
TLP 13 (4–5): Online Supplement, July 2013. C© 2013 [MARIO ALVIANO and RAFAEL PEÑALOZA]

URL: http://dx.doi.org/10.1017/S1471068413000471

753

Fuzzy answer sets approximations

MARIO ALVIANO�
Department of Mathematics and Computer Science, University of Calabria, 87036 Rende (CS), Italy

(e-mail: alviano@mat.unical.it)

RAFAEL PEÑALOZA†
Dresden University of Technology, 01062 Dresden, Germany

Center for Advancing Electronics Dresden

(e-mail: penaloza@tcs.inf.tu-dresden.de)

submitted 10 April 2013; revised 23 June 2013; accepted 5 July 2013

Abstract

Fuzzy answer set programming (FASP) is a recent formalism for knowledge representation

that enriches the declarativity of answer set programming by allowing propositions to be

graded. To now, no implementations of FASP solvers are available and all current proposals

are based on compilations of logic programs into different paradigms, like mixed integer

programs or bilevel programs. These approaches introduce many auxiliary variables which

might affect the performance of a solver negatively. To limit this downside, operators for

approximating fuzzy answer sets can be introduced: Given a FASP program, these operators

compute lower and upper bounds for all atoms in the program such that all answer sets are

between these bounds. This paper analyzes several operators of this kind which are based

on linear programming, fuzzy unfounded sets and source pointers. Furthermore, the paper

reports on a prototypical implementation, also describing strategies for avoiding computations

of these operators when they are guaranteed to not improve current bounds. The operators

and their implementation can be used to obtain more constrained mixed integer or bilevel

programs, or even for providing a basis for implementing a native FASP solver. Interestingly,

the semantics of relevant classes of programs with unique answer sets, like positive programs

and programs with stratified negation, can be already computed by the prototype without

the need for an external tool.

KEYWORDS: fuzzy logic, answer set programming, search-space pruning operators

1 Introduction

Answer Set Programming (ASP), i.e., logic programming under stable model se-

mantics (Gelfond and Lifschitz 1991), is a declarative language for knowledge

representation (Niemelä 1999; Marek and Truszczyński 1999; Lifschitz 2002). In

ASP, problems are modeled by specifying a set of requirements that all solutions,

� Partially supported by Regione Calabria within the PIA project KnowRex POR FESR 2007–2013.
† Partially supported by DFG under grant BA 1122/17-1 and within the Cluster of Excellence ‘cfAED’.

https://doi.org/10.1017/S1471068413000471 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000471

754 M. Alviano and R. Peñaloza

called answer sets, have to satisfy. One of the strengths of ASP is its capability to

model non-monotonic knowledge, overcoming a well-known limitation of classical

logic, which can only deal with monotonic inferences. While monotonicity is desired

in mathematics, it is widely considered a weakness for knowledge representation

(Baral 2003), where non-monotonicity arises in common reasoning tasks such as

reasoning by default, abductive reasoning and belief revision. ASP can handle

these tasks naturally (Marek and Remmel 2004; Lin and You 2002; Delgrande et al.

2008), allowing for modeling and reasoning on incomplete information, and possibly

retracting some conclusions as new knowledge on the application domain is acquired.

Since complete knowledge can only be achieved in mathematical abstraction, it can

be stated that ASP makes logic closer to the real world.

However, ASP is still based on precise information, which cannot always be

assumed in the real world. For example, measures provided by any instrument or

sensor always come with some degree of tolerance, and information expressed in

natural language are often vague: there is no precise way to distinguish persons

that are tall from those who are not. Fuzzy logic (Dubois et al. 1991) can handle

vague information of this kind by interpreting propositions with a truth degree in

the interval of real numbers [0, 1]. Intuitively, the higher the degree assigned to

a proposition, the more true it is, with the extreme elements 0 and 1 denoting

totally false and totally true, respectively. Consider for example the Barber of

Seville paradox: In the small town of Seville, all and only those men who do

not shave themselves are shaved by the barber. Classical set theory can neither

prove nor disprove that the barber shaves himself, hence a fuzzy interpretation of

this proposition should be 1/2, the most undetermined truth degree.

Fuzzy Answer Set Programming (FASP) aims at combining ASP and fuzzy logic.

For example, a FASP encoding of the Barber of Seville paradox is

shaves(barber , X)← not shaves(X,X) shaves(X,X)← not shaves(barber , X)

from which shaves(barber , barber) gets the expected truth degree 1/2. FASP has

been defined for a very general framework (Nieuwenborgh et al. 2007b), allowing

several connectors to be combined in the same program. With the aim of providing

an indication for implementing a FASP solver, more constrained frameworks have

been considered by Lukasiewicz (2006) and Janssen et al. (2012). However, current

proposals are based on compilations into different paradigms and introduce many

auxiliary variables which could affect performance negatively. The focus of this

paper is on operators for approximating fuzzy answer sets. These operators can be

used for limiting the search space of an external tool, such as the linear or bilevel

program approaches proposed by Lukasiewicz (2006) and Janssen et al. (2012), or

as the basis for implementing a native FASP solver.

More precisely, in this paper we describe operators for computing two fuzzy

interpretations, called lower and upper bound, such that every answer set is between

these bounds. We introduce fuzzy unfounded sets, which generalize the notion of

unfounded sets of classical ASP to deal with fuzzy semantics. We also define a

well-founded operator that combines the fuzzy TP operator with the complement

of the greatest unfounded set to improve on previously computed bounds. We show

https://doi.org/10.1017/S1471068413000471 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000471

Fuzzy answer sets approximations 755

that these operators yield answer sets for positive and stratified FASP programs in

polynomial time, while in general produce the well-founded semantics by Damásio

and Pereira (2001). For dealing with normal FASP programs, we introduce the

new minimal satisfiability operator SP . For semantics based on the �Lukasiewicz

t-norm, this operator is polynomial-time computable and can further tighten the

approximation. Finally, we describe a prototypical implementation which combines

optimization ideas from classical ASP solvers (Lierler and Maratea 2004; Gebser

et al. 2007; Alviano et al. 2011), and report on an experiment assessing the potential

performance gain provided by our operators to a bilevel program solver.

2 Syntax and semantics

Let B be a fixed, finite set of propositional atoms. A fuzzy atom (or atom for short) is

either a propositional atom from B or a numeric constant in the range [0, 1], where

numeric constants are overlined, e.g. 1, to distinguish them from propositional atoms.

A literal is either a fuzzy atom or a fuzzy atom preceded by the default negation

symbol not . A normal FASP program is a finite set of rules of the form

a← b1 ⊗ · · · ⊗ bm ⊗ not bm+1 ⊗ · · · ⊗ not bn (1)

where n >= m >= 0, a, b1, . . . , bn are atoms, and ⊗ denotes the fuzzy conjunction.

For a rule r of the form (1), the atom a is called the head of r, denoted H(r),

and the conjunction b1 ⊗ · · · ⊗ bm ⊗ not bm+1 ⊗ · · · ⊗ not bn is called the body of r,

denoted B(r). The expressions B+(r) = {b1, . . . , bm} and B−(r) = {bm+1, . . . , bn} denote

the multiset of positive and negative body literals of r, respectively. Multisets thus

represent conjunctions: a multiset A = {a1, . . . , ak} (k >= 0) of literals represents

the conjunction
⊗k

i=1 ai. Moreover, not A denotes the multiset {not a1, . . . , not ak},
i.e.,

⊗k
i=1 not ai. A rule r is positive if B−(r) = ∅, and a fact if B+(r) = B−(r) =

∅. Relevant subclasses of normal FASP programs are the positive and stratified

programs. A program is positive if all of its rules are positive. The notion of

stratified program requires the introduction of the dependency graph GP = (B, A)

of a program P , where A contains arcs a →+ bi and a →− bj (1 � i � m < j � n)

for each rule r ∈ P of the form (1). P is stratified if no cycle in GP contains →−
arcs.

The semantics of FASP programs generalizes that of ASP by interpreting propo-

sitional atoms with a truth degree from the interval [0, 1]. An additional degree of

liberty arises from the choice of the operator used to interpret fuzzy conjunctions.

We focus on semantics based on t-norms (Klement et al. 2000). A t-norm is a binary,

associative and commutative operator ⊗ : [0, 1] × [0, 1] → [0, 1] that is monotonic

and has unit 1, i.e., for every x, y, z ∈ [0, 1], x � y implies x ⊗ z � y ⊗ z, and

x ⊗ 1 = x. There are three fundamental t-norms, called the Gödel, �Lukasiewicz ,

and product t-norms, where x ⊗ y is defined as min{x, y}, max{x + y − 1, 0}, and

x · y, respectively. In the following, FASP programs are assumed to be associated

with a fixed t-norm computable in polynomial time. A fuzzy interpretation I for a

FASP program P is a fuzzy set in B, i.e., a function I : B → [0, 1] mapping each

propositional atom of B into a truth degree in [0, 1]. The interpretation I is extended

https://doi.org/10.1017/S1471068413000471 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000471

756 M. Alviano and R. Peñaloza

to numeric constants, negative literals and multisets as follows. For a constant c,

I(c) = c; for a negative literal not b, I(not b) = 1 − I(b); for a multiset of literals

A = {l1, · · · , lk}, I(A) =
⊗k

i=1 I(li).

Let I be the set of all interpretations and I, J ∈ I. I is a subset of J (I ⊆ J)

if I(a) � J(a) for each a ∈ B. I is a strict subset of J (I ⊂ J) if I ⊆ J and I
= J .

Fuzzy set intersection (I ∩ J), union (I ∪ J), and difference (I \ J) are defined as

follows: for every a ∈ B, [I ∩ J](a) := min{I(a), J(a)}, [I ∪ J](a) := max{I(a), J(a)},
and [I \J](a) := max{I(a)−J(a), 0}. An interpretation I models a rule r with head a,

denoted I |= r, if I(a) >= I(B(r)). I models a FASP program P (I |= P) if I |= r for

each r ∈ P . An interpretation M is an answer set of a positive FASP program P if

M is a minimal model of P , i.e., M |= P and there is no interpretation I ⊂M such

that I |= P . M is an answer set of a normal FASP program P if M is an answer set

of the reduct PM obtained from P by replacing each negative literal not b by the

constant I(not b).

Example 1

The FASP program Pex1 = {a ← c ⊗ not b, b ← not c, c ← 0.1} is a stratified

program, containing one positive rule. Consider the interpretation I such that

I(a) = 0, I(b) = 0.9, and I(c) = 0.1. The reduct P I
ex1 is {a← c⊗0.1, b← 0.9, c← 0.1}.

Under the �Lukasiewicz t-norm semantics, I is a minimal model of P I
ex1, and hence

it is an answer set for Pex1. It can be seen that this is in fact the only answer set of

Pex1.

In general, a FASP program may have infinitely many answer sets. Rather than

trying to enumerate them all, we are interested in approximating them by removing

interpretations that cannot be answer sets.

3 Search space pruning operators

To approximate the answer sets of a normal FASP program P , we will construct

two interpretations L,U ∈ I, called lower and upper bound, respectively, such that

L ⊆ U. The idea is to find the tightest interpretations L and U such that L ⊆M ⊆ U

holds for every answer set M of P . Let 0 and 1 be the interpretations that map every

propositional atom to 0 and 1, respectively. Obviously, L = 0 and U = 1 satisfy the

desired condition of bounding all answer sets for any program P . Before defining

operators for improving these bounds, we introduce a convenient notion for the

partial evaluation of a rule r w.r.t. 〈I, J〉, where I, J ∈ I are fuzzy interpretations:

〈I, J〉 (r) := I(B+(r))⊗ J(notB−(r)). (2)

Lower bounds can be improved by the well-known immediate consequence operator.

Definition 1 (Immediate consequence operator)

The immediate consequence operator of a program P w.r.t. an upper bound U is the

function TU
P : I → I where [TU

P (L)](a) := max{〈L,U〉 (r) | r ∈ P , H(r) = a} for

each atom a ∈ B.

https://doi.org/10.1017/S1471068413000471 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000471

Fuzzy answer sets approximations 757

The operator TU
P is monotonic, and thus it has a least fixpoint TU

P ⇑ 0, i.e., the

sequence L0 := 0, Li+1 := TU
P (Li) (i � 0) converges to TU

P ⇑0.

Theorem 1

Let U ∈ I, and P be a program. The fixpoint TU
P ⇑ 0 is reached after a linear

number of iterations, measured on the number of atoms appearing in P .

If P is positive, T 1
P⇑0 coincides with the unique answer set of P (Lukasiewicz 2006).

Hence, by Theorem 1, this answer set is computable in polynomial time. For normal

programs, instead, the lower bound can be improved replacing L by TU
P ⇑ 0. To

improve the upper bound, we use an idea from classical ASP: the truth of an atom

a in an answer set M must be supported by some rule, i.e., M(a) cannot be larger

than the maximum of M(B(r)) over all rules r ∈ P with H(r) = a. Support must

also be acyclic, or founded.

Definition 2 (Fuzzy unfounded set)

Let L,U ∈ I, L ⊆ U, and P be a program. A fuzzy set X ∈ I is a fuzzy unfounded

set for P w.r.t. (L,U) if for each r ∈ P such that X(H(r)) > 0, the following

inequality is satisfied: [U ∩ (1 \X)](H(r)) >= 〈U ∩ (1 \X), L〉 (r).

Intuitively, fuzzy unfounded sets evidence lack of (acyclic) support.

Theorem 2

For FASP programs without numeric constants and crisp sets, Definition 2 coincides

with the original notion of unfounded set by Van Gelder et al. (1991).

As in the crisp case, the union of two (fuzzy) unfounded sets is an unfounded set.

Theorem 3

Let X1, X2 be two fuzzy unfounded sets for P w.r.t. (L,U). Then also X1 ∪ X2 is a

fuzzy unfounded set for P w.r.t. (L,U).

We can thus define the greatest fuzzy unfounded set, denoted GUS L,U
P , as the union

of all fuzzy unfounded sets. We also highlight a relationship with fuzzy answer sets.

Theorem 4

M is a fuzzy answer set of a program P if and only if GUSM,M
P = 1 \M.

In order to find unfounded sets, we can employ the operator RP , defined next.

Definition 3 (Operator RP)

Let L,U ∈ I. The operator RP for a program P w.r.t. (L,U) is the function

R
L,U
P : I → I such that [RL,U

P (X)](a) := min{X(a), 1−max{〈U ∩ (1 \X), L〉 (r) | r ∈
P , H(r) = a}} for every a ∈ B.

The operator R
L,U
P is antitonic; thus it has a greatest fixpoint R

L,U
P ⇓ 1, which is

the limit of the sequence X0 := 1, Xi+1 := R
L,U
P (Xi), i >= 0. There is a strong

relationship between fuzzy unfounded sets and the operator RP , which allows for

replacing the upper bound U by 1 \ (RL,U
P ⇓1).

https://doi.org/10.1017/S1471068413000471 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000471

758 M. Alviano and R. Peñaloza

Theorem 5

Let L,U ∈ I, L ⊆ U, and P be a program. If 1\RL,U
P ⇓1 ⊆ U, then R

L,U
P ⇓1 = GUS L,U

P .

It is easy to see that one application of the RP operator requires linear time in

the number of rules P . Moreover, as in Theorem 1, the greatest fixpoint R
L,U
P ⇓1 is

obtained after at most as many applications of this operator as there are atoms in

P . In total, this means that this fixpoint can be computed in polynomial time on

the size of P .

Theorem 6

Let L,U ∈ I and P be a program. The fixpoint R
L,U
P ⇓ 1 can be computed in

polynomial time on the size of P .

To sum up, the TP operator can be used to improve the lower bound L, while

RP is useful for decreasing the upper bound U. These two operators complement

each other, as a tighter lower bound may help to further decrease the upper

bound, and dually, a tighter upper bound may increase the lower bound. In fact,

if L ⊆ L′ and U ′ ⊆ U, then (i) TU
P (I) ⊆ TU ′

P (I) and (ii) R
L′ ,U
P (I) ⊆ R

L,U
P (I), thus

1 \ RL,U
P (I) ⊆ 1 \ RL′ ,U

P (I) hold for every interpretation I . We can then combine TP

and RP to obtain a new operator.

Definition 4 (Well-founded operator)

The well-founded operator is the function WP : I×I → I×I defined as

WP (L,U) :=
(
TU
P (L), 1 \ RL,U

P ⇓1
)

. (3)

The well-founded operator is monotonic in the lattice (I × I,�), where (L,U) �(
L′, U ′

)
if and only if L ⊆ L′ and U ′ ⊆ U. Hence, WP has a least fixpoint WP⇑ (0, 1).

Moreover, every pair Wi = (Li, Ui) in the sequence W0 := (0, 1), Wi+1 := WP (Wi)

(i � 0) satisfies that Li ⊆M ⊆ Ui for every answer set M of P . We show a stronger

result.

Theorem 7

Let P be a program, L,U two interpretations, (L′, U ′) = WP (L,U), and M an answer

set for P . If L ⊆M ⊆ U, then L′ ⊆M ⊆ U ′.

Just as TP does for positive programs, an iterative application of the well-founded

operator yields the unique answer set of stratified programs in polynomial time.

Theorem 8

Let P be a stratified program. The least fixpoint of WP coincides with the unique

answer set of P and is computable in polynomial time.

Example 2

Consider the stratified program Pex1 from Example 1. The application of the well-

founded operator to Pex1 are shown in Table 1. After three iterations, a fixpoint

is reached, stating that every answer set M for Pex1 must be such that M(a) = 0,

M(b) = 0.9, and M(c) = 0.1. As seen before, this is indeed the only answer set of

Pex1.

https://doi.org/10.1017/S1471068413000471 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000471

Fuzzy answer sets approximations 759

Table 1. Iterations of the combined operator on Pex1 and Pex2

Pex1 Pex2

a b c a b c

L0 := 0 ;U0 := 1 0; 1 0 ; 1 0 ; 1 0 ; 1 0 ; 1 0 ; 1

L1 := T
U0
P (L0);U1 := 1 \ RL0 ,U0

P ⇓1 0; 0.1 0 ; 1 0.1; 0.1 0 ; 0.1 0 ; 1 0.1; 0.1

L2 := T
U1
P (L1);U2 := 1 \ RL1 ,U1

P ⇓1 0; 0.1 0.9; 0.9 0.1; 0.1 0 ; 0.1 0.9; 1 0.1; 0.1

L3 := T
U2
P (L2);U3 := 1 \ RL2 ,U2

P ⇓1 0; 0 0.9; 0.9 0.1; 0.1 0 ; 0 0.9; 1 0.1; 0.1

L4 := T
U3
P (L3);U4 := 1 \ RL3 ,U3

P ⇓1 0; 0 0.9; 0.9 0.1; 0.1 0 ; 0 1 ; 1 0.1; 0.1

L5 := T
U4
P (L4);U5 := 1 \ RL4 ,U4

P ⇓1 0; 0 0.9; 0.9 0.1; 0.1 0 ; 0 1 ; 1 0.1; 0.1

Although it is only possible to guarantee that the iterative application of the

combined operator computes an answer set if the program is stratified, they can also

produce the answer sets of cyclic programs, as shown by the following example.

Example 3

For the program Pex2 = Pex1 ∪ {b← not a}, Table 1 shows the applications of WP .

A fixpoint is reached after four iterations, stating that the only candidate for an

answer set is the interpretation M with M(a) = 0, M(b) = 1, and M(c) = 0.1. The

reduct of Pex2 w.r.t. M is {a ← c ⊗ 0, b ← 0.9, c ← 0.1, b ← 1}, for which M is

a minimal model. However, the iterative application of WP might not terminate, as

for example for program Pinf = {a ← 0.9 ⊗ not a} over the product t-norm. The

least fixpoint of WPinf
assigns to a degree 9/19, but ω applications are required.

Even if WP often provides good bounds, there is still room for improvement.

Consider the program Podd = {a ← not a}. Podd has exactly one answer set M with

M(a) = 1/2. However, WP yields the bounds L = 0 and U = 1. Observe that the

rule of Podd states the implicit restriction that a must be evaluated to at least 1/2

in every model I of P because I |= P implies I(a) � I(not a) = 1 − I(a). Implicit

restrictions of this kind might be used to further improve lower bounds.

Definition 5 (Minimal satisfiability)

The minimal satisfiability operator of a program P w.r.t. an upper bound U is the

function SU
P : I → I where [SU

P (L)](a) := inf{I(a) | I |= P , L ⊆ I ⊆ U} for each

a ∈ B.

Theorem 9

Let L,U,M ∈ I and P be a program. If M |= P and L ⊆ M ⊆ U, then SU
P (L) ⊆

M ⊆ U.

It is thus possible to improve the bounds by an iterative application of the SP and

RP operators. It is also easy to see that TU
P (L) ⊆ SU

P (L). This in particular means

that the lower bound obtained by SP is always at least as good as the one given

by TP , and in some cases strictly better. This translates not only in better bounds

being computed, but also in a lower number of iterations needed to obtain them.

Unfortunately, in general it is not clear how to compute the minimal satisfiability

operator, as it requires finding optimal values for a possibly complex system of

constraints, depending on the t-norm. If we restrict to the �Lukasiewicz t-norm, then

https://doi.org/10.1017/S1471068413000471 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000471

760 M. Alviano and R. Peñaloza

SP reduces to solving a series of linear programming problems. More precisely, for

a program P we define a finite system of inequalities �LP having, for each rule r ∈ P

of the form (1), one inequality

a � b1 + . . . + bm − bm+1 − . . .− bn + 1− m (4)

such that all variables a, b1, . . . , bn are restricted to the interval [0, 1]. All models of

P must satisfy �LP and vice versa. Thus, we obtain the following result.

Theorem 10

Let P be a program over the �Lukasiewicz t-norm, and L,U ∈ I. For every atom

a ∈ B it holds that [SU
P (L)](a) = min{I(a) | Isatisfies�LP ∪ {L(b) � I(b) � U(b) | b ∈

B}}.

In this case, the minimal satisfiability operator can be computed efficiently.

Theorem 11

Let L,U ∈ I, and P be a program over the �Lukasiewicz t-norm. SU
P (L) is computable

in polynomial time w.r.t. the number of rules.

Consider again program Podd. SP computes the minimal value for a with a � 1− a,

i.e., 1/2. The lower bound is updated to 1/2. Then, RP yields RP (L) = 1/2, and

updates the upper bound to 1/2. Further applications of the operators do not modify

L or U, hence M(a) = 1/2 is our candidate answer set, which in this case is the

correct solution.

4 Implementation and experiment

We developed fasp, a prototype handling propositional FASP programs. Programs

with variables can be transformed into equivalent propositional FASP programs by

means of an almost standard grounding procedure, for example by using gringo

(Gebser et al. 2007), which we extended to deal with numeric constants. The proto-

type is available at https://github.com/alviano/fasp.git. In the input program,

numeric constants are specified by writing a decimal or fractional number preceded

by a # character. The output of gringo is a numeric format which constitutes

the input of fasp. The output of fasp is the fuzzy answer sets approximation

obtained by the operators described in Section 3 w.r.t. the t-norm specified by the

command-line option --tnorm=TNORM, where the currently implemented TNORMs are

lukasiewicz (default), godel, and product. For the �Lukasiewicz t-norm, fasp

can also produce the bilevel program defined by Blondeel et al. (2012), which is

encoded for the library YALMIP (http://users.isy.liu.se/johanl/yalmip) and

can be solved by invoking octave (http://www.gnu.org/software/octave/). The

bilevel program is produced after computing the approximating operators if fasp

is run with --mode=answer-set, while --mode=answer-set-unoptimized can be

used for producing the bilevel program without applying any operator. Hence, if the

encoding of program Pex2:

a :- c, #0.1. b :- #0.9. c :- #0.1. b :- not a.

is written in a file test.lp, the fuzzy answer set a[0], b[1], c[0.1] is the

https://doi.org/10.1017/S1471068413000471 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000471

Fuzzy answer sets approximations 761

Algorithm 1: Fuzzy answer sets approximation

Input : a FASP program P

Output: lower and upper bounds L,U

1 begin

2 L := 0; U := 0;

3 foreach r ∈ P do

4 UpperBoundIncrease(r);

5 foreach constant c occurring in P do

6 L(c) := c; U(c) := c;

7 foreach r ∈ P such that c ∈ B+(r) do

8 UpperBoundIncrease(r);

9 LowerBoundIncrease(H(r), L(B+(r))⊗U(not B−(r)));

10 MinimalSatisfiability();

11 return (L,U)

Procedure UpperBoundIncrease(r: rule)

1 begin

2 if U(B+(r))⊗ L(not B−(r)) > U(H(r)) then

3 U(H(r)) := U(B+(r))⊗ L(not B−(r));

4 sp(H(r)) := r;

5 foreach r′ ∈ P such that H(r) ∈ B+(r′) do

6 UpperBoundIncrease(r′);

output of

gringo test.lp | fasp --tnorm=lukasiewicz --mode=answer-set

The prototype implements Algorithm 1, where for simplicity we assume that all

empty rule bodies are replaced by constant 1. Initially, L and U are set to 0. Any

numeric constant c is treated as a propositional atom whose lower and upper bounds

are set to c (line 6). These bounds are propagated as described below (lines 5–9), but

first fasp computes suitable upper bounds for all atoms (line 4). One could argue

that processing constants before other rules could be more reasonable; however,

Algorithm 1 runs on the stream provided by gringo, which first outputs rules where

fuzzy atoms are represented by ids, and only at the end are these ids associated to

atom names and numeric constants.

Upper bounds are determined by the fixpoint of RP . To achieve an efficient

implementation of this operator, fasp takes advantage of source pointers (Simons

et al. 2002), a technique largely used in crisp ASP solvers that we adapted to the

fuzzy case. A source pointer for an atom a is a rule witnessing the upper bound

of a. Numeric constants do not need source pointers, while propositional atoms do.

Initially, all source pointers are unset. Procedure UpperBoundIncrease is invoked

for each rule r ∈ P (lines 3–4 of Algorithm 1). The procedure computes the upper

bound for B(r) as d = U(B+(r))⊗L(not B−(r)). If d is strictly greater than U(H(r)),

the upper bound of H(r) is set to d and the source pointer of H(r) is set to r

https://doi.org/10.1017/S1471068413000471 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000471

762 M. Alviano and R. Peñaloza

Procedure LowerBoundIncrease(a: atom, d: degree)

1 begin

2 if d > L(a) then

3 L(a) := d;

4 foreach r ∈ P such that a ∈ B+(r) do

5 LowerBoundIncrease(H(r), L(B+(r))⊗U(not B−(r)));

6 foreach r ∈ P such that a ∈ B−(r) do

7 UpperBoundDecrease(r);

Procedure UpperBoundDecrease(r: rule)

1 begin

2 if sp(H(r)) = r and U(H(r))−U(B+(r))⊗ L(not B−(r)) > ε then

3 U(H(r)) := U(B+(r))⊗ L(not B−(r));

4 foreach r′ ∈ P such that H(r) ∈ B+(r′) do

5 UpperBoundDecrease(r′);

6 foreach r′ ∈ P such that H(r) ∈ B−(r′) do

7 LowerBoundIncrease(H(r′), L(B+(r′))⊗U(not B−(r′)));

8 r′ := arg minr′′∈P U(B+(r′′))⊗ L(not B−(r′′));

9 UpperBoundIncrease(r′);

(lines 2–4). This new upper bound for H(r) is propagated in each rule r′ in which

H(r) occurs as a positive body literal (lines 5–6), possibly increasing the upper

bound of H(r′) and changing its source pointer to r′. At the end of this process,

atoms having upper bound different from 0 have source pointers set. Lower bounds,

instead, are given by the fixpoint of TP , obtained by first processing facts and then

numeric constants. Each new lower bound d, say for atom a, can increase the lower

bound of the head atom of any rule r in which a occurs as a positive body literal

(lines 2–5 of LowerBoundIncrease). More specifically, H(r) has a new lower bound

set to L(B+(r))⊗U(not B−(r)) if this degree is strictly greater than L(H(r)).

Lower and upper bound updates can interact intensively to obtain better bounds,

and our system handles these interactions as soon as possible. Whenever the lower

bound of an atom a is increased, the system checks whether decreasing the upper

bound of the head atom of any rule r in which a occurs as a negative literal is

possible (lines 6–7 of LowerBoundIncrease). In particular, this might happen if r

is the source pointer of H(r), in which case the upper bound of H(r) might be

decreased to U(B+(r)) ⊗ L(not B−(r)). (To ensure termination, the upper bound is

updated only if the decrease is greater than a fixed constant ε.) This propagation is

handled by procedure UpperBoundDecrease, which first checks whether other upper

bounds have to be decreased (lines 4–5). To this end, only rules in which H(r) occurs

as a positive body literal have to be checked, and source pointers allow to skip

most of these rules. Once upper bounds have been decreased, the procedure possibly

increases the lower bounds of the head atom of any rule r′ in which H(r) occurs as

a negative body literal (lines 6–7). Finally the procedure determines the best source

https://doi.org/10.1017/S1471068413000471 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000471

Fuzzy answer sets approximations 763

Procedure MinimalSatisfiability

1 begin

2 while bounds changed do

3 D := ∅;
4 foreach a ∈ B do

5 if a /∈ D then

6 s := solution for linear program for a;

7 LowerBoundIncrease(a, s(a));

8 D := D ∪ {b | s(b) = L(b)};

Table 2. Experimental result on fasp: solved instances and average execution time

Timeouts Average execution time�

Tested Average

instances Unopt. Optimized Unopt. Optimized perc. gain�

Graph Coloring 60 34 0 247.44 34.45 (2.68) 76.43%

Hamiltonian Path 40 33 9 120.51 6.41 (0.02) 81.49%

Stratified 90 10 0 190.07 1.80 (0.02) 96.71%

Odd Cycle 90 33 0 186.94 1.95 (0.03) 97.18%

� Computed on the instances solved by both the approaches.

pointer for H(r) (line 8) and in case increases its upper bound, propagating this

information by means of the procedure UpperBoundIncrease (line 9).

When these procedures terminate, all atoms have proper lower and upper bounds.

For the �Lukasiewicz t-norm, bounds can be further improved by the minimal

satisfiability operator SP implemented by procedure MinimalSatisfiability, which

takes advantage of the GLPK library (http://www.gnu.org/software/glpk/) for

solving linear programs. However, operator SP could be resource demanding, and

thus fasp limits its computation as follows: The operator is computed w.r.t. an

atom a, thus obtaining a proper lower bound for a which is possibly propagated

(lines 6–7). The procedure then skips all atoms for which the solution provided by

the simplex algorithm already coincides with their lower bounds and thus witnesses

that no improvement is possible for these bounds (line 8). Moreover, as the system

of inequalities is almost fixed for the input program, it is computed after reading

the program and updated when bounds are changed.

Table 2 reports the result of an experiment on fasp. Graph Coloring and

Hamiltonian Path are variants of well-known NP-complete problems. Instances

of Graph Coloring are those used in the third ASP Competition (Calimeri et al.

2011), while random instances were tested for Hamiltonian Path. For both domains,

random constants were added in the body of facts. Stratified and Odd Cycle are very

simple programs consisting of rules ai+1 ← ai, i = 0, . . . , n − 1, where n is given by

the test cases, and atom a0 is defined by a0 ← 0.9 and by a0 ← not an, respectively.

The experiment was performed on an Intel Xeon CPU X5365 3.00 GHz with

https://doi.org/10.1017/S1471068413000471 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000471

764 M. Alviano and R. Peñaloza

4 GB of central memory and running Debian 6 with kernel Linux 2.6.32. Memory

was limited to 3 GB and execution time to 600 seconds. In this benchmark there

is a sensible performance gain due to the approximating operators implemented in

fasp. In fact, “unoptimized” bilevel programs showed a poor performance, timing

out 110 times, while the “optimizied” approach timed out only 9 times (on which

also the “unoptimized” approach timed out). Even restricting to the 170 test cases

solved by the unoptimized apprach, there is a significant advantage of the optimized

approach, evidenced by an average percentage gain of at least 76%. Note that in

Table 2 the time required for computing the approximation operators is reported in

parentheses and included in the execution time of the optimized approach.

5 Related work

The study of fuzzy extensions of logic programs can be traced back more than two

decades (see e.g. Dubois et al. 1991). Moreover, compared to classical logic, fuzzy

logics offer several additional levels of liberty for the definition of their semantics;

namely, the choice of the space of truth degrees, the interpretation of the conjunction,

the negation, and even the implication. Hence, we describe only the work that is

closest related to ours.

The first generalization of the immediate consequence operator to deal with fuzzy

semantics was due to Achs and Kiss (1995) and Achs (1997), albeit exclusively for the

Gödel t-norm semantics. Fuzzy answer set semantics were introduced by Lukasiewicz

(2006) based on a generalization of the Gelfond-Lifschitz transformation (Damásio

and Pereira 2001). It was then shown that positive and stratified programs have

a unique answer set, and that it can be obtained by a finite iteration of the TP

operator. However, no further analysis on the number of iterations needed to

obtain that answer set was made. It is worth noting that the semantics described

by Lukasiewicz (2006) are based on a finite set of truth values, rather than the

whole interval [0, 1], as in our case. Nonetheless, the proof ideas can be generalized

to arbitrary t-norms over [0, 1] without difficulty. General fuzzy answer set programs

have been studied in detail in the last years (Janssen 2011), considering not only

general t-norm semantics, but also arbitrary connectives to be used in the head and

the body of the rules.

While the complexity of finding fuzzy answer sets is now relatively well understood,

there were to-date no solvers available. In an effort to compute answer sets for

general programs, a completion method was proposed by Janssen et al. (2012). The

idea is to transform the program P into a set of fuzzy logic formulas, whose models

correspond precisely to the answer sets of P . However, due to the lack of (optimized)

fuzzy logic reasoners, this reduction does not allow for an effective implementation.

A different approach, specifically designed for the �Lukasiewicz t-norm, is to reduce

the program P to a bilevel linear programming problem (Blondeel et al. 2012).

This method, which is also implemented by our system, has important theoretical

repercussions, e.g., it can be used to show that disjunctions on rule heads do not

add expressivity under this semantics.

https://doi.org/10.1017/S1471068413000471 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000471

Fuzzy answer sets approximations 765

Unfounded sets for FASP programs were first defined by Nieuwenborgh et al.

(2007a); these unfounded sets are defined w.r.t. total interpretations and are actually

crisp sets used for characterizing fuzzy answer sets. We will refer to this notion

as crisp unfounded sets. Our definition is more general: it is given w.r.t. partial

interpretations and for fuzzy sets; it is suitable for pruning the search space but

also characterizes answer sets. A relationship between the two notions follows by

Theorem 4.

Corollary 1

For every fuzzy unfounded set X w.r.t. (I, I), set {a | X(a) + I(a) > 1} is a crisp

unfounded set. For every crisp unfounded set Y there is a fuzzy unfounded set X

such that Y = {a | X(a) + I(a) > 1}.

To the best of our knowledge, there had been no previous attempts to generalize

the RP operator as a complementation of unfounded sets. This operator allows for a

better approximation of answer sets without spending too many resources. A similar

idea was studied by Loyer and Straccia (2009), where a well-founded semantics

is used for querying fuzzy logic programs over the Gödel t-norm. A well-founded

semantics was also defined by Damásio and Pereira (2001), for which we can prove

the following result.

Theorem 12

The fixpoint of WP gives the well-founded semantics by Damásio and Pereira (2001).

6 Conclusions

We studied the problem of finding answer sets for normal FASP programs with

t-norm based semantics. We studied fuzzy variants of the operators TP and RP ,

which bound the class of all answer sets of a FASP program P . These operators, as

well as the combined well-founded operator WP , extend well-known operators from

classical ASP to handle fuzzy semantics. As such, our operators preserve many of the

properties that make them suitable for practical implementations. In particular, we

have shown that one application of WP requires only polynomial time, measured on

the size of P . Moreover, for positive and stratified programs, an iterative application

of this operator yields the unique answer set in polynomial time, independently of

the t-norm used. For normal FASP programs, which may have none or infinitely

many answer sets, this operator is only guaranteed to provide lower and upper

approximations for the class of answer sets. Depending on the program and the

t-norm used, better bounds can be achieved by combining RP with a new operator

SP . In particular, SP is computable in polynomial time for the �Lukasiewicz t-norm

by solving at most one linear program for each atoms in the program.

We implemented a prototype which applies the operators in an optimized manner,

using SP only when no information can be obtained from WP . In particular, if the

program is stratified, then SP will never be triggered. The system also keeps track

of previous solutions of the set of inequalities introduced by SP , to avoid trying

to optimize atoms whose current bounds are already known to be optimal. It also

https://doi.org/10.1017/S1471068413000471 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000471

766 M. Alviano and R. Peñaloza

takes advantage of other optimizations developed for classical ASP, such as source

pointers, to reduce the number of computations needed. The approximation provided

by our prototype could aid in the computation of fuzzy answer sets, as evidenced

by our experiment.

There are several lines for future work. From the theoretical point of view, we

plan to investigate further conditions and operators that allow a precise computation

of answer sets. In particular, as finding answer sets for normal FASP programs is

NP-hard, we need to develop methods for efficiently dealing with a choice operator.

We believe that the completion approach by Janssen et al. (2012) can be improved

through the introduction of binary selection variables. From the practical point of

view, we intend to improve the prototype, which currently relies on an external tool

for computing answer sets when the bounds cannot be further improved. One idea

for this point would be to implement a completion-based method extended with

learning techniques.

References

Achs, Á. 1997. Evaluation strategies of fuzzy datalog. Acta Cybernetica 13, 1, 85–102.

Achs, Á. and Kiss, A. 1995. Fuzzy extension of datalog. Acta Cybernetica 12, 2, 153–166.

Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G. and Terracina, G. 2011. The

disjunctive datalog system DLV. In Datalog 2.0, G. Gottlob, Ed. Vol. 6702, Springer

Berlin/Heidelberg, 282–301.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press.

Blondeel, M., Schockaert, S., De Cock, M. and Vermeir, D. 2012. NP-completeness of

fuzzy answer set programming under �Lukasiewicz semantics. In Working Papers of the

ECAI-2012 Workshop in Weighted Logics for Artificial Intelligence WL4AI, L. Godo and

H. Prade, Eds. 43–50.

Calimeri, F., Ianni, G., Ricca, F., Alviano, M., Bria, A., Catalano, G., Cozza, S., Faber,

W., Febbraro, O., Leone, N., Manna, M., Martello, A., Panetta, C., Perri, S., Reale,

K., Santoro, M. C., Sirianni, M., Terracina, G. and Veltri, P. 2011. The third answer

set programming competition: Preliminary report of the system competition track. In 11th

International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR

2011), J. Delgrande and W. Faber, Eds. Lecture Notes in Computer Science, vol. 6645,

Springer Berlin/Heidelberg, 388–403.

Damásio, C. V. and Pereira, L. M. 2001. Antitonic logic programs. In Proceedings of the 6th

International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’01).

Springer-Verlag, London, UK, 379–392.

Delgrande, J. P., Schaub, T., Tompits, H. and Woltran, S. 2008. Belief revision of

logic programs under answer set semantics. In Principles of Knowledge Representation

and Reasoning: Proceedings of the Eleventh International Conference, KR 2008 Sydney,

Australia, September 16-19, 2008, G. Brewka and J. Lang, Eds. 411–421.

Dubois, D., Lang, J. and Prade, H. 1991. Fuzzy sets in approximate reasoning, part 2:

Logical approaches. Fuzzy Sets and Systems 40, 1, 203–244.

Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T. 2007. Conflict-driven answer set

solving. In Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07).

Morgan Kaufmann Publishers, 386–392.

https://doi.org/10.1017/S1471068413000471 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000471

Fuzzy answer sets approximations 767

Gebser, M., Schaub, T. and Thiele, S. 2007. Gringo : A new grounder for answer set

programming. In Logic Programming and Nonmonotonic Reasoning — 9th International

Conference, LPNMR’07, C. Baral, G. Brewka, and J. Schlipf, Eds. Lecture Notes in

Computer Science, vol. 4483, Springer Verlag, Tempe, Arizona, 266–271.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive

databases. New Generation Computing 9, 365–385.

Janssen, J. 2011. Foundations of Fuzzy Answer Set Programming. PhD thesis, Ghent University.

Janssen, J., Vermeir, D., Schockaert, S. and Cock, M. D. 2012. Reducing fuzzy

answer set programming to model finding in fuzzy logics. Theory and Practice of Logic

Programming 12, 6, 811–842.

Klement, E. P., Mesiar, R. and Pap, E. 2000. Triangular Norms. Trends in Logic, Studia

Logica Library. Springer-Verlag.

Lierler, Y. and Maratea, M. 2004. Cmodels-2: SAT-based answer set solver enhanced

to non-tight programs. In Proceedings of the 7th International Conference on Logic

Programming and Non-Monotonic Reasoning (LPNMR-7), V. Lifschitz and I. Niemelä,

Eds. LNAI, vol. 2923, Springer, 346–350.

Lifschitz, V. 2002. Answer set programming and plan generation. Artificial Intelligence 138,

39–54.

Lin, F. and You, J.-H. 2002. Abduction in logic programming: A new definition and an

abductive procedure based on rewriting. Artificial Intelligence 140, 1/2, 175–205.

Loyer, Y. and Straccia, U. 2009. Approximate well-founded semantics, query answering

and generalized normal logic programs over lattices. Annals Mathematics and Artificial

Intelligence 55, 3-4, 389–417.

Lukasiewicz, T. 2006. Fuzzy description logic programs under the answer set semantics

for the semantic web. In Proc. 2nd International Conference on Rules and Rule Markup

Languages for the Semantic Web (RuleML 2006), T. Eiter, E. Franconi, R. Hodgson and

S. Stephens, Eds. IEEE Computer Society, 89–96.

Marek, V. W. and Remmel, J. B. 2004. Answer set programming with default logic. In ,

Proceedings of the 10th International Workshop on Non-Monotonic Reasoning (NMR 2004),

Whistler, Canada, June 6-8, 2004, J. P. Delgrande and T. Schaub, Eds. 276–284.

Marek, V. W. and Truszczyński, M. 1999. Stable models and an alternative logic

programming paradigm. In The Logic Programming Paradigm – A 25-Year Perspective,

K. R. Apt, V. W. Marek, M. Truszczyński and D. S. Warren, Eds. Springer Verlag, 375–398.

Niemelä, I. 1999. Logic programming with stable model semantics as constraint programming

paradigm. Annals of Mathematics and Artificial Intelligence 25, 3–4, 241–273.

Nieuwenborgh, D. V., Cock, M. D. and Vermeir, D. 2007a. Computing fuzzy answer sets

using dlvhex. In Proceedings of the 23rd International Conference on Logic Programming

(ICLP 2007), Porto, Portugal, September 8-13, 2007, Lecture Notes in Computer Science,

vol. 4670, 449–450.

Nieuwenborgh, D. V., Cock, M. D. and Vermeir, D. 2007b. An introduction to fuzzy answer

set programming. Annals Mathematics and Artificial Intelligence 50, 3-4, 363–388.

Simons, P., Niemelä, I. and Soininen, T. 2002. Extending and implementing the stable model

semantics. Artificial Intelligence 138, 181–234.

Van Gelder, A., Ross, K. A. and Schlipf, J. S. 1991. The Well-founded semantics for general

logic programs. Journal of the ACM 38, 3, 620–650.

https://doi.org/10.1017/S1471068413000471 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000471

