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One-dimensional multifluid plasma models.
Part 1. Fundamentals†
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This paper is concerned with one-dimensional and time-dependent multifluid
plasma models derived from multifluid MHD equations. In order to reduce the
number of equations to be solved, the impurities are described in the framework
of the average ion approach without restricting the impurity densities to be small
compared with the hydrogen plasma density. Equalizing the plasma temperatures
and adopting the condition of quasineutrality, we arrive at a three-fluid description
of a current-carrying plasma, and analyse the ability of the self-consistent system of
model equations thus obtained to support stationary solutions in a moving frame.
This system is reduced to a currentless plasma description assuming at first differ-
ent flow velocities of the particles and then a currentless, streaming plasma where
all particles move with the same velocity. Introducing Lagrangian coordinates and
adopting an equation of state, a single reaction–diffusion equation (RDE) for the
temperature is obtained. The impurity density, which affects the radiation loss term
and the heat conduction coefficient of the RDE, has to be calculated as a function
of the temperature by solving additionally a first-order differential equation. This
is demonstrated for carbon and high-Z impurities.

1. Introduction
Transport phenomena in multicomponent plasmas have been studied within the
framework of multifluid models and codes in many papers (see e.g. Braginskii 1965;
Shdanov 1982; Dnestrovskii and Kostomarov 1986; Igitkhanov et al. 1990; Radford
1993; Zagorski 1996). Impurities strongly influence the transport properties of the
edge plasmas in tokamaks and stellarators. Therefore a self-consistent description
of the dynamics of all species is necessary without restricting the impurity densities
to be small compared with the plasma density. It is the aim of this paper to analyse
multifluid plasma models that can be applied to investigate the effect of impurities
on plasma properties. A variety of models are presented, arranged according to
their level of complexity. We start with a comprehensive multifluid description and
finish with simple models that can easily be used.

In this paper, we investigate a system of one-dimensional, time-dependent hydro-
dynamic equations describing the dynamics of hydrogen plasma ions (i), impurity

† A short version of this paper was presented at the 6th International Workshop on Plasma
Edge Theory in Fusion Devices and included in the Conference Proceedings as a Contributed
Paper (Bachmann and Sünder 1998a).
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ions (j) with charge state Zj and electrons (e) along magnetic field lines, taking
into account ionization, recombination, excitation, charge exchange processes and
radiative cooling of the plasma by impurity ions. For each of the Zf + 1 ion fluids,
where Zf is the charge state of the fully ionized impurity, we derive continuity
equations governing the particle densities nα and momentum balance equations
describing the flow velocity of the particles vα (α = e, i, Zj). The electron and ion
temperatures Te and Ti are governed by convection–conduction equations. Here it
is assumed that the ion fluids may have different velocities but a common tempera-
ture Ti. This multifluid plasma description is outlined in Sec. 2. In order to simplify
the treatment, the impurities are described by the average ion model (Sec. 3).

Equalizing the temperatures and adopting the condition of quasi charge neu-
trality, we arrive at a fluid description of a current-carrying plasma in Sec. 4.1.
Stationary solutions in a moving reference frame of the obtained self-consistent
system of equations are analysed. This system is reduced to a currentless plasma
description (Sec. 4.2), assuming at first different flow velocities of the particles, and
then a currentless, streaming plasma model where all particles move with the same
velocity.

Introducing Lagrangian coordinates, adopting an equation of state, and includ-
ing a differential equation that allows one to calculate the impurity density as a
function of the temperature, a single reaction–diffusion equation for the tempera-
ture is derived. This reaction–diffusion model will be applied in a forthcoming paper
to investigate effects related to impurity radiation phenomena.†

2. Multifluid plasma equations
The MHD equations describing the particle dynamics along the magnetic field lines
are as follows. Continuity of hydrogen ions and impurity ions with the charge state

Zj :

∂nα
∂t

+
∂

∂x
(nαvα) = Sα,n, α = i, Zj . (1)

Continuity of electrons:
∂ne
∂t

+
∂

∂x
(neve) = Se,n. (2)

Momentum balance of plasma ions and impurity ions:

∂

∂t
(mαnαvα) +

∂

∂x

(
mαnαv

2
α + nαTi − ηα ∂vα

∂x

)
= enαE +Rα + Sα,v, (3)

or, taking into account the continuity equations,

mαnα

(
∂

∂t
+ vα

∂

∂x

)
vα +

∂

∂x

(
nαTi − ηα ∂vα

∂x

)
= enαE +Rα + Sα,v −mαvαSα,n.

(4)
Simplified momentum equation for electrons:

∂

∂x
(neTe) = −eneE +Re; (5)

† A first application was presented at the 25th EPS Conference on Controlled Fusion and
Plasma Physics, Prague 1998 (Bachmann and Sünder 1998b).
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Ion and electron energy balance:

1
2
∂

∂t

(
3niTi +miniv

2
i + 3

∑
Zj

nZjTi +
∑
Zj

mZjnZjv
2
Zj

)

+
1
2
∂

∂x

(
5niviTi + 5

∑
Zj

nZjvZjTi +miniv
3
i +
∑
Zj

mZjnZjv
3
Zj

)

+
∂

∂x

(
qi +

∑
Zj

qZj − ηivi
∂

∂x
vi −

∑
Zj

ηZjvZj
∂

∂x
vZj

)
= JE + eneveE −Qe,T −Qe,R + Si,E , (6)

3
2
∂

∂t
(neTe) +

∂

∂x

(
5
2
neveTe + qe

)
= −eneveE +Qe,T +Qe,R + Se,E +Hext. (7)

Taking into consideration the particle and momentum balance equations and
mZj = mj , we obtain for the ion temperature

3
2
ni

(
∂

∂t
+ vi

∂

∂x

)
Ti +

3
2

∑
Zj

nZj

(
∂

∂t
+ vZj

∂

∂x

)
Ti + niTi

∂vi
∂x

+
∑
Zj

nZjTi
∂vZj
∂x
− ηi

(
∂vi
∂x

)2

−
∑
Zj

ηZj

(
∂vZj
∂x

)2

+
∑
Zj

∂qZj
∂x

+
∂qi
∂x

= −Qe,T −Qe,R + Si,E − vi(Si,v +Ri)−
∑
Zj

vZj (SZj ,v +RZj )

+
(

1
2
miv

2
i −

3
2
Ti

)
Si,n +

∑
Zj

(
1
2
mjv

2
Zj −

3
2
Ti

)
SZj ,n, (8)

and for the electron temperature

3
2
ne

(
∂

∂t
+ve

∂

∂x

)
Te+neTe

∂ve
∂x

+
∂qe
∂x

= Qe,T+Qe,R−veRe+Se,E−3
2
TeSe,n+Hext, (9)

where the total current density is

J = enivi +
∑
Zj

eZjnZjvZj − eneve, (10)

and the sources and sinks of particles are

Si,n = ne(ki,HnH − kr,ini) + nH
∑
Zj

nZjkcx,Zj ,H − n0nikcx,i,0, (11)

SZj ,n = ne[nZj−1ki,Zj−1 + nZj+1kr,Zj+1 − nZj (ki,Zj + kr,Zj )]

+nH (nZj+1kcx,Zj+1,H − nZjkcx,Zj ,H )

+n0(nZj+1kcx,Zj+1,0 − nZjkcx,Zj ,0)

+δZj1n0

(
nikcx,i,0 +

∑
Z∗
j

nZ∗
j
kcx,Z∗

j
,0

)
, (12)
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Se,n = ne

[
nHki,H − nikr,i +

∑
Zj

(nZj−1ki,Zj−1 − nZjkr,Zj )
]
, (13)

the sources and sinks of momenta are

Si,v = −minH [kcx,H,ini(vi − vH )− ki,HnevH ]−mininekr,ivi

−min0nikcx,i,0vi +minH
∑
Zj

nZjkcx,Zj ,HvH −BHnH
∂TH
∂x

, (14)

SZj ,v = mjne[nZj−1ki,Zj−1vZj−1 + nZj+1kr,Zj+1vZj+1

−nZj (ki,Zj + kr,Zj )vZj ]

+mjnH (nZj+1kcx,Zj+1,HvZj+1 − nZjkcx,Zj ,HvZj )

+mjn0(nZj+1kcx,Zj+1,0vZj+1 − nZjkcx,Zj ,0vZj )

+δZj1n0

(
nikcx,i,0 +

∑
Z∗
j

nZ∗
j
kcx,Z∗

j
,0

)
v0, (15)

and the sources and sinks of energies are

Se,E = −ne
(
ki,HnHIi,H +

∑
Zj

nZj−1ki,Zj−1Ii,Zj−1 +
∑
Zj

nZjkrad,ZjSrad,Zj

)
, (16)

Si,E =
1
2
neki,HnH (3TH +miv

2
H )− 3

2
nikcx,i,HnH (Ti − TH )

−1
2
nekr,ini(3Ti +miv

2
i )−minHkcx,i,Hni(vi − vH )vH −BHnH ∂TH

∂x
vH

−1
2
neki,0n0(3T0 +mjv

2
0)− 3

2
n1kcx,1,0n0(Ti − T0)

−1
2
nekr,1n1(3Ti +mjv

2
1)−mjn0kcx,1,0n1(v1 − v0)v0 −B0nH

∂T0

∂x
v0. (17)

Here Zj = 1, 2, . . . , Zf , nH , vH , TH , n0, v0 and T0 are the hydrogen and impu-
rity atom density, velocity and temperature respectively. ki kcx, kr and krad are
the rate coefficients for ionization, charge exchange, recombination and radiation,
Ii,H = 13.56 eV; Ii,Zj is the ionization potential, Srad,Zj is the radiation function,
BH is approximately equal to 0.25 (cf. Helander et al. 1994), and B0 has order
of magnitude 1. These functions, which depend on the properties of the inelastic
interaction of ions with atoms, will be calculated in a forthcoming paper. Hext is
the external energy input and E is the electric field.

The functions contained in the system of equations (1)–(17) are defined as follows
(cf. Golant et al. 1980; Shdanov 1982; Dnestrovskii and Kostomarov 1986; Radford
1993; Bachmann and Sünder 1998c). The viscosities of the ion species are

ηi = niTiC1(Z0)
1
νii
, (18)

ηZj = nZjTiC2j(Z0)
1∑

Zk
νZjZk

, (19)
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where the collision frequencies ναβ , with the Coulomb logarithm ln Λc, are given
by

ναβ =
4(2π)1/2e4 ln Λc

3
nβZ

2
βZ

2
α

[
mβ(mβ +mα)2

mα(Tαmβ + Tβmα)3

]1/2

, (20)

C1(x) =
3.84

3
1 +
√

2x
(1 + 1.87x)(1 + 0, 67x)

, (21)

C2j(x) = 0.3
(

1 +
4xni
Zjnj

)
1

1 + x
, (22)

Z0 =
nj
ni
〈Z2

j 〉, nj =
∑
Zj

nZj , 〈Z2
j 〉 =

1
nj

∑
Zj

nZjZ
2
j . (23)

The forces Rβ (β = i, Zj , e) are given as sums of the friction forces Rβ,F and the
thermal forces Rβ,T :

Ri,F = −mini

[
C3(Zeff )νie(vi − ve) + C3(Z0)

∑
Zj

νiZj (vi − vZj )
]
, (24)

Ri,T = ni

[
C4(Zeff )

∂Te
∂x
− C5(Z0)

∂Ti
∂x

]
, (25)

RZj ,F = −mjnZj

[
C3(Zeff )νZje(vZj − ve) + C3(Z0)νZji(vZj − vi)

+0.8
∑
Zk

νZjZk (vZj − vZk )
]
, (26)

RZj ,T = nZj

{[
C4(Z0)Z2

j + 0.6
(
Z2
j

〈Z2
j 〉
− 1
)]

∂Ti
∂x

+ C4(Zeff )Z2
j

∂Te
∂x

}
, (27)

Re,F = −meneC3(Zeff )
[
νei(ve − vi) +

∑
Zj

νeZj (ve − vZj )
]
, (28)

Re,T = −neC5(Zeff )
∂Te
∂x

, (29)

with the functions

Zeff =
ni
ne

(1 + Z0), (30)

C3(x) =
(1 + 0.24x)(1 + 0.95x)
(1 + 2.65x)(1 + 0.28x)

, (31)

C4(x) =
2.2(1 + 0.52x)

(1 + 2.65x)(1 + 0.28x)
, (32)

C5(x) = xC4(x). (33)

In the same way, the thermal fluxes qβ are given as sums of qβ,F and qβ,T :

qi,F = TiC4(Z0)
∑
Zj

nZjZ
2
j (vi − vZj ), (34)
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qi,T = −niTiC6(Z0)
1

miνii

∂Ti
∂x

, (35)

qZj ,F = nZjTi

∑
Zk
nZkZ

2
k

niZ0
(vZj − vZk ), (36)

qZj ,T = −nZjTiC7j(Z0)
1

mjνZjZj

∂Ti
∂x

, (37)

qe,F = TeC4(Zeff )
[
ni(ve − vi) +

∑
Zj

nZjZ
2
j (ve − vZj )

]
, (38)

qe,T = −neTeC6(Zeff )
1

meνee

∂Te
∂x

, (39)

with the functions

C6(x) =
3.9(1 + 1.7x)

(1 + 2.65x)(1 + 0, 28x)
, (40)

C7j(x) =
nZj (njZ

2
j + 2nix)

n2
ix

2
. (41)

The energy terms Qe,T and Qe,R are given by

Qe,T = −3me

mi
neνei(Te − Ti)

(
1 +

mi

mj
Z0

)
, (42)

Qe,R = −meneC3(Zeff )
[
νei(ve − vi)vi +

∑
Zj

νeZj (ve − vZj )vZj
]

−neC5(Zeff )
∂Te
∂x

vi, (43)

The relation between the electric field and the charge density ρ is governed by
Poisson’s equation

∂E

∂x
= 4πρ, ρ = e

(
ni +

∑
Zj

ZjnZj − ne
)
. (44)

Multiplying the continuity equation for the impurities with eZj and summing the
resulting equation over all charge states, we get

∂ρj
∂t

+
∂Jj
∂x

= eS
(Z)
j,n , (45)

with the charge and current densities of the impurities

ρj = e
∑
Zj

ZjnZj , Jj = e
∑
Zj

ZjnZjvZj , (46)

and

S
(Z)
j,n = nen0ki,0 + n0nikcx,i,0 − nH

∑
Zj

nZjkcx,Zj ,H + ne
∑
Zj

nZj (ki,Zj − kr,Zj ). (47)

Taking (1) and (2) into account we obtain the charge-balance equation

∂ρ

∂t
+
∂J

∂x
= 0. (48)
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If we assume that the charge-neutrality condition ρ = 0 is fulfilled, the electron
density and the electron velocity are given by the expressions

ne = ni +
∑
Zj

ZjnZj , (49)

ve =
nivi +

∑
Zj
ZjnZjvZj − J/e

ni +
∑
Zj
ZjnZj

. (50)

The electric field E results from (8):

E =
1
ene

[
Re − ∂

∂x
(neTe)

]
, (51)

and for the total current density J we obtain

∂J

∂x
= 0⇒ J = J(t). (52)

The coefficients C1, C3, C4, C5 and C6 that determine the effect of the impurities
on the transport processes in the plasma are complicated functions of the masses
and temperatures of the particles. In the above formulae, these coefficients are
calculated for Te/me� Ti/mH and the case where the impurity mass mj is much
larger than the hydrogen mass mH (mH/mj � 1), which is valid for the high-Z
impurities considered here. This gives us the opportunity to study their change in
a large parameter range of Z0 or Zeff .

The influence of neutral particles on the multifluid plasma equations is considered
in the corresponding source and sink functions. Their effect on the plasma transport
coefficients is neglected. The dynamics of the neutral particles should be described
within the framework of a kinetic model. Often a simplified diffusion approximation
is used (see e.g. Duderstadt and Martin 1979; Golant et al. 1980; Helander et al.
1994; Bachmann and Sünder 1998c). For simplicity, the temperature, velocity and
density of the neutrals are assumed here to be given functions.

3. Average ion model
The consideration of all ionization stages of the impurities considerably increases
the number of equations to be solved and the indeterminacy of the results. Hence it
is necessary to describe the impurities within the framework of a simplified model
(see Bachmann and Sünder 1998c):

(i) a modified coronal τ -approximation that allows one to calculate quasistation-
ary discrete density distributions;

(ii) a non-stationary model, applicable to high-Z impurities; or

(iii) an average ion model (Post et al. 1994), which is considered below.

Taking the sum of the continuity and momentum balance equations for the impu-
rities over all charge states, we get

∂nj
∂t

+
∂

∂x
(njvj) = Sj,n, (53)

∂

∂t
(mjnjvj) +

∂

∂x

(
mjnjG

(1)
j v

2
j + njTi − η(1)

j

∂vj
∂x

)
= R∗j + Sj,v, (54)
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with
nj =

∑
Zj

nZj , vj =

∑
Zj
nZjvZj∑
Zj
nZj

, (55a, b)

G
(1)
j =

nj
∑
Zj
nZjv

2
Zj(∑

Zj
nZjvZj

)2 , (55c)

η
(1)
j =

TiC2(Z0)
ν0jZ0

∑
Zj

nZj
Z2
j

(
∂vZj
∂x

)/(
∂vj
∂x

)
, (56a)

ν0j =
νZjZkni

nZkZ
2
jZ

2
k

, (56b)

R∗j = e〈Zj〉njE +Rj , 〈Zj〉 =

∑
Zj
ZjnZj∑

Zj
nZj

. (57)

Sj,n = ne(n0ki,0−n1kr,1)−nHn1kcx,1,H −n0n1kcx,1,0 +n0(nikcx,i,0 +njkcx,j,0), (58)

Sj,v = mj[ne(n0ki,0v0 − n1kr,1v1)− n1(n0kcx,1,0 + nHkcx,1,H )v1

+n0(nikcx,i,0 + njkcx,j,0)v0], (59)

Rj = −mjniZ0[C3(Zeff )νje(G
(2)
j vj − ve) + C3(Z0)νji(G

(2)
j vj − vi)]

+niZ0

[
C4(Z0)

∂Ti
∂x

+ C4(Zeff )
∂Te
∂x

]
, (60)

νjβ =
νZjβ

Z2
j

, β = e, i, (61a)

G
(2)
j =

∑
Zj
Z2
jnZjvZj

∑
Zj
nZj∑

Zj
Z2
jnZj

∑
Zj
nZjvZj

, (61b)

kcx,j,0 =

∑
Zj
nZjkcx,Zj ,0∑
Zj
nZj

(61c)

where Zj = 1, 2, . . . , Zf . Using the expression (51) for the electric field,

eE =
1
ne

∂

∂x
(neTe)− C5(Zeff )

∂

∂x
Te

−meC3(Zeff )[νei(ve − vi) + Z0νej(ve − vj)], (62a)

ναj =
ναZjni

Z2
jnZj

, (62b)

we obtain
R∗j = njC4(Zeff )

∂Te
∂x

(〈Z2
j 〉 − 〈Zj〉Zeff ) + nj〈Z2

j 〉C4(Z0)
∂Ti
∂x

−〈Zj〉nj
ne

∂

∂x
(neTe)− 〈Zj〉menjC3(Zeff )νei(ve − vi)

−mjnj〈Z2
j 〉
[
C3(Zeff )νje

(
1− 〈Zj〉nj

ne

)
(G(2)

j vj − ve)

+C3(Z0)νji(G
(2)
j vj − vi)

]
, (63)
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ne = ni + 〈Zj〉nj . (64)

Multiplying the continuity equation by Zj and summing the resulting over all
charge states, we get, in accordance with (45)–(47),

∂

∂t
(nj〈Zj〉) +

∂

∂x
(G(3)

j 〈Zj〉njvj) = S
(Z)
j,n , (65)

with

S
(Z)
j,n = nen0ki,0 + n0nikcx,i,0 − nHnjkcx,j,H + nenj(ki,j − kr,j), (66a)

G
(3)
j =

nj
∑
Zj
ZjnZjvZj∑

Zj
ZjnZj

∑
Zj
nZjvZj

, (66b)

ki,j =

∑
Zj
nZjki,Zj∑
Zj
nZj

, kr,j =

∑
Zj
nZjkr,Zj∑
Zj
nZj

, (66c, d)

kcx,j,H =

∑
Zj
nZjkcx,Zj ,H∑
Zj
nZj

. (66e)

The right-hand-sides of the continuity equations for hydrogen ions and electrons
read

Si,n = ne(ki,HnH − kr,ini) + nHkcx,j,Hnj − n0nikcx,i,0, (67)

Se,n = ne[nHki,H − nikr,i + n0ki,0 + nj(ki,j − kr,j)]. (68)

Using the relation Se,n = Si,n + S
(Z)
j,n and the condition of charge neutrality, we

obtain
∂J

∂x
= 0, J = e(nivi +G

(3)
j 〈Zj〉njvj − neve), (69)

from which it follows that the current density J in a plasma without external ion
or electron sources is a function of t only (or is constant), and the electron velocity
is given by (cf. (50))

ve =
nivi +G

(3)
j 〈Zj〉njvj − J/e
ni + 〈Zj〉nj . (70)

Furthermore, we obtain an equation for the mean charge 〈Zj〉:
∂

∂t
〈Zj〉 + vjG

(3)
j

∂

∂x
〈Zj〉 = νZ , (71)

with

νZ =
1
nj

[
S

(Z)
j,n − 〈Zj〉Sj,n − 〈Zj〉

∂

∂x
(njvj)(G

(3)
j − 1)

]
. (72)

The sum of the ion and electron momentum equations is

∂

∂t
(minivi) +

∂

∂x

(
miniv

2
i + niTi + neTe − ηi ∂vi

∂x

)
= −R∗j + Si,v. (73)
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The ion and electron energy balance equations have the following forms:

1
2
∂

∂t
(3niTi +miniv

2
i + 3njTi +mjnjG

(1)
j v

2
j )

+
1
2
∂

∂x
(5niviTi + 5njvjTi +miniv

3
i +mjnjG

(4)
j v

3
j )

+
∂

∂x

(
qi + qj − ηivi ∂vi

∂x
− η(2)

j vj
∂vZj
∂x

)
= JE + eneveE −Qe,T −Qe,R + Si,E , (74)

3
2
∂

∂t
(neTe) +

∂

∂x

(
5
2
neveTe + qe

)
= −eneveE +Qe,T +Qe,R + Se,E , (75)

where

G
(4)
j =

n2
j

∑
Zj
nZjv

3
Zj(∑

Zj
nZjvZj

)3 , (76a)

η
(2)
j =

TiC2(Z0)
νjZ0

∑
Zj

nZjvZj
Z2
j

∂vZj
∂x

/(
∂vj
∂x

vj

)
, (76b)

qj = −
∑
Zj

nZjTiC7j(Z0)
mjνZjZj

∂Ti
∂x

, (77a)

qe = TeC4(Zeff )ni[(ve − vi) + Z0(ve −G(2)
j vj)]− neTeC6(Zeff )

1
meνee

∂Te
∂x

, (77b)

qi = TiC4(Z0)niZ0(vi −G(2)
j vj)− niTiC6(Z0)

1
miνii

∂Ti
∂x

, (77c)

Si,E is given by (17) and describes the interaction of the ions with the hydrogen
atoms, and

Se,E = −neki,HnHIi,H +QR, (78a)

QR = −nenj(Lion + Lrad) (78b)

with the ionisation and radiation functions being given by

Lion(Te) =
1
nj

∑
Zj

nZjki,ZjSi,Zj . (79a)

Lrad(Te) =
1
nj

∑
Zj

nZjkrad,ZjSrad,Zj . (79b)

4. Reduced plasma models
In order to analyse the effect of impurities on transport properties in edge plasmas,
we present in this section sucessively reduced plasma model equations, adopting
the condition of quasineutrality (64). The impurity is considered as a single fluid
by means of the average ion model. We assume the temperatures of the plasma
species to be equal and neglect the dynamics of neutral particles. We start with
a three-fluid description of a current-carrying plasma for electrons, plasma and
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impurity ions (Sec. 4.1), and analyse stationary solutions in a reference system
moving with constant velocity relative to the laboratory frame. This system is
then reduced to a currentless plasma description, assuming at first different flow
velocities of the particles and then a streaming plasma where all particles move with
the same velocity. Introducing Lagrangian coordinates and adopting an equation
of state a single reaction–diffusion equation (RDE) for the temperature is obtained.
A differential equation for the impurity density as a function of the temperature
has to be included.

4.1. Current-carrying plasma model

4.1.1. System of partial differential equations. Under the condition Ti = Te = T ,
neglecting the neutral-particle dynamics (nH = n0 = 0, kr,i = kr,1 = 0), the ion
heat conductivity and the ion viscosity, we obtain the following system of equations
for ni, nj , vi, vj , J, 〈Zj〉 and T :

∂ni
∂t

+
∂

∂x
(nivi) = 0, (80)

∂nj
∂t

+
∂

∂x
(njvj) = 0, (81)

mini

(
∂

∂t
+ vi

∂

∂x

)
vi +

∂

∂x
[(ni + ne)T ] = −R∗j , (82)

mjnj

(
∂

∂t
+ vj

∂

∂x

)
vj +

∂

∂x
(njT ) = R∗j , (83)

∑
α

3
2

(
∂

∂t
+vα

∂

∂x

)
(nαT )+

∑
α

5
2
nαT

∂

∂x
vα− ∂

∂x

(
κe
∂T

∂x

)
= Hext +H∗j −QR, (84)

∂

∂t
〈Zj〉 + vj

∂

∂x
〈Zj〉 = ν

(∗)
Z , (85)

∂J

∂x
= 0, (86)

where α = e, i, j. Here ne is given by (64),

ve =
nivi + 〈Zj〉njvj − J/e

ni + 〈Zj〉nj , (87)

ν
(∗)
Z = (ni + 〈Zj〉nj)(ki,j − kr,j), (88)
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R∗j = nj
∂T

∂x

[
C4(Zeff )(〈Z2

j 〉 − 〈Zj〉Zeff ) + 〈Z2
j 〉C4(Z0)− 〈Zj〉

]
−nj

[
〈Zj〉T ∂

∂x
lnne + 〈Zj〉meC3(Zeff )νei(ve − vi)

]
−njmj〈Z2

j 〉
[
C3(Zeff )νje

(
1− 〈Zj〉nj

ne

)
(vj − ve)

+C3(Z0)νji(vj − vi)
]
, (89)

the electron heat conduction coefficient

κe = C6(Zeff )
neT

meνee
= κe(T, nj/ni), (90)

Hext is the external heat source, H∗j is given by

H∗j = neC5(Zeff )(ve − vi)∂T
∂x

+nemeC3(Zeff )
[
νei(ve − vi)2 + νejZ0(ve − vj)2

]
+miniZ0C3(Z0)νij(vj − vi)2

− ∂

∂x

{
niT

[
C5(Z0)(vi − vj) + C4(Zeff )(ve − vi + Z0ve − Z0vj)

]}
, (91)

and the impurity radiation loss term

QR = (ni + 〈Zj〉nj)njLrad(T ), (92)

where we have assumed G
(1)
j = G

(2)
j = G

(3)
j = G

(4)
j = 1. The assumption Ti = Te is

only valid in plasmas with high electron–ion collision frequencies. Sometimes it is
more useful to discuss the total momentum balance rather than (82):

mini

(
∂

∂t
+ vi

∂

∂x

)
vi +mjnj

(
∂

∂t
+ vj

∂

∂x

)
vj +

∂

∂x
(ni + ne + nj)T = 0. (93)

The effect of the impurities on the transport processes can easily be demonstrated
for the simple case ξj = nj/ni = const, which is represented in Fig. 1, where the nor-
malized functions E, qi,T , qe,T , and ηi (Fig. 1a), and Ri,T , Re,T , Rj,T =

∑
Zj
RZj ,T

andRT = Re,T+Ri,T (Fig. 1b) are plotted versus the mean charge 〈Zj〉 for ξj = 0.05,
assuming ∂T/∂x < 0. It can be seen that all functions depend strongly on the mean
impurity charge. For large 〈Zj〉, these functions behave as follows: ηi, qi,T , qe,T tend
to zero, E and the ion thermal force, which changes sign at 〈Zj〉 = 3.5, attain their
limiting values, and the electron and impurity thermal forces increase linearly with
〈Zj〉.

4.1.2. Stationary processes in a moving reference frame. Here we consider the exist-
ence of solutions of the system (80)–(86) that depend only on η:

η = x− v0t, v0 = const. (94)

https://doi.org/10.1017/S002237789900762X Published online by Cambridge University Press

https://doi.org/10.1017/S002237789900762X


1D multifluid plasma models. Part 1 657

6

–2

–6

5 10 15 20 25

Rj, T

Rj, T

Re, T

RT

〈Zj〉

F = {RT , Re, T , Ri, T , Rj, T}

(b)

4

2

–4

F(〈Zj〉)

|F(0)| 30

2

5 10 15 20 25

qe, T

E

〈Zj〉

F = {ηi , qe, T , qi, T , E}

(a)

1.5

1

0.5

F(〈Zj〉)

|F(0)|

30

qi, T
ηi

Figure 1. (a) Normalized electric field E, thermal fluxes qi,T and qe,T , and ion vis-
cosity ηi as functions of the mean charge 〈Zj〉 for ξj = 0.05. (b) Thermal forces
Ri,T , Re,T , Rj,T =

∑
Zj
RZj ,T and RT = Re,T +Ri,T as functions of 〈Zj〉 for ξj = 0.05

The continuity equations (80) and (81) allow us to express the velocity of the ions
of type α as a function of their density:

vα = v0 +
Γα0

nα
, α = i, j, (95)

where Γα0 are constant particle fluxes. From (93), we get the first integral

miΓi0

(
v0 +

Γi0
ni

)
+mjΓj0

(
v0 +

Γj0
nj

)
+ T [2ni + (1 + 〈Zj〉)nj] = c0, (96)

with the total energy c0 in the moving coordinate system. Equation (96) describes
the relation between ni, nj and T :

ni(T, nj) =
1

4T
[a0 + (a2

0 − a1T )1/2], (97)

with

a0 = c0 − (miΓi0 +mjΓj0)v0 −mj

Γ2
j0

nj
− njT (1 + 〈Zj〉), (98a)

a1 = 8miΓ2
i0. (98b)

For the case of small impurity fluxes, a0 is constant and ni depends on T only.

https://doi.org/10.1017/S002237789900762X Published online by Cambridge University Press

https://doi.org/10.1017/S002237789900762X


658 P. Bachmann and D. Sünder

From the impurity momentum balance equation (83), we obtain

−mj

Γ2
j0

n2
j

dnj
dη

+
d

dη
(njT ) = R∗j , (99)

where

R∗j = nj
dT

dη

[
C4(Zeff )(〈Z2

j 〉 − 〈Zj〉Zeff ) + 〈Z2
j 〉C4(Z0)− 〈Zj〉

]
−nj

[
〈Zj〉T d

dη
lnne + 〈Zj〉meC3(Zeff )

νei
neni

(niΓe − neΓi0)
]

−mj〈Z2
j 〉
[
C3(Zeff )

νje
ne

(
1− 〈Zj〉nj

ne

)
(neΓjo − njΓe)

+C3(Z0)
νji
ni

(niΓj0 − njΓi0)
]
, (100)

with

Γe = Γi0 + 〈Zj〉Γj0 − J

e
. (101)

The equation for the temperature reads

3
2

(Γe + Γi0 + Γj0)
dT

dη
+

5
2
TnjνZ

−T
(

Γe
d

dη
lnne + Γi0

d

dη
lnni + Γj0

d

dη
lnnj

)
− d

dη
κe
dT

dη

= Hext +H∗j −QR, (102)

with

H∗j = C5(Zeff )
1
ni

(Γeni − Γi0ne)
dT

dη

+meC3(Zeff )

[
νei
nen2

i

(Γeni − Γi0ne)2 +
νej
nen2

j

Z0(Γenj − Γj0ne)2

]

+miC3(Z0)
νij
nin2

j

Z0(Γi0nj − Γj0ni)2

− d

dη

[
TC5(Z0)

1
nj

(Γi0nj − Γj0ni) + TC4(Zeff )
1
ne

(Γeni − Γi0ne)

+TZ0C4(Zeff )
ni
nenj

(Γenj − Γj0ne)
]
. (103)

Together with the equation

d

∂η
〈Zj〉 =

nj
Γj0

ν
(∗)
Z , (104)

we obtain a closed, strongly nonlinear system of four ordinary first-order differ-
ential equations for T , dT/dη, 〈Zj〉 and nj . Solutions of the system for the case
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nj¥T/¥x
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Figure 2. R∗j/(nj∂T/∂x) as a function of 〈Zj〉 for ξj = 0.05 and different values of the
parameter dj = mj(vi − vj)LT νji/T .

ve = vi, 〈Zj〉 ∼ T 1/2 and 〈Zj〉nj� ni have been analysed by Morozov and Herrera
(1996).

4.2. Currentless plasma models

4.2.1. Plasma with different particle velocities. The condition for both charge neu-
trality and a currentless plasma,

J = e[ni(vi − ve) + 〈Zj〉nj(vj − ve)] = 0, (105)

leads to

ve =
nivi + 〈Zj〉njvj
ni + 〈Zj〉nj . (106)

We obtain, assuming vi � vj , the system of equations for ni, nj , vi, vj , 〈Zj〉 and
T derived in Sec. 4.1, where we have to take into account J = 0. The role of
the different ion velocities is demonstrated in Fig. 2, where R∗j is plotted as a
function of the mean charge 〈Zj〉 for ξi = 0.05 for various values of the parameter
dj = mj(vi−vj)LT νji/T that characterizes the relation of the friction to the thermal
force, where LT is the temperature scale length. It can be seen that for the case of
equal ion velocities (vi = vj , dj = 0), R∗j attains a constant value for large 〈Zj〉.

4.2.2. Streaming plasma. If we assume that all velocities are equal, ve = vi = vj ≡ v,
we obtain the following system of equations describing the dynamics of a current-
less, with one velocity, streaming plasma:

dni
dt

+ ni
∂v

∂x
= 0, (107)

dnj
dt

+ nj
∂v

∂x
= 0, (108)

d

dt
〈Zj〉 = ν

(∗)
Z , (109)

(mini +mjnj)
dv

dt
+
∂

∂x
{[2ni + (1 + 〈Zj〉)nj]T} = 0, (110)

mjnj
dv

dt
+
∂

∂x
(njT ) = R∗j , (111)
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3
2
d

dt
[2ni + (1 + 〈Zj〉nj)]T +

5
2

[2ni + (1 + 〈Zj〉nj)]T ∂v
∂x

− ∂

∂x

(
κe
∂T

∂x

)
= Hext −QR (112)

with d/dt = ∂/∂t + v∂/∂x and

R∗j = nj

[
−〈Zj〉T ∂

∂x
ln (ni + 〈Zj〉nj) +Gj(T, nj/ni)

∂T

∂x

]
, (113a)

Gj = α− β − 〈Zj〉, (113b)

α = [C4(Zeff ) + C4(Z0)]〈Z2
j 〉, (113c)

β = C4(Zeff )Zeff 〈Zj〉. (113d)

We arrive at six equations for the five unknowns ni, nj , v, 〈Zj〉 and T because both
the equation of continuity and momentum of the impurities govern nj .

4.2.3. Wave-front solutions. Here we consider again the existence of solutions de-
pending only on η = x − v0t, v0 = const (cf. Sec. 4.1.2). In this case of so-called
wave-front-like solutions (d/dt = (v−v0)d/dη) we obtain from the continuity equa-
tions the relations

v = v0 +
Γi0
ni

= v0 +
Γj0
nj
⇒ ξj =

nj
ni

=
Γj0
Γi0

, (114)

where the impurity density is a constant fraction of the ion density. The density ni
as a function of the temperature reads

ni(T ) =
1

2Tgi
[d0 + (d2

0 − d1T )1/2], (115)

with

d0 = c0 − (mi +mjξj)Γi0v0, (116a)

d1 = 4(mi +mjξj)giΓ2
i0, (116b)

gi = 2 + (1 + 〈Zj〉)ξj . (116c)

The equation for the temperature is(
Γi0gi

dT

dη
+ ν

(∗)
Z niξjT

)(
5
2

+M

)
− d

dη

[
κe(T )

dT

dη

]
= Hext − n2

iξj(1 + 〈Zj〉ξj)Lrad

(117)

with

M =
d1T

2[d0 + (d2
0 − d1T )1/2](d2

0 − d1T )1/2
. (118)

In the case of d1T � d2
0, ν(∗)

Z = 0 the left-hand side of (117) has the form of the
usual reaction–diffusion equation in the travelling wave approximatiom (Fife 1979;
Grindrod 1996).

4.2.4. Reaction-diffusion equation (RDE). Introducing the mass density ρm, the total
density N and the total pressure p,

ρm = mini +mjnj , (119a)

https://doi.org/10.1017/S002237789900762X Published online by Cambridge University Press

https://doi.org/10.1017/S002237789900762X


1D multifluid plasma models. Part 1 661

N = ne + ni + nj = 2ni + (1 + 〈Zj〉)nj , (119b)

p = NT, (119c)

one obtains the following reduced system of equations:

dN

dt
+N

∂v

∂x
= njν

(∗)
Z , (120)

dρm
dt

+ ρm
∂v

∂x
= 0, (121)

d

dt
〈Zj〉 = ν

(∗)
Z , (122)

ρm
dv

dt
+
∂p

∂x
= 0, (123)

mjnj
dv

dt
+
∂

∂x
(njT ) = R∗j , (124)

3
2
dp

dt
+

5
2
p
∂v

∂x
− ∂

∂x

(
κe
∂T

∂x

)
= Hext − (ni + 〈Zj〉nj)njLrad. (125)

Using the continuity equation, the energy balance equations can be rewritten in
the form

NT
d

dt
ln (T 3/2N−1)− ∂

∂x

(
κe
∂T

∂x

)
= Hext− (ni + 〈Zj〉nj)njLrad− 5

2
Tnjν

(∗)
Z . (126)

This system of equations represents a fluid description by means of the model
functionsN, v, T, ρm and 〈Zj〉. Of course, ν(∗)

Z , κe and the impurity radiation depend
on the densities ni and nj . According to (119b), ni can be eliminated by

ni = 1
2 [N − (1 + 〈Zj〉)nj]. (127)

It is our aim in this paper to describe the effect of impurities within the simplest
framework by a single RDE for the temperature. The idea now is to reduce the
above equations down to one RDE by

(i) using the ADPAK data (Post et al. 1994) for 〈Zj〉, where the main charge
is considered only as a function of T that corresponds approximately to the
relation ν(∗)

Z = 0;

(ii) introducing Lagrangian coordinates; and

(iii) applying the equation of state

p = NT = p(T ) (128)

where p(T ) is to be understood as a given function.

Lagrangian coordinates. With the ansatz of a travelling-wave solution η = x − v0t,
we are looking for steady-state solutions in a reference frame that moves with the
constant velocity v0 (which has to be determined) relative to the laboratory system.
This suggest that we introduce Lagrangian coordinates according to (cf. Spatschek
1990)

τ = t, y = x−
∫ τ

0
dτ ′ v(y, τ ′), (129)
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d

dt
=

∂

∂τ
,

∂

∂x
=

1
s

∂

∂y
, s = 1 +

∫ τ

0
dτ ′

∂v(y, τ ′)
∂y

. (130)

It follows from the continuity equation (120) that

s =
N0(y)
N (y, τ )

,
∂v

∂y
=

∂

∂τ

(
N0

N

)
, (131)

where N0(y) = N (y, 0) is the initial density distribution.
Applying the equation of state (128) and eliminating N , we obtain a single

nonlinear reaction–diffusion equation that describes the temperature evolution in
Lagrangian coordinates (τ , y):

∂T

∂τ
− 2

5N0
ξp
∂

∂y

(
κe

p

TN0

∂T

∂y

)
=

2
5
ξp
T

p

{
Hext(y, τ )− 1

2

[
p

T
+ (〈Zj〉 − 1)nj

]
njLrad

}
,

(132)

with

ξ−1
p = 1− 2

5
∂ ln p
∂ lnT

.

The solutions of this equation are N0(y)-dependent. This dependence is removed by
introducing new Lagrangian coordinates (τ, z) according to (cf. Meerson 1989)

τ = t, z(x, t) =
∫ x

x1(t)
dx′N (x′, t), (133a)

d

dt
=

∂

∂τ
,

∂

∂x
= N (x, t)

∂

∂z
, (133b)

x1(t) = {x|v(x, t) = 0}, which leads, including the equation of state (128), to a
second Lagrangian RDE for the temperature:

∂T

∂τ
− 2

5
ξp
∂

∂y

(
κe
p

T

∂T

∂y

)
=

2
5
ξp
T

p

{
Hext(z, τ )− 1

2

[
p

T
+(〈Zj〉−1)nj

]
njLrad

}
. (134)

If one is interest in temperature solutions that are independent of N0 one has to
prefer the RDE (134) rather than (132).

The unknown function nj can be expressed by (i) a simple approximation nj =
cjni (cj = const, cf. Sec. 5.3.2) or (ii) as a function of T : nj = nj(T ), which is outlined
in the Sec. 4.2.5 (see Bachmann and Sünder 1998b).

Having solved the RDE (134), T = T (z, τ ), the remaining quantities can be
determined by

N (z, τ ) =
p[T (z, τ )]
T (z, τ )

, (135)

v(z, τ ) =
∫ z

0
dz′
{

1− d ln p[T (z′, τ )]
d lnT (z′, τ )

}
1

p[T (z′, τ )]
∂

∂τ
T (z′, τ ). (136)

The relationship between the Eulerian and Lagrangian coordinates is given by the
nonlinear relation

x(z, τ ) = x1(τ ) +
∫ z

0
dz′

T (z′, τ )
p[T (z′, τ )]

. (137)

4.2.5. The effect of the impurities on the RDE. The impurity density nj affects (i)
the radiation loss term of (134) and (ii) the electron heat conduction coefficient κe,
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Figure 3. nj , nj/N , njneLrad and C6(Zeff ) as functions of T for carbon and the parameter
set P1; the numbers next to each curve indicate p0/(1013 cm−3 eV).

which depends strongly on nj via C6(Zeff ) (90). 〈Zj〉 is a function of T , and nj(T )
has to be calculated from the following first-order ordinary differential equation:

1
nj

dnj
dT

=
{[

p

T
+ (〈Zj〉 − 1)nj

]
Gj − 1
T

+〈Zj〉
(
p

T 2 −
1
T

dP

dT
− nj d〈Zj〉

dT

)}
×
[
p

T
+ (〈Zj〉 − 1)(〈Zj〉 + 1)nj

]1/2

, (138)

derived from (111).
In what follows, numerical solutions to (138) will be given for the case of the

isobaric approximation, p = p0. In addition to the parameter p0, the solution to this
equation requires the impurity density nj to be known for a given temperature T .
We solve (138) for two parameter sets
P1 : nj0 = nj(T = 1.0 eV) = 1012 cm−3, p0 = (1, 3, 10, 30, 100)× 1013 cm−3 eV;
P2 : p0 = 1015 cm−3 eV, nj0 = (1, 3, 10, 30, 100, 300, 1000)× 1012 cm−3;
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Figure 4. nj , nj/N , njneLrad and C6(Zeff ) as functions of T for carbon and the parameter
set P2; the numbers next to each curve indicate nj0/(1012 cm−3).

and two reference cases, using ADPAK data (Post et al. 1994) for Zf and the
radiation loss function Lrad (nH/ne = 10−7, neτ = 1013 s cm−3):

(i) for carbon;

(ii) we assume that the mean charge number is given by

〈Zj〉 = T 1/2, 〈Z2
j 〉 = T, (139)

which is a reasonable approximation, especially for high-Z impurities (cf.
Gervids et al. 1987).

Having calculated the impurity density nj , the total density is simply given by
N = p0/T . The electron and ion densities follow from (64) and (127). The results are
shown in Figs 3–6 where in each case the impurity density nj , the impurity fraction
nj/N , the radiation loss rate njneLrad (Figs 3 and 4), the fraction njne (Figs 5 and
6) and the coefficient C6(Zeff ) are represented as functions of the temperature T .
The last two quantities enter the description directly through the RDEs (132) and
(134).

The solutions for the parameter set P2 show that at sufficiently high temper-
atures, each solution family approaches one curve that does not depend on the
initial impurity density nj0. The effect of the different constant-pressure values of
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Figure 5. nj , nj/N , njne and C6(Zeff ) as functions of T for 〈Zj〉 = T 1/2 and the parameter
set P1; the numbers next to each curve indicate p0/(1013 cm−3 eV).

P1 is such that only the nj/N and C6(Zeff ) families approach one curve in each
case, which, of course, is identical with the one resulting from the P2 calculations.
Thus the essential result of these investigations is that there are universal curves for
nj/N and C6(Zeff ) for temperatures higher than a characteristic temperature (Tc ≈
10–20 eV for (i) and (ii)) in the sense that they are the same for both parameter
sets P1 and P2. nj can be estimated analytically:

nj ≈ N

1 + 〈Zj〉 , 20 eV < T < 100 eV. (140)

(i) For carbon (Figs 3 and 4), nj(T ) behaves non-monotonically for T = 1–10 eV.
For 10 eV 6 T 6 60 eV nj/N ≈ const is a reasonable approximation for all
parameter sets, and decreases for higher temperatures. For both parameter
sets, C6(Zeff ) changes for T = 1–10 eV from 2.3 to 1, and is nearly constant for
10 eV 6 T 6 60 eV and then decreases again.

(ii) In the high Zf approximation (Figs 5 and 6), the effect of high-Z impurities
is much stronger. Each universal curve with a characteristic temperature Tc ≈
10 eV tends to 0 as T →∞.

https://doi.org/10.1017/S002237789900762X Published online by Cambridge University Press

https://doi.org/10.1017/S002237789900762X


666 P. Bachmann and D. Sünder

1028

1 10 100
T (eV)

nj ne

(cm–6)

1000

1027

1026

1025

1024

2.5

1 10 100
T (eV)

C6(Zeff )

1000

2.0

1.5

1.0

0.5

0

1

1014

1 10 100
T (eV)

nj

(cm–3)

1013

1012

1011

1010

1 10 100
T (eV)

0.3

0.2

0.1

0

1

nj

N
1000

300

100

30

10

3

1

1000

300

100

30

10

3

1

300

Figure 6. nj , nj/N , njne and C6(Zeff ) as functions of T for 〈Zj〉 = T 1/2 and the parameter
set P2; the numbers next to each curve indicate ηj0/(1012 cm−3).

5. Conclusions
This paper on 1D multifluid plasma models has been concerned with the plasma
physical fundamentals by presenting a variety of simple 1D and time-dependent
multifluid plasma models. The starting point is the system of multifluid MHD equa-
tions for hydrogen ions, impurity ions together with their ionization stages, and
electrons. In order to simplify the treatment, especially for the case of high-Z
materials, the impurity has been described as a single fluid.

By equalizing all temperatures and adopting the condition of quasineutrality,
we have derived within the framework of a three-fluid description for a current-
carrying plasma a system of equations whose ability to support travelling-wave
solutions has been investigated. This system was reduced further to a currentless
plasma description by assuming at first different flow velocities of the particles and
then a currentless, streaming plasma model where all particles move with the same
velocity.

By introducing Lagrangian coordinates and an equation of state, and deriving
an equation that allows one to calculate the impurity density as a function of the
temperature (through (138)) the reaction–diffusion equations (132) and (134) for
the temperature were obtained.

The effect of the impurity ions on the reaction–diffusion process for the temper-
ature is determined not only by the impurity radiation loss term but also by the
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electron heat conduction coefficient κe, which depends strongly on nj via C6(Zeff ).
Both quantities can be calculated by solving (138) for carbon and high-Z impurities,
which are of interest for present and future fusion devices (ITER). The essential
result of these investigations is that there are universal curves for the impurity
fraction nj/N and C6(Zeff ) for temperatures higher than a characteristic temper-
ature (Tc ≈ 10–20 eV) in the sense that they nearly coincide for the parameters
considered.

This paper may be seen as a contribution to the derivation of reduced multifluid
plasma models with respect to their range of validity. It is the first of a series of
papers that will apply the presented models to investigate effects related to impu-
rity radiation phenomena. For instance, travelling-wave solutions will be consid-
ered, steady and time-dependent solutions to the RDE will be given, and problems
arising from the nonlinear transformation from Eulerian to Lagrangian coordinates
with respect to initial and boundary value problems will be discussed. First results
can be found in Bachmann and Sünder (1998b).
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