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Recently, many authors have investigated the origin and growth of turbulent bands in
shear flows, highlighting the role of streaks and their inflectional instability in the process
of band generation and sustainment. Recalling that streaks are created by an optimal
transient growth mechanism, and motivated by the observation of a strong increase of
the disturbance kinetic energy corresponding to the creation of turbulent bands, we use
linear and nonlinear energy optimisations in a tilted domain to unveil the main mechanisms
allowing the creation of a turbulent band in a channel flow. Linear transient growth analysis
shows an optimal growth for wavenumbers having an angle of approximately 35◦, close to
the peak values of the premultiplied energy spectra of direct numerical simulations. This
linear optimal perturbation generates oblique streaks, which, for a sufficiently large initial
energy, induce turbulence in the whole domain, due to the lack of spatial localisation.
However, spatially localised perturbations obtained by adding nonlinear effects to the
optimisation or by artificially confining the linear optimal to a localised region in the
transverse direction are characterised by a large-scale flow and lead to the generation of
a localised turbulent band. These results suggest that two main elements are needed for
inducing turbulent bands in a tilted domain: (i) a linear energy growth mechanism, such as
the lift-up, for generating large-amplitude flow structures, which produce inflection points;
(ii) spatial localisation, linked to the presence or generation of large-scale vortices. We
show that these elements alone generate isolated turbulent bands also in large non-tilted
domains.

Key words: nonlinear instability, shear-flow instability, transition to turbulence

1. Introduction

In plane Poiseuille flow, transition to turbulence often arises for Reynolds numbers not
greater than the critical value for linear stability analysis, Re = 5772. For Reynolds
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numbers consistently lower than this threshold value obtained by linear analysis, the flow
may exhibit localised turbulence (Tsukahara et al. 2005). Carlson, Widnall & Peeters
(1982) first observed laminar–turbulent patterns in channel flow, for Re = 1000. In very
large domains, localised turbulent bands embedded in the laminar flow, tilted with respect
to the streamwise direction, are observed (Tsukahara, Kawaguchi & Kawamura 2014;
Xiong et al. 2015; Tao, Eckhardt & Xiong 2018; Shimizu & Manneville 2019; Kashyap,
Duguet & Dauchot 2020b). In channel flow, Kashyap et al. (2020b) have found that the
mean angle of the bands remains approximately constant (θ ≈ 25◦) for a friction Reynolds
number ranging from 60 < Reτ < 90, while increasing towards θ ≈ 45◦ for Reτ < 60.
This oblique laminar–turbulent pattern is also observed in other shear flows, although for
a different range of Reynolds numbers and presenting different angles (Prigent et al. 2002;
Barkley & Tuckerman 2005; Duguet, Schlatter & Henningson 2010; Tuckerman & Barkley
2011; Duguet & Schlatter 2013; Chantry, Tuckerman & Barkley 2017; Tuckerman, Chantry
& Barkley 2020). Using numerical simulations, Tao et al. (2018) have established that
oblique turbulent bands may arise in channel flow at Re ≈ 660. Recently, forcing the flow
with an inflectional instability, Song & Xiao (2020) have been able to generate turbulent
bands at Re ≈ 500, although not self-sustained. Turbulent bands in large domains have
been analysed by several authors with the aim of studying their characteristics, such as their
angle and length (Tsukahara et al. 2005; Tao et al. 2018; Kashyap et al. 2020b), as well as
their dynamics and interactions (Duguet et al. 2010; Tao et al. 2018; Shimizu & Manneville
2019; Gomé, Tuckerman & Barkley 2020). In order to reduce the computational cost and
the flow complexity, Barkley & Tuckerman (2005, 2007) studied the behaviour of the plane
Couette flow in a small domain tilted perpendicularly to the turbulent band direction. Later,
Tuckerman et al. (2014) extended this methodology to plane Poiseuille flow.

Recently, many works have focused on the origin and growth of turbulent bands. By
means of direct numerical simulations (DNSs) in a large-sized channel flow, Shimizu
& Manneville (2019) observed that the turbulent bands are characterised by an active
region at the head, where streaks are generated, whereas streak decay is found in the tail.
Based on these observations, they suggest that streak generation could be the origin of
the self-sustaining process of a single turbulent band. Inspired by this conjecture, Xiao
& Song (2020) have performed a linear stability analysis of the flow averaged in three
different regions at the head of the band. They found an inflectional spanwise instability,
which generates streaky structures similar to those found at the head of a turbulent band.
Thus, they conjectured that an inflectional instability at the head of the turbulent band
can be at the origin of its growth and sustainment. Based on this hypothesis, Song &
Xiao (2020) have applied to the flow a volume forcing inducing inflectional instability,
which was capable of triggering turbulence in the form of turbulent bands at low values
of the Reynolds number. They observed a rapid non-modal growth of perturbations of
the velocity profiles deformed by this continuous forcing. Using a nonlinear approach,
Paranjape, Duguet & Hof (2020) have searched for an edge state (i.e. a relative attractor
populating the laminar–turbulent separatrix; see Skufca, Yorke & Eckhardt 2006) in a
tilted domain and they have found a localised nonlinear travelling wave solution that
shows properties very similar to those of turbulent bands in a tilted domain. In particular,
turbulent bands are characterised by a small-scale flow within the turbulent region,
composed of streaks and vortices, which is surrounded by a large-scale flow constituted of
vortices parallel to the turbulent bands and having opposite direction on their two sides.
This large-scale flow appears fundamental for the development of the turbulent band, as
argued by Duguet & Schlatter (2013), who employed the conservation of mass to propose
that this large-scale flow is responsible for the turbulent band oblique evolution (see also
Kashyap, Duguet & Chantry 2020a).
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Based on these and others observations, Tao et al. (2018) suggested that, for triggering
and sustaining a turbulent band, a large-scale flow is necessary. Moreover, they reported
a strong increase of the total disturbance kinetic energy corresponding to the generation
of turbulent bands. This energy increase follows a quasi-algebraic growth, instead of an
exponential behaviour, as should be expected in the case of asymptotic instability as
that reported by Xiao & Song (2020). It has been known since the pioneering work of
Landahl (1980) that algebraic kinetic energy growth of perturbations is induced when weak
counter-rotating vortices generate high-amplitude streaky structures by means of the lift-up
mechanism. These two flow structures, which are easily retrieved by optimal transient
growth analysis (Luchini 2000), are two of the fundamental elements of the self-sustaining
process which supports turbulence in shear flows (Hamilton, Kim & Waleffe 1995; Waleffe
1997), together with secondary instability of the streaks which is linked to the generation
of inflectional points in the velocity profiles. Despite the observation of a consistent kinetic
energy growth together with streaks generation at the head of a turbulent band, the possible
relations between turbulent bands generation, the optimal energy growth of streaks and
their inflectional instability, have still not been investigated in the literature.

The aim of this study is to elucidate the possible link between transient energy growth
mechanisms and the generation and sustaining of turbulent bands in channel flow. For
investigating the energy growth mechanism in detail, we focus our analysis on a tilted
domain allowing the generation of a single localised turbulent band, as done previously in
DNSs (Tuckerman et al. 2014).

In this study, we search for linear (Luchini 2000; Cherubini et al. 2013) and nonlinear
optimal perturbations (Pringle & Kerswell 2010; Cherubini et al. 2010, 2011; Monokrousos
et al. 2011; Cherubini et al. 2012; Pringle, Willis & Kerswell 2012; Rabin, Caulfield &
Kerswell 2012; Cherubini & De Palma 2013; Duguet & Schlatter 2013) for the channel
flow in a tilted domain at Re = 1000. We find that transient growth of streaks is able to
generate turbulent bands, although only in the presence of a large-scale flow arising from
spatial localisation.

The paper is organised in the following way. The problem formulation is presented in
§ 2. Then, in § 3 the linear and nonlinear optimal perturbations are shown and discussed.
Finally, conclusions are drawn in § 4.

2. Problem formulation

For reducing the problem complexity and the computational cost, a tilted domain is
considered for analysing oblique turbulent bands in plane Poiseuille flow, as done
previously by Barkley & Tuckerman (2005, 2007) for plane Couette flow and by
Tuckerman et al. (2014) for plane Poiseuille flow. Starting from the classical plane
Poiseuille flow, UP = [UP( y), 0, 0]T, with UP( y) = 1 − y2, defined in the coordinate
system x′ = (x′, y′, z′)T, where x′ indicates the direction of the flow UP, the tilted domain
is obtained by applying the following change of reference:

êx = cos θ êx′ − sin θ êz′, êy = êy′, êz = sin θ êx′ + cos θ êz′, (2.1a–c)

x = (x, y, z)T being the tilted domain coordinate system, and θ being the angle between
the two coordinates systems, corresponding to the angle of a turbulent band with respect
to the flow direction, and y = y′.

The dynamics of the turbulent bands in the tilted domain can be described by
decomposing the instantaneous field into a perturbation u′ = [u′, v′, w′]T and a laminar
base flow U = [U( y), 0, W( y)]T, with U( y) = UP( y) cos θ and W( y) = UP( y) sin θ .
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The perturbation dynamics is governed by the non-dimensional Navier–Stokes equations
for incompressible flows, written in a perturbative form with respect to the base flow:

∂u′
i

∂xi
= 0,

∂u′
i

∂t
+ u′

j
∂u′

i
∂xj

+ u′
j
∂Ui

∂xj
+ Uj

∂u′
i

∂xj
= −∂p′

∂xi
+ 1

Re
∂2u′

i

∂x2
j

, (2.2a,b)

where p′ is the pressure perturbation and Re = Uch/ν is the Reynolds number defined
using the centreline velocity of the laminar Poiseuille flow, Uc, the half-width of the
channel, h, and the kinematic viscosity ν.

In order to find the optimal solution able to trigger turbulent bands in the tilted domain,
we have computed linear and nonlinear optimal perturbations (Cherubini et al. 2010;
Pringle et al. 2012). In both cases, we choose as objective function the energy gain
G(T) = E(T)/E(0), where E(t) = 1/(2V)

∫ ∑
u′

i
2
(t) dV , E(T) and E(0) being the kinetic

energy at the chosen target time, T , and at the initial time, respectively. Thus, we search
for the initial perturbation u′(0) providing the largest possible energy at target time T
with an optimisation loop based on the Lagrange multiplier technique (Cherubini et al.
2011). Linear optimisation is carried out using an in-house Matlab code, whereas nonlinear
optimisation is implemented within the open source code Channelflow (channelflow.ch)
(Gibson et al. 2021).

For all the simulations, the volume flow rate is kept constant imposing the bulk
velocity equal to Ubulk = 2/3. The same domain size and spatial discretisation used by
Tuckerman et al. (2014) is adopted, namely Lx × Ly × Lz = 10 × 2 × 40 discretised using
a Nx × Ny × Nz = 128 × 65 × 512 grid. All computations are performed at Re = 1000,
for which Tuckerman et al. (2014) have reported a persisting turbulent-laminar pattern in
the form of a single band. The angle of the tilted domain, θ , is chosen to be equal to 35◦
in accordance with that numerically observed at Re = 1000 by Kashyap et al. (2020b) in
large domains.

3. Results

First, a DNS is performed at Re = 1000 in the tilted domain. In figure 1(a), a snapshot of
the perturbation field is shown. As done previously by other authors, the flow with a higher
Reynolds number, for which turbulence occupies the whole domain, is simulated. Then,
the Reynolds number is reduced slowly until Re = 1000, reaching the laminar–turbulent
pattern shown in figure 1(a). As already discussed by Tuckerman et al. (2014) for a
tilted domain with the same size and Reynolds number, the turbulent state appears in
the form of one turbulent band. In the instantaneous field, oblique wave-like structures
such as alternating low- and high-speed streaks, are observed within the turbulent band
and at its head. As expected, these structures present an angle with respect to the x
direction comparable to that of the base flow, and resemble the streaks observed at the
head of a turbulent band in large (non-tilted) domains (Shimizu & Manneville 2019; Liu
et al. 2020). Inspecting the premultiplied energy spectra of the streamwise instantaneous
velocity provided in figures 1(b) and 1(c), we found an energy peak at kx ≈ ±1.27 and
kz ≈ ±1.6. Thus, as discussed previously, the flow is dominated by oblique structures
with angle of approximately arctan(kx/kz) ≈ ±38◦.

In order to understand the origin of these oblique structures and the main mechanisms
responsible for the generation of a turbulent band, a linear optimisation of perturbations
in the tilted domain is first performed. As the base flow varies only in the wall-normal
direction, we optimise the kinetic energy of sinusoidal perturbations, with given
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Figure 1. (a) Isosurface of negative streamwise velocity (u = −0.16, yellow) and Q-criterion (Q = 0.05)
coloured by the streamwise vorticity (positive red, negative blue) of a turbulent-laminar pattern at Re = 1000
in a domain tilted with θ = 35◦. (b), (c) Logarithm of the premultiplied spectral energy versus the wall-normal
distance y for the instantaneous field in (a): (b) kxEuu(kx); (c) kzEuu(kz). The white ‘X’ symbols indicate the
energy peaks.
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Figure 2. (a) Contours of the linear optimal gain G versus the streamwise (kx) and spanwise (kz) wavenumbers,
for Re = 1000 in the domain tilted with angle θ = 35◦. The red cross indicates the optimal growth Gopt.
(b) Streamwise velocity component of the initial linear optimal perturbation for T = Topt = 74.6, kx = 1.19
and kz = −1.71.

wavenumbers kx and kz in the x and z direction, respectively, constrained by (2.2a,b)
linearised with respect to the base flow.

3.1. Linear optimal perturbations
The linear optimisation problem was solved at Re = 1000 for streamwise and spanwise
wavenumbers in the range 0 < kx < 2, −3 < kz < 3. Figure 2(a) provides the variation of
the optimal gain with the spanwise and streamwise wavenumbers.

The maximum growth is achieved at the optimal target time Topt = 74.6, for kx = 1.19
and kz = −1.71, leading to an optimal gain Gopt = 196.07. As should be expected, the
optimal gain, time and wavenumbers are very close to those found by Reddy & Henningson
(1993) for the plane Poiseuille flow, once reported to a tilted domain. Note also that similar
values of streamwise and spanwise wavenumbers have been found by Xiao & Song (2020)
performing a linear stability analysis around the mean flow in a region at the head of the
turbulent band. Moreover, the optimal streamwise and spanwise wavenumbers are very
close to the ones for which the premultiplied energy spectra in figures 1(b) and 1(c) present
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a peak. Thus, these optimal perturbations can be linked to the oblique waves observed at
the head of the turbulent band. As shown in figure 2(b), the linear optimal perturbation
is oblique with angle equal to arctan(kx/kz) ≈ −35◦, in accordance to the classical plane
Poiseuille flow (Reddy & Henningson 1993), and modulated in both periodic directions.
This had to be expected because the base flow presents a crossflow component, in analogy
with the shear flow developing on a swept-wing, whose unstable modes and optimal
perturbations are characterised by cross-flow vortices, namely three-dimensional oblique
vortical perturbations with negative spanwise wavenumber. As shown in figure 3(a), at
t = 0 the linear optimal perturbation shows counter-rotating vortices with a large
wall-normal component, which decreases in time towards the target time (see figure 3b),
whereas the streamwise and spanwise components strongly increase creating oblique
streaks. The mechanism creating these oblique energetic structures is based on the
transport of the wall-normal shear of both streamwise and spanwise component of the
base flow, which may be seen as a tilted counterpart of the lift-up effect.

The linear optimal perturbation computed for Topt is then injected into the laminar flow
in the tilted domain with different values of the initial energy E(0), in order to verify
whether such a linear transient-growth mechanism could induce transition in the form of
turbulent bands. In figure 4, the energy evolution in time is reported for the linear optimal
perturbations with different initial energies (black lines). The perturbation with unitary
energy norm is the only one able to induce the formation of the turbulent band, whereas the
others lead to relaminarisation. However, it is observed that turbulence is at first triggered
in the whole domain and only at very long time (O(100)) it localises in a band.

In order to ascertain that this behaviour is not due to the alignment of the optimal
perturbation with respect to the base flow, we have performed a set of DNSs by
superposing a subharmonic perturbation to the linear optimal one (Pralits, Bottaro &
Cherubini 2015), such that

u′ = A0uopt(kz, kx) + A1uopt(kz/2, kx/2), (3.1)

where A0 and A1 have been varied among the values [0.1, 0.5, 1.0, 2.0, 5.0, 10.0]. Figure 5
provides the isocontours of the time evolution of the wall-normal perturbation obtained
for the case with A0 = 0.5 and A1 = 0.5, together with the normalised y-integrated
flow ui = 1/2

∫ 1
−1 ui dy. The inclined streaks rapidly experience breakdown, inducing

small-scale vorticity and fluctuations in the whole domain. One can also note that no
large-scale vortices in the y-integrated flow are observed (see Duguet & Schlatter (2013)
for the importance of large-scale flow in the turbulent band generation). Thus, the linear
optimal perturbation induces turbulence in the whole domain even when superposed to
a perturbation able to break its spatial symmetry but not providing a large-scale flow.
Most probably, this behaviour is linked to the fact that the linear optimal disturbance is not
spatially localised but occupies the whole domain, which also explains the large amount of
energy needed for triggering turbulence by means of this optimal mechanism. In fact, it has
been established that spatially localised perturbations are able to self-induce large-scale
flow, provided that spanwise homogeneity is broken and the streamwise velocity is sheared
(Wang et al. 2020). To provide spatial localisation of the optimal perturbation, aiming
at triggering the turbulent band, we extended the optimisation to the fully nonlinear
equations, which usually provide a consistent spatial localisation (Cherubini et al. 2010;
Farano et al. 2015, 2016; Kerswell 2018). Note that the nonlinear optimisation is performed
in a fully three-dimensional framework, without any hypothesis on the perturbation
wavenumbers.
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Figure 3. Velocity profiles of different optimal disturbances at (a), (c), (e) t = 0 and at (b), (d), ( f ) target
time: (a), (b) linear optimal computed for kx = 1.2, kz = −1.75 and Topt = 73.11; (c), (d) nonlinear optimal
at the lowest energy (among the considered ones) able to trigger turbulence, obtained for E0 = 2.1 × 10−5,
T = 10 and for (e), ( f ) E0 = 1.4 × 10−6 and T = 75. (a) Linear, t = 0, T = 73.11. (b) Linear, t = Topt = 73.11.
(c) Nonlinear, t = 0, T = 10. (d) Nonlinear, t = T = 10. (e) Nonlinear, t = 0, T = 75. ( f ) Nonlinear,
t = T = 75.
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Figure 4. Kinetic energy time evolution for the linear optimal perturbation with E0 = 0.01, 0.1 and 1 (black
lines) and for the artificially localised perturbation (red line) for σ = 2.5 and A = 0.05.
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Figure 5. Time evolution of the linear optimal perturbation superposed to its subharmonic according to (3.1)
with A0 = 0.5 and A1 = 0.5; shaded isocontours of the wall-normal perturbation and vectors of the y-integrated
flow in the y = 0.25 plane: (a) t = 0; (b) t = 10; (c) t = 20; (d) t = 50.

3.2. Nonlinear optimal perturbations
Nonlinear optimisation has been performed in the tilted domain for several initial energies
and target times, ranging from T = 10, which is close to the characteristic eddy turnover
time of structures in the buffer layer (Butler & Farrell 1993), up to T = 75, which is
close to the optimal time recovered by the linear optimisation. For the lowest value of
the target time, the nonlinear optimal perturbation triggers localised turbulence already
for E0 ≥ 2.1 × 10−5. The nonlinear optimal perturbation computed for T = 10 and for
the lowest (among those considered) input energy able to trigger turbulence is shown in
figures 6(a) and 6(b) in a two- and three-dimensional view, respectively. As expected
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from previous works (Cherubini et al. 2011; Monokrousos et al. 2011; Pringle et al.
2012), it is localised in one of the two periodic spatial directions. Furthermore, despite
being an initial perturbation obtained optimising at a small (O(10)) target time with an
energy which has not been bisected, it presents remarkable similarities with the edge state
found by Paranjape et al. (2020) in a tilted domain for Re = 760. Figure 6(a) shows the
isocontours of the wall-normal perturbation, together with the normalised y-integrated
large-scale flow ui = 1/2

∫ 1
−1 ui dy for this optimal solution. One can observe a small-scale

flow within a localised region, where the turbulent band will be generated, together with
two larger-scale vortices surrounding this region, having opposite direction upstream and
downstream of the localised perturbation. A large-scale vortical flow surrounding the
region developing into a turbulent spot has been reported previously by several authors
in both tilted and non-tilted domains (Kashyap et al. 2020a). The three-dimensional
visualisation in figure 6(b) shows that the small-scale flow consists of oblique streaks
flanked by counter-rotating vortices. The streaks are aligned with the base flow, presenting
an angle of approximately 35◦ with respect to the streamwise direction, in accordance with
the angle of the linear optimal perturbation.

As expected, this localised optimal perturbation evolves in time towards a turbulent
band, as shown in figure 7(a). Note that this nonlinear optimal perturbation induces
transition for an initial energy five orders of magnitude lower than that of the linear optimal
one; this cannot be exclusively due to its spatial localisation. In fact, the wall-normal
velocity profiles provided in figure 3(c) present strong differences with respect to their
linear counterpart shown in figure 3(a). In particular, as typically observed in nonlinear
optimal perturbations (Cherubini et al. 2011), the streamwise velocity component is now
of the same order of magnitude of the others, and the wall-normal component strongly
changes. At target time (figure 3d), deformed streaks are obtained, presenting inflection
points which might be linked to the inflectional instability discussed by Song & Xiao
(2020).

Increasing the target time for the nonlinear optimisation, we found that the nonlinear
optimal perturbation triggers localised turbulence for an even lower initial energy. In
particular, for the largest target time, the nonlinear optimal perturbation is able to generate
a turbulent band already at E0 = 1.4 × 10−6. Comparing figure 6(b,d, f,h), one can note
that increasing the target time the nonlinear optimal perturbation further localises in all
spatial directions (Cherubini et al. 2011; Monokrousos et al. 2011; Pringle et al. 2012;
Farano et al. 2017). Note that the nonlinear optimal perturbations computed for T = 50 and
T = 75 have a very similar shape and structure, and are able to induce localised turbulence
for a very close value of the initial energy. The nonlinear optimal perturbation for T = 75
and E0 = 1.4 × 10−6, shown in a close-up in figure 6(h), consists of quasi-streamwise
vortices alternated in the x–z directions, flanking patches of large streamwise perturbation.
One can observe that this basic structure, which recalls that of the minimal seed for other
shear flows (Rabin et al. 2012; Duguet et al. 2013; Cherubini, De Palma & Robinet 2015)
appears to be spatially repeated within the optimal perturbations computed for lower target
times and larger initial energies (see figures 6b and 6d). Moreover, comparing figures
6(a), 6(c), 6(e) and 6(g), one can observe that the large-scale structures characterising
the y-integrated flow field become more spatially extended when T is increased, filling
almost the whole domain for the largest considered T (smallest E0). Also for this nonlinear
perturbation, the wall-normal velocity profiles provided in figures 3(e) and 3( f ) present
strong differences with respect to their linear counterpart shown in figures 3(a) and 3(b)
both at initial and at target times.

938 A25-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

16
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.168


E. Parente, J.-C. Robinet, P. De Palma and S. Cherubini

1 × 10−2 2 × 10−20−2 × 10−2 −1 × 10−2

4 × 10−4 8 × 10−40−8 × 10−4 −4 × 10−4

3 × 10−4 6 × 10−40−6 × 10−4 −3 × 10−4

2 × 10−4 4 × 10−40−4 × 10−4 −2 × 10−4

z

z

z

z

x

x
zy

y10

5

0 10 20 30 40

x
10

5

0 10 20 30 40

x
10

5

0 10 20 30 40

x
10

5

0 10 20 30 40

0

5

10 0

10

20

30

40

x

zy

y

0

5

10 0

10

20

30

40

x

zy

y

0

5

10 0

10

20

30

40

(a) (b)

(c) (d )

(e) ( f )

(g) (h)

Figure 6. Nonlinear optimal perturbations for Re = 1000 and t = 0 obtained for different initial energies and
target times indicated in the subplots: (a), (c), (e), (g) shaded isocontours of the wall-normal perturbation
and vectors of the y-integrated flow in the y = 0.25 plane at t = 0; (b), (d), ( f ), (h) isosurfaces of negative
streamwise velocity (yellow) and Q-criterion coloured by the streamwise vorticity (positive red, negative
blue) for t = 0, u = −0.01, Q = 0.02. (a) 2D, T = 10, E0 = 2.1 × 10−5. (b) 3D, T = 10. (c) 2D, T = 25,
E0 = 4.6 × 10−6. (d) 3D, T = 25. (e) 2D, T = 50, E0 = 1.6 × 10−6. ( f ) 3D, T = 50. (g) 2D, T = 75,
E0 = 1.4 × 10−6. (h) 3D, T = 75.
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(c) t = 75; (d) t = 100; (e) t = 200; ( f ) t = 300.

As expected, this localised optimal perturbation evolves in time towards a turbulent
band, as shown by the three-dimensional view in figure 7(b). Figure 8 shows that the
large-scale vortices present at initial time persist within the flow up to the creation of
the turbulent band. Moreover, the localised wave packet evolving from the nonlinear
optimal perturbation appears to be placed in the shear region between two counter-rotating
large-scale vortices. Note that, as shown in figure 9, the kinetic energy rapidly increases
up to t ≈ 200 (although a clear turbulent band can be observed already at t ≈ 100) and
then appears to reach a statistically steady value. Unlike linear ones, nonlinear optimal
perturbations appear thus very efficient in inducing turbulent bands. However, it is still
unclear whether it is the spatial localisation or rather the shape of the velocity profiles the
key feature for the rapid generation of a turbulent band.

3.3. Artificially localised perturbations
To isolate the effect of spatial localisation from the strong changes in the velocity
profiles induced by the nonlinear effects, we enforced localisation in the z direction on
the three-dimensional linear optimal solution shown in figure 2(b). This is achieved by
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Figure 9. Kinetic energy time-evolution of the nonlinear optimal perturbations obtained for different target
times and initial energies.

multiplying the velocity components by a normal distribution having the form

f (z) = exp
(

−1
2

(z − z0)
2

σ 2

)
, (3.2)

where z0 = 20 represents the value at which the perturbation is centred, and different
values of the standard deviation σ , ranging from 0.5 to 5, are considered. The resulting
shapes of the normal distributions ensuring localisation in the z direction, are shown
in figure 10(a). After multiplying the velocity components of the (unit norm) linear
optimal perturbation by f (z) and by a given amplitude A, the incompressibility constraint
is imposed by adjusting the spanwise perturbation in order to compensate for the
non-solenoidal part of the artificially constructed perturbation. The resulting perturbation
is then injected in the flow. Among the considered values of A, the lowest ones allowing
transition to turbulence are provided in figure 10(b) for the different artificially localised
perturbations, along with the corresponding initial energy for transition. One can observe
that the amplitude needed for inducing transition decreases with increasing σ , indicating
that less-localised perturbations need, in fact, a lower amplitude to trigger turbulence.
However, E0 is found to reach its minimum value for σ = 2.5, for which the size of the
initial perturbation roughly corresponds to that of the nonlinear optimal perturbation for
T = 10 (see figure 6a). This localised perturbation is injected in the DNS with the initial
energy reported in figure 10(b), namely E0 = 1.39 × 10−4. Its time evolution is reported
in figure 11. First, the oblique streaks increase their amplitude (t = 20) and start to
saturate nonlinearly, until secondary instability arises (t = 50) and triggers turbulence in a
localised zone within the laminar flow (t = 80 − 100). Although not very evident at t = 0,
two large-scale vortices can be clearly seen at t = 20, and persist up to the creation of
the localised band, the oblique streaks being placed in their shear region. At t = 150, the
flow presents the same configuration shown in figure 1 for a turbulent band generated by
decreasing the Reynolds number starting from a fully turbulent velocity field. Notably,
inflection points similar to those observed in figure 3(d), are observed at small time in the
velocity profiles. The corresponding time evolution of the kinetic energy, shown by the
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Figure 10. (a) Normal function f (z) for different values of the standard deviation. (b) Lowest amplitude
(among the considered ones) for transition corresponding to different standard deviations with the
corresponding initial energy.
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Figure 11. Time evolution of the artificially localised linear optimal perturbation for σ = 2.5 and A = 0.05
at different times; shaded contours of the wall-normal velocity at y = 0.25: (a) t = 0; (b) t = 20; (c) t = 50;
(d) t = 80; (e) t = 100; ( f ) t = 150. For visualisation purposes the initial perturbation has been shifted towards
z = 0.

red line in figure 4, is rather similar to that of the nonlinear optimals provided in figure 9,
showing a rapid increase of the energy followed by a slow saturation.

Thus, we can infer that the differences in shape of the velocity profiles of the linear
and nonlinear optimal perturbations are not crucial for the generation of the turbulence
band, for which two main elements appear to be needed: (i) small-scale oblique streaks
aligned with the baseflow, that saturate creating inflection points; (ii) spatial localisation
in the z direction, which induces a large-scale vortical flow, as discussed by Wang et al.
(2020). The transition at the small scale is due to the classical lift-up mechanism, followed
by secondary instability of the saturated streaks, which triggers the self-sustained cycle
supporting turbulence (Hamilton et al. 1995; Waleffe 1997). However, in the absence of a
large-scale flow arising from spatial localisation and allowing to maintain the band, these
mechanisms are not sufficient to generate localised turbulence. Of course, the initial phase
of growth due to the lift-up mechanism can be skipped by directly feeding the flow with
inflection points, as done by Song & Xiao (2020), but at the cost of a larger-amplitude
disturbance.

In order to roughly evaluate the amplitude and spatial length of the large-scale flow
needed to create the turbulent band, and to ascertain whether initial oblique vortices
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Figure 12. Time evolution of two large-scale vortices with radius R = 1 and amplitude A = 2: (a) t = 0;
(b) t = 10; (c) t = 20; (d) t = 50; (e) t = 100; ( f ) t = 500. Contours and vectors as in figure 11.

able to induce streaks are a key ingredient for this mechanism, we have initialised
some computations using two large-scale vortices centred at (x1, z1) = (5, 10), (x2, z2) =
(5, 30), having the following analytical form:

u′ = −A
R

(z − z0)e−(r/2), w′ = −A
R

(x − x0)e−(r/2), (3.3a,b)

where r = ((x − x0)
2 + (z − z0)

2)/R2, A is the vortex amplitude and R is the vortex
radius. Note that these perturbations are not built to trigger the lift-up mechanism. The
time evolution of the perturbations obtained for (i) R = 1 and A = 2, with E0 = 0.03127,
(ii) R = 5 and A = 1, with E0 = 0.0441, and (iii) R = 10 and A = 0.5, with E0 = 0.0103,
are provided in figures 12, 13 and 14, respectively. We can observe that only the
largest-radius perturbation directly leads to the formation of one localised band, whereas
the other two perturbations generate two regions of localised turbulence, which either
coalesce (see figure 12) or remain spatially separated until one of them decays (see
figure 13). The time evolution of the kinetic energy, provided in figure 15, shows a steep
decrease of the energy before saturation occurs, which is clearly due to the fact that the
initial perturbation is not able to directly trigger a transient energy growth by means of the
lift-up mechanism. It thus appears that large-scale vortices of radius comparable with the
domain size might be sufficient for generating a turbulent band, but at the cost of a very
large initial amplitude. The nonlinear optimisation procedure shows that a localised path
of small-scale vortices able to trigger inclined streaks by means of the lift-up mechanism
can generate turbulent bands for a much smaller amplitude. Thus, in the next section we
focus on the artificially localised (linear optimal) perturbations, with the aim of verifying
its capability of generating bands also in large, non-tilted domains, where no angle is
imposed a priori.

3.4. Band generation in non-tilted domains
The artificially localised linear optimal perturbation computed in the tilted domain for
σ = 2.5, has been injected in a very large (non-tilted) domain of size Lx′ × Ly′ × Lz′ =
250 × 2 × 125, and let it evolve freely by a DNS. As shown in figure 16, despite at t = 0
a large-scale flow is present only in the vicinity of the perturbation, at t = 100 a clear
quadrupolar large-scale vortical structure, filling the whole domain, is observed. Note
that, as discussed in Wang et al. (2020), a quadrupolar structure arises in the presence
of a negative spanwise vorticity generated near the walls inside a spot, as a consequence
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Figure 13. Time evolution of two large-scale vortices with radius R = 5 and amplitude A = 1: (a) t = 0;
(b) t = 10; (c) t = 20; (d) t = 50; (e) t = 100; ( f ) t = 500. Contours and vectors as in figure 11.
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Figure 14. Time evolution of two large-scale vortices with radius R = 10 and amplitude A = 0.5:
(a) t = 0; (b) t = 10; (c) t = 20; (d) t = 50; (e) t = 100; ( f ) t = 500. Contours and vectors as in figure 11.
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Figure 15. Kinetic energy time evolution for the analytical large-scale perturbations.
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Figure 16. Time evolution of the artificially localised linear optimal perturbation reported in a large domain;
contours of the wall-normal velocity and vectors of the y-integrated large-scale flow (ū, w̄): (a) t = 0;
(b) t = 100; (c) t = 300; (d) t = 800.

of the shearing of the streamwise velocity and the breaking of the spanwise homogeneity.
New streaky structures, generated by the self-sustained process triggered by the optimal
counter-rotating vortices and streaks, are then created following the shear layer between
two of the previously observed large-scale vortices (t = 300), finally creating a clear
turbulent band (t = 800). Despite not being optimal for this large, non-tilted domain,
this perturbation is able to generate a large-scale flow that promotes the formation of
small-scale streaks in an oblique direction, consequently inducing the band formation.
The optimisation of perturbations in this large non-tilted domain is beyond the scope of
the present work, and is treated in detail in Parente et al. (2021), where the minimal-energy
optimal perturbations able to generate turbulent bands are computed and discussed for
different values of Re.

4. Conclusion

In this work we have investigated the energy growth mechanisms involved in the
laminar–turbulent transition in the form of turbulent bands using linear and nonlinear
optimisation. We have considered a plane Poiseuille flow at Re = 1000 in a tilted domain
with angle θ = 35◦ that exhibits a single turbulent band. Linear optimisation in the tilted
domain has shown that the optimal perturbation is three-dimensional and aligned with the
oblique baseflow, in the form of low- and high-speed streaks modulated in the streamwise
and spanwise directions with kx = 1.2 and kz = −1.75, respectively. Similar wavenumbers
are found at the same Reynolds number by DNS and by linear stability analysis at the head
of the turbulent band, where an angle comparable to that of the optimal streaks is observed.
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However, the linear optimal perturbation needs a very large (O(1)) initial energy to trigger
turbulence, which spreads in the whole domain.

Using nonlinear optimisation, even for a short target time, a localised turbulent band
is triggered for an initial energy five orders of magnitude smaller. The nonlinear optimal
perturbation, computed for several target times, is characterised by a localised small-scale
flow and a large-scale flow surrounding it. The small-scale flow is composed by oblique
counter-rotating vortices and streaks with an angle comparable to that found via linear
optimisation, which develop inflection points at target time. For a sufficiently high target
time, the nonlinear optimal perturbation is able to trigger a localised band for an initial
energy as low as O(10−6). In order to separate the effect of the large-scale flow and
localisation from that of the small-scale structures, which are responsible for the very low
value of the initial energy able to induce the band, we have built a localised perturbation by
artificially confining the linear optimal to a localised region in the z direction and injected
it into the laminar flow both in the tilted and in a non-tilted, very large domain. In both
domains, a turbulent band is created. Turbulent bands are generated also when initialising
the flow in the tilted domain by large-scale vortices alone, although for a very large initial
energy, because in this last case the initial perturbation is not designed for triggering the
lift-up effect.

These results suggest that transition to a turbulent band might arise due to the optimal
lift-up mechanism when coupled with a large-scale vortical flow intimately linked to
the spatial localisation of the disturbance. This energy growth mechanism provides
high-amplitude streaks developing inflection points when saturating nonlinearly, but
because the optimal streaks are aligned with the base flow, they cannot generate a turbulent
band by themselves. Indeed, the large-scale flow induced by the spatial localisation of the
perturbation provides the preferential direction of spreading of the streaks, and is thus
necessary to trigger turbulence in the form of turbulent bands.
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