision than the velocity-gradient position
coordinate, allowing Leighton and Acrivos to show that, in the dilute limit, the
lateral shear-induced self-diffusion in a suspension of neutrally buoyant non-colloidal
particles is proportional to γ̇ a2φ2, where γ̇ is the shear rate, φ is the volume
fraction of particles and a is the particle radius. Notably, the coefficient φ2 indicates
that three-body or higher interactions are essential to shear-induced migration, a
manifestation of the fore–aft symmetry of two-sphere trajectories in Stokes flow.

The requirement of at least three-body interactions for lateral shear migration
applies specifically to the ‘pure-hydrodynamic’ limit; namely, where particles in
suspension move and flow in the absence of Brownian motion or direct particle
interactions. Lateral migration can arise from pairwise interactions in shear flow only
when non-hydrodynamic forces drive particles off their Stokes-flow trajectories and in
turn destroy reversibility. Such irreversibility in non-Brownian suspensions can arise
from particle eccentricity (Beimfohr, Looby & Leighton 1993) or roughness (Davis
1992; da Cunha & Hinch 1996), where surface asperities that correspond to repulsive
forces as short-ranged as one ten-thousandth of a particle size result in irreversible
collisions. As a result, particles move past one another on trajectories that are farther
in the velocity-gradient and vorticity directions than those describing the approach.
No matter what the source of irreversible pairwise interactions, the appropriate
scaling for lateral hydrodynamic diffusion becomes linear in the volume fraction of
particles, i.e. proportional to γ̇ a2φ, with some functional dependence on the range of
interparticle interactions.

Broken flow symmetry leads to anisotropic flow-induced diffusion and shear-induced
migration in non-colloidal suspensions (Eckstein et al. 1977; Gadala-Maria & Acrivos
1980; Leighton & Acrivos 1987a,b), but Stokes-flow symmetries may also be broken
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by multibody interactions. Acrivos et al. (1992) quantified part of this anisotropy:
for a given pair of nearly touching spheres in simple shear flow, a second pair of
particles colliding nearby disrupts the velocity-gradient coordinates of the nearly
touching pair, demonstrating that hydrodynamic interactions generate longitudinal
shear-induced diffusion proportional to γ̇ a2φ ln(φ−1), much stronger than the O(φ2)

transverse diffusion. Anisotropic diffusion has thus played an important role in
understanding departures from reversibility and can be a harbinger of non-Newtonian
rheology: non-zero normal stress differences and particle pressure emerge from the
same sources of anisotropic diffusion in strongly sheared flows (Brady & Morris
1997), with corresponding results obtained in microrheological flows (Zia & Brady
2010, 2012).

Anisotropic hydrodynamic diffusion is also observed in sedimenting suspensions
with diffusion greater along the direction of body forces than transverse to it. In
the direction of gravity, such diffusion has been shown to initially increase with
concentration in dilute sedimenting suspensions (Ham & Homsy 1988), but the trend
reverses and self-diffusion decreases for higher concentrations (Nicolai et al. 1995).
When the sedimenting suspension is dense, a particle can become confined in a cage
of particles as it sediments, and mechanisms for diffusion shift from single-particle
fluctuations to relatively weaker collective fluctuations. Hydrodynamic diffusion in
sedimenting suspensions is independent of the container size (Nicolai & Guazzelli
1995), as predicted by Koch & Shaqfeh (1991) via a ‘screening’ mechanism, where
the presence of a nearby third particle destabilizes and consequently reduces the
likelihood of trajectories of nearly touching particles falling in tandem. Common to
these studies is the uniformity of particles in size, shape and density.

When the tracer-particle density differs from that of the background spheres,
a particle pair sediments relative to one another. In the special case where the
background spheres are neutrally buoyant, polydisperse sedimentation simplifies to
the experimental technique of falling-ball rheometry. Resultant pairwise interactions
reduce the mean fall speed (Batchelor 1982; Batchelor & Wen 1982; Milliken et al.
1989; Almog & Brenner 1997) and induce velocity fluctuations (Nicolai, Peysson &
Guazzelli 1996) and hydrodynamic diffusion (Davis 1992; Davis & Hill 1992; Abbott
et al. 1998) in non-colloids. As is the case for suspensions of hard spheres in pure
straining flow (Batchelor & Green 1972), the microstructure in falling-ball rheometry
about a test sphere is fore–aft symmetric in the pure-hydrodynamic limit and is, in
fact, spherically symmetric (Batchelor 1982). This microstructural symmetry in dilute
suspensions exerts a powerful influence on the macroscopic response: the material
behaves as a Newtonian fluid, in contrast to the well-known non-Newtonian rheology
of colloidal dispersions such as shear thinning, shear thickening and non-zero normal
stress differences which persist even when Brownian motion is very weak compared
with the imposed flow, owing to a highly asymmetric microstructure confined to a
thin diffusive boundary layer at particle contact. Almog & Brenner (1997) studied
the non-colloidal (pure-hydrodynamic) limit of falling-ball rheometry: Batchelor’s
spherically symmetric microstructure, which neglects a diffusive boundary layer at
contact, fully determines the mean fall speed of a falling ball. From this steady
fall speed, they determined the (Newtonian) intrinsic viscosity of the suspension,
demonstrating the highly singular limit of infinitesimally weak Brownian motion in
colloidal suspensions.

In addition to mean sedimenting motion, it has been shown that fluctuations in non-
colloidal tracer velocity exist, and lead to diffusion. Encounters between the falling
ball and the background particles produce velocity fluctuations, as the tracer samples a
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range of suspension densities, from particle-free solvent pockets to long-duration close
encounters with other particles. Davis & Hill (1992) predicted such fluctuations in
non-colloids, finding that they lead to anisotropic flow-induced diffusion, along and
transverse to the force of gravity. The latter was found to be zero, consistent with
the reversibility of Stokes flow. Davis (1992) showed that a non-zero lateral diffusion
can be obtained in such systems only by breaking the fore–aft symmetry of pairwise
particle trajectories. Davis & Hill (1992) did find tracer tracer diffusion along the
direction of gravity, which scaled as D‖ ∼ aUSφ, where US is the Stokes velocity of
a particle of size a alone in solvent, and φ is the volume fraction of bath particles.
This result is somewhat surprising given the spherical symmetry of the suspension
microstructure, but the authors noted that background particles that approach the probe
nearly coincident with the line of forcing contribute most strongly to the velocity
variance of the probe. These particles, described as having a small ‘impact parameter,’
are able to approach most closely to the probe, and hence most significantly alter the
speed of the falling ball. Purely hydrodynamic diffusion is consequently thought to
arise primarily due to close encounters between particle pairs, although the trajectory
analysis of Davis & Hill (1992) neglected thermal and entropic forces critical in nearly
touching configurations, suggesting that the limit of infinitely weak Brownian motion
is highly singular with respect to fluctuations as well.

A connection between the non-colloidal limit and flow-induced diffusion in colloidal
suspensions can be found in recent studies of probe fluctuations in microrheology. Zia
& Brady (2010) showed that force-induced diffusion in the limits of weak Brownian
motion and no hydrodynamic interactions is anisotropic, with strong diffusion both
along and transverse to the line of forcing. Both components scale as athUSφ, based
on the thermodynamic size ath of the probe, which is large compared with the
hydrodynamic (no-slip) radius. Neglecting hydrodynamic interactions evidently gives
rise to a much weaker degree of longitudinal versus transverse anisotropy, which is to
be expected since even weak Brownian motion or interparticle forces easily destroy
fore–aft symmetry.

In the present study, we consider force-induced diffusion in microrheology in
the limit of pure hydrodynamics, where Brownian motion plays no role. To do
so requires description of the mean and fluctuating suspension microstructure.
Advection drives more pronounced microstructural distortion when hydrodynamic
interactions are considered, with greater accumulation of pair density about the probe
and stronger fluctuations. We find, however, that fluctuations driven by advection
cannot induce hydrodynamic diffusion without non-hydrodynamic forces near contact.
We utilize the excluded-annulus model to determine the character and value of
such interparticle forces in the pure-hydrodynamic limit. We show that, while they
cannot generate translational motion, interparticle forces must be present even in the
pure-hydrodynamic limit: the probe particle occupies a finite region of the suspension,
from which bath particles are entropically excluded. The interparticle force reconciles
the non-colloidal limit of active microrheology with prior studies of falling-ball
rheometry by inducing diffusion along the line of probe forcing.

The remainder of this paper is organized as follows. The theoretical framework
is presented in § 2, including a review of two-sphere hydrodynamics in § 2.1. Next,
statistical mechanics is utilized to study probe flux, and leads to expressions for the
hydrodynamic flow-induced diffusion, D flow, in § 2.2. The Smoluchowski equation
yields governing equations for both the mean and the fluctuating microstructure about
the probe in § 2.3. A first look at the fluctuation field and hydrodynamic diffusion
is presented in § 3.2, where all components of the force-induced diffusivity are
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FIGURE 1. Model system.

identically zero. Because this result conflicts with experimental measurements and
theoretical predictions for falling-ball rheometry, a closer look is taken in § 3.3 at
the simplifying assumptions made in our model. Motivated by the findings of Davis
& Hill (1992) that small-impact-parameter encounters most strongly contribute to
diffusion, the excluded-annulus model is utilized to study relative trajectories and the
balance of forces at contact. The interparticle force is shown to play a surprising
role in the pure-hydrodynamic limit, where the longitudinal force-induced diffusivity
is obtained from the interparticle flux. Our results are in excellent agreement with
corresponding measurements for falling-ball rheometry. A comparison between the
new theory and falling-ball rheometry is presented in § 4, and the study is concluded
with a summary discussion in § 5.

2. Theoretical framework
We consider a suspension of volume V comprising Nb rigid non-colloidal spheres

of radius a dispersed homogeneously in a Newtonian fluid of density ρ and dynamic
viscosity η. The bath particles are external force- and torque-free. A ‘probe’ particle,
also of radius a, is dragged by a constant external force Fext through the suspension,
setting the fluid and particles into motion. The Reynolds number Re≡ ρUa/η� 1, so
the fluid mechanics are governed by the Stokes equations. Here, U is the characteristic
fluid velocity set by probe motion. In the dilute limit, the volume fraction of bath
particles φ ≡ (4πa3/3)Nb/V � 1, and only pair interactions matter. A relative
coordinate system is adopted, with the probe centred at a position z and a bath
particle centred at r relative to the probe (figure 1). Interactions with bath particles
hinder mean probe motion and give rise to fluctuations in the probe trajectory. In the
so-called ‘pure-hydrodynamic’ limit, encounters between probe and bath particles are
strictly non-colloidal. To begin the analysis, we briefly review two-body hydrodynamic
interactions.

2.1. Two-body hydrodynamics
In Stokes flow, the velocity of a particle α ∈ {1, 2} entrained by the motion of a
particle β ∈ {1, 2} is linear in the forces on particle β. Here, 1 and 2 represent the
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probe and bath particle respectively. The strength of entrainment is given by the
hydrodynamic mobility tensor MUF

αβ , which has the tensorial form

MUF
αβ =

1
6πηa

[xa
αβ(r/a)r̂r̂+ ya

αβ(r/a)(I − r̂r̂)], (2.1)

where r = |r| is the centre-to-centre separation, r̂ = r/r is the unit vector parallel
to the line of centres and I is the second-rank identity tensor. The functions xa

αβ

and ya
αβ are the well-known scalar mobility functions (Jeffrey & Onishi 1984; Kim

& Karrila 2005) describing the hydrodynamic coupling between particle motion
and probe forcing parallel and transverse to the line of centres respectively. These
functions depend only on geometry, and are fully characterized, for identically
sized particles, by the dimensionless centre-to-centre separation r/a. If the probe
and bath particles are identically sized spheres, MUF

11 = MUF
22 and MUF

12 = MUF
21 . The

configuration-dependent velocity of particle α arising from the applied external force
is given by Uα = MUF

α1 · Fext, and is independent of the absolute position z of the
probe.

The motion of a bath particle relative to the probe, Urel ≡ U2−U1, can be
formed from a linear combination of the functions xa

αβ and ya
αβ . Following the

notation of Batchelor (1982), relative motion is expressed compactly by the scalar
functions L(r/a) and M(r/a), the couplings along and transverse to the line of centres
respectively,

L(r/a) = xa
11(r/a)− xa

21(r/a), (2.2a)
M(r/a) = ya

11(r/a)− ya
21(r/a), (2.2b)

giving the relative velocity of the probe driven by an external force Fext in the
presence of a bath particle,

Urel =−[L(r/a)r̂r̂+M(r/a)(I − r̂r̂)] ·US. (2.3)

Here, US = Fext/(6πηa) is the Stokes velocity. Particle motion Uα induces flux jα
through the suspension, from which the flow-induced diffusion can be inferred.

2.2. Flux and flow-induced diffusivity
Probe motion through the bath distorts the microstructural configuration, leading to
many possible distorted arrangements. The likelihood of any one arrangement {z, r}
of probe and bath particle at time t is given by the pair probability density P2(z, r; t).
In the non-colloidal limit, advective and interparticle forces drive particle flux, but
thermal fluctuations play no role in particle configuration. Translational motion of
particle α advects pair density as defined by the flux jα:

jα =UαP2(z, r; t)= [MUF
α1 ·Fext − (MUF

α1 −MUF
α2 ) · ∇rV(r)]P2(z, r; t), (2.4)

where the interparticle potential, V(r), is a function only of the position r of a bath
particle relative to the probe. In the present study, we consider hard particles that
cannot overlap:

V(r)=
{
∞, r 6 rmin,

0, r> rmin,
(2.5)
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where the minimum-approach distance rmin defines the no-overlap surface. The
excluded-annulus model (Russel 1984) allows particles to interact hydrodynamically
at their no-slip surfaces, a, yet also allows non-hydrodynamic forces to play a role
in particle motion. Surface asperities, electrostatic layers and adsorbed polymers,
for example, can prevent overlap at a surface rmin > 2a that extends beyond the
hydrodynamic radius. In the present study, the hydrodynamic (no-slip) radius coincides
exactly with the no-overlap surface, rmin = 2a, a condition that defines the model of
the pure-hydrodynamic limit.

We restrict our attention to accessible configurations for which particles do not
overlap. Additionally, the vanishing relative radial mobility at contact prohibits bath
particles from making contact with the probe. With no interparticle forces acting
beyond r= 2a, the flux is purely advective:

jα =UαP2(z, r; t)=MUF
α1 ·FextP2(z, r; t). (2.6)

Transformation to Fourier space facilitates identification of the mean and fluctuating
probe motion (Zia & Brady 2010):

j̃1 =MUF
11 ·FextP̃2(k, r; t), (2.7)

where j̃1 and P̃2 are the Fourier transforms of the probe flux and pair probability
respectively, and k is the wavevector.

We are interested in the flux of the probe after many encounters with bath particles;
to this end, the flux j̃1 is averaged over all pair configurations:

〈 j̃1〉 =USP̃1(k; t)+
∫

r>2a
[(xa

11 − ya
11)r̂r̂+ (ya

11 − 1)I] ·USP̃2(k, r; t) dr, (2.8)

where P̃1(k; t) is the Fourier transform of the probe probability density P1(z; t) ≡∫
P2(z, r; t) dr. The first term in (2.8) is the probe flux through pure solvent, while

the integral term describes how hydrodynamic interactions with bath particles modify
the average probe flux. To evaluate this integral, the detailed distribution of bath
particles about the probe is required, motivating the definition of the structure
function gk(k, r; t):

P̃2(k, r; t)≡ nbgk(k, r; t)P̃1(k; t), (2.9)

where nb = 3φ/(4πa3) is the number density of bath particles. Distinction between
the structure function gk(k, r; t) and related quantities such as the real-space pair
distribution function gz(z, r; t) and the structure factor S(z, q; t) is given by Zia &
Brady (2010).

We are interested in the mean and fluctuating motion of the probe after many
encounters with bath particles, which occur over large distances and long times,
corresponding to small wavevectors k. Expanding the structure function gk for small k
gives

gk(r, k; t)= g(r; t)+ ik · d(r; t)+O(|k|2), (2.10)

where i is the imaginary unit. The first term on the right-hand side of (2.10) gives
the mean particle configuration, g(r; t), and describes the likelihood of finding a
bath particle at r with which to interact. The second term corresponds to fluctuations
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in the particle configuration – a probability-weighted displacement, or fluctuation
field, d(r; t), giving the strength and direction of a ‘kick’ from probe–microstructure
interactions.

The small-k expansion (2.10) of the structure function is substituted into the probe
flux (2.8) to give

〈 j̃1〉 =
{[

US +USnb

∫
r>2a

g(r; t)[(xa
11 − ya

11)r̂r̂+ (ya
11 − 1)I] · F̂ dr

]
− ik ·

[
−USnb

∫
r>2a

d(r; t)[(xa
11 − ya

11)r̂r̂+ (ya
11 − 1)I] · F̂ dr

]}
P̃1(k; t),

(2.11)

where US = |US| is the magnitude of the Stokes velocity and F̂ = Fext/|Fext| is the
unit vector parallel to the applied external force. Following Zia & Brady (2010), the
terms in (2.11) are bracketed into two groups: the first is independent of wavevector k
and the second is O(k). The O(1) terms describe the mean probe response to the
applied external force: the Stokes velocity, plus the reduction in the probe speed due
to hydrodynamic interactions with bath particles, averaged over all configurations. This
term corresponds to advective flux, and is consistent with the coefficient for the mean
disturbance velocity km defined by Davis & Hill (1992), the constant-force apparent
viscosity coefficient kF

m of Almog & Brenner (1997) and the intrinsic hydrodynamic
microviscosity ηH

i of Khair & Brady (2006).
The O(k) integral describes fluctuations in probe motion arising from hydrodynamic

flow-induced deflections of the probe. This term corresponds to diffusive flux:

D flow =−USnb

∫
r>2a

d(r; t)[(xa
11 − ya

11)r̂r̂+ (ya
11 − 1)I] · F̂ dr. (2.12)

Because Brownian diffusion is absent, we identify equation (2.12) as the (strictly)
hydrodynamic flow-induced diffusivity, D flow. Here, encounters between probe and bath
particles cause the probe velocity to fluctuate and, in turn, drive a diffusive spread of
its trajectory. These fluctuations arise due to natural variation in such encounters that
depend on the so-called impact parameter (Davis & Hill 1992): the offset between
the bath-particle trajectory and the line of external forcing (figure 1). Unlike shear
flow, relative trajectories in microrheology are open, indicating that the probe and
bath particle always pass one another. However, the time required to approach, pass
and move past a particle depends on the details of the approach and, in turn, on the
longitudinal and transverse hydrodynamic couplings (2.2a) and (2.2b). That is, a bath
particle approaching nearly along the z axis (θ u 0 in figure 1) spends a longer time
interacting with the probe along a pair trajectory than a bath particle offset farther
in x and y (larger values of θ ).

Equation (2.12) indicates that, despite the entirely deterministic motion of non-
Brownian particles, the probe undergoes a random walk. The origin of randomness
for this walk is the homogeneity of the suspension far from the probe: a bath-particle
trajectory is equally likely to begin anywhere relative to the z axis of the probe
(the line of forcing), and its trajectory is entirely determined by its initial (random)
position far away. These random offsets lead to random fluctuations in probe motion.
However, fore–aft symmetry of two-sphere relative trajectories prevents net migration
of the probe transverse to the applied external force; that is, no lateral diffusive
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migration is permitted owing to the reversibility of Stokes flow. As a result, it is
expected that D flow has only one non-zero component along the line of external
force. The determination of the fluctuation field d(r; t) is the next step in obtaining
force-induced diffusion.

2.3. The fluctuation field
The two-particle Smoluchowski equation governs the spatiotemporal evolution of the
pair probability density:

∂P2(z, r; t)
∂t

+∇z · j1 +∇r · (j2 − j1)= 0, (2.13)

where the flux jα = MUF
α1 · FextP2 of particle α is purely advective in the pure-

hydrodynamic non-colloidal regime: microstructural evolution is driven solely by the
fixed external force Fext. Transforming (2.13) on the probe position z to Fourier space
gives

∂P̃2(k, r; t)
∂t

+ ik · j̃1 +∇r · (j̃2 − j̃1)= 0. (2.14)

The Smoluchowski equation (2.14) is ensemble-averaged over all bath-particle
configurations to yield a single-particle Smoluchowski equation for the probe:

∂P̃1

∂t
+ ik ·USP̃1 =−ik · 〈(MUF

11 ·Fext −US)P̃2〉 − 〈∇r · (j̃2 − j̃1)〉. (2.15)

Scaling (2.15) on the advective time scale, substituting the definition of the structure
function (2.9) and dividing all terms by P̃1US/a gives

1
P̃1

∂P̃1

∂t
+ ik · F̂ = −3φ

4π

(
ik ·
∫

r>2
((xa

11 − ya
11)F̂F̂

+ (ya
11 − 1)I)gk dr+

∮
r=2

Lgkr̂ · F̂ dS
)
. (2.16)

Here, length and time have been made dimensionless on the particle radius a and
the advective time scale a/US respectively. Length and time variables are henceforth
dimensionless by these scales unless otherwise noted. Noting that the right-hand side
of (2.16) is O(φ), which is small, gives

1
P̃1

∂P̃1

∂t
+ ik · F̂=O(φ)� 1. (2.17)

Equations (2.14) and (2.17) are combined, and terms to leading order in φ are kept
to obtain the dimensionless governing equation for the structure function gk:

∂gk(r, k; t)
∂t

+ ik · [(xa
11 − ya

11)r̂r̂+ (ya
11 − 1)I] · F̂gk(r, k; t)

−∇r · ([Lr̂r̂+M(I − r̂r̂)] · F̂gk(r, k; t))= 0. (2.18)

The small-k expansion (2.10) is substituted into (2.18); the advective terms (those
independent of k) govern the steady non-equilibrium microstructure g(r), which at
steady state reads

∇r · ([Lr̂r̂+M(I − r̂r̂)] · F̂g(r))= 0. (2.19)
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Terms of O(k) govern the fluctuation field d(r):

∇r · ([Lr̂r̂+M(I − r̂r̂)] · F̂d(r))= [(xa
11 − ya

11)r̂r̂+ (ya
11 − 1)I] · F̂g(r). (2.20)

Equations (2.19) and (2.20) govern the evolution of the mean microstructure and
its fluctuations respectively. Each is a first-order differential equation, so at most
one boundary condition may be enforced. The deformation of the suspension
microstructure due to the translating probe decays over large separations r, i.e. the
conditional probability density P̃1|1(r|k) approaches the unconditional probability
density P1(r) = nb. The corresponding dimensionless boundary conditions for the
steady microstructure g(r) and the fluctuation field d(r) are

g(r)→ 1 as r→∞ (2.21)

and
d(r)→ 0 as r→∞. (2.22)

Having established the governing equations and boundary conditions for the mean
microstructure g(r) and its fluctuations d(r), we may return to the hydrodynamic force-
induced diffusion (2.12), which, in terms of dimensionless variables, reads

D flow =−aUS
3φ
4π

∫
r>2

d(r)[(xa
11 − ya

11)r̂r̂+ (ya
11 − 1)I] · F̂ dr. (2.23)

As discussed above, the probe undergoes a random walk arising from many encounters
with background bath particles. The flow-induced diffusion given by (2.23) is thus
strictly hydrodynamic in origin; no Brownian motion is required, giving the advective
scaling D flow ∼ aUSφ in (2.23) expected for self-diffusion in non-colloids. The linear
scaling in the volume fraction φ of bath particles is also expected, since only one bath
particle must be present for the probe velocity to deviate from US.

In the next section, we present the solutions of the governing equations (2.19)
and (2.20) for the mean microstructure g(r) and its fluctuations d(r) and, from them,
compute the hydrodynamic flow-induced diffusivity, D flow.

3. Results
Microstructural fluctuations d(r) produce a diffusive spread of the probe trajectory,

leading to hydrodynamic force-induced diffusion D flow, and are forced by hydrodynamic
interactions of the probe with the mean microstructure g(r). Computation of D flow

thus requires solution of the Smoluchowski equations for both the mean (2.19) and
the fluctuating (2.20) microstructure. In the pure-hydrodynamic limit, the solution
for g(r) is well known, but a brief review is presented in § 3.1 for heuristic value.
This review is followed by the solution for the fluctuation field, d, and finally the
flow-induced diffusivity, D flow.

3.1. The mean microstructure
The mean microstructure about an externally forced non-Brownian probe has been
studied in the analogous frameworks of sedimentation in polydisperse suspensions
(Batchelor 1982; Batchelor & Wen 1982) and falling-ball rheometry (Davis & Hill
1992; Almog & Brenner 1997). In the pure-hydrodynamic limit, the pair structure is
spherically symmetric about the probe (Batchelor 1982) and is given by

g(r)= 1
L(r)

exp
[∫ ∞

r

2
z

(
1− M(z)

L(z)

)
dz
]
. (3.1)
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FIGURE 2. (Colour online) Strength of distortions to and fluctuations in the mean
microstructure, as a function of particle separation. Solid black curve: non-equilibrium
distortions g(r) − 1 of the mean microstructure grow weaker with increasing particle
separation. When a probe and a bath particle approach one another closely, ξ → 0, the
structural distortion (particle accumulation) diverges as ξ−δf (log ξ−1), where ξ = r − 2
is the fluid gap between particle surfaces and δ = 0.799 for identically sized probe
and bath particles. At large separations, the probe-induced structural deformation decays
rapidly, as r−4. Probe fluctuations also grow infinitely large near particle contact, where
fluctuations along (red dashed line) and transverse to (blue dotted line) the external force
scale as ξ−1 and ξ−δf (log ξ−1) respectively. At large separations, the fluctuations decay
rapidly, showing that diffusion induced by hydrodynamic interactions with the mean and
fluctuating microstructure is most strongly driven by near-contact encounters.

The microstructural distortion, g(r) − 1, is plotted in figure 2 as a function of the
surface-to-surface separation ξ ≡ r − 2 (solid black curve). The asymptotic form for
widely separated particles shows that disturbances to the microstructure decay as
1/r4 (Batchelor 1982; Almog & Brenner 1997):

g(r� 2)= 1+ 15
8 r−4 +O(r−5). (3.2)

Despite the long-range nature of hydrodynamic interactions, which entrain particles
with a strength that decays slowly as 1/r, accumulation of pair density about the
probe decays more rapidly, as it must – the pair density depends on the divergence of
the relative mobility, which describes how particles accumulate along a pair trajectory
(and hence spend more time) as they come closer together. Physically, the relative
velocity between the probe and bath particles decreases as the pair approaches,
resulting in an accumulation of particles.

In the opposite limit of nearly touching spheres, ξ� 1, the asymptotic form of g(r)
from (3.1) is set by the lubrication expressions for the relative mobility functions L(r)
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and M(r) defined in (2.2a) and (2.2b), expressed here as functions of ξ :

L(ξ � 1) = l1ξ +O(ξ 2 ln ξ), (3.3a)
M(ξ � 1) = m0 +O((ln ξ−1 −C)−1), (3.3b)

where l1, m0 and C are constants that depend only on the relative size of the probe and
bath particles. For same-sized particles, the constants l1 and m0 are 2.000 and 0.401
respectively. The leading-order microstructure g(r) in the lubrication limit was first
reported by Batchelor (1982):

g(ξ � 1)∼ ξ−δ f (ln ξ−1), (3.4)

where δ ≡ 1− m0/l1 is equal to 0.799 for same-sized probe and bath particles. This
scaling is shown by the solid black curve in figure 2 for small values of ξ . The weak
logarithmic correction f (ln ξ−1) arises from the O((ln ξ−1−C)−1) terms in (3.3b). The
exact logarithmic correction was later determined by Almog & Brenner (1997).

Accumulation of bath-particle density near contact as described by (3.4) may be
viewed through the lens of relative trajectories: relative bath-particle motion slows
during approach, speeding up again upon passing the probe. As a consequence,
more time is elapsed resolving interactions in nearly touching configurations,
promoting particle accumulation, while the probe and bath particles spend less
time in comparatively more mobile arrangements.

Beyond the asymptotic forms for the suspension microstructure g(r) at large
and small separations given by (3.2) and (3.4) respectively, Batchelor & Wen
(1982) obtained a numerical solution to good approximation. Improving upon this
solution, Almog & Brenner (1997) developed a method utilizing recurrence relations
and the twin-multipole expansion coefficients of Jeffrey & Onishi (1984). We leverage
their approach to evaluate the fluctuation field in § 3.2.

Before continuing to fluctuations in the microstructure, it is worthwhile to comment
on connections between material viscosity, microstructure and probe motion in
sedimentation (Batchelor 1982; Batchelor & Wen 1982), falling-ball rheometry (Davis
& Hill 1992; Almog & Brenner 1997) and microviscosity (Squires & Brady 2005;
Khair & Brady 2006; Swan & Zia 2013; Zia & Brady 2013). Analogous connections
are seen here in the suspension-averaged probe flux, where we recall that the first
bracketed term on the right-hand side of (2.11) relates probe velocity to structure:

〈U〉 =US

(
1+ 3φ

4π

∫
r>2

g(r)[(xa
11 − ya

11)r̂r̂+ (ya
11 − 1)I] : F̂F̂ dr

)
. (3.5)

Owing to a spherically symmetric structure, the rheology is Newtonian in the sense
that particle pressure and normal stress differences vanish (Brady & Morris 1997). The
mean motion can thus be simplified:

〈U〉 =US

(
1+ φ

∫ ∞
2

g(r)[xa
11 + 2ya

11 − 3]r2 dr
)
=US(1− ηH

i φ), (3.6)

where ηH
i can be viewed as an intrinsic hydrodynamic suspension viscosity. Prior

studies examining the mean motion of a falling particle (Batchelor & Wen 1982;
Davis & Hill 1992; Almog & Brenner 1997; Khair & Brady 2006; Swan & Zia 2013)
all find a similar O(φ) reduction of mean motion compared with the Stokes velocity.
For same-sized probe and bath particles, (3.6) simplifies to US(1 − 2.52φ), where
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entrainment of bath particles diminishes the Stokes velocity US as 2.52φ (Batchelor &
Wen 1982; Davis & Hill 1992). That is, the apparent (micro)viscosity is independent
of the forcing strength, and is thus Newtonian.

However, when the pure-hydrodynamic limit is approached in a colloidal suspension,
non-Newtonian rheology persists even when Brownian motion is very weak. Khair
& Brady (2006) and Swan & Zia (2013) found that the presence of a diffusive
boundary layer near contact serves as a source of apparent force thickening as the
pure-hydrodynamic limit is approached by increasing the strength of advection relative
to diffusion, as defined by the Péclet number, Pe. The Newtonian rheology for the
pure-hydrodynamic limit has been reconciled with non-Newtonian force thickening in
colloidal suspensions as Pe→∞ by recognizing that the bath-particle density inside
a thin diffusive boundary layer drives force thickening. Bath particles are driven
towards contact by the relative advective flux r̂ · (j̃2− j̃1) into the boundary layer. This
relative advective flux of pair density transitions smoothly to zero at pair contact, as
shown by the solid black curve in figure 3. The rheology must become Newtonian in
the limit Pe−1 ≡ 0, as the bath-particle density advected into the diffusive boundary
layer vanishes, due to a faster decay of relative velocity compared with the rate of
bath-particle accumulation. Even though the no-flux boundary condition cannot be
formally enforced, the fact that g(r) satisfies no flux (and thus mass conservation) is
both satisfying and central to Newtonian behaviour in the pure-hydrodynamic limit.
This perspective will play an important role in the analysis of structural fluctuations,
taken up next.

3.2. The fluctuation field – a first look
The Smoluchowski equations (2.19) and (2.20) govern the advective distortion of the
mean microstructure and its fluctuations. Batchelor’s solution (3.1), discussed in § 3.1,
describes spherically symmetric particle accumulation about the probe that reduces
the mean probe motion. In this section, we examine the validity of this approach for
solving (2.20) for the microstructural fluctuations d(r).

The fluctuation field can be expressed in terms of scalar components along and
transverse to the applied external force:

d(r)= d‖(r, θ, ϕ)F̂+Re[d⊥(r, θ, ϕ)]ex + Im[d⊥(r, θ, ϕ)]ey, (3.7)

where d‖ and d⊥ are the longitudinal and transverse fluctuation fields respectively.
The orthonormal basis of unit vectors {ex, ey, F̂} describes a coordinate system
centred about the probe, oriented relative to the line of the external force, and ϕ
is the azimuthal angle about the line of external forcing as measured from the +x
axis towards the +y axis. Prior studies have utilized series expansions in Legendre
polynomials to numerically evaluate the mean microstructure (Khair & Brady 2006).
For the fluctuation field, the spherical harmonics Pm

l (cos θ)eimϕ are a convenient set
of orthogonal basis functions to describe the angular dependence of the fluctuation
field, where Pm

l (cos θ) is the associated Legendre polynomial of order m and degree l.
The solution for d‖(r) comprises an infinitude of spherical harmonics of order zero
and of odd degree:

d‖(r)=
∑
n odd

d‖n(r)Pn(cos θ), (3.8)

where Pn(cos θ) is the Legendre polynomial of degree n, equivalent to the associated
Legendre polynomial P0

n(cos θ). All other spherical harmonics are identically zero
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FIGURE 3. (Colour online) Contributions to the radial relative advective flux r̂ · ( j̃2− j̃1)∼
L(r)gk(r) in the pure-hydrodynamic limit from the mean g(r), longitudinal fluctuating d‖(r)
and transverse fluctuating d⊥(r) microstructure, as a function of the surface separation
distance ξ ≡ r − 2. The longitudinal and transverse fluctuations in the relative radial
fluxes are from the spherical harmonics d‖1(r)P1(cos θ) and d⊥1 (r)P

1
1(cos θ)eiϕ respectively.

The contributions from the mean and the transverse fluctuating microstructure both decay
to zero as ξ → 0, scaling as ξ 1−δf (ln ξ−1). In contrast, the radial relative flux from
longitudinal fluctuations approaches a constant as ξ → 0. A no-overlap condition for
the longitudinal fluctuation field is not automatically satisfied by the solution of the
pure-hydrodynamic Smoluchowski equation, suggesting that additional fluxes at contact
driven by non-hydrodynamic forces, e.g. thermal, interparticle, etc., arise to oppose the
advective flux and act to ensure probability conservation.

for d‖(r). The integral solution for the radial dependence of the n = 1 harmonic is

d‖1(r)=−
1

r2L(r)

∫ ∞
r

g(z)[xa
11(z)+ 2ya

11(z)− 3]z2 dz. (3.9)

The solution for d⊥(r) is a single spherical harmonic of degree one and order one:

d⊥(r)= d⊥1 (r)P
1
1(cos θ)eiϕ. (3.10)

The integral solution for the radial dependence of d⊥1 (r) is

d⊥1 (r)= rg(r)(L(r)g(r))1/2
∫ ∞

r

xa
11(z)− ya

11(z)
zL(z)

(L(z)g(z))−1/2 dz. (3.11)

The details and methods of solution for d‖(r) and d⊥(r) are given in appendix A.
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The solutions for d‖1(r) and d⊥1 (r) from (3.9) and (3.11) are plotted alongside the
mean microstructural deformation in figure 2. At large separations r, fluctuations decay
as r−3, indicating that widely separated particles do not influence probe fluctuations as
strongly as bath particles near the probe surface. Near contact, longitudinal fluctuations
(dashed red curve) are inversely proportional to the surface separation distance ξ =
r − 2, while transverse fluctuations (dotted blue curve) scale as ξ−δf (ln ξ−1). The
disparity in longitudinal and transverse fluctuations near the probe is critical in setting
the degree of anisotropy in the diffusion tensor.

The fluctuation field has distinct components longitudinal and transverse to the
applied external force Fext, suggesting that D flow will also be anisotropic. We begin
with the transverse flow-induced diffusion D flow

⊥ . Since the geometry is axisymmetric,
both the exex and the eyey components of D flow (2.23) are equal to D flow

⊥ . The exex
projection of D flow is

D flow
⊥ = aUSφb

3
4π

∫
r>2

Re[d⊥(r)](xa
11(r)− ya

11(r))r̂r̂ : F̂ex dr. (3.12)

The terms d⊥(r) and r̂r̂ : F̂ex appearing in (3.12) have θ dependences of P1
1(cos θ)

and P1
2(cos θ) respectively. The associated Legendre polynomials are mutually

orthogonal over the interval 0 6 θ 6 π; thus, the transverse component of the
force-induced diffusivity D flow

⊥ is identically zero, consistent with the findings of Davis
& Hill (1992).

The longitudinal flow-induced diffusivity D flow
‖ is the F̂F̂ component of D flow:

D flow
‖ = aUSφb

3
4π

∫
r>2

d‖(r)[(xa
11(r)− ya

11(r))r̂r̂+ (ya
11(r)− 1)I] : F̂F̂ dr. (3.13)

The θ dependence of the longitudinal fluctuation field d‖(r) is given by the odd
Legendre polynomials Pn(cos θ), while the θ dependences of the products r̂r̂ : F̂F̂
and I : F̂F̂ appearing in (3.13) are given by P2(cos θ) and P0(cos θ). The Legendre
polynomials are mutually orthogonal over the interval 0 6 θ 6 π; thus, the
longitudinal force-induced diffusion D flow

‖ is also identically zero, in conflict with
previous experiments in falling-ball rheometry by Abbott et al. (1998). In addition,
previous falling-ball rheometry theory put forth by Davis & Hill (1992) found
that D flow

‖ = 1.33aUSφ in the pure-hydrodynamic limit. In their trajectory analysis,
Davis and Hill determined that incoming bath particles with small impact parameter
give the dominant contribution to hydrodynamic diffusion. Particles that approach the
probe nearly along the line of forcing are also those that move closest to contact with
the probe. This suggests that our first look may have neglected forces influencing
pair trajectories near contact.

The advective flux of fluctuations to the probe surface is another indicator
that non-hydrodynamic forces near pair contact might matter. The relative radial
advective flux r̂ · (j̃2 − j̃1) is proportional to the product of the relative radial
mobility L(r) and the structure function gk(r). The product Lgk is plotted in figure 3.
Contributions from the mean (solid black line) and the transverse (dotted blue line)
fluctuating microstructure both decay to zero as ξ → 0, scaling as ξ 1−δf (ln ξ−1).
In contrast, the radial relative flux from longitudinal fluctuations (dashed red line)
approaches a non-zero constant as ξ→ 0. That is, the no-overlap (no-flux) condition
is not automatically satisfied for longitudinal fluctuations by the solution of the
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pure-hydrodynamic Smoluchowski equation. While a no-flux condition cannot be
formally enforced due to the order of the differential equation, the net probability
flux into volume occupied by the probe is unsatisfying: the Smoluchowski equation is
by definition a conservation statement. Other sources of particle flux at contact, driven
by non-hydrodynamic forces (e.g. thermal, interparticle, etc.), oppose the advective
flux and, in so doing, drive longitudinal force-induced diffusion.

3.3. The fluctuation field – a closer look
Experimental studies (Abbott et al. 1998) and theoretical models (Davis 1992; Davis
& Hill 1992) for falling-ball rheometry report longitudinal hydrodynamic diffusion
in the absence of Brownian motion. In contrast, our ‘first-approach’ microrheology
theory found zero flow-induced diffusion in the corresponding pure-hydrodynamic
limit. We revisit assumptions made in the formulation of the governing equations to
understand this contradictory result. The importance of particle encounters via small-
impact-parameter trajectories identified in falling-ball studies (Davis & Hill 1992)
provides a clue, and suggests that particle flux near contact requires a closer look.

In § 2.2, kinematic expressions for probe flux were developed. In general, external
forces, hydrodynamic interactions, thermal forces and interparticle forces may all play
a role in particle motion. The thermal energy kT plays no role in the non-colloidal
limit, so thermal forces were neglected; hydrodynamic interactions were incorporated
at the pair level via the hydrodynamic mobility; finally, interparticle forces were
included, giving (2.4) for the flux of any particle in the suspension in response to
external forcing and interparticle interactions.

Next, a functional form for the interparticle forces was introduced. The conservative
interparticle force, derivable from a potential V(r), gives infinitely large resistance
to surface overlap at r = 2a. Further, the properties of Stokes flow dictate that, in
the pure-hydrodynamic limit, the relative radial mobility of two particles vanishes
at contact. Thus, interparticle forces that act radially outward at particle contact can
produce no relative motion. That is, r̂ · (MUF

2β − MUF
1β ) = 0 at r = 2a and ensures that

r > 2a. Physically, interparticle forces act at contact or not at all; when particles
do make contact, the interparticle force produces no motion because the relative
hydrodynamic mobility is zero there. In consequence, the interparticle force plays
no role in the particle velocity in this perspective, and was thus dropped from the
particle flux (2.6).

While it is true that the relative radial mobility must be zero at the surface of
contact, this led us to conclude that the relative radial flux is also zero; but this
somehow does not give the full picture. To take a closer look at the interparticle
flux, we consider a force balance at contact comprising interparticle, external and
hydrodynamic contributions. An infinitude of forms for the interparticle force satisfy
the momentum balance in the pure-hydrodynamic limit, which is not surprising: the
constraint of zero hydrodynamic relative mobility at contact makes it so. However,
even a very weak departure (a small-but-finite relative mobility at contact) breaks
this indeterminacy and thus may provide insight into what was missed. One way
to model such a condition is via the so-called excluded-annulus (or excluded-shell)
model (Russel 1984), shown in figure 4, where particles interact hydrodynamically at
a no-slip surface, 2a, and sterically at a surface that extends beyond the hydrodynamic
radius, rmin > 2a, thus allowing non-zero hydrodynamic mobility at ‘contact’ of the
surfaces of the excluded volumes. The strength of the interparticle force acting
at a given value of rmin is then unique, and approaches a well-defined value for
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FIGURE 4. Model system showing excluded annuli. The excluded annulus prevents
particle overlap for separations r < rmin. The upstream region is described by the polar
angles 06 θ <π/2, while the downstream region is described by the polar angles π/2<
θ 6π.

the pure-hydrodynamic limit as rmin → 2a. The physics underlying this behaviour
depends on the balance of microscopic forces at the relevant contact surfaces, and
this is where we focus our closer look.

In non-colloidal suspensions where particles interact via the excluded annulus
at r= rmin > 2a, the surface that prevents overlap is different from the no-slip surface,
and thus there is an annular shell around any particle through which fluid may pass
but particles may not, as illustrated by the trajectories in figure 5. Bath particles
that would otherwise follow the fluid and pass through the region occupied by the
annulus must instead move around it. In the figure, the upstream trajectories of such
particles are shaded in grey; as they move around the probe, they trace the surface
of the excluded annulus, and move downstream along the innermost trajectory shown.
Once a particle comes into contact with the annular surface, it maintains this contact
until it reaches the downstream surface at θ =π/2. Here, all bath-particle trajectories
in contact with the excluded-annulus surface now separate from contact on a single
trajectory, and continue downstream. Four panels are shown in figure 5, beginning
with a large excluded annulus corresponding to the limit of weak hydrodynamics
in (a). As hydrodynamic interactions grow stronger, moving from (a) to (d), bath
particles come close enough to the probe to experience hydrodynamic interactions;
some bath particles are deflected without contacting the excluded annulus. When
hydrodynamic interactions are strong, as shown in (d), many trajectories are deflected.

The ‘filtering envelope’ in figure 5 (dashed trajectories) separates the zone of filtered
bath-particle trajectories, shaded in grey, from those that do not make contact with
the excluded annulus. This envelope is defined for a given rmin by all trajectories that
make contact with the excluded annulus only at θ = π/2. The envelope of filtered
trajectories is plotted for a range of rmin> 2a in figure 6(a). For rmin→∞, the filtering
envelope describes a cylindrical region of radius rmin extending indefinitely upstream
of the probe. As rmin → 2a, more bath-particle trajectories are deflected around the
probe due to hydrodynamic interactions. The probe collides with fewer bath particles
and the filtering envelope shrinks. Eventually, in the pure-hydrodynamic limit rmin ≡
2a, the filtering envelope collapses onto a single trajectory, as shown in figure 6(b).
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(a) (b) (c) (d )

FIGURE 5. Bath-particle trajectories relative to the probe. The probe (grey shaded circle)
is forced from left to right. Two dotted-line circles are shown: the smaller corresponds
to the excluded-volume size of the probe and the larger defines the minimum-approach
distance rmin ((a) rmin = 22a, (b) rmin = 4a, (c) rmin = 2.2a, (d) rmin = 2.0002a). The solid
grey circle represents the hydrodynamic radius. The solid lines in each panel represent
bath-particle trajectories, and the dashed lines represent the envelope bounding the zone
of filtered trajectories upstream of the probe, shaded in grey. In (a), the excluded annulus
is so large that trajectories are not deflected by hydrodynamic interactions. The zone of
filtered trajectories is approximately a cylinder of radius rmin extending upstream of the
probe. As rmin decreases in (b–d), the zone of filtered trajectories becomes slender about
the axis of forcing. Bath-particle trajectories outside the filtering envelope are deflected
around the probe by hydrodynamic interactions, and do not make contact at the excluded
annulus.

(a) (b)

FIGURE 6. (Colour online) (a) The envelope of filtered trajectories about the probe for
a range of rmin. The trajectories are plotted such that rmin is the same length for each
envelope. The probe is forced from left to right. For large excluded annuli (blue outermost
trajectories), the envelope describes a cylinder of radius rmin that extends indefinitely about
the axis of forcing. As rmin→2a (red innermost trajectories), more bath-particle trajectories
are deflected around the probe due to hydrodynamic interactions. The probe collides with
fewer bath particles and the filtering envelope becomes slender. (b) The envelope of
filtered trajectories collapses onto the axis of the external force only for rmin ≡ 2a, the
pure-hydrodynamic limit. In this limit, the collapsed filtering envelope describes a single
trajectory with two stagnation points directly in front of and behind the probe.

Here, the filtering envelope is coincident with the line of forcing both upstream and
downstream of the probe, and traces the contact surface of the probe. This single
trajectory has two stagnation points, directly in front of and behind the probe. Only in
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the pure-hydrodynamic limit do bath particles in contact on the upstream face remain
in contact with the probe on the downstream face. This is qualitatively different from
excluded annuli rmin > 2a, where the interparticle forces are felt only on the upstream
face. Because the filtering envelope is coincident with r = 2a over the entire contact
surface, one expects interparticle forces to act uniformly and radially outward over
the entire contact surface only in the pure-hydrodynamic limit, consistent with a force
derivable from an interaction potential V(r).

To quantify the strength of interparticle forces, we consider an excluded annulus
rmin > 2a. With an excluded annulus, the strength of interparticle forces is determined
uniquely from a force balance on each particle, and has a well-defined limit when
approaching the pure-hydrodynamic limit as rmin→ 2a. We begin with a force balance
on each particle,

Fext +FP
1 +FH

1 = 0, (3.14a)
FP

2 +FH
2 = 0, (3.14b)

where a general interparticle force FP
α and hydrodynamic drag FH

α act on each particle.
The hydrodynamic drag force is linear in the particle velocity Uα. The forces FP

1
and FP

2 are equal and opposite, and thus the particle velocities are obtained directly
from (3.14a) and (3.14b):

U1 =MUF
11 ·Fext + [MUF

11 −MUF
12 ] ·FP

1 , (3.15a)
U2 =MUF

21 ·Fext + [MUF
21 −MUF

22 ] ·FP
1 , (3.15b)

and the velocity of a bath particle relative to the probe is thus

U2 −U1 =− 1
6πηa

[L(r/a)r̂r̂+M(r/a)(I − r̂r̂)] · (Fext + 2FP
1 ), (3.16)

shown here for same-sized probe and bath particles. Restricting our attention to
configurations in which particles do not overlap, the excluded-annulus potential
prevents the bath particle from moving any closer to the probe than the minimum
allowable separation rmin. Thus, the radial component of the relative velocity at the
excluded annulus r= rmin must be greater than or equal to zero:

r̂ · (U2 −U1)=− 1
6πηa

L(rmin/a)(r̂ ·Fext + 2r̂ ·FP
1 )> 0. (3.17)

From (3.3a), we may evaluate the relative radial mobility function L(rmin/a) at contact
for small excluded annuli:

L
(rmin

a

)
= l1

(rmin

a
− 2
)
+O

((rmin

a
− 2
)2
)
. (3.18)

The contact value of L is zero only when the excluded annulus is coincident with
the hydrodynamic radii, i.e. when rmin = 2a. Thus, to satisfy (3.17), for any excluded
annulus rmin > 2a, the following inequality must hold:

r̂ ·Fext + 2r̂ ·FP
1 6 0. (3.19)
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The minimum interparticle force that meets this criterion results in the expected
filtered trajectories of figure 5, and is given by

FP
1 (rmin > 2a)=

−
Fext

2
r̂ · F̂r̂δ

(
r

rmin
− 1
)
, r̂ · F̂ > 0,

0, r̂ · F̂< 0.
(3.20)

The interparticle force required to maintain filtered trajectories in the non-colloidal
limit has a maximum at the upstream stagnation point of Fext/2, independent of
the range rmin of excluded-volume interactions. It is this magnitude that defines the
strength of the interparticle force in the pure-hydrodynamic limit, which must be
uniform over the contact surface as discussed above:

FP
1 (rmin = 2a)=−Fext

2
r̂δ
(

r
rmin
− 1
)
, (3.21)

and produces probe flux

jP
1 ≡ (MUF

11 ·FP
1 +MUF

12 ·FP
2 )P2(z, r; t). (3.22)

Following the procedure of § 2.2, (3.22) yields a bath-averaged flux with O(1)
and O(k) terms describing mean and fluctuating motion respectively:

〈j̃P
1 〉 =

(
−2US

3φ
4π

∮
r=2

L(r)r̂[g(r)+ ik · d(r)] dΩ
)

P̃1(k; t). (3.23)

The reduction in the mean probe motion from interparticle forces 〈UP
1 〉 follows from

the interparticle flux independent of the wavevector k:

〈UP
1 〉 =−2US

3φ
4π

∮
r=2

L(r)g(r)r̂ · F̂ dΩ. (3.24)

From orthogonality properties and the spherical symmetry of the microstructure in
the pure-hydrodynamic limit, UP

1 = 0. Additionally, the relative radial probability
flux L(r)g(r) at small separations decays as ξ 1−δ as shown in figure 3, ensuring that,
as expected, interparticle forces produce no reduction in probe motion.

The flow-induced diffusivity D flow is again defined from the O(k) terms of the
interparticle flux:

D flow = 2aUS
3φ
4π

∮
r=2

L(r)d(r)r̂ dΩ, (3.25)

with the transverse component

D flow
⊥ = 2aUS

3φ
4π

∮
r=2

L(r)d⊥1 (r)P
1
1(µ)P

1
1(µ) cos2 φ dΩ. (3.26)

The O(k) relative radial probability flux L(r)d⊥1 (r) at small separations decays as ξ 1−δ

as shown in figure 3, ensuring no transverse diffusion from interparticle forces at O(φ),
also as expected, due to the reversibility of Stokes flow; that is, D flow

⊥ = 0.
The longitudinal flow-induced diffusivity is the F̂F̂ component of equation (3.25):

D flow
‖ = 2aUS

3φ
4π

∮
r=2

L(r)d‖1(r)P1(µ)P1(µ) dΩ. (3.27)
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Only the component d‖1(r) of the series expansion of longitudinal fluctuations is
required to evaluate the flow-induced diffusivity; all other moments can be omitted
from (3.27) by orthogonality of the Legendre polynomials. We can determine the
contact value of L(r)d‖1(r) from (3.9):

lim
r→2

L(r)d‖1(r) = −
1
4

∫ ∞
2

g(z)[xa
11(z)+ 2ya

11(z)− 3]z2 dz (3.28a)

= 1
4
ηH

i , (3.28b)

where we have recognized the integral expression in (3.28b) as the intrinsic
hydrodynamic microviscosity from (3.6). For same-sized probe and bath particles,
ηH

i =2.52. Batchelor & Wen (1982) referred to −ηH
i as the sedimentation coefficient Sij,

while Davis & Hill (1992) referred to ηH
i as the mean velocity coefficient km. Both

of these studies agree with ηH
i = 2.52. Further, the limit in (3.28b) approaching

a constant is consistent with the limiting value of the relative radial flux shown
in figure 3. Insertion of (3.28b) into (3.27) gives the longitudinal force-induced
diffusivity

D flow
‖ = 1.26aUSφ, (3.29)

in excellent agreement with falling-ball measurements by Abbott et al. (1998) and
trajectory-analysis theory by Davis & Hill (1992), which give D flow

‖ = 1.20aUSφ
1.08

and D flow
‖ = 1.33aUSφ respectively.

4. Comparison with falling-ball rheometry

The longitudinal flow-induced diffusivity D flow
‖ = 1.26aUSφ as calculated from the

interparticle probe flux is in excellent agreement with the experimental findings
of Abbott et al. (1998), who measured a vertical dispersivity in falling-ball
experiments of D flow

‖ = 1.20aUSφ
1.08, as well as the theoretical results of Davis &

Hill (1992), who found D flow
‖ = 1.33aUSφ via trajectory analysis for macroscopic

falling-ball rheometry. In § 3.2, a key distinction between our approach and that of
Davis and Hill was made clear: the non-vanishing relative radial flux at pair contact
is shown only via the Smoluchowski equation. Trajectory analysis exploits the entirely
deterministic relative motion between a falling ball and a bath particle; as such, Davis
and Hill determined the hydrodynamic diffusion simply by multiplying the average
mean-square displacement per pair encounter by the rate of encounters, the latter of
which is set by the homogeneity of the dispersion far from the falling ball. No relative
trajectories may pass through the falling ball due to the singularity of the contact
lubrication force, thus hydrodynamic forces are sufficient to determine hydrodynamic
diffusion in the trajectory analysis. In doing so, trajectory analysis misses key entropic
effects revealed by fluctuations. The probe excludes bath particles from a suspension
volume about its surface. This entropically excluded volume is clearly evident with
a large excluded annulus, as many bath-particle trajectories collide with the excluded
shell. However, the non-vanishing relative radial flux is evidence that the probe
excludes a region of space from the bath particles even in the pure-hydrodynamic
limit. The flux into the excluded volume can be interpreted as the probe acting as
a ‘sink’ of longitudinal fluctuations. These longitudinal fluctuations cannot disappear:
they manifest themselves as longitudinal force-induced diffusion via the interparticle
force.
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The trajectory analysis of Davis and Hill requires completely deterministic forces:
even a small amount of thermal energy disrupts the relative trajectories. Computing
diffusion from mean and fluctuating microstructure permits consideration of the
contributions from stochastic forces, i.e. Brownian motion. The pure-hydrodynamic
limit in this study defines the infinite-Pe asymptotic behaviour for studies varying the
relative strengths of external and thermal forces. In addition, our approach opens the
possibility of considering surface roughness and additional non-hydrodynamic forces
via a finite excluded annulus.

A prior theoretical investigation by Davis (1992) introduced finite surface roughness
into an analysis of falling-ball rheometry. In his work, two possible mechanisms of
contact forces were set forth. The first, the ‘stick/rotate’ model, stipulates that a pair
that come into contact adhere to one another and move in rigid-body translation and
rotation. Like our analysis of finite excluded annuli, he recognized that background
particles separate at θ =π/2 because contact forces are assumed to be purely repulsive.
The second, the ‘roll/slip’ model, introduces a tangential component into the contact
force which, depending on the magnitude of the friction coefficient, causes the probe
to roll or slip around the bath particle at contact.

Our approach is similar to the stick/rotate model of Davis (1992) in that we assume
that there is no tangential component associated with interparticle forces. However, we
do not impose the additional constraint that particles in contact undergo rigid-body
rotation. Indeed, when the hydrodynamic radii of the two spheres are separated by
any finite distance, they need not rotate as a pair. Additionally, their constraint of rigid-
body rotation introduces contact torques, which in turn induce additional fluxes that
may contribute to the flow-induced diffusivity.

In our approach, we found the flow-induced diffusivity to be linear in the O(φ)
reduction in the mean motion, that is D flow

‖ = (ηH
i /2)aUSφ, where all particles are

identical. Falling-ball rheometry in a dilute suspension of non-colloidal particles
has been studied as a function of the relative size of the falling ball and bath
particles (Batchelor & Wen 1982; Davis & Hill 1992; Almog & Brenner 1997).
These studies showed that a falling ball that is large relative to the bath particles
resembles a boundary of a sheared suspension, and the reduction in mean motion
approaches Einstein’s viscosity correction of 2.5φ. When the relative size of the
falling ball to the bath particles is O(1) or smaller, non-continuum effects cause
the falling ball to spend progressively more time in the vicinity of a neutrally
buoyant bath particle, and the increased probability of a nearby large bath particle
hinders the falling ball; the effective viscosity thence diverges with the bath-to-ball
size ratio (Almog & Brenner 1997). Notably, this flow-induced diffusivity can be
computed strictly from the suspension microstructure, as the spherically symmetric
microstructure g(r) found by Batchelor (1982) is sufficient for determining ηH

i for
any size ratio. These studies of the impact of particle size ratio on mean motion in
falling-ball rheometry can be included in our model, although additional consideration
of size dependence, for example in the interparticle forces, is needed to generalize
the expression for D flow

‖ as a function of ηH
i .

5. Conclusions
The goal of this study was to characterize force-induced diffusion in the so-called

‘pure-hydrodynamic’ limit, i.e. in the absence of thermal and interparticle forces,
but as the infinite-Pe limit of active microrheology. To this end, we studied the
suspension microstructure about a strongly forced microrheological probe through a
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dilute dispersion of identical rigid spherical non-colloidal particles. The mean-speed
reduction and flow-induced diffusion were inferred from kinematic expressions for
the probe flux given by integral expressions weighting the probe motion by the
mean g and fluctuating d microstructure respectively, where expressions governing
both g(r) and d(r) were derived from the Smoluchowski equation. The mean
suspension microstructure, governed solely by advection from the external force,
adopts a spherically symmetric steady state g(r) that leads to the well-known
intrinsic hydrodynamic microviscosity, or the O(φ) reduction in mean probe motion
of ηH

i = 2.52.
As a first look, a similar procedure was followed to obtain the fluctuation

field d(r). The spherically symmetric microstructure drives fluctuations transverse
to and along the line of the external force: d⊥(r) = d⊥1 (r)P

1
1(cos θ)eiφ and d‖(r) =∑

n odd d‖n(r)Pn(cos θ). However, upon insertion of the fluctuation field into the integral
expressions of the hydrodynamic diffusivity, a puzzling result was obtained: zero
hydrodynamic flow-induced diffusion. This contradicted prior experimental studies
of falling-ball rheometry (Davis & Hill 1992; Abbott et al. 1998), which found the
longitudinal hydrodynamic diffusivity to scale as aUSφ in the dilute limit, suggesting
that something was missed in the first-look approach. Recalling that the theoretical
study of Davis & Hill (1992) found that bath particles coming closest to contact
dominate the contribution to the hydrodynamic diffusivity, a closer look was taken at
the mean and fluctuating microstructure and relative fluxes near contact in our model.
When the surface separation ξ ≡ r − 2 � 1, the microstructure and the transverse
fluctuation field were found to scale as ξ−0.799f (log ξ−1), while the longitudinal
fluctuation field scales as ξ−1. This leads to relative radial fluxes Lg and Ld⊥ that
vanish as ξ 0.201f (log ξ−1) when ξ → 0, and an O(1) flux of longitudinal fluctuations
at contact, Ld‖ ∼O(1), suggesting that non-hydrodynamic forces at contact must also
play a role and can generate non-zero surface flux.

A close examination of force at contact reveals that interparticle forces are still
present in the pure-hydrodynamic limit, because the probe and bath particles cannot
occupy the same space. The corresponding interparticle potential V(r) must thence be
infinite for separations r< 2a and zero otherwise. In this limit, lubrication interactions
alone are sufficient to prevent particle overlap as contact forces produce no relative
motion. Nonetheless, the inability of interparticle forces to cause particle translation
is not a sufficient criterion to neglect interparticle forces in the kinematic expressions
for the probe flux. The interparticle force was determined utilizing a force balance at
an excluded annulus: FP

1 =−Fext/2 cos θ r̂δ(r/rmin− 1) upstream of the probe and zero
downstream.

Bath-particle trajectories that contact the excluded annulus are enclosed within a
‘filtering envelope’ about the line of forcing. This filtering envelope becomes slender
with a shrinking excluded annulus, eventually collapsing onto a single trajectory in
the pure-hydrodynamic limit when rmin ≡ 2a. This collapse suggested two qualitative
changes in the interparticle force in the pure-hydrodynamic limit. First, bath particles
at the contact surface no longer separate at θ = π/2 but rather remain in contact
all the way around the probe. Thus, interparticle forces in the pure-hydrodynamic
limit act uniformly over the entire contact surface. Second, the filtering envelope
collapses onto a single trajectory along the line of forcing, so only the bath-particle
trajectory approaching along θ = 0 terminates at the contact surface, showing that
the interparticle force must be evaluated along the stagnation trajectory. In the
pure-hydrodynamic limit, FP

1 = −Fext/2r̂δ(r/2a − 1). This interparticle force induces
probe flux at the contact surface, resulting in longitudinal flow-induced diffusivity.
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We find that, owing to the reversibility of Stokes flow, the transverse flow-induced
diffusivity vanishes in the dilute limit. In contrast, the longitudinal hydrodynamic
diffusivity of a probe forced through a dilute suspension of identically sized bath
particles is D flow

‖ = 1.26aUSφ. Our results are in excellent agreement, both qualitatively
and quantitatively, with experimental measurements (Milliken et al. 1989; Abbott
et al. 1998) and theoretical studies (Davis 1992; Davis & Hill 1992) of falling-ball
rheometry.

Interestingly, the longitudinal flow-induced diffusivity is proportional to the apparent
hydrodynamic microviscosity ηH

i , the O(φ) reduction in the probe speed due to
hydrodynamic interactions with the bath particles, Dflow = (ηH

i /2)aUSφ, revealing
that diffusion and drag arise from a common microstructural origin: bath-particle
entrainment impedes the mean motion and induces fluctuations in the instantaneous
speed. Indeed, this behaviour is a far from equilibrium counterpart to the same
connection between fluctuation and dissipation in the Stokes–Einstein relation for a
particle diffusing in a pure solvent.

The dependence of D flow on ηH
i is puzzling, however: the interparticle force at

contact produces longitudinal flow-induced diffusivity. That is, the interparticle
flux leads to a purely hydrodynamic response. However, this must be so: the
non-hydrodynamic force at contact must balance the non-zero relative radial flux
of longitudinal fluctuations to the probe surface. No matter which non-hydrodynamic
forces are evaluated near contact (thermal, interparticle, etc.), the advective flux
towards the contact surface does not change. That is, the rate at which longitudinal
fluctuations are brought to the surface is strictly governed by the strength of
hydrodynamic interactions. Non-hydrodynamic (thermal, interparticle, etc.) forces act
to balance this advective flux and consequently reveal the longitudinal flow-induced
diffusivity.

Many interesting questions remain. For example, thermal fluctuations were
neglected here in order to focus on the non-colloidal limit. This restriction is easily
relaxed. Even weak Brownian motion is a source of microstructural asymmetry that
leads to anisotropic rheology including flow-induced diffusion. Brownian motion
can be modelled as an equivalent ‘thermodynamic’ force FB

α = −kT∇α ln P2
acting on particle α, generating a probability flux that counters advective flux
from an interparticle potential V , thus recovering the equilibrium suspension
microstructure (Batchelor 1976).

The relative magnitudes of external and thermodynamic forces define a Péclet
number Pe≡Fexta/2kT that is large in the limit of weak Brownian forces. Physically,
weak Brownian motion dissipates only the sharpest microstructural gradients near
contact. Thus, advective and thermodynamic forces balance in a narrow O(aPe−1)
boundary layer near the surface of the probe. The diffusive boundary layer is the
origin of non-Newtonian force thickening in the limit of strong forcing (Khair
& Brady 2006); analogously, the diffusive boundary layer breaks symmetry in
strongly sheared suspensions, leading to non-zero normal stress differences and
particle pressure (Brady & Morris 1997). The non-Newtonian rheology vanishes in
the pure-hydrodynamic limit as Pe−0.201, a consequence of the O(a3Pe−1) volume of
the boundary layer vanishing more rapidly than the bath-particle density O(Pe0.799)
accumulates in this region. Alternatively, one may view the vanishing relative radial
advective flux that acts to push bath particles into the diffusive boundary layer
as defining the transition to Newtonian rheology: with no bath-particle density in
the diffusive boundary layer, the apparent force thickening in microrheology must
transition to a Newtonian plateau when Pe→∞. The transition to Newtonian rheology
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as viewed through a vanishing relative flux towards contact highlights the role played
by entropic forces in non-Newtonian rheology, and could also provide insight and new
interpretations for transient force thickening as microstructures develop, as has been
done for active microrheology in non-hydrodynamically interacting suspensions (Zia
& Brady 2013).

Similarly, the O(k) flux describes how fluctuations are advected into the boundary
layer. The relative radial advective flux of transverse fluctuations Ld⊥ ∼ ξ 0.201 also
approaches zero in the pure-hydrodynamic limit: with a vanishing quantity of
fluctuations advected into the boundary layer, the transverse flow-induced diffusivity
must be identically zero in the limit Pe→∞. The relative radial flux of longitudinal
fluctuations Ld‖1 ∼ ξ 0 is O(1) near contact, suggesting that advection always drives
an O(1) quantity of longitudinal fluctuations into the vanishingly thin diffusive
boundary layer, even as Pe→∞. This persistence of longitudinal fluctuation density
inside the diffusive boundary layer when Pe−1 ≡ 0 emphasizes how critical the
microstructural contact surface is to shaping the longitudinal flow-induced diffusivity.
Indeed, Zia & Brady (2010) found that the fluctuation field about a strongly forced
probe is identically zero everywhere outside the O(aPe−1) diffusive boundary layer in
the absence of hydrodynamic interactions. Further studies of flow-induced diffusivity
that include explicit thermodynamic forces and Brownian motion via Pe should
recover our findings in the limit Pe→∞.

Generalization of these results to finite concentrations requires consideration of
three-body and higher interactions. The presence of a third particle breaks the
fore–aft symmetry of bath-particle trajectories, which leads to non-zero transverse
dispersivity, even in the pure-hydrodynamic limit. Additionally, the bath-particle
trajectory along the line of forcing that would have led to the stagnation point is
deflected around the probe in the presence of a third particle. Bath particles that
once may have spent an infinite amount of time being entrained along the stagnation
streamline thus are pushed out of the way. This effect is similar to the ‘screening’ in
sedimenting suspensions described by Koch & Shaqfeh (1991), and the mechanism
can be generalized to active microrheology: a second bath particle in the vicinity
of a pair comprising the probe and bath particles acts to destabilize the pair and
induce a net deficit of pair density about the probe. Thus, we expect a decrease
in the longitudinal flow-induced diffusivity, and non-zero transverse diffusion with
increasing φ.

Prior studies of falling-ball rheometry have also investigated the effects of the
relative size of probe and bath particles. Almog & Brenner (1997) found that the
dimensionless reduction in probe speed (the intrinsic hydrodynamic microviscosity)
approaches 5/2φ for vanishingly small bath particles, recovering Einstein’s viscosity
correction for a dilute dispersion of spheres. However, the reduction in probe speed
diverges for vanishingly small probes. If the longitudinal flow-induced diffusivity were
truly linear in the intrinsic hydrodynamic microviscosity alone, with no other size
considerations, the longitudinal flow-induced diffusivity should approach a constant for
small bath particles, while it should diverge for vanishingly small probes. The latter
was predicted by the theory of Davis & Hill (1992); however, they also predicted that
longitudinal dispersion vanishes for large probes. Additional size effects, including
vanishingly small probe displacements from interparticle forces between large probes
and small bath particles, could complete the picture of longitudinal diffusion from
a fluctuation field approach. The flow-induced diffusion will be more sensitive to
polydispersity than the reduction in mean motion. Davis & Hill (1992) found that,
for small falling balls, the reduction in the mean motion diverges as λ≡b/a, while the
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vertical diffusion diverges as λ3. Alternatively, for large falling balls, they predicted
that the dominant contributions to vertical diffusion emerge from a ‘middle region’
(between the inner region where ξ � λ and the outer region where ξ � 1), which
scales as λ3 log λ−1. Our approach may treat both of these limits, when interpreting
the interparticle force via the excluded-annulus model. The interparticle force must
still be equal and opposite when the probe and bath particles are in contact at the
excluded annulus, and the requirement for freely draining trajectories still holds,
but the resulting interparticle displacements will differ for probe and bath particles.
The ratio of the hydrodynamic functions L and G will emerge from our analysis
when polydispersity plays a role, where L describes relative motion from a force
on a single particle (i.e. displacements from the external force) and G describes
relative motion from equal and opposite forces (i.e. interparticle displacements). The
ratio L/G has a well-defined limit as rmin→ 2a which is size-ratio-dependent, so with
some modification the same approach as shown in this work can be utilized. The
Smoluchowski approach may lead to more accurate asymptotic expressions for the
longitudinal diffusion as a function of the size ratio than that found by Davis & Hill
(1992) (cf. figure 2 in that work).

Finally, this study found that the probe fluctuations D flow and energy dissipation ηH
i

are intimately tied in the pure-hydrodynamic limit of active microrheology. Prior
work (Zia & Brady 2012) suggests that the relation found here between D flow and ηH

i
fits in with broader connections between stress gradients, energy dissipation and
particle motion. These connections should persist regardless of the strengths of
the external forcing, thermal motion and interparticle interactions. Making these
connections would require a thorough investigation of D flow over all strengths of
forcing relative to thermal energy (Pe) and over a range of interparticle interaction
distances (rmin). Once established, non-equilibrium connections between fluctuation
and dissipation harness the full capability of active microrheology as a means for
interrogating complex fluids.

Appendix A. Integral solutions for the fluctuation field

We recall that the Smoluchowski equation governs the spatiotemporal evolution of
the mean g(r) and fluctuating d(r) suspension microstructure. The governing equation
for the fluctuation field d(r), given in (2.20), is repeated below for convenience:

∇r · ([Lr̂r̂+M(I − r̂r̂)] · F̂d(r))= [(xa
11 − ya

11)r̂r̂+ (ya
11 − 1)I] · F̂g(r). (A 1)

Equation (3.7) decomposes the vector fluctuation field d(r) into scalar components
along (d‖) and transverse to (d⊥) the line of external forcing. We begin with
longitudinal fluctuations. The spherical harmonics Pm

l (cos θ)eimϕ are a convenient
orthogonal basis to describe the microstructure about the probe, where Pm

l (cos θ) is
the associated Legendre polynomial of degree l and order m. Expressing d‖(r, θ, ϕ)
as a sum of spherical harmonics gives

d‖(r, θ, ϕ)=
∞∑

l=0

+l∑
m=−l

d‖l,m(r)P
m
l (cos θ)eimϕ, (A 2)

where the function d‖l,m(r) describes the radial dependence of d‖ associated with the
spherical harmonic Pm

l (cos θ)eimϕ .
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The Smoluchowski equation (A 1) is projected onto F̂ to obtain a governing
equation for longitudinal fluctuations, into which the series expansion for d‖(r), (A 2),
is substituted:

∞∑
l=0

+l∑
m=−l

[
W(r)α‖l,m(r)+ L(r)β‖l,m(r)+

M(r)
r
γ
‖
l,m(r)

]
Pm

l (cos θ)eimϕ

= 2
3
[xa

11(r)− ya
11(r)]g(r)P0

2(cos θ)+ 1
3
[xa

11(r)+ 2ya
11(r)− 3]g(r)P0

0(cos θ),

(A 3)

where W(r) = (2/r)(L(r) −M(r)) + dL/dr is the divergence of the relative mobility,
and the longitudinal advective coupling terms α‖l,m(r), β

‖
l,m(r) and γ ‖l,m(r) are

α
‖
l,m(r) =

l−m
2l− 1

d‖l−1,m(r)+
l+m+ 1

2l+ 3
d‖l+1,m(r), (A 4a)

β
‖
l,m(r) =

l−m
2l− 1

d‖′l−1,m(r)+
l+m+ 1

2l+ 3
d‖′l+1,m(r), (A 4b)

γ
‖
l,m(r) =

(l−m)(1− l)
2l− 1

dm
l−1(r)+

(l+ 2)(l+m+ 1)
2l+ 3

d‖l+1,m(r). (A 4c)

Forcing whose angular dependence is given by the spherical harmonic Pm
l (cos θ)eimϕ

drives microstructural response in d‖l+1,m(r) and d‖l−1,m(r) as described by the advective
coupling terms. It should be noted that the advection operator preserves the order m of
the spherical harmonics; forcing with azimuthal dependence eimφ drives microstructural
harmonics of the same order. The forcing terms on the right-hand side of (A 3)
comprise only the spherical harmonics, P0

0(cos θ) and P0
2(cos θ). No forcing is present

to drive any spherical harmonics of order m 6= 0 in d‖(r) from equilibrium, so we
may simplify equation (A 2) recognizing that only the m= 0 spherical harmonics are
driven from equilibrium:

d‖(r, θ)=
∞∑

l=0

d‖l (r)Pl(cos θ). (A 5)

In (A 5), Pl(cos θ) is the Legendre polynomial of degree l and is equivalent
to P0

l (cos θ). Via orthogonality, the spherical harmonic terms of degree l = 0 and
order m= 0 in (A 3) define a first-order ordinary differential equation for d‖1(r):

d
dr
[r2L(r)d‖1(r)] = r2[xa

11(r)+ 2ya
11(r)− 3]g(r). (A 6)

The solution for d‖1(r) is found by integrating equation (A 6):

d‖1(r)=−
1

r2L(r)

∫ ∞
r

z2[xa
11(z)+ 2ya

11(z)− 3]g(z) dz. (A 7)

Similarly, via orthogonality, the spherical harmonic terms of degree l = 2 and
order m = 0 in (A 3) define a first-order ordinary differential equation for d‖3(r),
which is coupled to the solution for d‖1(r). With some rearrangement, the following
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governing equation for d‖3(r) is obtained:

1
r2

d
dr
[r2L(r)d‖3(r)] + 2

M(r)
r

d‖3(r)=
14
3

[
M(r)

r
d‖1(r)+ (1− ya

11(r))g(r)
]
. (A 8)

An integral solution of d‖3(r) may be found from (A 8), but is not necessary
for our investigation: d‖3(r) and all higher degrees of spherical harmonics do not
contribute to D flow

‖ . No other spherical harmonics are present in the forcing function
on the right-hand side of (A 3). However, the advective coupling terms, (A 4a–c),
show that the spherical harmonic fluctuations dm

l−1(r)P
m
l−1(cos θ)eimϕ drive a higher

harmonic dm
l+1(r)P

m
l+1(cos θ)eimϕ from equilibrium. Thus, an infinitude of odd Legendre

polynomial modes are driven from equilibrium in the longitudinal fluctuation field,
allowing for further simplification of (A 5):

d‖(r, θ)=
∞∑

l odd

d‖l (r)Pl(cos θ). (A 9)

We next consider transverse fluctuations. Expressing d⊥(r, θ, ϕ) as a sum of
spherical harmonics gives

d⊥(r, θ, ϕ)=
∞∑

l=0

+l∑
m=−l

d⊥l,m(r)P
m
l (cos θ)eimϕ, (A 10)

where the function d⊥l,m(r) describes the radial dependence of d⊥ associated with the
spherical harmonic Pm

l (cos θ)eimϕ .
The Smoluchowski equation (A 1) is projected onto ex or ey to obtain a governing

equation for transverse fluctuations, into which the series expansion for d⊥(r), (A 10),
is substituted:

∞∑
l=0

+l∑
m=−l

[
W(r)α⊥l,m(r)+ L(r)β⊥l,m(r)+

M(r)
r
γ ⊥l,m(r)

]
Pm

l (cos θ)eimϕ

=−1
3
[xa

11(r)− ya
11(r)]g(r)P1

2(cos θ)eiϕ, (A 11)

where the transverse advective coupling terms α⊥l,m(r), β
⊥
l,m(r) and γ ⊥l,m(r) are identical

to those for longitudinal fluctuations given in (A 4a), (A 4b) and (A 4c).
The forcing term on the right-hand side of (A 11) comprises a single spherical

harmonic, P1
2(cos θ)eiϕ . No forcing is present to drive any spherical harmonics of

order m 6= 1 in d⊥(r) from equilibrium, so we may simplify (A 10) recognizing that
only the m= 1 spherical harmonics are driven from equilibrium:

d⊥(r, θ, ϕ)=
∞∑

l=0

d⊥l (r)P
1
l (cos θ)eiϕ. (A 12)

Via orthogonality, the spherical harmonic terms of degree l = 2 and order m = 1 in
(A 11) define a first-order ordinary differential equation for d⊥1 (r) and d⊥3 (r):

1
3

[
W(r)d⊥1 (r)+ L(r)d⊥1

′
(r)− M(r)

r
d⊥1 (r)

]
+ 4

7

[
W(r)d⊥3 (r)+ L(r)d⊥3

′
(r)+ 4M(r)

r
d⊥3 (r)

]
=−1

3
(xa

11(r)− ya
11(r))g(r). (A 13)
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The solutions for d⊥1 (r) and d⊥3 (r) are

d⊥1 (r)= rg(r)(L(r)g(r))1/2
∫ ∞

r

xa
11(z)− ya

11(z)
zL(z)

(
1

L(z)g(z)

)1/2

dz (A 14)

and
d⊥3 (r)= 0. (A 15)

No other spherical harmonics are present in the forcing function on the right-hand side
of (A 11). Because d⊥3 (r) is identically zero, the advective coupling terms and absence
of any other forcing terms require that all higher odd-degree spherical harmonics are
identically zero. Similarly, the absence of any forcing terms to drive the even spherical
harmonics in d⊥(r) from equilibrium requires that all even-degree spherical harmonics
are zero as well. The entire transverse fluctuation field is thus described by a single
spherical harmonic:

d⊥(r, θ, ϕ)= d⊥1 (r)P
1
1(cos θ)eiϕ. (A 16)

Equations (A 9) and (A 16) show that advection drives an infinitude of odd spherical
harmonics in the longitudinal fluctuation field and a single spherical harmonic in
the transverse fluctuation field from equilibrium. In § 3.2, these solutions for d‖
and d⊥ are substituted into the expression for the hydrodynamic flow-induced
diffusion D flow (2.23), yielding the puzzling result of zero force-induced diffusion.
In order to reconcile this finding with falling-ball rheometry experiments (Abbott
et al. 1998), additional non-hydrodynamic forces need consideration to fully quantify
force-induced diffusion in the pure-hydrodynamic limit.
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