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D-37075 Göttingen, Germany

(Received 23 October 2000 and in revised form 5 March 2001)

We study by direct numerical simulation the motion of incompressible fluid contained
in an ellipsoid of revolution with ellipticity 0.1 or less which rotates about its axis
of symmetry and whose rotation axis is executing precessional motion. A solution
to this problem for an inviscid fluid given by Poincaré (1910) predicts motion of
uniform vorticity. The simulations show how the orientation of the average vorticity
of a real fluid is influenced by both pressure and viscous torques exerted by the
boundaries. Axisymmetric shear layers appear which agree well with those observed
experimentally by Malkus (1968). Shear caused by deviations from a velocity field
with uniform vorticity triggers an instability consisting of waves propagating around
the average rotation axis of the fluid. The Ekman layers at the boundaries may also
become unstable.

1. Introduction
Motion of incompressible fluid in a rotating and precessing spheroidal cavity

is a central problem for several areas of astrophysics, geophysics and engineering.
Without the precessing motion of the container, the fluid would simply be entrained
by viscous forces until it rotated uniformly like a solid body. Precession disturbs
the solid body rotation. In the geophysical application, the resulting flow is used
as a model for the response of the liquid core to the Earth’s precession. Interest in
this driving mechanism has been maintained over recent years by the proposal that
precession might power the geodynamo. Since the basic solution to the fluid dynamic
problem is nearly toroidal, dynamo action can only be expected in unstable flows.
Instabilities have been observed in experiments with water-filled precessing ellipsoidal
containers. The numerical simulations presented here are intended to complement the
limited experimental observations which are available regarding the structure of the
instability.

Most modern literature refers to Poincaré’s (1910) work as the starting point for
today’s investigation of precession-driven motion. Poincaré assumed an ideal fluid
inside the Earth and showed that flows with constant vorticity are solutions of the
equation of motion for zero viscosity. However, viscosity modifies Poincaré’s solution
in that boundary layers appear, and more surprisingly, zones of strong shear also
appear in the bulk of the flow which do not vanish in the limit of viscosity tending to
zero (Busse 1968). Experiments (Malkus 1968; Vanyo et al. 1995) have shown that at
high enough precession rates, the internal shear layers develop a wavelike instability,
and in a second transition, the entire flow becomes turbulent.

The available computer capacities preclude a systematic survey of the parameter
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112 S. Lorenzani and A. Tilgner

space. The original experiments by Malkus (1968) are closest to the computationally
accessible range of parameters. The calculations presented below are chosen in order
to reproduce these experiments reasonably well.

In a first experiment with an axisymmetric container of ellipticity e equal to 0.04
(precise definitions of the control parameters will be given in the next section), the
angle between container and precession axes was 30◦. As the (retrograde) precession
Ωp was increased at a constant Ekman number of 2.5× 10−6 (based on the ‘diurnal’
rotation rate ωD of the ellipsoid about its symmetry axis), laminar flow was observed at
Ωp/ωD = −0.0125, wavy distortions of the internal shear layers at Ωp/ωD = −0.0167
and increasingly disorganized flow at higher precession rates. A second experiment
used an ellipsoid of ellipticity 0.1 with an angle between precession and container
axes of 96◦ at an Ekman number of 2× 10−6. The onset of a wavelike instability was
again observed (at Ωp/ωD = 0.01− 0.013), this time followed by a sudden transition
to more violent motion around Ωp/ωD = 0.05 during which the torque necessary to
maintain the container’s motion abruptly increased. This second transition showed
hysteresis.

Another series of experiments was motivated by an engineering application (Vanyo
et al. 1995 and references therein). A wavy instability of internal shear layers is
also reported by Vanyo et al. (1995) at lower Ekman numbers, precession rates and
ellipticities than in Malkus’ experiments. Vanyo et al. (1995) and Vanyo & Dunn
(2000) used containers with ellipticities 1/400 and 1/100 and an angle between
container axis and precession vector of 23.5◦. They sampled the parameter range of
Ekman numbers larger than or equal to 7 × 10−7 and non-dimensional precession
rates between 10−6 and 10−2.

Malkus (1968) suggested that the initial instability and its further development into
turbulence originate from cylindrical shear layers. Kerswell (1993) later pointed out
that the Poincaré solution is also prone to inertial instabilities. This second mechanism
is not effective in spheres.

After a description of the numerical method in the next section, § 3 will explore
the basic flow and the structure of the internal shear layers. The instabilities and in
particular the onset of wave disturbances are dealt with in § 4.

2. Numerical methods
The numerical challenge consists in computing the stability boundary of a rapidly

rotating fluid in an ellipsoidal shell. The problem profits from a high-order method
so that a high accuracy is obtained per grid point and in order to keep numerical
diffusivity to a minimum. The obvious choice is a spectral method. These methods
however face the problem of a boundary geometry which is not easily accommodated
by any standard coordinate system. Previous attempts at embedding the ellipsoidal
fluid volume in a spherical computational volume have not been successful beyond
linearized equations of motion (Tilgner 1999b). A different approach is used here: the
ellipsoidal fluid volume is distorted by a coordinate transformation into a spherical
domain; the transformed equations are then discretized with the help of spherical
harmonics for the angular variables and with Chebychev polynomials in the radial
direction. Only aspects of the method peculiar to elliptic boundaries are emphasized
in this section since detailed descriptions of the code for spherical geometry have
been given elsewhere (Tilgner 1999c).

In the following, two coordinate systems will be used: the original one in which
the boundaries are ellipsoids of revolution and the computational one in which
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Fluid instabilities in precessing spheroidal cavities 113

the boundaries are spherical. The first system will be described by symbols with
tildes. Consider incompressible fluid of kinematic viscosity ν in an ellipsoidal shell
rotating with angular frequency ωD about the z-axis. The shell furthermore executes
precessional motion characterized by the precession vector ΩpΩ̂p (hats denote unit
vectors). The boundaries of the shell are given by

x̃2

a2
+
ỹ2

a2
+
z̃2

c2
= 1, (1a)

x̃2

(ηa)2
+

ỹ2

(ηa)2
+

z̃2

(ηc)2
= 1; (1b)

η < 1 and both boundaries have the same ellipticity e = 1 − c/a. Units of length
and time are chosen as (1− η)a and 1/ωD , respectively. Again using tildes to denote
the dimensionless quantities, the equation of motion for the velocity ũ(r̃, t) reads in a
frame of reference attached to the shell

∂

∂t
∇̃× ũ+ ∇̃× {(2(ˆ̃z +Ω) + ∇̃× ũ)× ũ} = E∇̃2∇̃× ũ+ 2ˆ̃z ×Ω, (2)

∇̃ · ũ = 0. (3)

The Ekman number E is defined by E = ν(ωD(1− η)2a2)−1 and Ω = Ωp/ωDΩ̂p. The
computational coordinate system is now introduced by the transformations

x = x̃, y = ỹ, z =
z̃

1− e , (4)

If the velocities are transformed likewise,

ux = ũx, uy = ũy, uz =
ũz

1− e , (5)

one obtains again a solenoidal vector field, ∇ · u = 0. The boundaries are now given
by

x2 + y2 + z2 = r2
o, (6a)

x2 + y2 + z2 = r2
i , (6b)

with ri/ro = η and ro − ri = 1. In this new formulation, the problem lends itself to
a spectral discretization in spherical harmonics. However, the equation of motion in
the computational coordinate system is more complicated:

∂

∂t
∇× u− E∇2∇× u+ L = −∇×N + e∇× (Nz ẑ) + 2(1− e)ẑ ×Ω. (7)

The nonlinear and Coriolis terms have been grouped together, as have the linear
terms which vanish for e = 0:

N = (2(ˆ̃z +Ω) + ∇̃× ũ)× ũ, (8)

L = e(e− 2)
∂

∂t
∇× (uz ẑ)− E e(2− e)

(1− e)2

∂2

∂z2
∇× u

−E
[
e(e− 2)∇2 −

(
e(e− 2)

1− e
)2

∂2

∂z2

]
∇× (uz ẑ). (9)

The precession axis Ω̂ forms the angle α (0 < α < π/2) with the z-axis and is time
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dependent in the chosen system of reference:

Ω̂ = sin α cos t x̂− sin α sin t ŷ + cos α ẑ. (10)

The boundary conditions require that u = 0 at r = ri, ro. The solenoidal vector field u
can be written in terms of poloidal and toroidal scalars Φ and Ψ :

u = ∇× ∇× (Φr̂) + ∇× (Ψ r̂) (11)

which are then decomposed into spherical harmonics:

Φ = r

∞∑
l=1

l∑
m=−l

V m
l (r, t)Pm

l (cos θ)eimϕ,

Ψ = r2

∞∑
l=1

l∑
m=−l

Wm
l (r, t)Pm

l (cos θ)eimϕ.

 (12)

Operating with r̂· and r̂ ·∇× on (7) one obtains two equations for Vm
l (r, t) and Wm

l (r, t):

∂

∂t
DlV

m
l − ED2

l V
m
l − r

l(l + 1)
[r̂ · ∇× L]ml

=
r

l(l + 1)
[r̂ · ∇× {∇×N − e∇× (Nz ẑ)}]ml , (13a)

∂

∂t
Wm

l − E
(
∂2

∂r2
+

4

r

∂

∂r
+

2− l(l + 1)

r2

)
Wm

l +
1

l(l + 1)
[r̂ · L]ml

= − 1

l(l + 1)
[r̂ · {∇×N − e∇× (Nz ẑ)}]ml + (1− e)[f]ml , (13b)

with

Dl =
∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2
, f = 1

2
Ω sin α[iP 1

1 ei(ϕ+t) + c.c.].

[ ]ml denotes the l, m-component of the quantity in the square bracket. These equations
need to be solved subject to the boundary conditions

Vm
l =

∂Vm
l

∂r
= Wm

l = 0 at r = ri, ro. (14)

In order to complete the discretization, the sums in (12) are truncated at L to include
only terms with l 6 L and the functions Vm

l and Wm
l are expanded in Nr Chebychev

polynomials Tn as

Vm
l (r, t) =

Nr−1∑
n=0

vml,n(t)Tn(x), Wm
l (r, t) =

Nr−1∑
n=0

wml,n(t)Tn(x), (15)

with x = 2(r−ri)−1. The collocation points are placed in direct space such that a fast
cosine transform can be used to switch between physical and spectral space. Equations
(13a, b) are enforced at every collocation point and the spectral representation in
radius is merely used to compute derivatives.

Let y(t) be a vector containing the coefficients vml,n(t) and wml,n(t). If equations (13a)
and (13b) are discretized in time using implicit Euler steps and second-order Adams–
Bashforth steps for the linear and nonlinear terms, respectively, they can be written
for a time step of size h in the form

My(t+ h) = M ′y(t) + 1
2
h[3nl(y(t))− nl(y(t− h))], (16)
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where M and M ′ represent matrices and nl all nonlinear terms and the Coriolis force.
In order to compute the nonlinear terms, u, ∇ × u and ∇ × (uz ẑ) are evaluated

in (r, θ, ϕ)-space. Note that N in (7) is computed in the original coordinates. For
this reason, the (r, θ, ϕ)-components of the three-dimensional vectors are converted
into (x, y, z)-components so that e.g. (5) can be easily applied. After all necessary
operations have been performed, the result is transformed back into (r, l, m)-space.
The radial component of the curl and the radial component of the curl of the curl
appearing in (13a) and (13b) are computed with formulas familiar from simulations
in spherical geometry.

For the implicit part of the time step, linear systems of the form

M1y +M2y = A (17)

need to be solved, where M1 represents the discretization of the first two terms in
(7), M2 the remaining terms of the left-hand side of (7), and A the right-hand side
of (16). M1 decouples in l and m and therefore consists of small blocks which are
even independent of m. The corresponding submatrices are computed, inverted and
stored for later use during an initialization step. In order to solve the full system, a
Jacobi-type iteration is employed:

yn+1 = M−1
1 (−M2yn + A) (18)

where yn is the nth iterate of the solution. This aspect of the method leaves room
for improvement. The number of iterations necessary to achieve satisfactory accuracy
increases with increasing e. In the present application, only small ellipticities are of
interest and about 5 iterations are enough to reach convergence so that it did not
seem useful to opt for a more powerful method. For e > 0.2 however, the Jacobi
iteration diverges.
M2 still decouples in m but couples different values of l. It would require a large

amount of storage to keep M2 in memory at any one time so that the effect of M2 on
y is encoded in a set of subroutines instead. M2 and A contain a multitude of terms
in which r̂ · ∇× and r̂ · ∇ × ∇× are applied to expressions in which uz ẑ or second
derivatives ∂2/∂z2 occur. The three basic subroutines used to compute all these terms
take as input the poloidal and toroidal scalars Φ̃ and Ψ̃ of a vector field v and return
the poloidal and toroidal scalars of ∇× v, ∇× vz ẑ or ∇× (ẑ × v). Note that

[r̂ · v]ml =
l(l + 1)

r2
[Φ̃]ml and [r̂ · ∇× v]ml =

l(l + 1)

r2
[Ψ̃ ]ml .

For example, [r̂ · ∇× uz ẑ]ml and [r̂ · ∇×∇× uz ẑ]ml are directly given by l(l+ 1)/r2 times
the poloidal and toroidal scalars of ∇ × uz ẑ, respectively. It is easy to see how the
terms involving ∂2/∂z2 are obtained by noting that

r̂ · ∇× ∂2

∂z2
u = r̂ · ∇× (ẑ × ∇× (ẑ × ∇× u)), (19)

and an analogous expression is valid for r̂ · ∇× ∇× (∂2/∂z2)u.
Apart from the special case e = 0 nothing seems to be available to comprehensively

validate the ellipsoidal code. The program had to be tested term by term by comparing
numerical output with calculations made by hand for representative examples of
poloidal and toroidal scalars. However, some validation is provided by the agreement
between the computed zonal velocity and the experimental observations, and by the
comparison with the asymptotic theory of Busse (1968) which will be discussed in the
next section.
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Figure 1. (a) Latitude and longitude of the direction of the fluid rotation vector ω(r) (equation (20))
as a function of r for Ω = −10−5, α = 30◦, η = 0.1, e = 0.04 in the cases E = 10−4 (circles), 10−5

(squares) and 10−6 (diamonds). The symbols mark the direction of ω(r) at the radii ri+((ro−ri)/41)n,
n = 1 . . . 41. The axis of (retrograde) precession points at zero longitude and a latitude of 60◦. (b)
ω, the absolute value of ω(r) (equation (20)) as a function of r for the same parameters as in (a)
with the Ekman numbers E = 10−4 (solid), 10−5 (dashed) and 10−6 (dot dashed).

Shells with η = 0.1 or 0.01 will be used in order to approximate the experimental
geometries, as well as an exceptional comparison with an Earth-like shell with
η = 0.35.

3. Basic flows
The structure of the laminar flow in spherical shells has been studied in great detail

in Tilgner (1999a) and Tilgner & Busse (2001). This section will focus on the influence
of the ellipticity of the boundaries and on those features which are relevant for the
mechanisms of instability.

In order to quantify the deviations from a solution of uniform vorticity, it is useful
to consider a local rotation vector which corresponds to the solid body rotation
component of the motion of the fluid at radius r:

ω(r) =

(
1− e+

1

1− e
)

[−Re{W 1
1 (r)}x̂+ Im{W 1

1 (r)}ŷ] +W 0
1 (r)ẑ + ẑ. (20)

Re{ } and Im{ } denote the real and imaginary parts of the quantity in curly
brackets. The average ωF of ω(r) over the fluid volume can then be compared with
the asymptotic theory of Busse (1968). This comparison is made in table 1 for a
few representative cases. The agreement is of the same quality as found for spherical
shells (Tilgner & Busse 2001). The detail of the variations of ω(r) for low precession
rates is summarized in figure 1. At constant ellipticity, the solution in the bulk of
the fluid approaches a state of uniform vorticity as E decreases. At the same time,
the orientation of ωF progressively rotates into the (ẑ, Ω̂)-plane. In a sphere however,
ωF lies nearly perpendicular to the (ẑ, Ω̂)-plane (see table 1). As E is reduced in
an elliptical container, viscous forces become smaller than pressure forces, so that
one goes continuously from the orientation characteristic of a sphere to the classical
Poincaré solution in which ωF lies in the (ẑ, Ω̂)-plane. These results agree with the
purely linear calculations of Tilgner (1999b).

Figure 2 shows the velocity field in meridional planes. The most apparent features
are non-axisymmetric and include (in panel (b)) hints of internal layers emanating
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E e α (deg.) Ω θF (deg.) ϕF (deg.)

10−4 0.04 30 −10−5 5.59× 10−3 (5.73× 10−3) −149.76 (−148.40)
10−5 0.04 30 −10−5 6.70× 10−3 (6.88× 10−3) −169.47 (−168.52)
10−6 0.04 30 −10−5 6.77× 10−3 (7.11× 10−3) −176.76 (−176.27)
10−5 0 30 −10−5 3.65× 10−2 (3.44× 10−2) −104.51 (−95.59)

10−4 0.04 30 −10−3 0.568 (0.581) −149.25 (−147.87)
10−4 0.04 30 −10−2 6.62 (6.73) −143.77 (−141.97)
10−4 0.04 30 −0.03 31.31 (30.90) −103.44 (−104.48)
10−4 0.04 30 −0.1 36.74 (38.25) −18.38 (−21.48)
10−4 0.04 30 −0.2 32.14 (34.56) −7.57 (−9.43)

5× 10−4 0.1 80 −0.08 53.98 (59.69) −104.38 (−115.37)
10−4 0.1 80 −0.08 74.79 (82.10) −72.79 (−62.69)
2× 10−5 0.04 30 −0.018 19.96 (21.06) −153.68 (−151.03)

Table 1. The orientation of ωF in polar angles for some representative cases, given by θF and
ϕF . The precession axis is located in the plane ϕ = 0. Numbers in brackets are predictions from
asymptotic theory. All runs are with η = 0.1.

(a) (b) (c)

Figure 2. (a) r-, (b) θ- and (c) ϕ-components of u in meridional planes for η = 0.1, e = 0.04,
E = 10−4, α = 30◦ and Ω = −3 × 10−2. More precisely, the (b) and (c) show uθ and uϕ in the
eastern, but −uθ and −uϕ in the western hemisphere in order to avoid an artificial change of sign
at the z-axis. ẑ is pointing up. 〈ωF〉 is directed to the upper right in (a) and (b) showing ur and uθ
(as indicated by the straight markers) and is pointing out of the figure in (c). Each component is
shown in the plane in which it is strongest. The best fitting Poincaré solution has been subtracted.
Solid and dashed contour lines indicate positive and negative values respectively.

from critical latitudes well known from linear theory. The critical latitudes are sep-
arated by an angle of 60◦ from the axis of rotation of the fluid. The flow shown in
figure 2 is above the threshold of instability and not exactly centrosymmetric for this
reason (see the next section).

A most striking feature in experimental visualizations of the laminar flows are
cylindrical shear layers coaxial with the rotation axis of the fluid. Figure 3 therefore
shows the flow component axisymmetric about ωF . The shear layers in the zonal
velocity well known from experiments clearly appear in the plots. The exact location
of the shear layers depends on both the boundary geometry and the Ekman number.
The most precise comparison is possible in figure 4 in which the profiles of the zonal
velocity in the plane perpendicular to ωF are plotted as a function of radius. The
strongest shear layer connects the critical latitudes and the positions of the strongest
prograde and retrograde jets correspond exactly to those given in figure 3 of Malkus
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(a) (b) (c)
umax = 2.90 ×10–9

¢ = 4.91×10–11
umax = 7.39×10–9

¢ = 1.25×10–10
umax = 1.15×10–8

¢ = 1.95×10–10

Figure 3. Zonal flow component uϕ′ (where ϕ′ denotes the azimuthal angle with respect to the
ωF -axis) axisymmetric about ωF , after subtraction of the average rotation of the fluid. ωF is pointing
upwards. η = 0.1, e = 0.04, Ω = −10−5 and α = 30◦ in all cases. The Ekman number is (a) 10−4,
(b) 10−5 and (c) 10−6. Contour lines are drawn for levels ranging from −umax to +umax. The values
of adjacent levels differ by ∆.

(×10–9)

uu′

0.1 0.3 0.5 0.7 0.9 1.1
r

–5

0

5

10

Figure 4. uϕ′ from figure 3 in the equatorial plane as a function of r for Ω = −10−5, α = 30◦ and
η = 0.1. The line styles indicate e = 0.04, E = 10−4 (solid), e = 0.04, E = 10−5 (dashed), e = 0.04,
E = 10−6 (dotted), and e = 0, E = 10−5 (dot dashed). For this last case, uϕ′ has been divided by
100 in order to make the curve fit into the figure.

(1968). The position of the smaller extrema depends on E and a perfect agreement
with Malkus’ figure cannot be expected for this part of the profile. As can be deduced
from figure 4, the prograde jet becomes stronger with decreasing E. According to
Busse (1968), a singularity should develop in the limit E → 0. The Ekman number
dependence of the maximum zonal velocity does not follow any simple law valid for
the entire interval 10−4 < E < 10−6 but is compatible with a scaling in E−3/10 for
10−5 < E < 10−6 (Noir, Jault & Cardin 2001).

With the geophysical application in mind, we briefly revisit the influence of an
inner core on the axisymmetric circulation. The issue has already been studied by
Tilgner (1999a) where plots of the zonal flow axisymmetric about the container axis
are shown. In order to complement that investigation, figure 5 shows the zonal flow
symmetric about the fluid axis for both spherical and ellipsoidal shells with and
without a sizeable inner core. At small precession rates, the angle between the two
axes is also small but introduces a few visible differences. The conclusion remains
that inclined axisymmetric shear layers appear upon introduction of an inner core.
The main cylindrical shear layer is hardly modified by the inner core, but a new one
emerges near the critical latitudes of the inner core (figure 5).

The meridional circulation (figure 6) shows that fluid flows from the poles to the
equatorial plane along the rotation axis of the fluid. This circulation is symmetric
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(a) umax = 2.88×10–7

¢ = 4.89×10–9
(b) umax = 8.37×10–7

¢ = 1.42×10–8

(c) umax = 3.90×10–8

¢ = 6.60×10–10
(d ) umax = 1.47×10–8

¢ = 2.50×10–10

Figure 5. uϕ′ as in figure 3 for Ω = −10−5 and α = 30◦. The remaining parameters are (a) E = 10−5,
e = 0, η = 0.1, (b) E = 10−5, e = 0, η = 0.35, (c) E = 10−4, e = 0, η = 0.35, (d) E = 10−5, e = 0.04,
η = 0.35.

with respect to the equatorial plane. Vanyo & Dunn (2000) have observed meridional
flow traversing the equatorial plane even in purely laminar flow. This behaviour is
not reproduced in our calculations.

Small precession rates have been chosen for figures 1 and 3–6 in order to be sure of
obtaining stable flows which can be compared with previous work. Also, for the Earth,
Ω ≈ −10−7. In this regime, ω(r) in figure 1 is proportional to Ω and the components
in figures 3–6 are proportional to Ω2. The instability in Malkus’ experiments occurs
at much higher precession rates. Increasing the precession rate primarily increases
the angle between the fluid and container axes. At large enough |Ω|, the velocity
field relative to the fluid axis distorts (see figure 2 and compare figures 2 and 4 of
Busse & Tilgner (2001) with figure 1). The shape of the zonal velocity profile remains
qualitatively the same with a strong prograde jet, but the intensity and exact location
of the jet vary with Ω.

4. Instability
The laminar flows of the previous section are all centrosymmetric with respect to

the origin, i.e. u(r) = −u(−r). The instabilities described in the present section break
this symmetry. It is therefore useful to separate the full velocity field into symmetric
and antisymmetric components, such that u = ua + us with us = (u(r)− u(−r))/2 and
ua = (u(r) + u(−r))/2. The energy Ea contained in the velocity field ua is a convenient
indicator for the onset of instability. Table 2 lists Ea for runs performed in the unstable
regime. Table 3 gives examples of stable flows. Some of the computations use the
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(a) Wmax = 9.00×10–10

¢ = 1.53×10–11
(b) Wmax = 5.11×10–9

¢ = 8.65×10–11

(c) Wmax = 4.15×10–10

¢ = 7.03×10–12
(d ) Wmax = 6.02×10–11

¢ = 1.02×10–12

Figure 6. Streamlines of the meridional component axisymmetric about ωF , for the same parameters
as in figure 5. Contour lines are drawn for levels ranging from −Ψmax to +Ψmax. The values of
adjacent levels differ by ∆.

same geometry but higher Ekman numbers than Malkus’ experiments. Accordingly,
instability sets in at higher precession rates than in the experiments.

Figures 5 and 6 in Vanyo et al. (1995) suggest that one should look for disturbances
with a well-defined wavenumber with respect to the fluid axis. The velocity fields
corresponding to unstable states have therefore been transformed to a coordinate
system denoted by primes in which the z′-axis points along ωF . The field has then been
decomposed into spherical harmonics in this new system and the energy contained in
the different spectral components has been plotted against the azimuthal wavenumber
m′. An example is shown in figure 7. A dominant contribution to ua occurs at m′ = 7
and 8, whereas us differs little from its shape in stable solutions and certainly does not
contain any hint of a wave propagating around the z′-axis. In order to describe the
unstable mode and its wavelike character, it is thus enough to consider the structure
of ua.

The structure of the instability for the set of parameters used in figure 7 is clarified
in figures 8 and 9 and summarized in figure 10. Figures 8 and 9 are snapshots. As
time goes on, the m′ = 7 and m′ = 8 patterns rotate independently of each other
about the z′-axis. Figure 8 shows uaz′ and uar in the plane perpendicular to ωF . m′ = 7
appears in uar whereas m′ = 8 dominates uaz′ . The two sets of rolls overlap but
are centred at different radii. Figure 9 shows cylindrical cuts at distances from the
fluid axis corresponding to these two radii. For m′ = 7 one finds columnar vortices
symmetric about the equatorial plane of the primed coordinate system, whereas the
m′ = 8 vortices are antisymmetric about this plane.

Figure 10 reproduces these and additional observations in a sketch. Two sets
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E e α (deg.) Ω η Ekin Ẽkin Ea Rebl Robl

5× 10−4 0.1 80 −0.08 0.1 0.920 0.115 5.92× 10−4 58 0.40 v
5× 10−4 0.1 80 −0.2 0.1 1.22 0.20 2.19× 10−3 56 0.46 v
10−4 0.1 80 −0.08 0.1 1.33 0.11 1.10× 10−2 140 0.46 bl

10−4 0.04 30 −0.03 0.1 0.373 2.25× 10−2 4.25× 10−4 91 0.25 v,bl
10−4 0.04 30 −0.035 0.1 0.49 3.1× 10−2 8.1× 10−4 104 0.28 v,bl
10−4 0.04 30 −0.05 0.1 0.573 3.70× 10−2 1.56× 10−3 113 0.31 v,bl
10−4 0.04 30 −0.1 0.1 0.512 3.18× 10−2 6.25× 10−4 107 0.31 v,bl
10−4 0.04 30 −0.2 0.1 0.435 3.27× 10−2 9.38× 10−4 94 0.30 v,bl
2× 10−5 0.04 30 −0.018 0.1 0.161 4.44× 10−3 5.00× 10−6 109 0.16 v,bl

7× 10−4 0 60 −0.2 0.01 0.609 0.12 7.67× 10−5 54 0.34 v
5× 10−4 0 60 −0.1 0.01 0.509 6.79× 10−2 5.21× 10−4 45 0.32 v
10−4 0 40 −0.05 0.1 0.500 3.14× 10−2 4.25× 10−4 104 0.28 v,bl

Table 2. Parameters for the simulations in ellipsoids and a few runs in spherical geometry near the
onset of instability. Ekin is the total energy in the mantle frame, Ẽkin the energy in components other
than W 0

1 and W 1
1 (equations (15), (20)), and Ea the energy of ua. Rebl and Robl are the Reynolds

and Rossby numbers of the boundary layer. The last column states whether the instability occurred
in the boundary layer (bl) or in the volume (v). Resolutions ranged from 65 to 129 Chebychev
polynomials and from 64 to 128 for the highest order of retained spherical harmonics. The highest
included azimuthal wavenumbers ranged from 32 to 64.

E e α (deg.) Ω η Ekin Ẽkin

5× 10−4 0.1 80 −0.03 0.1 7.63× 10−2 7.94× 10−3

10−4 0.1 80 −0.01 0.1 1.03× 10−2 5.42× 10−4

10−4 0.04 30 −0.01 0.1 1.84× 10−2 1.01× 10−3

3× 10−5 0.04 30 −0.01 0.1 2.65× 10−2 8.90× 10−4

2× 10−5 0.04 30 −0.01 0.1 2.85× 10−2 7.98× 10−4

10−5 0.04 30 −0.001 0.1 1.96× 10−4 3.68× 10−6

5× 10−4 0 60 −0.07 0.01 3.94× 10−1 4.78× 10−2

10−4 0 30 −0.01 0.1 5.48× 10−2 3.31× 10−3

Table 3. Same as table 2 but for runs below the onset of instability.

0 5 10 15 20
10–8

10–6

10–4

10–2

100

m´

Es

Ea

Figure 7. Energy contained in the modes with wavenumber m′ as a function of m′ for η = 0.1,
e = 0.04, α = 30◦, Ω = −0.03 and E = 10−4. Antisymmetric (circles) and symmetric (squares)
contributions are shown separately.
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(a) umax = 2.00×10–2

¢ = 8.15×10–4
(b) umax = 1.91×10–2

¢ = 7.74×10–4

Figure 8. (a) uar and (b) uaz′ in the plane perpendicular to ωF for the same parameters as in
figure 7. Contour level separation and values of the extreme levels are given.

(a)

(b)

Figure 9. uar on cylindrical surfaces at distances 0.638 (a) and 0.869 (b) from the ωF -axis for the
same case as in figures 7 and 8. ϕ′ runs from −π to π in going from left to right and the lattitude
varies vertically from −55◦ to +55◦ (a) and from −40◦ to +40◦ (b).

of columnar vortices centred at different distances from the fluid axis exist, with
wavenumbers differing by one. The entire pattern is antisymmetric with respect to
reflection at the origin. Individual rolls in the wave with odd wavenumber therefore
have equal vorticity in the northern and southern hemispheres. Rolls belonging
to the wave with even wavenumber on the contrary have opposite vorticities in
both hemispheres. The designations north and south refer of course to the primed
coordinate system. The axial and azimuthal components in the outer roll pattern are
of comparable magnitude, whereas uaz′ is small in the component with odd m′. uaz′
reaches its extremal values in between the outer vortices.

The same sketch is valid for other parameters, except that the values of m′ change
as indicated in table 4. In one case, three adjacent values of m′ are listed. Visual
inspection of the corresponding flow reveals only two sets of rolls, because the
superposition of the waves with the highest and lowest m′ (these two modes have
the same symmetry with respect to the equatorial plane) merely appears as a time-
dependent distortion of the wave with the highest m′. It has been verified that all
three modes drift independently of each other.
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E e α (deg.) Ω η m′ ωm′ T |ωF |
10−4 0.04 30 −0.03 0.1 7,8 ω7 = 6.28, ω8 = 6.23 0.50 0.888
5× 10−4 0.1 80 −0.08 0.1 3,4 ω3 = 1.90, ω4 = 1.76 1.71 0.614
5× 10−4 0 60 −0.1 0.01 2,3,4 ω2 = 2.15, ω3 = 2.12, ω4 = 2.12 1.48 0.681

Table 4. Details of the modes excited near the onset of instability. m′ and ωm′ are the wavenumber
and drift frequency of these modes with respect to the rotation axis of the fluid. In a frame in which
the precession and container axes are fixed and the fluid axis points along z′, the temporal and
azimuthal dependence of the waves is given by exp(i(m′ϕ′ − ωm′ t)). In this frame, the fluid rotates
at angular velocity |ωF |. The ωm′ have been determined from equatorial sections such as in figure 8
plotted for different moments in time. The energy of the flow oscillates with the period T .

Figure 10. Sketch of the structure of the unstable mode in figures 8 and 9.

In the precessing primed coordinate system of figures 7–10, in which the fluid axis
is along z′ and the precession axis Ω̂ and container axis ẑ are stationary, the separate
equations of motion for ua and us become

∂

∂t
∇× us + ∇× [(∇× us)× us + (∇× ua)× ua] + 2∇× (Ω× us) = E∇2∇× us, (21)

∂

∂t
∇× ua + ∇× [(∇× us)× ua + (∇× ua)× us] + 2∇× (Ω× ua) = E∇2∇× ua. (22)

If r is a vector to a point on the boundary, us = ẑ × r and ua = 0 on the boundary.
The boundary conditions thus drive only us. If ua is strictly zero initially, it will stay
zero forever: ua can only grow as an instability of a ground state us. Once a pair
of modes has been excited in ua, it drives through the (∇ × ua) × ua term in (21)
a symmetric motion at the double wavenumber. The corresponding spectral peak
is seen in figure 7. The onset of instability is also manifested as small-amplitude
oscillations of the energy. Even for the runs in table 4, the oscillation is not exactly
harmonic but an underlying period T can be discerned which is given in that table.
The sum of the two angular frequencies of a pair of modes is nearly 2π/T .

It is tempting to classify the vortices which are symmetric with respect to the
equatorial plane as Rossby waves. There are three candidates in table 4 (with ωm′

equal to 6.28, 1.90 and 2.12). From the drift frequencies in that table, the frequency
ωR in the frame of the fluid is computed as ωR = ωm′ − m′|ωF |. For the three sets
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(×10–3)

Ekin

Ea

–X
0 0.1 0.2 0.3 0.4

2

4

6

Figure 11. The ratio of the antisymmetric energy Ea and the total kinetic energy Ekin as a function
of the precession rate Ω for E = 10−4, e = 0.04, η = 0.1, α = 30◦ (circles) and E = 5× 10−4, e = 0,
η = 0.01, α = 60◦ (squares).

of symmetric vortices, one therefore finds values for ωR of 0.064, 0.058 and 0.077,
respectively. These numbers are within 0.05 of the frequency computed for a Rossby
wave localized at the distance from the axis at which the observed disturbance is
maximum (equation (4.55) of Gubbins & Roberts 1987). A better agreement cannot
be expected because of the uncertainties in the determination of ωm′ and because the
observed motion is not localized well at a certain cylindrical radius as is assumed
in the theoretical formula. Note also that these three values of ωR are all positive
as must be the case for Rossby waves. The same calculation for the antisymmetric
vortices yields mostly negative ωR .

Figure 11 shows two series of simulations in which |Ω| has been systematically
increased. Surprisingly, the energy can drop back to zero for |Ω| above the instability
threshold. One could suspect that an instability shows in the symmetric components
at these parameters, but this is not the case. There is on the other hand no obvious
reason why the instability should occur only in ua. Indeed, for E = 10−4, e = 0.04,
α = 30◦ and Ω = −0.035, the instability resides in modes with m′ = 6 and 7, the
symmetric components containing more energy than the antisymmetric ones.

Away from the onset, an increasingly complex time dependence of the flow is
observed and the main peak in spectra like shown in figure 7 becomes broader.
Increasing |Ω| or E generally shifts the energy content to lower m′. The cases presented
by Tilgner & Busse (2001) are similar to the one in table 2 with E = 7 × 10−4 and
have most energy in modes with m′ = 0 and 1.

Independently of the dynamics of the bulk fluid, the Ekman layers may become
unstable. This is demonstrated in figure 12 which shows as a function of radius the
density εa(r) of the energy contained in ua averaged over spherical surfaces:

εa(r) =
1

4π

∫ π

0

dθ sin θ

∫ 2π

0

dϕ 1
2
u2
a. (23)

Three different situations are represented in figure 12. Either only the bulk has
become unstable in the manner described above, or only the boundary, or both. One
instability does not seem to affect the other. The parameters for which the boundary
layer instability has been observed are listed in table 2. It is natural to look at
the Reynolds number of the boundary layer in order to determine a criterion for
the onset of this instability. The distance from the boundary at which the absolute
value of the radial velocity (averaged over the corresponding spheroidal surface)
reaches a maximum is used as the boundary layer thickness. The layer thickness
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(×10–3)

εa

r
0.1 0.3 0.5 0.7 0.9 1.1
0

0.6

1.2

1.9

2.5

Figure 12. The energy density εa of the antisymmetric components (equation (23)) as a function of
r for E = 5 × 10−4, e = 0.1, α = 80◦, Ω = −0.08 (solid), E = 10−4, e = 0.04, α = 30◦, Ω = −0.05
(dashed), and E = 10−4, e = 0.1, α = 80◦, Ω = −0.08 (dot dashed). The values for the last curve
have been divided by ten. η = 0.1 for all cases.

is approximately 1.4 × E1/2 in all cases. Based on this thickness and the maximum
tangential velocity, the Reynolds numbers listed in table 2 have been computed.
The Rossby numbers have been estimated as vh[2(1 + Ω cos α)]−1 where vh is the
maximum tangential velocity at the edge of the boundary layer. The critical Reynolds
number lies somewhere in between 50 and 100, which falls into the range quoted
by Tatro & Mollo-Christensen (1967) for time-independent Ekman layers. Figure 13
gives an impression of the unstable boundary layer flow. The comparatively small
lateral length scales of the motions excited by the boundary layer instability become
difficult to resolve at more extreme parameters. The development of this instability
and ensuing numerical instabilities turn out to be the most serious obstacle to high
precession rates at low E.

The classification of the bulk instability is more arduous. It is known from theoreti-
cal work (Pierrehumbert 1986; Gledzer & Ponomarev 1992) that an inertial instability
occurs in flows with elliptically deformed streamlines, and through related mecha-
nisms in precession-driven flow in ellipsoidal cavities (Kerswell 1993). This work is not
directly relevant here because the same type of instability is observed in simulations
in both spherical and ellipsoidal geometries. Incidentally, the criterion for the onset
of instability given by Kerswell (1993) predicts stability for all the simulated flows.

A variation of these analyses allows one to see that the bulk instability is due
to flow components with wavenumber m′ = 1. Following the presentations given by
Gledzer & Ponomarev (1992) and Kerswell (1993), consider the inertial mode problem
posed by (21) and (22) appropriately linearized if us is a solid body rotation plus a
perturbation of wavenumber m′ = 1. Two eigenmodes of the unperturbed problem
with time and azimuthal dependences given by exp(i(m′aϕ′−ωat)) and exp(i(m′bϕ′−ωbt))
are coupled by the perturbation only if |m′a − m′b| = 1. Since the basic state has no
time dependence in the chosen frame of reference, the strongest coupling occurs if
the resonance condition ωa = ωb is met. The instability thus consists of at least
one pair of inertial modes with wavenumbers differing by one and nearly equal
frequencies. Looking at table 4, one sees that these conditions are fulfilled, with two
pairs of resonant modes being excited in one case. It seems highly unlikely that such
a constellation of modes would be excited accidentally by an m′ = 0 disturbance of
the basic flow which could have instabilities consisting of a single inertial mode of
arbitrary wavenumber and frequency.
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Figure 13. uar on a surface separated by 0.015 from the outer boundary for e = 0.04, η = 0.1,
E = 10−4 and Ω = −0.03. The north pole is marked by a circle, the fluid axis by an × and the
precession axis by a +. Contour levels are separated by 3.56 × 10−4 and range from −1.05 × 10−2

to 1.05× 10−2.

Experimental reports, on the contrary, suggest that the axisymmetric internal
cylindrical shear layers cause an instability even though the employed visualization
methods cannot ascertain whether these shear layers merely act as tracers or whether
they actually trigger an instability. In all the simulations discussed so far, the m′ = 1
deviations from a flow with uniform vorticity in the basic state outweight the m′ = 0
deviations. However, as the Ekman number is decreased, the viscous corrections
contributing to the m′ = 1 deviations diminish, whereas the axisymmetric shear layer
connecting the critical latitudes becomes more and more singular. An instability of
that shear layer is thus plausible at low E. One can determine the typical velocity
difference in the m′ = 1 component from plots such as in figure 1 and construct a
Rossby number from it. It turns out that this Rossby number increases with decreasing
Ekman number, so that the mechanism related to the m′ = 1 components should
remain effective even at the lower Ekman numbers at which the axisymmetric shear
layer possibly becomes unstable too.

According to the picture delineated by the simulations described in this section,
at least two essentially independent instability mechanisms coexist. The strongest
departures from a solution with constant vorticity are in the toroidal components of
wavenumber 0 and 1 with respect to the fluid axis as presented in § 3 and in Tilgner
& Busse (2001). If the bulk flow becomes unstable it could presumably do so because
of both components but only instabilities triggered by the wavenumber 1 deviations
have actually been observed. This instability breaks the inversion symmetry of the
flow and leads to a time dependence of the total energy. Since the excited flow fills
a large fraction of the fluid volume, the origin of the instability cannot be traced
back to a more particular feature of the velocity field, such as for example the
critical latitudes. In addition, the boundary layer becomes unstable independently if
its Reynolds number is large enough (certainly if it is larger than 100). The unstable
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modes vary seemingly continuously in going from ellipsoidal to spherical containers
so that the container shape does not matter. In the sphere, the Poincaré solution is a
solid body rotation which is a stable flow, so that viscous corrections to the Poincaré
flow must be responsible for the instabilities. It is expected on theoretical grounds
(Kerswell 1993) that in ellipsoidal containers, inertial instability also occurs due to the
shape of the boundaries. There is no evidence for this mechanism (nor should there
have been according to theory) in the parameter range accessible with the method
used here. This last scenario has been linked to Malkus’ second experiment in which
a sudden transition with an abrupt increase of the driving torque as well as hysteresis
occurred. None of these effects have been seen in the simulations. On the contrary,
the motions excited by the instability always accounted for only a small fraction of
the total energy (see table 2).

5. Conclusion
We have reported on direct simulations of precession-driven flow in spheroidal

shells. The range of parameters accessible with the employed numerical method
is limited mainly by the onset of a boundary layer instability accompanied by
unresolvably small scales. The bulk becomes unstable independently through the
excitation of motions reminiscent of Rossby waves as summarized in figure 10. The
energy contained in the unstable mode always remained small compared with the total
energy and has not been large enough for dynamo action. In the attempts at simulating
a precession-driven dynamo made so far, the initial magnetic field was converted by
interaction with the flow into a strong toroidal field which eventually decayed.

Experiments coupled with theory have already suggested that the wavy instability
exists in the Earth (Malkus 1971). In the experiments, the boundary layer is very thin
and its instability has not been seen. Such an instability should exist in the Earth,
however. The data on the orientation of the average vorticity of the flow show that
one can apply with confidence the formula of Busse (1968) to the Earth. According
to this theory, the angle between the Earth’s axis of figure and the rotation axis of the
core is 10−5 which leads to velocities at the core–mantle boundary of up to 2.5 mm s−1.
This is one order of magnitude larger than the velocities deduced from the secular
variation of the magnetic field. The precessional velocity field varies with the period
of one day and the mantle of course screens variations of the magnetic field on that
time scale. Nonetheless, these large velocities have an influence on the boundary layer
dynamics. Based on a critical Reynolds number for the boundary layer of 100 and
using 1.4 × E1/2 for the layer thickness, the Earth’s Ekman layer must be unstable
if the Ekman number of the Earth’s core is less than 2 × 10−14, which is the case
according to current estimates.

This work was supported by the Deutsche Forschungsgemeinschaft. Most of the
simulations presented here have been run on the CRAY T3E parallel machines of the
John von Neumann Institute for Computing and the High Performance Computing
Center Stuttgart.
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