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This work describes the application of a technique that extracts branched manifolds from
time series to study numerically generated fluid particle behaviour in the wake past
a cylinder performing a rotary oscillation at low Reynolds numbers, and compares it
with the results obtained for a paradigmatic analytical model of Lagrangian motion: the
driven double gyre. The approach does not require prior knowledge of the underlying
equations defining the dataset. The time series taken as input corresponds to the evolution
of a position coordinate of an individual fluid particle. A delay embedding is used to
reconstruct the dynamics in phase space, and a cell complex is built to characterize the
topology of the embedding. Fluid particles are said to belong to the same topological class
when the Betti numbers, orientability chains and weak boundaries of the associated cell
complexes coincide. Topological colouring consists of labelling or ‘colouring’ advected
particles with the topological class obtained in their finite-time analyses. The results
suggest that topological colouring can be used to distinguish between regions of the flow
where trajectories exhibit different finite-time dynamics.

Key words: nonlinear dynamical systems, general fluid mechanics, chaotic advection

1. Introduction

Laminar flows with recirculation cells are of interest since the residence time of fluid
particles in these zones is larger than that in other flow regions. Many practical applications
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such as stirring and mixing, blood coagulation or bacterial growth depend on this time
(Tuval et al. 2005; Hathcock 2006; Cremer et al. 2016). When the flow field is steady,
one can identify particle paths with streamlines and easily determine what the global
behaviour of fluid particles will be. But when the flow field is unsteady, gaining an
insight into the motion of fluid elements becomes non-trivial and fluid particles that
are initially close together may largely separate over time. Mixing of fluid particles in
laminar flows may rely either on molecular diffusion or on advection (Villermaux 2019).
The value of the Péclet number establishes whether molecular diffusion has a significant
role in the mixing process. The terminology regarding mixing and stirring is not always
consistent in the literature. We hereafter reserve the term ‘mixing’ to denote diffusion
(either molecular or eddy diffusion) and use the term ‘stirring’ to refer to advection.
For flows with high-valued Péclet numbers, such as liquids, it is not unusual to find that
advection is the prevalent process, and stirring mainly determines the uniformization of
initially segregated constituents. With negligible or null diffusion, the stirring properties of
two-dimensional laminar cellular flows include the possible existence of persistent barriers
to transport. Such flow separators are associated with ‘Lagrangian coherent structures’,
which define sets of fluid particles that are minimally dispersive and that move together
quite robustly. Lagrangian coherent structures are known to separate dynamically distinct
regions in fluid flows (Kelley, Allshouse & Ouellette 2013).

Distinguishing types of behaviour from data is possible using a technique called
BraMAH (branched manifold analysis through homologies). Recently used in Charó,
Artana & Sciamarella (2020) to analyse particle trajectories, it is important to stress that
the technique is a general time series analysis method that can be applied to any dynamical
system and not only to chaotic regimes. The first attempts to discern the main features of
a dynamical system from observational or experimental data date back to Packard et al.
(1980), who addressed the problem of using time series to reconstruct a finite-dimensional
phase-space picture of the sampled system’s time evolution using an embedding, and to
characterize it geometrically. Data-embedding techniques are used by experimentalists to
reconstruct dynamical information from time series (Sauer, Yorke & Casdagli 1991). The
advantage of using topological instead of geometrical properties to describe embedded
data lies in the fact that the former provide information about the mechanisms that act
in phase space to construct the flow. These mechanisms – stretching, squeezing, tearing,
folding – are topological in nature, and they are intimately related to the governing
equations (Birman & Williams 1983). In the case of a fluid particle, the coordinates of
the particle position span a subspace of phase space. Restricting the characterization of
the dynamics of a fluid particle to the subspace spanned by the position coordinates may
be problematic, as discussed in Charó et al. (2019). It is therefore advisable to work with
embeddings involving as many dimensions as necessary, i.e. without projecting the data
onto a lower-dimensional space.

Specific implementations have been proposed to extract topological features from time
series: the first ones were based on the way in which the unstable periodic orbits in phase
space are knotted among themselves (Mindlin et al. 1990, 1991), but this approach was
restricted by the phase-space dimension which could not be higher than three – since knots
unknot in more than three dimensions – and by the possibility of identifying periodic orbits
within a time series, i.e. nearly periodic data portions to which the method of close returns
(Lathrop & Kostelich 1989) can be applied, in order to reconstruct the unstable periodic
orbits from a set of points in an embedding from experimental measurements. This
required long and almost noise-free time series. In order to overcome these difficulties,
tools from algebraic topology were proposed (Muldoon et al. 1993; Sciamarella & Mindlin
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1999, 2001; Maletić, Zhao & Rajković 2016). Natiello et al. (2007) typify this approach as
‘knotless’ and periodic ‘orbitless’, ‘since the data is characterized as a whole, regardless
of the existence of hidden periodic orbits in it’. In this sense, BraMAH is an orbitless and
knotless method that is specifically designed to compute topological properties enabling
the identification of (branched) manifolds from a cloud of points in phase space. The
resulting manifold may have branches or not: no a priori assumptions are made, since the
aim of the approach is to discern the nature of the dynamics from observations, unaided
by previous knowledge of the system’s properties.

A cautionary note on language is necessary, since there are many terms that are shared
between fluid mechanics and dynamical systems theory, and that may lead to ambiguities.
The words ‘trajectory’ or ‘flow’ are common to both domains. Trajectories in fluid
mechanics refer to particles flowing in a fluid in a physical space that cannot be higher
than three-dimensional, while trajectories of a flow in phase space can be of any dimension
since they refer to solutions of an equation system for a set of initial conditions. For the
sake of clarity, we always indicate to which type of space we are referring.

This work describes the application of this technique to the numerically generated
particle trajectories in a fluid flow past an oscillating cylinder, and compares it
with the results obtained for a paradigmatic analytical model of Lagrangian motion
(Shadden, Lekien & Marsden 2005). In the particular context of Lagrangian studies,
the approach adopted here can be framed within a class of methods that measure
complexity of individual particle trajectories in order to identify or ‘colour’ regions
with qualitatively different dynamical behaviour of particle trajectories in fluid flows.
More specifically, Rypina et al. (2011) proposed the use of correlation dimension,
ergodicity defect or arclength of individual particle trajectories as a measure of trajectory
complexity to identify Lagrangian coherent structures. Mendoza, Mancho & Wiggins
(2014) also proposed the use of arclength or pathlength of individual trajectories to find
Lagrangian coherent structures (‘Lagrangian descriptors’ method), while Schlueter-Kuck
& Dabiri (2017) resorted to graph theory proposing a metric of kinematic dissimilarity.
Non-individual particle strategies generally rely on the analysis of large sets of particles
that must in addition lie initially close to each other. We should of course mention the
widely used finite-time and finite-size Lyapunov exponents (Karrasch & Haller 2013;
Allshouse & Peacock 2015b), variational approaches such as that of Farazmand & Haller
(2012), Lagrangian averaged vorticity deviation and diffusive barriers (Haller et al. 2016;
Haller, Karrasch & Kogelbauer 2018), transfer operator methods (Froyland 2013; Froyland
& Padberg-Gehle 2015; Williams, Rypina & Rowley 2015), the encounter volume method
(Rypina & Pratt 2017; Rypina, Llewellyn Smith & Pratt 2018) and spectral clustering
(Hadjighasem et al. 2016; Vieira, Rypina & Allshouse 2020; Filippi et al. 2021), among
others.

Complementary strategies can be used to provide alternative visualizations, in order
to confirm the results offered by Lagrangian approaches. These include, for instance,
tracer release experiments or stroboscopic sections in Navier–Stokes simulations. The
latter may require integration over very long times (Rypina et al. 2015), and they may lead
to different interpretations according to the initial placement of the markers (Soulvaiotis,
Jana & Ottino 1995). Partial evidence of the presence of transport barriers can sometimes
be obtained having recourse to streaklines, i.e. to the instantaneous loci of all the fluid
particles that have passed through a particular spatial point in the past, the injection point.
Producing streaklines amounts to conducting an experiment in which dye is continuously
released from a single or from multiple injection points. In the laboratory, the technique
can be easily implemented and is often used to visualize flow patterns, in order to
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develop flow control strategies (Roca et al. 2014) or to analyse mixing (Balasuriya 2017).
Streaklines are especially relevant because they can be assumed to correspond to what
is observed in a naturally occurring event, such as an oil spill, if diffusion and other
processes (weathering or chemical reactions) are neglected. Streakline patterns depend
of course on the injection point(s), on the injection time window, on the nature and
motion of the transport barriers with respect to the injection point(s), as well as on the
molecular diffusion properties of the tracer. If the molecular diffusion of the tracer is
negligible, and if the transport barriers move without ever passing through the injection
points, streaklines end up indicating the existence of particle-trapping regions in a fluid
after a certain ‘buffering time’. In the streakline numerical experiments shown in this
study, molecular diffusion of the tracer is neglected, and the location of the injection
point(s) is chosen in order to verify that dye is confined by the transport barriers in the
way anticipated by the topological analysis.

The cylinder wake has been studied in hundreds of papers due to its scientific and
engineering significance (Williamson 1996). The flow configuration adopted here is a case
for which vortex shedding is absent and corresponds to low values for the Reynolds number
and the rotation parameter. Taneda (1978) reported experimental studies of such flows,
but most of the subsequent research focused upon flows with relatively large Reynolds
number, for which vortex shedding was usually observed (Zdravkovich 1997; Choi, Choi &
Kang 2002; Thiria, Goujon-Durand & Wesfreid 2006). In the case discussed in this work,
a moving wall imposes a dynamics in the recirculation region. Numerical simulations
show the formation of coherent sets within the recirculation bubble that, to the best of
our knowledge, have not yet been reported. This system is dubbed the rotary oscillating
cylinder (ROC) system. The coherent regions that are formed are shown to share many
features with those formed in the driven double gyre model, dubbed DDG. The topological
finite-time analysis conducted in this work will shed further light on the similarities
between the ROC and the DDG systems.

The article is organized as follows. Section 2 addresses the main principles for
particle topological colouring. Section 3.1 presents the topological finite-time analysis
of particle trajectories that are obtained by numerically integrating the Navier–Stokes
equations in the ROC system. Section 3.2 revisits the DDG model, showing the results
of topological colouring in this reference case. A comparative study is provided in § 4,
and conclusions are drawn in the final section. Appendices concerning technical and
mathematical questions are provided for completeness.

2. Method

The connection between the topology of dynamical reconstructions in phase space and
the transport properties of a fluid flow in physical space is supported by the fact that
Lagrangian coherent structures separate dynamically distinct regions (Kelley et al. 2013).
The methodology will of course be successful insofar as such coherent sets can be
effectively discerned in terms of topologically non-equivalent dynamics in reconstructed
phase space. When reconstructed from a time series, the phase space is only partly
reconstructed, i.e. only the part of the space visited by the trajectory is reconstructed.
Results will therefore be relative to the temporal window that is inspected. A short-term
analysis will thus not necessarily coincide with a longer-term analysis. ‘Projection’ effects
could also occur due to a poor observability by the variable measured. Recently, tools
offering the possibility of numerically assessing the observability of a variable from
experimental data have been proposed (Gonzalez et al. 2020). These caveats should be
taken into account when interpreting the results.
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The starting point of the analysis is a scalar time series of a Lagrangian variable ξ ,
i.e. a variable that is measured following the fluid particle in its motion. Time series of
quantities that are transported by the particle, such as temperature, pollutant concentration,
plankton density, etc., may also be considered (Balasuriya, Ouellette & Rypina 2018),
but here we will stick to the problem of examining variables that are fully locked to a
particle, leaving this question for future work. Even if BraMAH has the virtue of dealing
with relatively short and noisy time series (with respect to knot-theory-based methods),
a number of minimal requisites are necessary for any topological finite-time analysis to
be fertile. As mentioned before, the length of the time window has an important role in
a finite-time analysis. The practical guideline provided in Gilmore (1998) is to take more
than 20 pseudo-periods, but this number is only indicative and cannot be taken as general.
Clearly, the higher the sampling rate, the finer the description. Data may be interpolated
or smoothed, but smoothing data from a few points per pseudo-period is very risky, and
an over-simplification of the dynamics may be expected.

Some kind of embedding technique is necessary to implement the dynamical
reconstruction. We have chosen to work with time-delay embeddings, but differential
embeddings as used for global modelling are a possible alternative (Mangiarotti et al.
2012). The procedure maps the input time series ξ(t) into an m-dimensional space
(ξ(t), ξ(t − τ), . . . , ξ(t − (m − 1)τ )). The time delay τ and the embedding dimension
m are two parameters that must be found in each case. There is no ‘gold’ technique for
assessing the optimal time delay (Abarbanel & Gollub 1996). The rationale is that delay
coordinates are correctly chosen if they are sufficiently independent but not uncorrelated.
Redundancy is the price to pay if τ is too small, and irrelevance if τ is too large. Standard
autocorrelation techniques are ruled out because they only measure the linear dependence
of two variables. Their nonlinear counterpart is the average mutual information (AMI)
technique, a heuristic approach based on the Shannon entropy (Fraser & Swinney 1986;
Kantz & Schreiber 2004). For a histogram of resolution ε, let pi denote the probability of
the signal taking a value inside the ith bin of the histogram. Let pij be the probability that
ξ(t) is in i and ξ(t + τ) in j. With these definitions, the mutual information for a time delay
τ is given by

Iε(τ ) =
∑

i,j

pij(τ ) ln pij(τ )− 2
∑

i

pi ln pi. (2.1)

The value of Iε(τ ) will decrease with τ more or less rapidly, and present afterwards either
a slower decay or a set of local minima/maxima. In the first case, the optimal τ is defined
by the value at which the first substantial decrease ceases. In the second case, it is the first
minimum that is supposed to mark the optimal delay for the embedding. The reliability
of the results will, however, depend on the system investigated. The determination of m
is often done with the method of false nearest neighbours (FNNs) (Kennel, Brown &
Abarbanel 1992; Abarbanel & Gollub 1996; Kantz & Schreiber 2004). The FNN method
searches for points which are close to each other in a certain embedding space, not because
of the dynamics but because the data are projected onto a too low-dimensional space.
Given one point and its closest neighbour in m dimensions, one computes the ratio of the
distances between them in m + 1 dimensions. When m has been increased to a value for
which no more FNNs are detected, the correct embedding dimension is identified. For
noisy data, the proportion of FNNs never drops to zero (Abarbanel & Gollub 1996), but
an appropriate threshold can be chosen. Both parameters m and τ will here be determined
using the algorithms provided in Ruskeepää (2017). At the end of this first stage of the
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process, an m-dimensional cloud of points is obtained that is associated with a single fluid
particle in a specific time window.

Before proceeding to the next step of the method, let us succinctly clarify why the
topological study is conducted in a multidimensional working space instead of using
the so-called extended phase space, which is three-dimensional, for the behaviour of a
particle in a two-dimensional fluid. When a dynamical system is non-autonomous, the
phase space is not completely determined, i.e. some processes involved in the dynamics
are not explicitly described. The so-called augmented or extended phase space corresponds
to setting ṫ = 1 as if t were a dependent variable in the set of governing equations. This
way of rewriting the system as an autonomous one is in fact deceitful, since it assigns
a double status to the time variable, which is defined as the sole independent variable
in dynamical systems theory. Among other problems, this leads to an unbounded phase
space where some tools from nonlinear dynamical systems theory do not necessarily
apply. The point is discussed in a separate work (Charó et al. 2019). Relying instead on
sufficiently high-dimensional embeddings helps to avoid projection effects and to achieve
better dynamical reconstructions.

The next step is to apply BraMAH to the m-dimensional cloud of points obtained in
the embedding stage. The algorithmic procedure and the algebraic topology definitions
that are necessary to describe this in detail are provided in Appendices A and B. To
give the reader a brief summary of the process, the rationale is the following. The cloud
of points is first decomposed into groups of points which will play the role of building
blocks, here called cells. Each cell represents a point subset that constitutes a good local
approximation of a d-disk with d ≤ m. Notice that d is not assumed but calculated as
part of the cell construction process. One does not need to set d or to know its value in
advance. The cells are glued together into a cell complex, which can be thought of as a
rough skeleton of the structure upon which the m-dimensional cloud of points lies. This
structure may correspond to an underlying attractor, an invariant manifold or a semi-flow
on a broader class of objects that are neither attractors nor manifolds (Muldoon et al.
1993). The cell complex construction procedure is in fact designed to approximate a
cloud of points which is possibly lying on a branched manifold, i.e. a manifold with
branches – even if the manifold may have no branches at the end of the process. A cell
complex constructed in this manner (with these rules) will be called a BraMAH complex.
Once the cell complex is constructed, homology groups can be computed in order to
characterize its basic topology. Homology groups are a set of ‘layered’ results which
condense the main topological features of the cloud of points: the so-called 0-holes or
generators of H0 refer to connected components, the 1-holes or generators of H1 to the
number of holes (a 1-hole is a ‘void’ of dimension 1) and higher-dimensional holes (such
as cavities, which are 2-holes or ‘voids’ of dimension 2). In the case of the Lorenz 63
butterfly, for example, there is only one 0-hole, two 1-holes and zero higher-dimensional
holes.

Merely counting the different types of holes amounts to computing the Betti numbers,
defined as the rank of the homology groups of a cell complex. But the Betti numbers alone
do not suffice to identify a branched manifold from a cloud of points. This is why BraMAH
explicitly outputs much more information than conventional homology computation
methods. The constructed cell complex, whose cells have vertices that are associated with
a few points in the original cloud of points, is part of the output, and can therefore be
visualized by plotting it, for instance, in juxtaposition with (a three-dimensional projection
of) the m-dimensional cloud of points. Note that the computational process used to build
the cell complex does not imply projections of any kind; projections are just used to
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visualize results corresponding to datasets in more than three dimensions. The generators
of the homology groups which identify the holes are also part of the output, and are
expressed as chains of cells labelled in terms of the vertices. This allows use of the 1-holes
to locate the branches, if there are many, and to see how they are relatively disposed or
inserted. Torsion information, which is not contained in the homology groups, is retrieved
through the computation of two extra features: orientability chains and weak boundaries.
Together with Betti numbers, these features are used to define a topological class and
therefore to identify a certain type of dynamics with a colour. This means that if the
cell complex corresponds to a Klein bottle, as for instance in (Mindlin & Solari 1997),
BraMAH will detect it correctly. It is important to be aware that a BraMAH cell complex
is faithful to the structure of the m-dimensional cloud of points used as input for the
calculation.

In view of the previous statements, the results of a topological finite-time analysis are
relative to the variable chosen for the dynamical reconstruction ξ(t), to the time window
(initial time tw and length Tw) and to the embedding parameters (delay τ and dimension
m). Let us suppose that the position of a limited set of particles is available for the
analysis, with startup positions that may of course be sparse. The BraMAH analysis
of each particle will yield a topological class. Assigning a colour to each topological
class, each particle of the set can be tagged with the colour obtained from its finite-time
BraMAH analysis. This operation will be termed topological colouring of fluid particles.
By plotting the particles in motion carrying their topological colour, a live picture is
obtained of where particles sharing the same colour are located, and how they move.
The fact that the same topological classes may appear in different fluid flows may be
used to relate dynamical features of fluid particles in different flow configurations. This
should, however, be done with care, since a comparison between finite-time topologies in
different fluid flows will require the parameters of the analysis to be comparable in the two
problems.

3. Results

This section presents the application of the topological finite-time analysis to two cellular
flows that present particle-trapping regions. The first subsection considers the recirculation
cells in the near wake of the ROC flow from Navier–Stokes numerical simulations.
Dynamically distinct zones are identified through the topological colouring of a limited
set of particles advected in the numerically solved flow field. As mentioned in the
introduction, streaklines are used as an alternative visualization strategy to confirm the
results obtained through the topological analysis.

The second subsection presents the same operation with the DDG flow, an analytical
system with a lateral forcing that produces an effect which is comparable to the oscillation
introduced by the movement of the ROC wall. In this sense and to a certain extent, the
DDG can be seen as an analytical version of the ROC flow. Topological colouring of
the DDG is hence conducted with comparison purposes on an appropriate time window.
Thoroughly studied in the literature, the DDG will be used as a focus point to gain further
insight into the results of our topological analysis. The set of particles used in both cases
is quite large, in order to provide a detailed portrait of the flow, although it is clear that
a decently comprehensive knowledge of coherent sets can be gained with a much lower
number of particles. Videos of the coloured advected particles in both cases are provided
as supplementary movies available at https://doi.org/10.1017/jfm.2021.561.
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Figure 1. Four snapshots of the streamlines in the case of a ROC at four different time instants: (a) t = 0; (b)
t = 0.375Tp; (c) t = 0.75Tp; (d) t = 0.875Tp. The stagnation point is represented by a red dot.

3.1. Rotary oscillating cylinder
Let us consider a flow in a bidimensional physical space (x1, x2), with a Reynolds
number based on the cylinder diameter of Re = Uφ/ν = 40, where the kinematic viscosity
coefficient is indicated with ν, the free stream velocity with U and the diameter of
the cylinder with φ. The sinusoidal law of rotary oscillation has an angular amplitude
A = 1 and a rotation parameter θ0 = 1/π (also called forced non-dimensional frequency
parameter) defined as the ratio of the tangential velocity against the free stream velocity.
When the cylinder is fixed (θ0 = 0), vortex shedding is absent and the two recirculating
cells in the wake are steady. This kind of flow can be categorized within the regime of
laminar closed wakes, as described by Zdravkovich (1997).

When the cylinder undergoes a rotary oscillation, the experimental work in Taneda
(1978) shows that the two recirculating cells may remain attached to the cylinder. For a
constant angular amplitude of oscillation, there is a critical value of the rotation parameter
for which these cells can no longer be distinguished in the wake. For lower values of this
critical parameter, the cells can be visualized, and exhibit a dynamics imposed by the wall
movement. In these cases, the recirculating cells perform an oscillatory motion: unsteady
streamlines for different time instants are shown in figure 1.

In order to apply the topological colouring technique to particle motion in the ROC
case, we generate numerical data using Gerris (Popinet 2003). This free software program
combines an adaptive multigrid finite-volume method with immersed boundary and
volume of fluid methods. Gerris was previously used by D’Adamo, Godoy-Diana &
Wesfreid (2015) to analyse the centrifugal instabilities that may appear at higher Reynolds
number in ROCs. Numerical data validation is presented in Appendix C.

The size of the domain is 60φ in length (L) and 30φ in width (W) – see figure 2(a).
A zoomed area near the cylinder is plotted in figure 2(b) showing the mesh used in the
simulation (the total number of nodes N was 37 936). Refinements of the adaptive mesh
were imposed for the vorticity gradients, for the velocity and for the negative values of the
streamwise component (u) of the velocity. The inlet condition is a uniform velocity. The
remaining boundary conditions are ∂v

∂x1
= 0, where (v) denotes the normal component of

the velocity field for the outflow condition and u = usolid at the cylinder surface, where
usolid depends on the forcing.
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φ
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Figure 2. (a) Domain of the simulation. The width and the length are measured in cylinder diameters
(φ = 0.1). (b) Mesh used in the numerical simulation with Gerris software (zoomed area near the cylinder).
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θ2/θ0

ρ/φ
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Figure 3. Trajectory of the stagnation point p in polar coordinates: ρ is the distance to the centre of the cylinder
(0, 0); θ1 measures the angle between p and the positive x1 axes; and θ2 is the angle of the cylinder’s oscillation.
The parameters of the ROC simulation are: φ = 0.1, θ0 = 1/π and W = 30φ.

The dynamics of the recirculating cells can be characterized considering the oscillation
of the stagnation point, often used to define the length of the recirculation region. When
the cylinder is not rotating, this point is located along the mid-plane. For the rotating case,
this point is no longer at a fixed location: it has a particular dynamics. The position of the
point is determined considering a polar coordinate system whose origin is on the cylinder
axis. This orbit is synchronized with the cylinder movement: figure 3 shows the rotation
angle against the movement of this point. Recirculating cells move laterally, as well as
back and forth. With the chosen settings, most of the fluid particles in the recirculating
cells remain a large number of periods inside this region. Particle-trapping regions in this
flow are thus likely to occur.

The variable that is used in the BraMAH analysis for the ROC case is x2, since it
is the position coordinate that carries the hemisphere information. The time window is
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Figure 4. The ROC system: time series (a–c); FNN (d) and AMI (e) results; embeddings ( f –h) for three
representative particles initially located at P1 = (0.065,−0.04), P2 = (0.115,−0.03) and P3 = (0.165, 0.01).

set to Tw = 125Tp, where Tp = 2, and the sampling rate is sr = 0.005Tp. Representative
time series are shown for particles with initial positions: P1 = (0.065,−0.04), P2 =
(0.115,−0.03) and P3 = (0.165, 0.01). The analysis starts with the application of the FNN
and AMI routines in order to obtain the embedding parameters. Even if the FNN fraction
is quite low for m = 3, a safest choice is m = 4. Concerning τ , the optimal values obtained
with the AMI technique present a certain dispersion, but τ = 0.3Tp appears to be a good
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Topological colouring of fluid particles

(a) (b) (c)

Figure 5. Cell complexes juxtaposed on the clouds of points corresponding to the three representative particles
in figure 4: (a) K1; (b) K2; (c) K3. The 1-holes (generators of H1) are highlighted in arbitrary colours. The
topological classes associated with each complex are detailed in table 1.

Cell complex β0 β1 β2 o w Topological class Colour

K1 1 1 0 ✗ ✗ I Green
K2 1 2 1 ✗ ✗ II Magenta
K3 1 3 0 � ✗ III Blue

Table 1. Betti numbers βk (k = 0, 1, 2), orientability chain o and weak boundary w for the cell complexes
obtained in the BraMAH analysis of the ROC flow example.

setting for all the time series. These values are kept fixed throughout the full topological
analysis, i.e. for all the time series under consideration. The four-dimensional embeddings
cannot be shown for obvious reasons, but three-dimensional projections provide a useful
portrait of the non-trivial structure of the clouds of points. These results, which will be
provided as input for BraMAH, are assembled in figure 4.

The cell complexes that are obtained for these example cases are shown in figure 5,
juxtaposed with the three-dimensional projection of the embeddings. The local dimension
that is computed during the construction of the cells yields d = 2, and therefore the cell
complexes are of dimension h = 2. The first two complexes correspond to manifolds
without branches: K1 corresponds to a strip and K2 to a torus. The third one, K3,
is a branched manifold with three 1-holes, i.e. β1 = 3, and a torsion indicated by the
orientability chain. The generators of H1 indicating the 1-holes for each cell complex are
highlighted in colour, and the features of the topological classes associated with these
complexes are listed in table 1. These classes are not exclusive to the three representative
particles P1, P2, P3. The topological analysis is conducted for 4797 particles. The 4794
remaining particles fall into one of the three categories (I, II, III) or colours (green,
magenta, blue). The advected particles are shown with their colours in figure 6. The
different snapshots show how the coloured particles move. The sets of particles define flow
regions that are deformed in their motion, but that move as a whole (without splitting).
Supplementary movie 1 contains the film of the advection of the particles with their
topological colours.

The magenta particles occupy two circular-shaped regions, one per recirculation cell.
The green particles define triangular-shaped zones which orbit around the magenta circles.
The remaining particles form a ‘background sea’, which is associated with the topological
class III. Among the topological classes found for the inspected set of particles in the
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Figure 6. Topological colouring of 4797 advected particles at various instants: (a) t = 0; (b) t = 0.125Tp; (c)
t = 0.25Tp; (d) t = 0.375Tp; (e) t = 0.5Tp; ( f ) t = 0.625Tp. Each colour corresponds to a different topological
class following table 1: class I in green, class II in magenta and class III in blue.

ROC system, the highest dynamical complexity (associated with the number of holes and
the detection of a torsion) corresponds to the background sea of particles.

Finally, a streakline experiment is proposed as an alternative visualization of Lagrangian
motion in the ROC case. We use the term ‘separator’ to designate the frontier between
differently coloured regions in our topological analysis. We choose the injection points
at locations through which the separators do not pass: p = (x1, x2)/x1 = 0.0525; x2 ∈
[−0.05 : 0.005 : 0.05]. The streakline patterns at time 125Tp are shown in figure 7. The
dye distribution confirms that the barriers visualized by the streakline experiment fully
coincide with the separators between particle sets belonging to different topological
classes. The dye is thus confined in the way revealed by topological colouring.

3.2. Driven double gyre
As mentioned before, the ROC moving wall introduces a forcing producing an effect that
can be seen as reminiscent of the lateral oscillation of the gyres of the DDG. The DDG
equations were introduced by Shadden et al. (2005) as a kinematic model for two adjacent
oceanic gyres enclosed by land, and acquired a prominent role in the validation of a variety
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0.10

x2

x1

–0.10
0 0.30.20.1

–0.05

0

0.05

Figure 7. Streakline experiment for the ROC system with injection points at p = (x1, x2)/x1 = 0.0525; x2 ∈
[−0.05 : 0.005 : 0.05]. The picture corresponds to the instant t = 125Tp (ROC). The dye (in grey) never
invades the circular and triangular regions.

of diagnostics associated with transport and mixing (Shadden et al. 2005; Allshouse &
Peacock 2015a; Balasuriya et al. 2018). It is known to present chaotic transport between
two counter-rotating laterally oscillating vortices (Sulalitha Priyankara, Balasuriya & Bollt
2017). An analysis of the autonomous writing of the DDG equations for this flow is
presented in Charó et al. (2019). This section applies the topological colouring strategy to
the Lagrangian motion of particles in this well-studied flow, which is taken as a reference
guide for the interpretation of our results.

The DDG equations with the usual parameter settings define the flow in terms of the
stream function ψ . The domain under consideration isΩ0 = [0, 2] × [0, 1] and parameter
values are A = 0.1, η = 0.1 and ω = π/5:

ψ(x1, x2, t) = A sin(πf (x1, t)) sin(πx2), (3.1)

where

f (x, t) = a(t)x1
2 + b(t)x1, (3.2)

a(t) = η sin (ωt) , b(t) = 1 − 2a(t). (3.3a,b)

The time window used for the comparative study of Allshouse & Peacock (2015a)
is the most usual one in Lagrangian diagnosis, and it ranges from 2.5 to 42.5. Longer
windows have been rarely considered. An example is provided in You & Leung (2014)
where the time window is 320, eight times longer than the conventional one. In this
section, the purpose is to conduct topological colouring choosing a time window such
that a comparison is possible with the ROC finite-time analysis. This window is chosen
in dimensionless time units, measured with respect to a typical time scale of each flow.
Taking the oscillation period of the forcing Tp as a reference time scale, an equivalent
window for the comparison is Tw = 125Tp. As Tp (DDG) = 10, this yields a window of
1250, which is four times longer than the one used in You & Leung (2014).

The scalar variable that is used for the analysis is the horizontal coordinate of the
particle position x1. The criterion to choose between the two position coordinates does
not differ from the one adopted for the ROC analysis. It is here the horizontal and
not the vertical coordinate that carries information concerning the gyres. The sampling
rate is set to sr = Tp/100 = 0.1. Representative time series are shown for five particles,
initially located at P4 = (0.25, 0.125), P5 = (0.5, 0.625), P6 = (1, 0.5), P7 = (0.55, 0.5)
and P8 = (0.4, 0.55). The FNN and AMI results are shown, together with the time
series, in figure 8. As for the ROC case, the embedding dimension is found to be four
(m = 4), even if the FNN fraction is already quite low for m = 3. As before, the value
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Figure 8. The DDG system: time series (a–e); FNN ( f ) and AMI (g) results; embeddings (h–l) for
five representative particles initially located at P4 = (0.25, 0.125), P5 = (0.5, 0.625), P6 = (1, 0.5), P7 =
(0.55, 0.5) and P8 = (0.4, 0.55).
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(a) (b)

(c)

(d ) (e)

Figure 9. Cell complexes juxtaposed on the clouds of points corresponding to the five representative particles
in figure 8: (a) K4; (b) K5; (c) K6; (d) K7; (e) K8. The 1-holes (generators of H1) are highlighted in arbitrary
colours. The topological classes associated with each complex are detailed in table 2.

that is kept is the highest, in order to simplify the dynamics as little as possible. It is
important to remark that m = 4 is compatible with the non-autonomous writing of the
DDG equations, presented and analysed in Charó et al. (2019). This work also shows
that the observability of the position coordinates, no matter if horizontal or vertical, is
equally poor. Dynamical reconstructions from position coordinates in the DDG should
therefore not be expected to match the actual phase space of the autonomous version of
the DDG system. A poor observability does not prevent BraMAH from being applied,
but it precludes the results from being associated in a straightforward manner with the
structures in the four-dimensional phase space defined by the autonomized system. The
time delay that is adopted is τ = Tp/5. Small modifications of the delay parameter around
this value do not alter the topological results: m and τ are thus kept fixed for the complete
set of time series under study.

Figure 9 shows the cell complexes for each of the five time series, juxtaposed
on the three-dimensional projection of the four-dimensional clouds of points. All
complexes are of dimension 2, as emerges from the BraMAH cell construction process.
Homology computations together with orientability chains and weak boundaries allow the
distinguishing of five topological classes, whose main features are summarized in table 2.
The first three complexes belong to topological classes that were already encountered in
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Cell complex β0 β1 β2 o w Topological class Colour

K4 1 1 0 ✗ ✗ I Green
K5 1 2 1 ✗ ✗ II Magenta
K6 1 3 0 � ✗ III Blue
K7 1 1 0 � � IV Red
K8 1 2 1 � � V Orange

Table 2. Betti numbers βk (k = 0, 1, 2), orientability chain o and weak boundary w for the cell complexes
obtained in the BraMAH analysis of the DDG flow example.
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Figure 10. Topological colouring of 8528 advected particles at various instants: (a) t = 0; (b) t = 0.1Tp; (c)
t = 0.2Tp; (d) t = 0.3Tp; (e) t = 0.4Tp; ( f ) t = 0.5Tp. Each colour corresponds to a different topological class
following table 2: class I in green, class II in magenta, class III in blue, class IV in red and class V in orange.

the ROC system: K4 corresponds to a strip (class I, green), K5 to a torus (class II, magenta)
and K6 is a branched manifold with three 1-holes (class III, blue), with β1 = 3 and a
torsion that is indicated by the orientability chain. The remaining complexes K7 and K8
have the topologies of a Klein bottle (class IV, red) and of a very particular kind of ‘torus’
involving a torsion and a weak boundary (class V, orange).

The topologies that emerge in the analysis of a set of 8528 particles are of five classes.
Results are shown in figure 10 and in supplementary movie 2. The coherent sets may
deform in shape as they move, but the frontiers between colours remain considerably
well defined. A clear correspondence is found between the identified regions and those

923 A17-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

56
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.561


Topological colouring of fluid particles

2.01.51.00.5

1.0

x2

x1

0

0.5

Figure 11. Streakline experiment for the DDG system with an injection point at (1, 0.5). The picture
corresponds to the instant t = 125Tp (DDG). The dye (in grey) never invades the circular and triangular

regions.

Topological class Colour Cell complex DDG ROC

I Green K1, K4 � �
II Magenta K2, K5 � �
III Blue K3, K6 � ✗
IV Red K7 � ✗
V Orange K8 ✗ �

Table 3. Comparative topological colouring chart for the DDG and the ROC flow examples.

observed using a Poincaré section – figure 5 in Charó et al. (2019); or a finite-time
Lyapunov exponent study – figure 12 in You & Leung (2014).

An additional observation can be made regarding the finite-time nature of the
characterization, which depends in principle both on the time window and on the initial
conditions. Nonetheless, the topological signatures that we observe are quite robust. In
the case of the islands, the family of topological classes that we report for Tw = 125Tp is
already reached at 50Tp. This family remains unchanged for Tw > 50Tp. This is not the
case for the time series associated with the chaotic sea.

Streakline experiments for the DDG are shown in figure 11. With the injection point
situated in the middle of the physical domain (1, 0.5), the streakline experiment shows
that the dye invades the chaotic sea, i.e. the region associated with particles belonging
to class III (blue). The non-dyed regions correspond to the islands. Using streaklines to
delineate the subzones inside the islands is not possible because there are no suitable
injection points satisfying the necessary conditions. For an alternative visualization of the
subzones inside the islands, we refer the reader to the stroboscopic sections provided in
Appendix D as well as to previously published results using Poincaré sections (Charó et al.
2019) and finite-time Lyapunov exponent fields (You & Leung 2014).

4. Discussion

This section is devoted to a comparison of the topological results for the two examples.
Both flows present a particle behaviour that is similar in certain aspects that we will be
able to describe precisely using our approach.

Three of the topological classes that are encountered are present in both flows and
correspond to groups of particles that behave in an indistinguishable fashion taking into
account the selected scalar variable, the time window, the adopted embedding parameters
and the studied set of particles. As particles are advected, those tagged with the same
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colour move together robustly. Two extra classes appear in the DDG: they are associated
with subzones in the circular islands. Table 3 summarizes the comparative results.

Let us use the already known properties of the DDG system to guide our discussion. The
DDG is known to have an embedded horseshoe near the point (1, 1) (Sulalitha Priyankara
et al. 2017), and as a consequence it has fully developed chaos, at least in a restricted
subset. This subset can be associated with particles belonging to class III, whose assigned
colour is blue. Particles in the chaotic sea of the DDG share their topology with particles
in the equivalent ‘background sea’ of the ROC system.

Class III particles have the highest Betti number encountered in this work (β1 = 3).
The three 1-holes and the presence of a torsion are a signature of a higher nonlinearity
in the finite-time dynamics of the particles, with respect to the lower-Betti-number and
torsionless counterparts. Interestingly enough, recent work (Mangiarotti & Letellier 2021)
shows that the simplest toroidal chaos is characterized by a three-strip branched manifold
with a torsion in one of the strips, motivating further theoretical work on this particular
result. It is, however, important to stress that topological features cannot be taken as an
indication of chaos; they just provide an indication of the way in which the phase space
should be mapped onto itself under the action of the correct model equations under a
certain dynamical regime (Sciamarella & Mindlin 1999).

We now turn to the topological classes associated with the DDG particles flowing in
the islands surrounded by the chaotic sea. These islands can be studied as resonance
phenomena in extended phase space (Meiss 1992). From this perspective and providing
there are no null points of the flow, particle trajectories in spatially two-dimensional
incompressible non-steady flows live either on tori (regular ‘unbroken’ non-resonant
trajectories) or on ‘twisted tori’ (regular trajectories within the resonant islands), or appear
as trajectories that could fill three-dimensional space between the tori. The manner in
which these properties restrict the types of topology that can be observed in finite-time
topological analyses using standard delay embeddings is certainly an interesting question,
which also deserves further theoretical investigation. As observed by Rypina et al. (2015),
structures that are simple to analyse in a certain space (using, for instance, angle-action
variables) become twisted and folded in the space spanned by the position coordinates.
This said, it is a fact that structures of classes I, II, IV and V may be seen as deformed tori.
Class II is a torus; the strip (class I) is a squashed torus; class IV is a Klein bottle which
can be seen as a torus that, in three dimensions, flattens and passes through itself on one
side; and class V has already been described as a ‘torus’ with a weak boundary. Flattened
tori and strips are indistinguishable by virtue of the cell decomposition process detailed
in Appendix B. This is a methodological feature of the BraMAH method which should
be taken into account when results are being interpreted. In fact, all the clouds of points
analysed with BraMAH in this work lead to the construction of h = 2 cell complexes,
denoting clouds of points that can be locally approximated with disks of dimension d = 2.
Particles in the chaotic sea, which have a higher nonlinearity than those in the islands,
are not exempted from this finding. It is important to remark that this is a result and not
an assumption of our method. The result is relative to a methodological choice related
to the scope of our work, which attempts to distinguish qualitatively different dynamics
from a single scalar measured variable and without prior knowledge of the governing
equations. The workspace defined by the four-dimensional delay embedding is constructed
from a time series of a coordinate of a particle position, without attempting to expand the
reconstruction in order to incorporate the forcing dynamics.

Classes IV and V have not been encountered in the ROC system’s topological analysis.
This translates into an absence of subzones in the circular islands of the cylinder wake.
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Stroboscopic sections in the Navier–Stokes simulation shown in Appendix D are in
agreement with this result, but we cannot be conclusive on the non-existence of subzones
for several reasons: firstly, small-scale spatial features may have been smeared out in the
numerical simulation due to the finite grid resolution (Fountain et al. 2000); secondly,
the topological study concerns a finite number of particles; and thirdly, the stroboscopic
sections are constructed with a finite number of markers.

Finally, and regarding both examples, it is important to stress that the time series
associated with the islands have a topology that requires shorter time windows to reach
a strong signature than those associated with the background sea. This is in accordance
with the quasi-periodic behaviour of particle trajectories in the islands.

5. Conclusions

This paper presents the application of a nonlinear time series analysis technique to the
identification of differentiated dynamics from individual fluid particle data, without prior
knowledge of the dynamical system or of the nature of its phase space. The results show
that, when applied to a set of particles, regardless of their proximity, the approach can
be used to unravel the existence, evolution and dynamical nature of coherent sets. The
description of the dynamics is not exhaustive and results are relative to a number of
methodological choices which include: the specific time window of the analysis, the
observable variable used to construct the delay embedding, the parameter settings of the
embedding and the set of particles under study. The conclusions reached should not be
uprooted from the workspace to which they relate, and in particular, they should not be
expected to be analogous to those that would be achieved in an extended phase space.
Let us also stress that the number of topological classes encountered for a finite number
of particles cannot be taken as encompassing the whole topological diversity of particle
behaviour in the flow.

The method requires the choice of an observable that can be input in the form of a scalar
time series and provides an output containing the necessary information to reconstruct the
(branched) manifold associated with it. In this work, the variable chosen is a coordinate
of the particle position. This relates the approach to a series of previously proposed
strategies that measure complexity of an individual particle trajectory without involving its
nearby neighbours. In this way, a fluid particle can be related to a topology that encodes
its finite-time dynamics. The strategy is called ‘topological colouring of fluid particles’
because of the use of colours to label particles according to the topological class that
emerges from the analysis. Such a topological class is defined in terms of features of a cell
complex that is built from a cloud of points with its delay coordinates determined by a
heuristically derived delay and embedding dimension.

The tool can be applied with more than one purpose. It can be used to recognize
topologically equivalent particle dynamics in different regions of the same flow, or to
relate particle behaviour in a priori unrelated flows, provided the analysis is performed
in equivalently scaled time windows. The success of the method is conditioned by the
possibility of adequately assessing the topology of the cloud of points obtained after
embedding the dataset. If the time series taken as input is excessively noisy, too short
in length, very poorly sampled or endowed with a poor observability, the quality of
the reconstruction will be weak, producing results that may confound categories which
would become distinct with an improved dataset. Methods relying on other Lagrangian
descriptors can deal with significantly shorter-length datasets. Another limitation of the
method is inherent to the extraction of a continuous representation from a discrete set.
Due to this, groups of points that are locally distributed along two preponderant directions
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will be seen as a locally two-dimensional manifold, even if there are two layers of points
which could be seen as enclosing a thin cavity.

The method is illustrated using two cellular flows with particle-trapping regions,
with the scope of considering how topological colouring captures the particle dynamics
belonging to each coherent set. Although the case studies we discuss are incompressible
flows with only two spatial dimensions, the technique is not restricted to them. Our
choice is based on the fact that analysis of the results can be quite straightforward.
However, the topological approach can, in principle, be applied to more complex cases.
The two systems are the wake past a ROC and the analytical DDG. In the first case study,
particle trajectories are obtained by numerically integrating the Navier–Stokes equations.
The second case study is an analytical system which is probably the most well-studied
example in Lagrangian studies. The DDG system cannot be regarded as the approximate
solution to a real fluid flow, but it can be seen as a toy model for flows involving
a lateral oscillation between two gyres. Although our knowledge of the ROC wake is
overwhelming, configurations without vortex shedding at low Reynolds numbers have
been relatively left aside.

The examples are first addressed in isolation, to show how topological colouring works
in a single flow case. Topological colouring is then conducted on a large particle set,
and the results of the analysis strategy are compared against the patterns observed with
streakline experiments using appropriate injection points. By advecting the coloured
particles, the approach is found to unveil the Lagrangian geography of the flow: the colours
in motion define particle sets that move robustly. The frontiers between colours coincide
with the borderlines of particle sets that move together, without abandoning the coherent
set. Repeated colours, whether in separate regions of the same flow or in independent
flow cases, point to a shared dynamics, encoded by the topological features of the cell
complexes constructed to approximate the embeddings.

In the comparison between the two examples, topological colouring shows that the
numerical solutions of the near field of the ROC flow present coherent sets that have a
strong resemblance in shape, motion and topology (dynamics) with the coherent sets of the
DDG example within time windows of equivalent length. In this sense, the recirculation
cells of the ROC at low Reynolds number can be seen as a ‘materialization’ of a
paradigmatic flow model in Lagrangian studies. Both systems, the ROC and the DDG,
present a background region with several groups of particles forming islands, which
have been studied as resonance phenomena for Hamiltonian systems using a Lagrangian
variational formulation. This theory predicts the formation of periodic and quasi-periodic
orbits which form a scaffold in the extended phase space and constrain the motion of
particles in two-dimensional incompressible flows. The influence of these constraints on
the topological classes that can be encountered using delay embeddings is an open question
that we hope to address in the future. The prospects of this methodology are multiple and
diverse, opening the possibility of addressing Lagrangian studies from an unprecedented
perspective.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.561.
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Appendix A. Algebraic topology

Algebraic topology is a branch of mathematics that uses algebraic tools to compute
topological properties. A basic concept is that of a cell complex K (Kinsey 2012), defined
as a finite set of cells of different dimensions such that the interiors of the cells do not
intersect. A cell of dimension k (k ∈ N0) or k-cell in a cell complex is a set that can be
mapped into the interior of a k-disk through a continuous invertible map, with boundaries
divided into a finite number of lower-dimensional cells, called faces. A cell of dimension
k is called a k-cell (k ∈ N0): a point is a 0-cell, a line segment connecting two points is a
1-cell, a polygon is a 2-cell, etc. Each k-cell is well defined if it can be mapped through
a continuous invertible map into the interior of a k-disk, and if its boundaries are divided
into faces made of lower-dimensional cells. The cell complex has a topological dimension
h that equals the dimension of its highest-dimensional cells in the complex. Cell complex
K is said to be an h-complex, or equivalently, to have dimension h. A complex is said to
be oriented if each k-cell with k ≥ 1 is given a direction.

For any given complex, a k-chain is a linear combination of k-cells with integer
coefficients. The algebra of these chains enables a description of the connectivity of the
cells at each k-level in terms of homology groups Hk of a cell complex K. Note that
computing homology groups from K is a process in which the geometrical information of
the coordinates of the 0-cells is not involved. Only the connectivity information, contained
in the lists of cells forming the complex, is relevant. With these definitions, a map called
boundary operator ∂ can be constructed which, when applied to a cell of dimension k,
returns its faces of dimension k − 1. The application of the map to a polygon returns its
sides, and to a segment returns its end points. The lists of 0-cells forming the cells in the
complex are used to construct boundary map matrices whose algebraic handling allows
appending in Hk the k-cycles (closed paths along the complex) that are homologically
independent, i.e. that cannot be deformed into each other by a continuous transformation.
We denote a homology group in terms of its generators as Hk = [g1, . . . , gq], with q ∈ N.
The dimension of Hk is called the kth Betti number βk. Let K be a 2-cell complex
with homology groups Hk, k ≤ 2. The kth Betti will denote (a) β0: how many connected
components (0-loops) the cell complex is made of; (b) β1: how many non-equivalent loops
(1-loops) the cell complex sustains; and (c) β2: how many cavities (2-loops) the complex
encloses.

Homology groups (Betti numbers and generators) provide a topological description
of the complex in terms of k-loops, i.e. k-cycles that do not bound. But in fact,
there is more information in the cell complex than that encoded in its homology
groups. This extra information may be retrieved by computing the orientability chain
o. Orienting each highest dimensional cell (each 2-cell for a 2-complex) in the same
direction (e.g. counterclockwise), let γ denote their sum. The orientability chain is
defined as o = ∂γ and can be computed along with the homology groups, allowing for
the detection of torsions. A weak boundary w is defined as a k-cycle that is not the
boundary of any (k + 1)-chain, but that becomes one if travelled λ times (Boltcheva
et al. 2011). For instance, the Klein bottle has a torsioned 1-cycle that is not the
boundary of any 2-chain, but that becomes one if travelled 2 times, thus defining a weak
boundary.
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Manifold β0 β1 β2 o w

Sphere 1 0 1 ✗ ✗
Cylinder 1 1 0 ✗ ✗

Torus 1 2 1 ✗ ✗
Klein 1 1 0 � �
Disk 1 0 0 ✗ ✗

Moebius 1 1 0 � ✗

Table 4. Betti numbers βk (k = 0, 1, 2), orientability chain o and weak boundary w for some surface
manifolds.

A cell complex is therefore described in greater detail if the generators of the homology
groups are provided along with the orientability chain, which may in turn be associated
with weak boundaries, in some cases. For instance, the cylinder is a manifold that shares all
the Betti numbers with the Moebius strip, but the latter has an orientability chain which is
absent in the former. Similarly, the Moebius strip and the Klein bottle are indistinguishable
in terms of Betti numbers; both of them have a non-zero orientability chain, but the
Klein bottle has a weak boundary that is absent in the Moebius strip. Table 4 lists these
topological features for several manifolds.

Appendix B. The BraMAH method

The BraMAH method computes the topological properties of a cell complex that is built
from a cloud of points. In this work, this cloud of points is previously obtained in a
dynamical reconstruction from a time series using embeddings. Points obtained in this
manner are generally structured so that they lie locally on a d-manifold with d ≤ m, with
m the embedding dimension. This d-manifold is a topological space with the property
that each point has a neighbourhood that is homeomorphic to either a full d-ball or a
half d-ball (Muldoon et al. 1993). Such a mathematical object can be used to describe
the relative organization of the unstable periodic orbits around which a nonlinear system
is structured in phase space. These manifolds can be, for instance, tori or Klein bottles
(Mindlin & Solari 1997), as well as manifolds with branches. Here, we use the term
‘branched manifold’ for all of them, even when there are zero branches in the manifold.

The algorithm proceeds as in Sciamarella & Mindlin (1999, 2001). The first step of
this algorithm converts the m-dimensional cloud of points into a cell complex. There are
many ways of constructing a cell complex from a cloud of points. Some of them have
become very popular with the advent of topological data analysis as a field of research
(Zomorodian 2010). Our procedure, also used in Charó et al. (2020), has the particular
feature of building a cell complex such that the 0-cells are a sparse subset of the original
cloud of points, and such that each h-cell represents a group of points that are locally
approximating an h-disk in R

m. To achieve this, several steps are necessary. A first point
x0 = (x0,1, x0,2, . . . , x0,m) is chosen arbitrarily. Let us call ‘patch’ the set of points that
lie close to this ‘centre’: {xi = (xi,1, xi,2, . . . , xi,m), i = 1, . . . ,Nc}. In order to determine
the size and local dimension of the cell that will be created to approximate this patch, the
neighbourhood matrix X ∈ R

nc×m is built:

Xi,j = 1√
nc
(xi,j − x0,j). (B1)
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Figure 12. Velocity similarity on the rear flow axis in the closed wake. Blue line corresponds to the simulation
performed by Gerris and the symbols correspond to a Reynolds number Re = 40.5 for experimental results
found in Coutanceau & Bouard (1977).

A local coordinate system centred at x0 is provided by the singular vectors of X, with
the singular values describing the distribution of the points inside the ball centred at x0.
For a patch that is approximately lying on a d-disk in R

m, the local singular spectrum
of X has d singular values that scale linearly with the number of points in the patch (nc)
as r is increased. This property holds as long as the effects of curvature in the manifold
become apparent (Broomhead, Jones & King 1987; Muldoon et al. 1993). The remaining
(m − d) singular values, which measure the deviation from the tangent space, scale as rl

with l ≥ 2. Using this rule, the d singular values and the vectors that span the tangent
space approximating the patch under analysis can be identified. The largest possible
size of the patch (Nc) is obtained when the d singular values as functions of nc with
Nmin < nc < Nmax present the best linear regression coefficient. Successive centres are
taken so that they are least separated from the previously chosen centre, until every point
in the original cloud of points is in at least one patch. Convex hulls are used to transform
the patch of points approximating the d-disk into an h-cell. By construction, d = h. The
singular vectors are used to orient the cells so that the orientation of each cell is the same as
its neighbouring ones. The complex that results from this geometrical procedure is called
a BraMAH complex.

The homology groups of the BraMAH complex can now be computed. The labelled
list of 0-cells is used to build a boundary matrix from which linearly independent
rows are extracted. Next, the null spaces of the transpose of the boundary matrix are
computed, expressing the k-borders in terms of the k-cycles to determine which k-cycles
are homological to others. The k-cycles that are homologically independent are appended
to Hk. The integer multiples found in the chain that sums up all the k-borders of the
complex are used to form the orientability chain. The results of this final step of the method
are the homology groups of the BraMAH complex expressed in terms of their generators
{Hk : k = 0, . . . , h}, spelled in terms of the 0-cells. The coordinates of the points in the
original cloud of points that play the role of 0-cells can be used to plot the cell complex in
the reconstructed phase space, as done in figures 5 and 9.

Appendix C. Numerical data validation

Gerris numerical results are validated by plotting the similarity curve of the streamwise
velocity (u) along the mid-plane in the recirculation region. The ratio of u/umax against
the variable (x − R)/L is plotted in figure 12, where x is the streamwise coordinate
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(a) (b)

Figure 13. (a) Experimental results from Taneda (1978). (b) Simulation performed with Gerris software.

measured from the cylinder axis, R the radius of the cylinder and L the length of the closed
wake region. Simulation results (continuous line) are juxtaposed with the experimental
observations (symbols) reported in Coutanceau & Bouard (1977) for a Reynolds number of
Re = 40.5. An adequate agreement is found between simulation results and experimental
data.

Since most previous works aim to produce modifications of the vortex shedding
phenomena via the rotary oscillations of the cylinder, it is not surprising to find that
there are scarce experimental or numerical data for the closed wake regime. Dennis,
Nguyen & Kocabiyik (2000) considered a case study in which the flow is at Re = 20
and the numerical streamlines were compared with the visualizations in Taneda (1978)
for Re = 40, when the value of the critical rotation parameter was already overcome.
Similarly, our results are compared with Taneda’s visualization, but for the same Reynolds
number (Re = 40). A good agreement is obtained between the streaklines in both cases
(figure 13).

In order to ensure that the results do not depend on the mesh or size of the selected
domain, we perform a convergence analysis considering domains with different number
of nodes and width sizes (W = 10φ, W = 15φ, W = 20φ, W = 25φ and W = 30φ),
keeping the aspect ratio at L/W = 2. Figure 14 shows the dynamics of the stagnation
point for different cases. Convergence is satisfactorily reached for values of W ≥ 25φ and
N > 39 000.

Appendix D. Stroboscopic sections

The inspection of stroboscopic visualizations is often used as reference for coherent set
identification in flows with periodic Eulerian forcing. This appendix presents stroboscopic
results for the two examples considered in this work.

For the ROC system, the stroboscopic section is computed for a time window of 125Tp
(ROC) (figure 15), with 23 markers placed at the following initial positions: [0.16, 0.01];
[0.19, 0.015]; [0.22,−0.025]; [0.17, 0.04]; [0.18,−0.025]; [0.06,−0.04]; [0.16, 0.04];
[0.13, 0.005]; [0.06,−0.025]; [0.11,−0.03]; [0.07, 0.03]; [0.13,−0.015]; [0.11, 0.015];
[0.09, 0.03]; [0.08,−0.025]; [0.09,−0.025]; [0.1,−0.035]; [0.08, 0.035]; [0.09,−0.02];
[0.12,−0.03]; [0.12, 0.025]; [0.17, 0.025]; [0.13,−0.03].

For the DDG flow, and over an equivalent length 125Tp (DDG) (figure 16), 14 initial
markers are placed at [1; 0.5]; [1; 0.9]; [1.25; 0.75]; [0.6; 0.1]; [1; 0.4]; [0.5; 0.4];
[0.1; 0.85]; [1.1; 0.85]; [1.25; 0.5]; [1.3; 0.8]; [0.25; 0.125]; [1.25; 0.825]; [1.6; 0.875];
[0.4; 0.12].
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Figure 14. Trajectory of the stagnation point at (a) different width sizes of the domain (W) (the aspect ratio
in all cases is 2) and (b) different number of nodes (N).
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0 0.30.20.1
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Figure 15. Stroboscopic section obtained for 23 initial markers in a time window spanning [0, 125Tp (ROC)].
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Figure 16. Stroboscopic section obtained for 14 initial markers in a time window spanning [0, 125Tp (DDG)].
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