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Abstract. This paper is concerned with the function r3(n), the number of represen-
tations of n as the sum of at most three positive cubes,

r3(n) = card{m ∈ Z3 : m3
1 + m3

2 + m3
3 = n, mj ≥ 1}.

Our understanding of this function is surprisingly poor, and we examine various averages
of it. In particular

n∑
m=1

r3(m),

n∑
m=1

r3(m)2

and ∑
n≤x

n≡a mod q

r3(n).

2010 Mathematics Subject Classification. 11P05, 11P21, 11P32, 11N36

1. Introduction. This paper is concerned with the function r3(n), the number of
representations of n as the sum of three positive cubes,

r3(n) = card{m ∈ Z3 : m3
1 + m3

2 + m3
3 = n, mj ≥ 1}.

We use this opportunity to pay homage to Christopher Hooley (1928–2018) who, amongst
many other things, made highly significant contributions to our understanding of r3(n) as
well as to Waring’s problem for cubes and more generally to cubic forms. Nevertheless,
our understanding of this function still leaves much to be desired. Even on average. Let

�(n) =
n∑

m=1

r3(m) − �

(
4

3

)3

n.

Then it is readily seen, by the usual principle that the number of lattice points inside a
d-dimensional convex body differs from its volume by an amount bounded by the d − 1
dimensional surface volume, that

�(n) � n
2
3 .

This does not seem to have been otherwise studied very closely. However, we can prove
the following by applying van der Corput’s method.

∗In Memoriam Christopher Hooley FRS, 1928–2018
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THEOREM 1.1. We have

n∑
m=1

r3(m) = �

(
4

3

)3

n − �
(

4
3

)2

2�
(

5
3

)n
2
3 + O

(
n

5
9 (log n)

1
3

)
.

The second-order term here is interesting. Of course, it can be varied by including
some or all sums of three cubes on the boundary, that is with at least one cube being zero.

The proof of the above really only utilises two of the three variables and this suggests
that there is some scope for further improvements, and perhaps, the error term is as small
as O(n

1
2 ) or even O(n

1
3 +ε). On the other hand, one would guess that

n∑
m=1

r3(m) − �

(
4

3

)3

n + �
(

4
3

)2

2�
(

5
3

)n
2
3 = �

(
n

1
3

)

in analogy with other three-dimensional lattice point problems. As far as I am aware the
best that can be established in this direction is by the variant of the Erdős–Fuchs theorem
[6], as generalised in Vaughan [22] and sharpened in Hayashi [12], which gives

n∑
m=1

r3(m) − �

(
4

3

)3

n + �
(

4
3

)2

2�
(

5
3

)n
2
3 = �

(
n

1
4

)
.

Possibly, the method of Montgomery and Vaughan [20] could be adapted to give this also.
Let

�3(x) =
∑
m≤x

r3(m) − �

(
4

3

)3

x + �
(

4
3

)2

2�
(

5
3

)x
2
3 . (1.1)

One can ask about the mean square of �3(x). One version of this would be to ascertain the
abscissa of convergence σ3 of ∫ ∞

1
|�3(x)|2x−2σ−1dx.

More generally, if rk(n) denotes the number of ways of writing n as the sum of k k-th
powers of positive integers and

�k(x) =
∑
m≤x

rk(m) − �k(x),

where �k(x) is an expected main term. This is a natural generalisation of the classical case
k = 2 which goes back to Hardy [10] who established σ2 = 1

4 . The exact nature of �k(x) is
not entirely clear since there will surely be lower order terms as in (1.1). However, one can
nevertheless ask about the abscissa of convergence σk of∫ ∞

1
|�k(x)|2x−2σ−1dx. (1.2)

More precisely, one might expect to be able to show that if

�k(x) = �

(
k + 1

k

)k

x +
J∑

j=1

Cjx
θj ,
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where the {θj} is a strictly decreasing sequence of real number in [0, 1) and the Cj are real
numbers, then σk ≥ k−1

2k regardless of the choice of Cj and θj.
Several multiplicative generalisations of this have been considered. Let r(n; K) be the

number of integral ideals of norm n in an algebraic extension of the rational numbers of
degree k. Then, the corresponding main term M(x; K) is αx where α is the residue of the
Dedekind zeta function ζ(s, K) at 1. Ayoub [1] has shewn that σ2 = 1

4 when K has degree 2
and Vaughan [25] has shewn that σ3 = 1

3 when K has degree 3 and that σk ≥ k−1
2k when

k ≥ 4. It is conjectured that equality should occur for all k.
In the concomitant problem in which r(n; K) is replaced by dk(n), the number of ways

of writing n as the product of k positive integers, it is also known that σ2 = 1
4 (Hardy

[10]), σ3 = 1
3 (Cramér [5]) and σk ≥ k−1

2k . In addition, it is known (Heath-Brown [13]) that
equality occurs when k = 4.

In view of these results, one might guess that the abscissa of convergence of (1.2) is
also σk = k−1

2k , although nothing is known when k ≥ 3.
Our understanding of the second moment

M2(n) =
n∑

m=1

r3(m)2

is even worse. Let P = 
n
1
3 � and

f (α) =
∑
m≤P

e(αm3). (1.3)

By combining the work of Hooley [14] or Wooley [26] on the one hand with that of
Vaughan [23] on the other, we have∫ 1

0
|f (α)|6dα � n

7
6 (1.4)

and thus, as

r3(m) =
∫ 1

0
f (α)3e(−αm)dα

for 1 ≤ m ≤ n, it follows by Bessel’s inequality that

n∑
m=1

r3(m)2 � n
7
6 .

Futhermore, Brüdern and Wooley [4] have deduced from Boklan’s [2, 3] sharpening of
Vaughan [23] that ∫ 1

0
|f (α)|6dα � n

7
6 (log n)ε−

3
2 .

This can be refined.

THEOREM 1.2. We have ∫ 1

0
|f (α)|6dα � n

7
6 (log n)ε−

5
2 .
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COROLLARY 1.3. We have

n∑
m=1

r3(n)2 � n
7
6 (log n)ε−

5
2 .

This is, of course, some way from the bound �ε n1+ε which is often conjectured. This
author would not be surprised if the bound � n holds. One can obtain the former conjecture
provided that one is prepared to assume a rather exotic form of the Riemann hypothesis.
Hooley [16] considers the cubic form

g(x1, ..., x6) = x3
1 + ... + x3

6

and the discriminant

�(m1, ..., m6) = 3
∏

(m3/2
1 ± m3/2

2 ± ... ± m3/2
6 ),

For �(m1, ..., m6) �= 0, Hooley introduces the projective varieties V(m) over Q which are
given by the simultaneous equations

g(ξ1, ..., ξ6) = m1ξ1 + ... + m6ξ6 = 0.

This leads to the reduced non-singular varieties V(m1, ..., m6; p) that are defined over Fp

and in turn leads to

L(m1, ..., m6; p; T) = exp

(
−

∞∑
r=1

E(m1, ..., m6; pr)Tr

)
,

where the E are essentially errors defined in terms of the number of points in Fpr less the
expected number. These give the local factors,

L(m1, ..., m6; p; T) =
10∏

j=1

(1 − λj,pT)−1

and the Hasse–Weil L-function is defined by

L(m1, ..., m6; s) =
∏

p��(m1,...,m6)

L(m1, ..., m6; p; p−s).

Then, Hooley [16, 18], has shewn on the Riemann hypothesis for this L-function that

n∑
m=1

r3(m)2 � n1+ε.

Apart from the ε, this is clearly best possible, as can be seen by considering solutions of

l3
1 + l3

2 + l3
3 = l3

4 + l3
5 + l3

6,

in which the lj on the right are a permutation of those on the left.
One might ponder the possibility that there is a positive constant C such that,

n∑
m=1

r3(m)2 ∼ Cn. (1.5)
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The above argument shews that if true, then C ≥ 6. Also, it is clear by the examination of
major arcs in an appropriate version of the Hardy–Littlewood method, that those arcs alone
contribute

∼ C0n,

where

C0 = �

(
4

3

)6

S

and

S=
∞∑

q=1

q−6
q∑

a=1
(a,q)=1

|S3(q, a)|6.

Hooley has shewn [17], Theorem 1, that

n∑
m=1

r3(n)2 ≥ Cn + o(n),

where

C > max{6, C0},
and thus were (1.5) to be true, it would have to hold with a C larger than the obvious
guesses.

Consequently, it is of some interest to explore the behaviour of

n∑
m=1

r3(n)F(m)

for various interesting choices of arithmetical function F other than r3. Let r2(n) denotes
the number of ways of representing n as the sum of two squares of integers

r2(n) = card{l ∈ Z2 : l2
1 + l2

2 = n}.
Then, the number of representations of n as the sum of at most two squares and three
positive cubes is

n∑
m=1

r3(m)r2(n − m)

and Hooley [15] has shewn that this is

π�

(
4

3

)3

S(n)n + O
(
n(log n)−δ

)
.

Here, δ is a small but fixed positive number, and the singular series S(n) can be defined by

S(n) =
∞∑

q=1

q−5
q∑

a=1
(a,q)=1

S3(q, a)3S2(q, a)2e(−an/q)
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with

Sk(q, a) =
q∑

r=1

e(ark/q),

or by ∏
p

(
lim

t→∞ p−4tM(pt; n)
)

,

where M(q; n) is the number of solutions of

l3
1 + l3

2 + l3
3 + l2

4 + l2
5 ≡ n (mod q).

Let

θ(n) =
{

1 m is prime,

0 otherwise.

The Hardy and Littlewood [11] Conjecture M states that

n∑
m=1

r3(m)θ(m) ∼ �

(
4

3

)3

S
n

log n
,

as n → ∞, where S is the singular series for this problem and can be defined by

S=
∞∑

q=1

q∑
a=1

(a,q)=1

μ(q)S3(q, a)3

φ(q)q3
. (1.6)

Hooley has shewn [18] that

n∑
m=1

r3(m)θ(m) ≤ 4�

(
4

3

)3

S
n

log n
+ o

(
n

log n

)
(1.7)

as n → ∞, and that on an extended Riemann hypothesis, the constant 4 here can be
replaced by 3. In both of these memoirs, Hooley makes extensive use of estimates for
sums of the kind

ϒ(x; q, a) =
∑
m≤x

m≡a (mod q)

r3(m), (1.8)

at least on average over q ≤ x
1
2 . The basic analysis is undertaken in Hooley [15], and this is

a very substantial and deep paper of 46 pages, most of which is concerned with ϒ(x; q, a).
However, at no stage is an explicit estimate given for∑

q≤Q

|E(x; q, a)|,

where

E(x; q, a) = ϒ(x; q, a) − �

(
4

3

)3

xρ(q, a)q−3 (1.9)
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and ρ(q, a) denotes the number of solutions of the congruence l3
1 + l3

2 + l3
3 ≡ a (mod q).

Nevertheless, the estimates given there can be adapted to prove the following theorems. We
consider sequences {A(q)} where each A(q) is a set of residue classes modulo q. We call
such a family multiplicative when each A(q) has the property that whenever q = q1q2 with
(q1, q2) = 1 each a ∈A(q) can be written in the form a1q2q1 + a2q1q2 with aj ∈A(qj).
Here, qj denotes any x such that qjx ≡ 1 (mod q3−j).

THEOREM 1.4. Let n ∈ N. Suppose that {A(q)} is a multiplicative family with the prop-
erty that there is a positive integer N with log log log N = o(log log n) as n → ∞ such that
for every q ∈ N and every a ∈A(q), we have (q, a)|N. Then, there is a positive constant δ

such that for every positive number ε and all Q ≤ n
1
2 (log n)δ , we have

∑
q≤Q

max
a∈A(q)

sup
x≤n

|E(x; q, a)| �ε n
8
9 +ε + n

1
3 Q

2
9

(
Q

10
9 + n

5
9

)
(log n)−δ.

The simplest example of a multiplicative family which satisfies the requisite additional
hypothesis of the theorem is the one in which each A(q) is the set of reduced residues
modulo q.

When our interest includes, for example, the zero residue class for each q, we have
a slightly weaker result. Note that (q, 0) = q can be larger than the hypothetical N of the
previous theorem.

THEOREM 1.5. There is a positive constant C such that for all Q ≤ n
5
9 , we have

∑
q≤Q

max
a

sup
x≤n

|E(x; q, a)| �ε n
8
9 +ε + n

1
3 Q

2
9

(
Q

10
9 + n

5
9

)
(log n)C.

These theorems have the same general character as the Bombieri–Vinogradov theo-
rem, for example in the form

∑
q≤Q

max
(a,q)=1

sup
x≤n

∣∣∣∣ϑ(x; q, a) − x

φ(q)

∣∣∣∣�A n(log n)−A + Qn
1
2 (log nQ)4.

This gives a bound smaller than n when Q = o(n1/2 log−4 x). It is noteworthy that Theorem
1.4 does so for Q = o(n1/2 log3δ/4 n). That is, by a small margin, it breaks the n

1
2 barrier.

This is nevertheless most useful in applications.
The Hardy–Littlewood conjecture M has some similarity in character with the

Goldbach binary conjecture, and the upper bound obtained in (1.7) bears the same relation-
ship to Theorem 1.5 as the Goldbach binary conjecture does to the Bombieri–Vinogradov
theorem. However, small further improvements in the latter case have been obtained using
information from lower bound sieve estimates. The improvements are very small, and the
best that this author is aware of is in Quarel’s thesis [21], which also gives an overview of all
previous work, where a constant a little bit larger than 3.9 is computed. The complications
and circumlocutions occurring in these calculations in order to squeeze out the smallest
contribution to the main term remind one somewhat of Dr Johnson’s aphorism about a dog
walking on hind legs. Much of this work also uses some version of a Chen inversion which
does not seem possible in the situation considered here. Nevertheless, one can ponder the
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possibility of applying some of these methods to show that there is a positive constant δ

such that
n∑

m=1

r3(m)θ(m) ≤ (4 − δ)�

(
4

3

)3

S
n

log n
+ o

(
n

log n

)
.

It is clear that if θk(n; y) is the characteristic function of the set of natural num-
bers n which have at most k prime factors, all exceeding y, then lower bounds can be
established for

n∑
m=1

r3(m)θk(m; y)

for suitable k and y. We make an application of the weighted one-dimensional sieve to
establish the following.

THEOREM 1.6. There is a positive constant θ such that

n∑
m=1

r3(m)θ3
(
m; nθ

)� n

log n
.

Unfortunately, there seems to be no obvious way of undertaking a Chen inversion to
reduce the θ3 to a θ2.

2. The proof of Theorem 1.1.

LEMMA 2.1 (van der Corput). Suppose that a < b and f has a continuous second
derivative on [a, b]. Suppose also that μ > 0, η > 1 and that for every α ∈ [a, b], we have
μ ≤ |f ′′(α)| ≤ ημ. Then ∑

a<n≤b

e(f (n)) � μ− 1
2 + (b − a)ημ

1
2 .

This is Theorem 2.2 of Graham and Kolesnik [7].
For α ∈ R, we define

B1(α) = α − 
α� − 1

2
, B2(α) =

∫ α

0
B1(β)dβ.

LEMMA 2.2. Let H ∈ N, H ≥ 2 and α ∈ R. Then,

B1(α) = −
∑

0<|h|≤H

e(αh)

2π ih
+ O

(
min

(
1,

1

H‖α‖
))

(2.1)

and

min

(
1,

1

H‖α‖
)

=
∞∑

h=−∞
c(h)e(αh), (2.2)

where

c(0) = 2

H

(
1 + log

H

2

)
, c(h) � min

(
log 2H

H
,

1

|h| ,
H

h2

)
(h �= 0). (2.3)
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Proof. The expansion (2.1) is well known and follows easily from the expansion for
log(1 + z) and partial summation. The Fourier expansion (2.2) follows from any basic
result on Fourier series, and the three estimates (2.3) for the coefficient

c(h) =
∫ 1

2

− 1
2

min

(
1,

1

H‖α‖
)

e(−αh)dα

follow by the bound |c(h)| ≤ c(0), integrating by parts once, and integrating by parts twice
respectively.

LEMMA 2.3. Let r(n) denote the number of representations on n as the sum of two
cubes of positive integers. Then,

∑
n≤x

r(n) = x
2
3
�
(

4
3

)2

�
(

5
3

) + O
(

x
2
9 (log x)

1
3

)
.

Proof. We begin with the observation that by dividing the lattice points l, m under the

curve α3 + β3 = x according to whether l or m does not exceed
(

x
2

) 1
3 , we have

∑
n≤x

r(n) = 2
∑

m≤(x/2)1/3

⌊
(x − m3)

1
3

⌋
−
⌊( x

2

) 1
3

⌋2

= 2
∑

m≤(x/2)1/3

(
(x − m3)

1
3 − 1

2

)

−
⌊( x

2

) 1
3

⌋2

− 2
∑

m≤(x/2)1/3

B1

(
(x − m3)

1
3

)
.

The first sum on the right here is

∫ x1/3

0
2 min

(

α�,

⌊( x

2

) 1
3

⌋)
(x − α3)−

2
3 α2dα −

⌊( x

2

) 1
3

⌋
.

The integral here is

∫ (x/2)1/3

0
2

(
α − 1

2

)
(x − α3)−

2
3 α2dα

+
∫ x1/3

(x/2)1/3

2

⌊( x

2

) 1
3

⌋
(x − α3)−

2
3 α2dα

−
∫ (x/2)1/3

0
2B1(α)(x − α3)−

2
3 α2dα.
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We integrate the first and third integrals by parts and simply integrate the second to obtain∫ (x/2)1/3

0
2(x − α3)

1
3 dα − 2

[(
α − 1

2

)
(x − α3)

1
3

](x/2)1/3

0

+ 2

⌊( x

2

) 1
3

⌋
(x/2)1/3 −

[
2B2(α)(x − α3)−

2
3 α2

](x/2)1/3

0

+
∫ (x/2)1/3

0
4B2(α)(x − α3)−

5
3 xαdα.

The last two expressions here are � 1 and the second expression is −2
( x

2

) 2
3 +

( x

2

) 1
3
. The

first integral is twice the two-dimensional volume of the set of points α, β with α3 + β3 ≤
x and α ≤ (x/2)

1
3 . Interchanging the variables α, β in one copy of this gives a cover of

the whole region α3 + β3 ≤ x with a double cover of the square [0, (x/2)1/3]2. Hence, the
integral is

∫ x1/3

0
(x − α3)

1
3 dα +

( x

2

) 2
3 = �

(
4
3

)2

�
(

5
3

) x
2
3 +

( x

2

)2/3
.

Thus, collecting together the various estimates, we have

∑
n≤x

r(n) =�
(

4
3

)2

�
(

5
3

) x
2
3

− 2
( x

2

) 2
3 +

( x

2

) 2
3 +

( x

2

) 1
3 + 2

⌊( x

2

) 1
3

⌋ ( x

2

) 1
3

−
⌊( x

2

) 1
3

⌋
−
⌊( x

2

) 1
3

⌋2

− 2
∑

m≤(x/2)1/3

B1

(
(x − m3)

1
3

)
+ O(1).

This simplifies down to

∑
n≤x

r(n) =�
(

4
3

)2

�
(

5
3

) x
2
3 −

(( x

2

) 1
3 −

⌊( x

2

) 1
3

⌋)2

+
( x

2

) 1
3 −

⌊( x

2

) 1
3

⌋
− 2

∑
m≤(x/2)1/3

B1

(
(x − m3)

1
3

)
+ O(1)

and so

∑
n≤x

r(n) = �
(

4
3

)2

�
(

5
3

) x
2
3 − 2

∑
m≤(x/2)1/3

B1

(
(x − m3)

1
3

)
+ O(1).

Let ν be a parameter at our disposal which satisfies 0 < ν ≤ (x/2)
1
3 and let

M=
{
ν2j : j ≥ 0, ν2j ≤ (x/2)

1
3

}
.
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For each M ∈M, we use M ′ to denote

M ′ = min
(

2M, (x/2)
1
3

)
.

Then ∑
m≤(x/2)1/3

B1

(
(x − m3)

1
3

)
=
∑

M∈M
S(M) + O(ν),

where

S(M) =
∑

M<m≤M ′
B1

(
(x − m3)

1
3

)
.

By (2.1) with H also at our disposal

S(M) = −
∑

0<|h|≤H

T(M, h)

2π ih
+ O

⎛
⎜⎝ ∑

M<m≤M ′
min

⎛
⎜⎝1,

1

H
∥∥∥(x − m3

) 1
3

∥∥∥
⎞
⎟⎠
⎞
⎟⎠ ,

where

T(M, h) =
∑

M<m≤M ′
e
(

h
(
x − m3

) 1
3

)
.

Moreover, by (2.2),

∑
M<m≤M ′

min

⎛
⎜⎝1,

1

H
∥∥∥(x − m3

) 1
3

∥∥∥
⎞
⎟⎠=

∞∑
h=−∞

c(h)T(M, h).

We now consider T(M, h) when h �= 0. It suffices to suppose then that h > 0 for otherwise
we can take the complex conjugate. Let

f (α) = h
(
x − α3

) 1
3 .

Then, for α < x1/3,

f ′(α) = −h(x − α3)−
2
3 α2

and

f ′′(α) = −2hαx(x − α3)−
5
3 .

For M ∈M and α ∈ [M, M ′], we have

f ′′(α) � hMx− 2
3 .

Hence, by Lemma 2.1,

T(M, h) � x
1
3 h− 1

2 M− 1
2 + h

1
2 M

3
2 x− 1

3 .
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Hence, ∑
M<m≤M ′

B1

(
(x − m3)

1
3

)
�

∑
1≤h≤H

(
x

1
3 h−2M− 1

2 + h− 1
2 M

3
2 x− 1

3

)

+ M log(2H)

H
+

∞∑
h=1

|c(h)|
(

x
1
3 h−1M− 1

2 + h
1
2 M

3
2 x− 1

3

)

and hence, by (2.3),∑
M<m≤M ′

B1

(
(x − m3)

1
3

)
� MH−1 log(2H) + x

1
3 M− 1

2 + H
1
2 M

3
2 x− 1

3 .

A good choice for H is

H = x
2
9 M− 1

3 (log x)
2
3 .

Thus, ∑
M<m≤M ′

B1

(
(x − m3)

1
3

)
� M

4
3 x− 2

9 (log x)
1
3 + x

1
3 M− 1

2 .

Summing over the elements of M gives∑
ν<m≤(x/2)1/3

B1

(
(x − m3)

1
3

)
� x

2
9 (log x)

1
3 + x

1
3 ν− 1

2 .

Hence, ∑
m≤(x/2)1/3

B1

(
(x − m3)

1
3

)
� ν + x

2
9 (log x)

1
3 + x

1
3 ν− 1

2 .

The choice ν = x
2
9 gives the desired conclusion.

We now apply Lemma 2.3 to prove Theorem 1.1. We have

n∑
m=1

r3(m) =
∑

l≤n1/3

n−l3∑
k=1

r(k)

=
∑

l≤n1/3

�
(

4
3

)2

�
(

5
3

) (n − l3)
2
3 + O

(
n

5
9 (log n)

1
3

)
.

The sum here is

�
(

4
3

)2

�
(

5
3

) ∑
l≤n1/3

∫ n1/3

l
(n − α3)−

1
3 2α2dα = �

(
4
3

)2

�
(

5
3

) ∫ n1/3

0

α�(n − α3)−

1
3 2α2dα.

The integral here is

∫ n1/3

0

(
α − 1

2

)
(n − α3)−

1
3 2α2dα −

∫ n1/3

0
B1(α)(n − α3)−

1
3 2α2dα.
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By integration by parts, the first integral is[
−
(

α − 1

2

)
(n − α3)

2
3

]n1/3

0

+
∫ n1/3

0
(n − α3)

2
3 dα.

This is

−1

2
n

2
3 + n

�
(

5
3

)
�
(

4
3

)
�(2)

.

Let ξ = n
2
3 . Then ∫ n1/3

(n−ξ)1/3

B1(α)(n − α3)−
1
3 2α2dα � ξ

2
3 = n

4
9

and ∫ (n−ξ)1/3

0
B1(α)(n − α3)−

1
3 2α2dα =

[
B2(α)(n − α3)−

1
3 2α2

](n−ξ)1/3

0

−
∫ (n−ξ)1/3

0
B2(α)(n − α3)−

4
3 2α(2n − α3)dα.

and this is

� n
2
3 ξ− 1

3 = n
4
9 .

3. The proof of Theorem 1.2. Let ρ be a sufficiently large but fixed real number
and define

S =
{

r ∈ [1, P] : p|r ⇒ p /∈
(
(log P)ρ, P

1
7

]}
,

T = {r ∈ [1, P] : There is a prime p ∈
(
(log P)ρ, P

1
7

]
such that p|r}

f̂ (α) =
∑
r∈S

e(αr3) (3.1)

and

f̃ (α) =
∑
r∈T

e(αr3). (3.2)

Boklan [2], Lemma E, has shewn that the arguments of Vaughan [23] and [24] com-
bined with the improved bounds of Hall and Tenebaum [9] for Hooley’s � function
give ∫ 1

0
|f̂ (α)|8dα � n

5
3 (log n)ε−3. (3.3)

A routine sieve argument, such as one based on the Selberg sieve, for example, as in
the exposition of Halberstam and Richert [8], demonstrates that

card S � n
1
3 log log n

log n
.
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Hooley [14] (see also Wooley [26]) has shewn that the number of solutions of

m3
1 + m3

2 = m3
3 + m3

4,

with mj ≤ P in which the mj on the right are not a permutation of those on the left is

� P
5
3 +ε.

Thus, the total number of solutions with mj ∈ S is

� (card S)2 + n
5
9 +ε.

Hence, ∫ 1

0
|f̂ (α)|4dα � n

2
3 log2 log n

log2 n
.

Therefore, by (3.3) and Schwarz’s inequality∫ 1

0
|f̂ (α)|6dα � n

7
6 logε− 5

2 n. (3.4)

Clearly from (1.3), (3.1), and (3.2), we have

f (α) = f̂ (α) + f̃ (α),

so that ∫ 1

0
|f (α)|6dα �

∫ 1

0
|f̂ (α)|6dα +

∫ 1

0
|f̃ (α)|6dα. (3.5)

Thus, it suffices now to bound ∫ 1

0
|f̃ (α)|6dα,

the number of solutions of

m3
1 + m3

2 + m3
3 = m3

4 + m3
5 + m3

6, (3.6)

with mj ∈ T . First of all consider the subset of all such solutions in which at least two of

the variables have at least one common prime factor p with (log P)ρ < p ≤ P
1
7 . Then, the

total number N1 of such solutions is bounded by

∑
(log P)ρ<p≤P1/7

∫ 1

0
|f (p3α; P/p)|2|f (α)|4dα,

here

f (β; Q) =
∑
m≤Q

e(βm3).

Thus, by Hölder’s inequality

N1 �
∑

(log P)ρ<p≤P1/7

(∫ 1

0
|f (p3α; P/p)|6dα

) 1
3
(∫ 1

0
|f (α)|6dα

) 2
3

.
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Hence, by (1.4), we have

N1 �
∑

(log P)ρ<p≤P1/7

P
7
2 p− 7

6 � P
7
2 (log P)−

ρ

6 .

Therefore, it remains to bound the number of solutions of (3.6) with mj ∈ T and for which

each prime p dividing mj with (log P)ρ < p ≤ P
1
7 has the property that p � mk when k �= j.

The number of such solutions is � N2 where N2 is the number of solutions of

p3l3 + m3
2 + m3

3 = m3
4 + m3

5 + m3
6.

with (log P)ρ < p ≤ P
1
7 , l ≤ P/p, mj ≤ P and (p, mj) = 1. Let

M=
{
(log P)ρ2j : 0 ≤ j, 2j < P

1
7 (log P)−ρ

}

and for each M ∈M let M ′ = min
{

2M, P
1
7

}
. Then

N2 ≤
∑

M∈M
N(M),

where N(M) is the number of solutions of

m3l3 + m3
2 + m3

3 = m3
4 + m3

5 + m3
6,

with M < m ≤ M ′, l ≤ P/M , mj ≤ P and (m, mj) = 1. Thus,

N(M) =
∑

M<m≤M ′

∫ 1

0
f (m3α; P/M)fm(α)2fm(−α)3dα,

where

fm(α) =
∑
r≤P

(r,m)=1

e(αr3).

Hence, by Hölder’s inequality,

N(M) ≤
(∫ 1

0

∑
M<m≤M ′

|f (m3α; P/M)|4|fm(α)|2
) 1

4
( ∑

M<m≤M ′
|fm(α)|6dα

) 3
4

and this is at most(∫ 1

0

∑
M<m≤M ′

|f (m3α; P/M)|4|fm(α)|2dα

) 1
4

M
3
4

(∫ 1

0
|f (α)|6dα

) 3
4

.

Hence, by Lemma 5 of Vaughan [23] and (1.4),

N(M) � P
7
2 (log P)

15
4 M− 3

8

and so on summing M over the elements of M, we have

N2 � P
7
2 (log P)

5
2 − 3

8 ρ.
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Thus, by choosing ρ sufficiently large, we have∫ 1

0
|f̃ (α)|6dα � n

7
6 (log n)−

5
2

and so with (3.4) and (3.5) this establishes Theorem 1.2.

4. The proof of Theorems 1.4 and 1.5. Here, we follow very closely the work of
Hooley [15]. This in turn makes important use of results of Milne, Dwork, Deligne and
Katz in algebraic geometry. In order to ease the translation of estimates from Hooley’s
memoir, we adopt his notation, with some changes, and the reader who wishes to follow
our proof in detail would be well advised to have a copy of Professor Hooley’s work to
hand. In general in defining functions, we usually write the modulus before any residue
class, as in our definition of ϒ , and we usually include all parameters which we plan to
vary. Hooley reverses the order of modulus and residue and in the interest of simplicity
suppresses some variables. Thus, we will rewrite many of his crucial statements in our
usual format. Let

S(q; h, a) =
∑

m mod q
m3

1+m3
2+m3

3≡a mod q

e(h.m/q),

F(q; a) =
∑

h mod q

|S(q; h, a)|, (4.1)

ρ(q, a) = S(q; 0, a)

and

B = �

(
4

3

)3

.

Thus, in Hooley’s notation, these are S(h1, h2, h3; q) and F(q), as defined in his intro-
duction, B as defined in ibidem (15) and ρ(a, q) as defined in ibidem between (22)
and (23).

We suppose that x ≤ n and with Hooley (34) define

Hq = q
2
9 x

2
9 (log x)−g,

where g is a fixed positive number at our disposal. We further observe that the ϒ(x; q, a)

of our (1.8) is �(x; a, q) of ibidem (5).
Hooley generally supposes that the modulus, his k, our q does not exceed n

1
2 . We relax

this. For the time being, we will suppose that

q ≤ Q ≤ n
5
9 .

In the final stages of the proof of Theorem 1.4, we will reduce this. In a few places,
our relaxation on Q requires a minor change, which we will advert to at the appropriate
moment. We follow Hooley verbatim as far as ibidem (33). Thus, for x ≤ n we have

ϒ(x, q, a) = ρ(q, a)

q3

(
Bx + O

(
n

2
3 H
))+ O

(
M(n, H, q, a)

)
.
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The function M satisfies

M(n, H, q, a) =
3∑

j=1

�j(n, H, q, a),

where the �j are the three multiple sums occurring in the error term in the first line of
the displayed formula above ibidem (31). Hooley now sums the �j over q, leaving a fixed.
Instead for each q, we will take the maximum over a ∈A(q) where either A(q) is as in
Theorem 1.4 or is the set of all residue classes modulo q. He then splits the sum for �3

into three separate sums, and we follow that course. Thus, we write

�11 =
∑
q≤Q

max
a∈A(q)

�1(n, H, q, a),

�12 =
∑
q≤Q

max
a∈A(q)

�2(n, H, q, a),

�13 =
∑

q≤n5/12

max
a∈A(q)

�3(n, H, q, a),

�14 =
∑
q≤Q

q1>n1/36

max
a∈A(q)

�3(n, H, q, a),

�15 =
∑

x5/12<q≤Q
q1≤n1/36

max
a∈A(q)

�3(n, H, q, a).

Here q1 and for future reference q2 are defined by

q1 = q1(q) =
∏
pt‖q
p≤ξ

pt, q2 = q2(q) = q/q1,

where

ξ = n1/(log log n)2
.

as in ibidem (121) and (122). Thus, by (1.9),

∑
q≤Q

max
a∈A(q)

sup
x≤n

|E(x; q, a)| � n
8
9 (log n)−g

∑
q≤Q

q− 25
9 max

a∈A(q)
ρ(q, a) +

15∑
j=11

�j.

When A(q) is as in Theorem 1.4, the argument given in Section 6 of ibidem shews that

n
8
9 (log n)−g

∑
q≤Q

q− 7
3 max

a∈A(q)
ρ(q, a)

� n
8
9 Q

2
9
(log log n)A4

(log n)g

∏
p|N

(
1 − 1

p

)1−A3

� n
8
9 Q

2
9 (log n)−g(log log n)A4(log log N)A3 .
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In the case of Theorem 1.5, a cruder estimate gives

n
8
9 (log n)−g

∑
q≤Q

q− 25
9 max

a∈A(q)
ρ(q, a) � n

8
9 (log log n)A4

∑
q≤Q

dA3(q)

q7/9

� n
8
9 Q

2
9 (log n)C.

Let

η(q) =
∏
pt‖q

ptαt , (4.2)

where (Lemma 13 ibidem)

α1 = 1, α2 = 3

2
, α3 = 5

3
, α4 = 7

4
, α5 = 9

5
, αt = 11

6
(t ≥ 6). (4.3)

This is Hooley’s w(q) defined in Lemma 14 ibidem. We have changed this to η because in
computer modern when not juxtaposed ω and w are almost indistinguishable to our eyes.

In bounding �j when 11 ≤ j ≤ 14, Hooley Section 16 ibidem uses only estimates for
S(q, h, a) and ρ(q, a) from Section 12 and Lemma 14 of ibidem, and these are independent
of a (his N). Since we are allowing Q to be as large as n

5
9 , some small changes need to be

made which we detail as follows. Thus, in reference to �11, we have

�1(n, Hq, q, a) � nAω(q)

12 η(q)

Hqq2

∞∑
h1=1

(h1, q)

h1
min

(
1,

q

n1/3h1

)
.

Now for h1 > n
1
3 , we replace the min by h

− 1
3

1 and otherwise proceed without change. Thus,

�11 � n
7
9 +ε

∑
q≤Q

η(q)

q2
� n

7
9 +2ε.

In the treatment of �12, a similar adjustment in which we now replace min(1,
q1/2

n1/6h1/2
j

)

by h
− 1

6
j when hj > n

1
3 leads to the bound

�12 � n
5
9 +ε

∑
q≤Q

η(q)

q13/9
� n

8
9 +2ε,

which is acceptable.
In �13, the sum over q is constrained by the bound q ≤ n

5
12 , so no adjustments are

needed. However, in �14, we are not so fortunate. Thus, in the initial examination of
�3(n, Hq, q, a) in (128) ibidem, we divide the hj at n

4
9 rather than n

1
3 and then the final

line of (128) holds for all q ≤ Q. Then following (130) ibidem, we obtain

�14 � n
1
3 Q

4
3 (log n)3g+3

∑
q≤Q

q1>n1/36

Aω(q)

21 η(q)

q2
.

Following the argument without further change gives

�14 � n
1
3 Q

4
3 (log n)C exp

(
− 1

36
(log log n)3/2

)

for a suitable positive constant C. This is acceptable.
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It remains to deal with �15. We follow Section 17 ibidem as far as (138). We
observe that in the discussion between (136) and (137), the argument is unchanged for
q (Hooley’s k) no larger than n

1
2 (log n)

9g
2 and so we henceforth suppose that

Q ≤ n
1
2 (log n)

9g
2 .

Thus, in our notation (138), ibidem gives for some positive constant C

�3(n, Hq, q, a) � nF(q1, a1)Cω(q2)η(q2)

H3
q q3

1

.

Here, a1 is such that a1 ≡ a (mod q1). Note that if (q, a)|N , then (q1, a1)|N . At this stage,
it is convenient also to point out that if q has a factor m with (m, N) = 1, then the condition
on the elements a of A(q) in Theorem 1.4 permits us to deduce that (m, a) = 1. Thus,

�15 � n
1
3 (log n)3g

∑
q≤Q

q1≤n1/36

max
a1∈A(q1)

F(q1; a1)
Cω(q2)η(q2)

q2/3q3
1

� n
1
3 Q

1
3 (log n)3g

∑
q1≤n1/36

max
a1∈A(q1)

F(q1; a1)

q4
1

∑
q2≤Q/q1

Cω(q2)η(q2)

q2
.

where F is given by (4.1). Following Hooley, the dexter sum is of the form

∑
q2≤u

Cω(q2)η(q2)

q2
,

where Qn− 1
36 < u ≤ Q/q1 and it is shewn in (142) ibidem to be

� u(log log n)C′

log n
.

Thus,

�15 � n
1
3 Q

4
3 (log log n)C′

log1−3g n

∑
q1≤n1/36

max
a1∈A(q1)

F(q1; a1)

q5
1

.

In the case of Theorem 1.4, Hooley’s argument, with N , not n, governing the divisibility by
p, leads us through (144) to (147) ibidem, and allows us to infer that the final sum is

� (log log n)C′′
(log n)σ ,

where 0 < σ < 1. Observe that by our hypothesis on N, we have∏
p|N

(1 − 1/p)−2A3 � (log log 2N)2A3 � (log n)ε.

Thus,

�15 � n
1
3 Q

4
3 (log log n)C′′′

log1−σ−3g n
.

This completes the proof of Theorem 1.4.
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In the contrary case, so that the argument leading to (149) ibidem is not available to
us, we obtain only

�15 � n
1
3 Q

4
3 (log log n)C′′′

log3g n,

which is nevertheless sufficient to confirm Theorem 1.5.

5. The proof of Theorem 1.6. The linear sieve applied directly to our problem
would only achieve a θ4 in place of the θ3. The standard way of reducing to a θ3 is by
the use of weights. Many elaborate weight systems have been introduced in order to extract
as large a lower bound as possible from the available methods. In the interest of concision,
we use the simplest weights and consider

n∑
m=1

(m,P)=1

r3(m)

⎛
⎜⎜⎝1 −

∑
p|m

z<p≤n1/3

1

2

⎞
⎟⎟⎠ ,

where

z = n1/8, P =
∏
p≤z

p.

The terms in this sum can only be positive when m has at most one prime factor not exceed-
ing n1/3. But, there can never be more than two prime factors greater than n1/3. We can
rearrange this as

n∑
m=1

(m,P)=1

r3(m) − 1

2

∑
z<p≤n1/3

∑
m≤n/p

(m,P)=1

r3(mp)

and apply the lower bound linear sieve to the first sum over m and the upper bound linear
sieve to the second, taking advantage of Theorem 1.5 above. We appeal to Theorem 1 of
Iwaniec [19] with X = �(4/3)3n, ω(p) = ρ(p, 0)p−2, y = n1/2(log n)−A, z = n1/8, so that
s = log y

log z in the first sum, and with X = �(4/3)3n/p, s = sp = y/p
log z in the second. Thus,

s = 4 − 8A log log n

log n
, sp = 4 − 8 log p

log n
− 8A log log n

log n

and the above is

≥ n�

(
4

3

)3 ∏
p≤z

(
1 − ρ(p, 0)

p3

)⎛⎝f (s) − 1

2

∑
z<p≤n1/3

F(sp)

p

⎞
⎠+ O

(
n

(log n)9/8

)
.

We have ρ(p, 0) = p2, (p ≡ 2 (mod 3) or p = 3) and ρ(p, 0) ≤ 3p2 (p ≡ 1 (mod 3)). Thus,

1 − ρ(p, 0)

p3
> 0.

We also have

ρ(p, 0) = 1

p

p∑
a=1

S3(p, a)3 = p2 + 1

p

p−1∑
a=1

S3(p, a)3.
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Thus,

1 − ρ(p, 0)

p3
=
(

1 − 1

p

)⎛⎜⎜⎝
∞∑

k=0

pk∑
a=1
p�a

μ(pk)S3(pk, a)3

φ(pk)p3k

⎞
⎟⎟⎠ .

By classical estimates for Gauss sums

p−1∑
a=1

S3(p, a)3 � p5/2.

Hence,

∏
p≤z

⎛
⎜⎜⎝

∞∑
k=0

pk∑
a=1
p�a

μ(pk)S3(pk, a)3

φ(pk)p3k

⎞
⎟⎟⎠=S+ O(z−1/2),

where S is as in (1.6) and S> 0.
In the ranges of interest here, we have

f (s) = 2eγ log(s − 1)

s
, F(s) = 2eγ

s
.

Thus, by prime number theory and the smoothness of f and F, this is

�

(
4

3

)3 4Sn

log n

(
log 3 −

∫ n1/3

n1/8

1

x(log x)
(
2 − 4(log x)/ log n

)dx

)
+ O

(
n

(log n)9/8

)
.

By the change of variable y = (log n)/ log x, the integral here is∫ 8

3

dy

2y − 4
= 1

2
log 6.

Thus,

n∑
m=1

(m,P)=1

r3(m)

⎛
⎜⎜⎝1 −

∑
p|m

z<p≤n1/3

1

2

⎞
⎟⎟⎠≥ �

(
4

3

)3 2Sn log(3/2)

log n
+ O

(
n

(log n)9/8

)
,

which satisfies our desideratum.
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