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Abstract. The influence of the intrinsic spin of electrons on the propagation of
circularly polarized waves in a magnetized plasma is considered. New eigenmodes
are identified, one of which propagates below the electron cyclotron frequency,
one above the spin-precession frequency, and another close to the spin-precession
frequency. The latter corresponds to the spin modes in ferromagnets under certain
conditions. In the non-relativistic motion of electrons, the spin effects become
noticeable even when the external magnetic field B0 is below the quantum critical
magnetic field strength, i.e. B0 < BQ = 4.4138×109 T and the electron density satisfies
n0 � nc � 1032 m−3. The importance of electron spin (paramagnetic) resonance
(ESR) for plasma diagnostics is discussed.

1. Introduction
During recent years there has been a rapid increase in the interest of quantum
plasmas (see e.g. [1–15]). This has been stimulated by experimental progress in
nanoscale plasmas [6], ultracold plasmas [16], spintronics [17], and plasmonics [18].
However, already more than 40 years ago, Iannuzzi [19] established the possibility
for the existence of electron spin (paramagnetic) resonance (ESR) in a fully
ionized low-temperature plasma, and predicted its importance, e.g. in the plasma
diagnostics for measuring the particle density with a greater precession than the
conventional technique, in determining the particle velocity spectrum perpendicular
to the magnetic field, as well as to calculate the magnetic field in the propagation
of electromagnetic (EM) waves (e.g. whistlers, Alfvén waves, shock waves, etc.)
in plasmas. Recent investigation [20] along this line indicates that besides the
currently prevalent laser methods, ESR technique can be successfully used for
plasma diagnostics, e.g. measuring the electron densities in the microwave region.
Furthermore, the importance of spin effects in plasmas has also been studied using
kinetic plasma theory [11–13, 21, 22], with applications to wave propagation [11–13]
as well as other phenomena [21, 22]. The hydrodynamic description of spin plasma
waves can also be found in the literature (see e.g. [10, 14, 23]).

Although, whistler waves have been studied for almost a century, they are still
a subject of intense research in view of its importance not only in space plasmas,
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but also in many astrophysical environments, e.g. in the atmosphere of neutron star
envelope, in the coherent radio emission in pulsar magnetosphere, etc. Quasilinear
theory [24] and simulation [25] show that whistler waves can be used to resonantly
accelerate electrons. Furthermore, they can also be used to interpret the fine structure
of Zebra-type patterns and fiber bursts in solar type II and IV radio bursts [26].
Thus, the occurrence of ESR might be useful for the electron acceleration in the
propagation of EM radiation in the pulsar magnetosphere as well as for plasma
diagnostics in the microwave region in laboratory experiments if the conditions
favor.

In this paper, we will derive and analyze the dispersion relation for the propagation
of circularly polarized (CP) EM (CPEM) waves in a magnetized spin plasma
using a spin fluid model. Various fluid models are appropriate in different regimes
(see e.g. [9, 10]). The model to be used contains the Bohm-de Broglie potential,
the magnetic dipole force and includes the spin-precession dynamics as well as
the spin magnetization current. Its basis can be found in, e.g. [10], and more
rigorous foundation can be given starting from the kinetic theory presented in [13].
Specifically, we will focus our discussion to the ESR as well as the properties of spin
modified whistler-like modes.

2. Weakly nonlinear evolution
The non-relativistic evolution of spin −1/2 electrons can be described by [10]

(∂t + ve.∇) ve = − e

me

(E + ve × B) − ∇Pe/mene +
�2

2m2
e

∇
(

∇2√
ne√

ne

)
+

(
2μ

me�

)
S.∇B,

(1)

(∂t + ve.∇) S = −
(
2μ/�

)
(B × S) , (2)

where ne, me, ve, respectively, represent the number density, mass, and velocity of
electrons, E (B) is the electric (magnetic) field, and Pe is the electron pressure. Also,
S is the spin angular momentum with its absolute value |S| = �/2; μ = −(g/2)μB,
where g ≈ 2.0023193 is the electron g-factor and μB ≡ e�/2me is the Bohr magneton.
The equations are then closed by the Maxwell equations:

∇ × E = −∂tB,∇.B = 0, (3)

∇ × B = μ0

(
ε0∂tE−eneve+

(
2μ/�

)
∇ × neS

)
, (4)

The above (1) and (2) apply when different spin states (i.e. spin-up and spin-down
relative to the magnetic field) can be well represented by a macroscopic average.
This may occur for very strong magnetic fields (or a very low temperature), where
generally the lowest energy spin state is populated. Alternatively, when the dynamics
on a time-scale longer than the spin-flip frequency is considered, the macroscopic
spin state is well described by the thermodynamic equilibrium spin configuration,
and the above model can still be applied. In the later case, the macroscopic spin state
will be attenuated by a (thermodynamic) factor decreasing the effective value of |S|
below �/2. However, this case will not be considered further in the present paper. As
a consequence, our studies will be focused on the regime of strong magnetic fields,
as seen in astrophysical plasmas [27].
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In what follows, we will assume the propagation of a CPEM waves to be of
the form E = (x̂ ± iŷ)E(z, t) exp(ikz − iωt)+ c.c., along an external magnetic field
B = B0ẑ, where E(z, t) is the weakly modulated wave amplitude (i.e. we assume
|(1/f)∂f/∂z| � k, |(1/f)∂f/∂t| �ω, for all variables f), k (ω) represents the EM
wavenumber (frequency) and c.c. denotes the complex conjugate. In the interaction
of high-frequency (HF) EM waves with the HF electron plasma response, the use
of cold plasma approximation is well justified in view of the fact that for large field
intensities and moderate electron temperature, the directed velocity of electrons in
the HF fields is much larger than the random thermal speed. Moreover, it can also
be shown that the density perturbation associated with the high-frequency EM wave
is zero. Thus, taking the curl of (1) and using (2)–(4) we readily obtain the following
evolution equation for CPEM waves:

0 =
e

me

∂tB +
ε0

ene
∂t

(
∂2
t B +

1

ne
∇ne × ∂tE
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− vez∇ × ∂zve +
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ne
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me�ne
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The weakly nonlinear (5) is a useful result when considering the interaction
between low-frequency (LF) and HF fields, where the LF fields are induced by
the ponderomotive force. Equation (5) then needs to be complemented by equations
for the LF dynamics, and naturally the number of dependent variables can be
further reduced. However, before this line of research is pursued, a more thorough
study of the linear theory should be made, as will be undertaken in the next section.

3. Linear theory of whistler waves
Introducing the variables B± = Bx ± iBy, E± = Ex ± iEy , etc., suitable for CP
waves, and limiting ourselves to the linearized theory, we obtain respectively from
the Faraday’s law and the spin-evolution equation [15]:

B± = ± ik

ω
E±, S± = ∓ 2μ |S0|B±

�(ω ± ωg)
. (6)

Using (6) to express the free current as well as the magnetization current in terms of
the electric field, and using (4), the following linear dispersion relation is obtained
for the CPEM modes

n2
R = 1 −

ω2
pe

ω (ω ± ωc)
−

g2ω2
pek

2 |S0|
4ω2me(ω ± ωg)

, (7)

which can be rewritten as

n2
R

(
1 +

ωμ

ω ± ωg

)
= 1 −

ω2
pe

ω (ω ± ωc)
, (8)

where nR ≡ ck/ω is the refractive index, and where the upper and lower sign,
respectively, stand for the left-hand circularly polarized (LCP) and right-hand
circularly polarized (RCP) waves. Also, ωμ = g2�/8meλ

2
e is a frequency which
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involves the spin correction due to plasma magnetization current and λe ≡ c/ωpe

is the electron skin-depth (inertial length scale). Moreover, ωpe ≡
√

n0e2/ε0me,
ωc = eB0/me and ωg = (g/2)ωc are respectively the electron plasma, cyclotron and
the spin-precession frequency. In absence of the spin-magnetization, the well-known
classical dispersion relation, namely ω2 = c2k2 + ωω2

pe/ (ω ± ωc) is recovered. A
few comments are in order. The first and the second term in the right-hand side
of (7) appear due to the displacement current and the free electron current. The
term involving ωμ appears even in absence of the external magnetic field, since the
spin perturbation is due to the wave magnetic field and not due to the constant
field B0 which does not provide any magnetic dipole force. Note, however, that
an unperturbed spin state with |S0| = �/2, which has been used in the derivation,
typically requires that the external magnetic field is strong. Thus, inclusion of
the electron spin perturbation leads to a modification of the dispersion relation
for transverse plasma oscillations. This modification is clearly substantial when
ω < ωg � ωμ, i.e. when �ωc � mec

2 for ωpe �
√

2ωc, where c is the speed of light
in vacuum. This corresponds to a regime of very strong magnetic field in which the
external field strength approaches or exceeds the quantum critical magnetic field,
i.e. B0 � BQ ≡ 4.4138 × 109T . In such a situation relativistic effects [28] might be
important. On the other hand, for the non-relativistic motion of electrons we have
�ωc < mec

2, i.e. B0 < BQ for ωpe >
√

2 ωc. In this case, the density regime in which the
magnetic field is ‘non-quantizing’ and does not affect the thermodynamic properties
of the electron gas, is n0 � nc � 1032m−3 and the temperature Te � TB � �ωc/kB,

where kB is the Boltzmann constant. Thus, in the strong magnetic field and highly
dense plasmas, the electron spin effect can no longer be neglected, rather it modifies
the wave dispersion leading to new eigenmodes.

Inspecting now the term ∝ � in (7), we note that

�k2

meω
=

(
�ωc

mec2

) (
c2k2

ω2

)(
ω

ωc

)
. (9)

So, the spin current can be much larger than the classical free current when
|JM±/JC±| ∼ �k2/meω � 1. This basically holds when either (i) �ωc � mec

2, ω <

ωc, ck or (ii) �ωc < mec
2, ω < ωc, and ω � ck is satisfied. The case of ω > ωg > ωc

is rather less important, as it does not give rise to wave propagation (n2
R < 0). Also,

in the very LF regime ω �ωc, the ion motion can be of importance, and we will
therefore not consider that case. Thus, one important mode could be the RCP LF
(ω < ωc) EM waves (whistlers). Let us now see how the dispersion relation reduces
when either of the two cases is considered. In the limit of |JM±/JC±| ∼ �k2/meω � 1,
the dispersion (8) reduces to

(ω ± ωg)(1 − ω2/c2k2) + ωμ = 0, (10)

from which one finds for ω � ck a purely spin-modified frequency ω1 ≈ ∓ωg − ωμ.
Also, if ωμ � ck and ωμ �ωg, we have ω2 ≈ ∓ωg and ω2

3 ≈ c2k2. The frequencies ω1,2

may correspond to the spin waves in ferromagnets under certain conditions [29].
Figure 1 displays the modes for RCP waves obtained as numerical solutions of
the dispersion equation. Evidently, there exist two eigenmodes apart from an HF
(ω > ωg) one, namely a mode close to the electron-cyclotron or spin-precession
frequency, and the other one is the LF mode below the cyclotron frequency. In
contrast to the HF modes, the spin modified LF modes propagate with the frequency
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Figure 1. (Colour online) Different eigenmodes for RCP waves obtained as numerical solutions
of the dispersion (7) are shown with respect to the normalized wavenumber and frequency
for B0 = 5 × 108 T < BQ, n0 = 7 × 1036 m−3 � nc.

below that in the classical case. On the other hand, in the very HF regime (ω �ωg), n
2
R

≈ 1 > 0, and so we have ω2 = c2k2, which is the dispersion relation of a EM wave in
vacuum. Evidently, since n2

R < 0 for ω > ωg, there must exist an intermediate
frequency ω(> ωg) at which the solution for n2

R must pass through a zero value,
and becomes positive again. Thus, the cut-off frequencies for which n2

R = 0 are
obtained as

ωR,L =
1

2

(
∓ωc +

√
ω2

c + 4ω2
pe

)
,

where ∓ stand for RCP and LCP waves respectively. Clearly, the RCP waves have
lower cut-off frequency than the LCP modes. On the other hand, the resonances for
the RCP waves (n2

R → ∞) associated with both the orbital and the spin-gyration,
occur (LCP mode has no resonance) as either ω → ωc or ω → ωg, i.e. when the
angular frequency of the wave electric field matches either due to electron cyclotron
motion (cyclotron resonance) or due to the intrinsic spin of electrons (ESR). At the
resonance, the transverse field associated with the RCP wave rotates at the same
velocity as electrons gyrate around B0. The electrons thus experiences a continuous
acceleration from the wave electric field, which tends to increase their perpendicular
energy. Therefore, it is not surprising that RCP waves propagating along the external
magnetic field and oscillating at the cyclotron frequency or spin-precession frequency
are absorbed by electrons. This may be the consequence to the recently developed
experiment based on microwave absorption and the ESR to be successfully used
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Figure 2. (Colour online) The normalized group speed given by (11) is plotted as a function
of the normalized wave frequency for the RCP waves with the same set of parameters as in
Fig. 1.

for plasma diagnostics [20]. On the other hand, since the spin effect is appreciable
in the strongly magnetized dense plasmas, the ESR could well be relevant for the
coherent EM radiation in pulsar magnetosphere or magnetized white dwarfs. Let us
now see how the group speed (vg ≡ dω/dk) of the CP waves is modified with the
spin correction. We obtain from the dispersion relation (see (7))

vg = Λ/
(
2ω/ω2

pe + Γ
)
, (11)

where Λ and Γ are given by

Λ =
2c2k

ω2
pe

+
g2k |S0|

2me(ω ± ωg)
, Γ =

ωc

(ω ± ωc)2
+

g2k2 |S0|
4me(ω ± ωg)2

. (12)

Clearly, the LF (ω < ωc) component of a pulse (whistlers) propagates more slowly
than the HF (ω > ωg) components as is evident from Fig. 2. It follows that by the
time a pulse returns to a ground level it has been stretched out temporarily, because
the HF component of the pulse arrives slightly before the LF components. This
also accounts for the characteristic whistling down-effect observed at ground level.
Moreover, the group speed vg of the whistlers increases in the frequency regime
0 < ω < ωc/2, and decreases in the other subinterval ωc/2 � ω < ωc before it
reaches the maximum nearer the resonance point. However, the group speed of the
HF modes approaches the speed of light as ω (> ωg) increases and gets saturated
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at large ω. From Fig. 2 we also note that the spin force reduces the group speed in
strongly magnetized dense plasmas.

4. Summary and discussion
To summarize, the dispersion relation for the propagation of HF CPEM waves is
obtained in a magnetized spin plasma. The electron spin modifies the plasma current
density and thereby introduces a correction term in the dispersion relation, which,
in turn, gives rise a new CP HF mode. The spin effects are seen to be substantial in
the very strong magnetic field (B0 � BQ ≡ 4.4138 × 109T ) and highly dense plasmas
(n0 � nc � 1032m−3) where the relativistic effects might be important. However, in
non-relativistic plasmas, the spin of electrons can also be important in the case
B0 < BQ together with n0 � nc. In particular, when the spin current dominates
over the classical free current the RCP EM waves resonantly interact with the
electrons only at the spin-precession frequency. Such resonance should be helpful
for particle acceleration in the coherent radio emission of the pulsar magnetosphere
or magnetized white dwarfs. The study of the spin modified modes might also be
important at least from the diagnostic points of view, since the observation of the
propagation characteristics of the wave modes may be used in order to determine
the physical parameters in plasmas [30]. Lastly, the electron spin resonance (ESR)
could be an important consequence to the recently developed experiment for plasma
diagnostics in the microwave region, if the conditions favor [20].
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