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Ionization occurs in the upper atmospheres of hot Jupiters and in the interiors of gas giant
planets, leading to magnetohydrodynamic (MHD) effects that couple the momentum and
the magnetic field, thereby significantly altering the dynamics. In regions of moderate
temperatures, the gas is only partially ionized, which also leads to interactions with neutral
molecules. To explore the turbulent dynamics of these regions, we utilize partially ionized
magnetohydrodynamics (PIMHD), a two-fluid model – one neutral and one ionized –
coupled by a collision term proportional to the difference in velocities. Motivated
by planetary settings where rotation constrains the large-scale motions to be mostly
two-dimensional, we perform a suite of simulations to examine the parameter space of
two-dimensional PIMHD turbulence and pay particular attention to collisions and their
role in the dynamics, dissipation and energy exchange between the two species. We arrive
at, and numerically confirm, an expression for the energy loss due to collisions in both the
weakly and strongly collisional limits, and show that, in the latter limit, the neutral fluid
couples to the ions and behaves as an MHD fluid. Finally, we discuss some implications
of our findings to current understanding of gas giant planet atmospheres.

Key words: atmospheric flows, MHD turbulence

1. Introduction

The interior atmosphere of Jupiter-like gas giant planets is typically characterized
by two dynamically distinct regions: a neutral outer envelope following the laws of
hydrodynamics (HD), and a hot ionized interior where the hydrogen transitions into a
conducting metallic liquid state that produces interactions between the momentum and
magnetic field, following the laws of magnetohydrodynamics (MHD) (Guillot 2005; Liu,
Goldreich & Stevenson 2008; Stanley & Glatzmaier 2010). While the location of this
transition might change depending on the planet’s mass and age, the existence of the two
regions is expected to be robust, given typical pressures, temperatures and compositions
of gas giant planets. Attempts at modelling each region individually have successfully
reproduced and helped with the understanding of a lot of the major observations of
Jupiter and Saturn to this date. This includes, among many other things, the formation,
characteristics and dynamics of the jets and vortices (Rhines 1975; Busse 1976; Dowling
& Ingersoll 1988, 1989; Cho & Polvani 1996; Showman 2007; Scott & Polvani 2007,
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900 A28-2 S. J. Benavides and G. R. Flierl

2008; Liu et al. 2008; Lian & Showman 2008, 2010; Glatzmaier, Evonuk & Rogers 2009;
Schneider & Liu 2009; Stanley & Glatzmaier 2010; Warneford & Dellar 2014; O’Neill,
Emanuel & Flierl 2015; Heimpel, Gastine & Wicht 2016) as well as the generation and
morphology of the magnetic field (Stanley & Glatzmaier 2010; Wicht & Tilgner 2010;
Jones et al. 2011; Gastine et al. 2014; Jones 2014; Rogers & McElwaine 2017; Dietrich &
Jones 2018; Duarte, Wicht & Gastine 2018).

However, in reality, the two regions are not completely independent of each other. The
transition from neutral to fully ionized is believed to happen continuously as a function of
the radius (Bagenal, Dowling & McKinnon 2006; Liu et al. 2008; Cao & Stevenson 2017;
Zaghoo 2018). This suggests a continuous transition from HD to MHD dynamics. Many of
the modelling studies mentioned above have either ignored or parametrized the interaction
of their modelling region with this transition region, where the dynamics begins to change.
Some examples include the presence of a Rayleigh-like friction in general circulation
models (GCMs) modelling the neutral region. This friction is coined ‘MHD drag’ and
is supposed to account for the interaction between the jets and the metallic interior
(Glatzmaier 2008; Liu et al. 2008; Schneider & Liu 2009; Perna, Menou & Rauscher
2010). On the other hand, some modelling efforts of the interior MHD region have begun
including the effects of variable conductivity as a function of radius, accounting for the
steep drop-off of conductivity as one approaches the neutral region (Jones et al. 2011;
Gastine et al. 2014; Jones 2014; Dietrich & Jones 2018). Despite the relative success of
these methods, some call into question these techniques (Glatzmaier 2008; Chai, Jansen &
Vallis 2016), and many studies from both communities explicitly express interest in further
understanding the coupling between the HD and MHD regions (Gastine et al. 2014; Jones
2014; Chai et al. 2016; Heimpel et al. 2016).

A better understanding of the transition region could also be important for understanding
hot Jupiters, gas giant planets orbiting close to other stars. The outer atmospheres of hot
Jupiters are expected to be ionized, due to both high temperatures and incident radiation
from the nearby host star (Batygin & Stevenson 2010; Perna et al. 2010; Menou 2012;
Koskinen et al. 2014; Koll & Komacek 2018), and a few studies have already implemented
GCMs that include an electrically conducting atmosphere and a magnetic field (Batygin,
Stanley & Stevenson 2013; Rogers & Showman 2014; Rogers & McElwaine 2017). The
resulting circulations depend significantly on the interaction of the flows with the magnetic
field, which has implications for the interpretation of observed hot spots on hot Jupiters.

All the previous numerical work described above has been carried out using either
regular HD, which models the dynamics of an electrically neutral fluid, or MHD, which
models the dynamics of a fully ionized electrically conducting fluid, incorporating the
interaction between the fluid and the magnetic field. These are called single-fluid or
single-species models because they model only one type of molecule (either neutral or
ionized). However, it is likely that this continuous transition occurs via partial ionization
(Zaghoo 2018), implying a coexistence of ionized and neutral molecules in this region,
both following their own respective mean dynamics but occupying the same fluid volume
and interacting via collisions.

The main goal of this work is to improve our understanding of the partially ionized
turbulent dynamics occurring in the transition region. A more rigorous understanding
of the plasma physics and dynamical regimes there can shed light on the commonly
used assumptions. To that effect, in § 2 we introduce and explore partially ionized
magnetohydrodynamics (PIMHD), a two-fluid model – one neutral and one ionized –
coupled by a collision term proportional to the difference in velocities. Unlike the
single-species (fully ionized or fully neutral) models, the coexistence of two species
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2-D partially ionized MHD turbulence 900 A28-3

introduces a new frictional dissipation of energy and a source of heating due to collisions
between the differentially moving species. In § 3 we motivate and describe the approach to
our study using numerical simulations of two-dimensional (2-D) turbulence, whose results
are presented and discussed in § 4. Finally, in § 5 we summarize the PIMHD numerical
experiments and give tentative parameter values for Jupiter, making some connections to
our motivating discussion in the current section.

2. Partially ionized magnetohydrodynamics

2.1. PIMHD system
In this study, we investigate incompressible PIMHD with uniform species densities,
ignoring the complications of compression, stratification and buoyancy. Incompressibility
is expected to hold true in the deep atmospheres of gas giant planets, although this is
possibly less accurate for the outer regions of hot Jupiter atmospheres where partial
ionization is also relevant. The assumption of uniform species densities is harder to justify,
and we admit that it would certainly play a role in real geophysical applications at large
scales. Despite this, we make these assumptions because they simplify analysis and allow
better comparison to previously established turbulence results. The PIMHD system then
becomes the following:

ρn

(
∂

∂t
+ vn · ∇

)
vn = −∇pn − ρiρnα(vn − vi) + μn∇2vn + F n, (2.1a)

ρi

(
∂

∂t
+ vi · ∇

)
vi = −∇pi + ρiρnα(vn − vi) + J × B + μi∇2vi + F i, (2.1b)

∂B
∂t

= ∇ × (vi × B) + η∇2B + F B, (2.1c)

J = 1
μ0

∇ × B, ∇ · B = 0, ∇ · vn = 0, ∇ · vi = 0, ρtot = ρi + ρn, (2.1d)

where the subscripts represent an ionized (‘i’) or neutral (‘n’) component, potentially
representing dissociated hydrogen ions and recombined atoms, respectively (Guillot 2005;
French et al. 2012). For each species, v is the velocity, ρ is the density, p is the pressure,
μ is the dynamic viscosity, B is the magnetic field, μ0 is the vacuum permeability, η is
the magnetic diffusivity, and F is a generic force that may include body or gravitational
forces and other forms of dissipation, for example. These two species do not form two
different layers – they occupy the same space, i.e. at each point there are two velocities
corresponding to vi and vn .

The PIMHD system can be derived from the Boltzmann equations for singly charged
ions, electrons and a single neutral species (Draine 1986; Meier 2011; Meier &
Shumlak 2012). The derivation process is similar to that of the MHD system from an
electron–ion plasma, the difference being the presence of extra collision and reaction
terms between neutrals, ions and electrons. One combines the momentum equations
of each ionized species with Maxwell’s equations, ignoring any static charge sources
(quasi-neutral approximation) and light waves (the electric field is set by Ohm’s law).
Further simplifications in the dynamics mainly come from ignoring the electron inertia
and electron pressure, thus reducing the equations of motion to that of the magnetic field
and of the centre of mass between the ions and electrons. Making these approximations

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

50
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.500


900 A28-4 S. J. Benavides and G. R. Flierl

in MHD requires assuming that the electron-to-ion mass ratio is very small, as well as
assuming that we are looking at length scales much larger than the ion or electron skin
depths. We want to emphasize here that we are taking the MHD approximation for the
ion species, which ignores many two-fluid effects commonly considered in astrophysical
plasmas (Ballester et al. 2018). We believe that the MHD regime is valid in the system we
are attempting to study, and we discuss the breakdown of some of these assumptions in
§ 2.2 and appendix A.

Partially ionized models have been used in previous studies of the Earth’s
thermosphere/ionosphere, the Sun’s chromosphere (Khodachenko et al. 2004; Zaqarashvili,
Khodachenko & Rucker 2011; Khomenko & Collados 2012; Leake et al. 2014;
Martínez-Sykora et al. 2017; Song 2017), magnetic reconnection (Lazarian, Vishniac
& Cho 2004; Smith & Sakai 2008; Malyshkin & Zweibel 2011; Leake et al. 2012),
protoplanetary disks (Balbus 2009), as well as molecular clouds and the interstellar
medium (Draine 1980; Nakano & Umebayashi 1986; Falle 2003; Oishi & Mac Low
2006; O’Sullivan & Downes 2007; Tilley & Balsara 2010; Meyer et al. 2014; Xu, Yan
& Lazarian 2016; Xu & Lazarian 2017). As far as we are aware, there have not been any
studies looking at partially ionized turbulence in the planetary atmosphere setting we are
investigating here. Some of the main differences between the context of previous work and
our deep atmosphere context is that the former typically deals with ionization fractions
much smaller than one, as well as compressibility effects. We have also not found any
study that does a systematic parameter space study of the turbulent PIMHD system that
will be discussed in § 3.

The two fluids are coupled via collisions, represented by the second term on the
right-hand sides of (2.1a) and (2.1b). The coefficient α measures the strength of the
coupling; it is approximately proportional to the collision cross-section of the two species
and their thermal velocities, which in turn depends on the square-root of the temperature
under equilibrium assumptions (Draine 1986; Meier 2011; Leake, Lukin & Linton 2013).
For our purposes, α will be a parameter that we vary, although we will discuss possible
realistic values of α in § 5. Looking at the energy equation (and ignoring other forms
of dissipation) we see the effects of collisions on the energy of the individual species
(s ∈ {i, n}) and as a whole:

dEs

dt
= −ρiρnα〈|vs|2〉 + ρiρnα〈vn · vi〉, (2.2a)

dE
dt

= −ρiρnα〈|vi − vn|2〉, (2.2b)

where 〈·〉 implies a domain integral, En = KEn = ρn〈|vn|2〉/2, Ei = KEi + EB = ρi
〈|vi|2〉/2 + 〈|B|2〉/(2μ0) and E = Ei + En . Collisions conserve momentum, and the
sign-indefinite term in (2.2a) tells us that the two species may exchange some energy via
the collisions. Looking at (2.2b) we see that total energy is lost from these interactions, in a
process we are calling ‘collisional heating’ (CH) (Vasyliunas & Song 2005). In the absence
of collisions and other dissipation terms, the two species are uncoupled and behave as
HD and MHD independently. Note that CH is something not accounted for in one-fluid
models, and could therefore prove problematic if it is shown to be significant in these
planetary systems.

Another new and important parameter of the PIMHD system is the ionization fraction,
which we will denote by χ ≡ ρi/ρtot. Since ρtot = ρi + ρn , we see that (1 − χ) = ρn/ρtot.
The ionization fraction plays a role in the dynamics by influencing the acceleration and
Reynolds number (which measures the relative strength of the advection term to the
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2-D partially ionized MHD turbulence 900 A28-5

diffusion term) of each species, as well as the strength of the collision term. We note
here that (2.1a)–(2.1d) are not valid for ionization fractions that are strictly 0 or 1, as
the fluid description breaks down as those limits are approached. In the very extreme
limits, we expect that certain assumptions made about time-scale separations between
molecular motion and mean motion are no longer valid as the densities become low and
the mean free path for self-collisions becomes too large (e.g. leading to the breakdown
of the thermal equilibrium assumption) (Draine 1986). Furthermore, before this occurs,
as one approaches χ → 0, Ohm’s law must be altered, as will be discussed in § 2.2 and
appendix A. In any case, since we expect transition regions in gas giant planets to span
all values of ionization fraction from 0 to 1, we will not focus on extremes of ionization
fraction in this work.

Ionization fraction also modifies the magnetic diffusivity η. In MHD the origin of
magnetic diffusivity comes from collisions between ions and electrons. However, in
a partially ionized system, we also have collisions between neutrals and electrons.
Incorporating this in the expression for magnetic diffusivity gives us

η =
(

1 + r
(

1 − χ

χ

))
ηMHD, (2.3)

where r is the ratio of cross-sections of ion–electron collisions to neutral–electron
collisions, and ηMHD is the magnetic diffusivity for regular MHD. Typically we would
expect r � 1 (Leake et al. 2012), implying a sudden increase in magnetic diffusivity for
small values of χ (low ionization fraction). Since we will not be dealing with extreme
values of χ in this work, this effect will not be important here.

2.2. Limiting cases
Before moving on to the numerical experiments in § 3, we find it useful to explore the
limiting cases of the PIMHD system (while staying within the bounds of our assumptions
that make the system valid, as discussed in the previous section). We will look at the
extreme limits of α and comment briefly on the ionization fraction limits.

The relative strength of the collision and advection terms in (2.1a) and (2.1b) is
determined by the ratio of the eddy turnover time to the time scale of collisions. We
define the eddy turnover time in the usual way as τeddy ≡ L/U, where L is a typical length
scale of the system, and U is a typical velocity. There are two time scales for collisions:
τcoll,i ≡ (ρnα)−1 in the ion equation and τcoll,n ≡ (ρiα)−1 in the neutral equation. These are
typically denoted in the literature as collision frequencies νin = ρnα and νni = ρiα. Since
at the moment we are dealing with both χ ∼ O(1) and (1 − χ) ∼ O(1), it is convenient
to define τcoll ≡ (ρtotα)−1 so that τcoll,i = τcoll/(1 − χ) and τcoll,n = τcoll/χ . This allows us
to define our second main non-dimensional parameter (after χ ),

α̃ ≡ τeddy

τcoll
= Lρtotα

U
, (2.4)

which will determine the strength of the collision term compared to the advection term in
the PIMHD system and will be a measure of how coupled the two fluids are. The limits in
the cases below are really being applied to α̃.
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900 A28-6 S. J. Benavides and G. R. Flierl

Part of our goal is to predict the collisional heating, defined to be

CH ≡ ρiρnα〈|vi − vn|2〉. (2.5)

The collisional heating is not only of interest for its implications to the astrophysical
systems mentioned in § 1, but also because it is a measure of how coupled the two fluids
are. Equation (2.5) and its equivalent wavenumber spectrum (to be defined) will be of
interest throughout the rest of this work. We expect two extreme regimes: (1) α̃ � 1, where
the ions and neutrals are not coupled and therefore follow their own separate dynamics,
colliding and exchanging energy as they do so; and (2) α̃ 	 1, where the ions and neutrals
are extremely coupled, meaning vi ≈ vn , thereby lowering CH. We will look at the two
regimes separately and discuss some findings in each.

Let us begin with the limit of α̃ � 1. In the case where α̃ = 0 exactly, we recover
two uncoupled fluids behaving as HD and MHD with no collisional heating. But suppose
now that 0 < α̃ � 1. In the case of isotropic three-dimensional (3-D) turbulence, since
both HD and MHD turbulence cascade energy to smaller scales (Alexakis & Biferale
2018), we expect that the collisional heating will become negligible once α̃ < 1 and will
eventually go to zero as we keep decreasing α̃. The case of 2-D PIMHD turbulence is
quite different due to the presence of an inverse cascade of energy in the neutral species,
which causes energy to go to larger and larger scales. The energy builds until some
dissipative force is able to balance it. For a finite-size domain of typical length L0, as long
as α > μn/(ρiρnL2

0), this dissipative force is not the viscosity but the collisional heating.
At steady state we expect collisions to balance the energy injected into the neutrals, which
we call In ≡ 〈vn · Fn〉, and so CH ≈ In for α̃ � 1. This prediction becomes independent of
α because, at steady state, all of the energy being injected at the forcing scale is expected to
be dissipated away by collisional heating, and thus what changes for different values of α
is not the dissipation rate, but the energy at the largest scales. Indeed, if we further assume
that |vn| 	 |vi|, which should be the case for small values of α̃ due to the inverse cascade
of the neutrals but not the ions, then combining this result with (2.5) and the definition of
En we can say further that

E ≈ En ≈ In

2ρiα
(2.6)

for α̃ � 1. The balance between CH and In has allowed us to approximately relate the
energy of the neutral species with the energy injection rate, the ionization fraction and the
collision coefficient.

If this limit of α̃ were realized in the transition regions of gas giant planets, this could
have possible implications for the saturation of the jets, whose formation is arguably
attributed to the inverse cascade of kinetic energy in the presence of latitudinally varying
rotation (Rhines 1975). Their saturation speeds, and therefore the effective Rhines scale,
could depend on the value of α. We should note here that we have assumed that the Rossby
deformation radius is much larger than the domain size, but we do not expect our results to
change for finite Rossby deformation radius since the arguments above still hold. Namely,
the energy will still be dissipated at large scales (although possibly not the largest available
scales) where viscous dissipation is negligible. Apart from a possible large-scale friction,
(2.2a) tells us that collisions might be responsible for energy exchange between neutrals
and ions. Indeed, when |vn| 	 |vi|, we might expect the second term on the right-hand
side to dominate the friction-like term for the ion kinetic energy equation, thus leading to
an injection of kinetic energy from the neutrals into the ions. Given that the ions would
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2-D partially ionized MHD turbulence 900 A28-7

then cascade energy to the small scales, this could prove to be another route for the energy
to be taken away from large scales and dissipated efficiently.

In the high collisional limit, α̃ 	 1, we are also able to make some predictions. The
following results are valid in both two and three dimensions, as they do not depend on any
turbulent cascade. It is possible to do an asymptotic expansion of our variables in α̃−1,
since this will be very small. Doing so leads us to conclude that, at O(α̃), v

(0)

i = v(0)
n ≡ u.

Thus, to lowest order, the two fluids are completely coupled and CH = 0. Going to O(1)
gives us, for the momentum equation of each species,

ρn

(
∂

∂t
+ v(0)

n · ∇
)

v(0)
n = −∇pn − ρiρn(v

(1)
n − v

(1)

i ) + μn∇2v(0)
n + F n, (2.7a)

ρi

(
∂

∂t
+ v

(0)

i · ∇
)

v
(0)

i = −∇pi + ρiρn(v
(1)
n − v

(1)

i ) + J × B + μi∇2v
(0)

i + F i, (2.7b)

The dynamics for u can be found by adding (2.7a) and (2.7b) and plugging in the fact that
v

(0)

i = v(0)
n = u.

If we instead divide each equation by their respective density and subtract one from the
other, we get rid of the left-hand sides and end up with an equation for v(1)

n − v
(1)

i , which
we can then use to get an expression for the next-order correction of the collisional heating
CH. We end up with the following equations, which are correct down to O(1) in α̃−1:

ρtot

(
∂

∂t
+ u · ∇

)
u = −∇( pn + pi) + J × B + (μn + μi)∇2u + F n + F i, (2.8a)

∂B
∂t

= ∇ × (u × B) + η∇2B + F B, (2.8b)

CH = ρnρi

ρ2
tot

1
α

〈∣∣∣∣J × B
ρi

− ∇pi

ρi
+ ∇pn

ρn
+

(
μi

ρi
− μn

ρn

)
∇2u + F i

ρi
− F n

ρn

∣∣∣∣2
〉

. (2.8c)

Note that CH ∝ α−1, rather than the order-one correction one might expect, because the
cross-terms in |vn − vi|2 go away, leading to |vn − vi|2 = α−2|v(1)

n − v
(1)

i |2, which one
combines with CH ∝ α|vn − vi|2 to give an α−1 dependence.

Looking at the dynamical equation for u reveals that it behaves like an MHD fluid, but
with total densities, pressures, viscosities and forces. This suggests that, in the large-α̃
limit, the two fluids are coupled so that one-fluid models for the partially ionized region
become valid. Since a turbulent fluid has a continuum of time scales, it is more appropriate
to think of α̃ as the collisional strength at a typical scale L (which has a corresponding
typical eddy turnover time and velocity), implying that the highly coupled limit could
potentially only be valid up to a certain scale, depending on the actual value of α̃ and
choice of L. We will investigate the scale-by-scale properties of PIMHD in § 4.2. Equation
(2.8c) gives us a prediction of the collisional heating based on order-one quantities. It tells
us that collisions are caused by an imbalance in acceleration between the two species. For
example, the ions feel the Lorentz force while the neutrals do not; therefore the magnetic
field accelerates the ions in a different direction than the neutrals, which would then cause
collisions. The results presented above, for both extremes of α̃, will be tested and discussed
in § 4.

Now we will briefly mention the limiting cases in ionization fraction, χ , while
maintaining the assumption of large α̃. Owing to the separation of time scales that occurs
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900 A28-8 S. J. Benavides and G. R. Flierl

when χ � 1 or (1 − χ) � 1, it is numerically challenging to simulate these parameter
limits, and we did not explore these regimes in our work. We therefore leave the details of
the full discussion to appendix A and summarize the results here. In the fully ionized limit,
the ions do not feel the collisions and make up most of the fluid, thus making the dominant
dynamics single-fluid MHD, albeit with a modified pressure and body force in the highly
collisional limit due to the fact that ions drag around neutrals. The low ionization limit is
a bit more subtle. Certain assumptions in the derivation of MHD no longer hold, and thus
the induction equation (2.1c) must be modified to include the Hall term (Pandey & Wardle
2008), even at large scales. Furthermore, the neutrals, which dominate in this limit, still
interact with the magnetic field indirectly via collisions with the ions, leading to what is
called ‘ambipolar MHD’ in the high collisional limit, wherein the collisional effects act
to enhance the magnetic diffusion. The limit of both low ionization and large collisional
coupling, where ambipolar MHD is valid, are particularly relevant for many astrophysical
applications, such as protoplanetary disks, molecular clouds and the interstellar medium
(Draine 1980; Oishi & Mac Low 2006; Balbus 2009; Tilley & Balsara 2010; Meyer et al.
2014; Xu et al. 2016; Xu & Lazarian 2017).

3. Methodology

Based on this introduction and discussion of the PIMHD system, we will now describe
the numerical experiments used to test some of the predictions from § 2, as well as study
the fully turbulent system scale by scale.

Our numerical experiments will comprise solely 2-D incompressible PIMHD
turbulence. We acknowledge that a series of rotating 3-D simulations would be ideal.
However, a large parameter sweep consisting of approximately 100 simulations at various
ionization fractions, collision strengths and Reynolds numbers would be computationally
demanding. We choose instead to explore this parameter space for the 2-D case first, with
the expectation that it will provide guidance for future 3-D studies. There are two main
reasons why we believe our choice is not restrictive and does not make this study irrelevant
to its more realistic counterpart. The first relies on the fact that the high collisional
results in § 2.2 are not dimension-dependent and thus should hold for both 2-D and 3-D
turbulence. Secondly, those results which do depend on the dimensionality really only
depend on the directions of the energy cascades, which we are respecting in our 2-D
simulations, since 3-D rotating HD turbulence is expected to cascade energy to larger
scales like 2-D HD turbulence, and 3-D MHD turbulence also cascades total energy to
smaller scales.

Other simplifications will also be made for tractability of both the analysis and the
numerics. In a realistic setting, assuming μs is not changing, the kinematic viscosity
νs ≡ μs/ρs will be a function of the ionization fraction and will thus affect the Reynolds
number for each species. However, in this study we aim to isolate the effects of ionization
fraction on the dynamics, and also wish to perform a large number of simulations. We
therefore choose to keep the kinematic viscosity, and thus the Reynolds number, constant
(and equal) for each species. For similar reasons we will fix η so that the magnetic
Prandtl number Prm ≡ νi/η = 1 for all simulations. Although this is not likely to be true
in realistic planetary settings (especially in the transition region where we expect the
magnetic diffusivity to be large), we make this choice because the focus of this work
is not to study the effects of Prm, which is purely an MHD parameter. This means we are
ignoring the effects of the magnetic diffusivity’s dependence on ionization fraction, seen
in (2.3).
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2-D partially ionized MHD turbulence 900 A28-9

Equations (2.1a)–(2.1d) were solved in a doubly periodic domain with side length 2π

using a modification of a 2-D MHD code written by Professor Pablo Mininni at the
University of Buenos Aires, Argentina. The code was extended to include a neutral species
and thus solve the PIMHD equations. It is a standard parallel pseudo-spectral code with
a fourth-order Runge–Kutta scheme for time integration and a two-thirds dealiasing rule.
More details on the parallelization can be found in Gómez, Mininni & Dmitruk (2005). All
runs started from random initial conditions, were continuously forced, and were carried out
for long enough so that a statistically steady state was reached. All data were averaged at
this state unless otherwise stated. A 5122 resolution was used for most of the experiments
to explore the parameter space, with some 10242 runs to ensure that the results are not
resolution-dependent and to explore higher Reynolds numbers.

In an attempt to approach more realistic forcing mechanisms in geophysical flows,
where convection or baroclinic instability might convert potential energy to kinetic energy,
the forcing of each species is proportional to its density: F s = ρsf , where s ∈ {i, n}.
The forcing function f is identical for both species; and f is random, white-in-time
and spectrally focused around wavenumber magnitude kf , an input parameter. More
specifically, at each time step, a wavenumber kr of magnitude kf is chosen at random, and
f̂ (k) (Fourier transform of f ) is set to zero everywhere except for at kr where it has the
magnitude fk/

√
Δt, with fk being another input parameter. This has the effect of setting the

energy injection rate of each species to be Ii = ρif 2
k for ions and In = ρnf 2

k for neutrals; see
Chan, Mitra & Brandenburg (2012) for more details. Constant energy injection rate into the
system is ideal for studying situations in which there is little to no large-scale dissipation
and hence a large-scale condensate forms (Gallet & Young 2013). The magnetic field was
also forced using the function f , but with a different random seed, and the magnetic energy
injection rate was set to be IB = Ii/4 for all runs. For most runs we set kf = 8, so that both
inverse and forward cascades could be resolved. However, kf = 4 and kf = 32 runs were
carried out as well, to better resolve the forward and inverse cascade, respectively. In all
runs, given different values of kf , Is was chosen so that uf ≡ |vi(kf )| ∼ |vn(kf )| ∼ 1 for
both species.

In an attempt to better resolve inertial ranges while forcing at intermediate and larger
wavenumbers, hyperviscosity, (−1)p+1∇2p, was used in all runs and for all three fields,
replacing the regular viscosity and regular magnetic diffusivity seen in (2.1a)–(2.1c).
As long as the value of p is not very large, hyperviscosity has been shown to have no
significant effect on the turbulent properties of 3-D turbulence, and we expect the same to
be the case for our work (Agrawal et al. 2020). The value of p was set to 2 in all runs except
for those where kf = 32, in which case p = 4. Furthermore, due to the inverse cascade
of the square of the magnetic vector potential |A|2 (Alexakis & Biferale 2018), where
∇ × (Aẑ) = B, we chose to include hypoviscosity in (2.1c) by adding η−∇−2B. This acts
to dissipate magnetic energy only at the largest scales and thus avoids the slow-forming
condensate of |A|2, making our simulations reach steady state faster. A condensate of the
magnetic vector potential could possibly affect the dynamics of the ion species, but we
consider this to be a purely MHD effect and thus not a focus of our work. The coefficient
η− was chosen to ensure that the magnetic energy at the largest scales (|k| = 1) was
smaller than that at the next largest scale, thus avoiding the formation of a condensate.

In our simulations, we divided the momentum equations by ρtot and absorbed it into
the definition of our variables. Thus, in our simulations, B = B/

√
μ0ρtot and α = ρtotα

(making it equivalent to collision frequency), the latter being another input parameter.
Doing this lets us directly employ the ionization fraction χ in the numerical integration of
the equations. This means that In = (1 − χ)f 2

k and Ii = χ f 2
k . Using the four-fifths law, the
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900 A28-10 S. J. Benavides and G. R. Flierl

Set name kf χ α̃ Re p N

K4 4 [0.5] [3.15 × 10−3, 3.15 to 6.3] 124 015 2 1024
K8 8 [0.1 to 0.99] [1.6 × 10−4 to 1.6 × 103] 1938 2 512
K8R 8 [0.5] [3.0 × 101 to 1.6 × 102] 15 502 2 1024
K32 32 [0.5] [1.5 × 10−2 to 7.9 × 10−1] 1938 4 512

TABLE 1. A summary of the runs performed for this work: N is the resolution of the simulation
and p is the hyperviscosity exponent.

typical velocity based on input parameters is uf = ( f 2
k /kf )

1/3, which was maintained at 1
for all runs. Therefore, the eddy turnover time τeddy = (kf fk)

−2/3. Furthermore, we define
the numerical version of α̃ based on input parameters:

α̃ ≡ α

kf uf
= α

(kf fk)2/3
. (3.1)

We can also define a parameter analogous to the Reynolds number in terms of our
simulation input parameters:

Re = f 2
k

νk−2p+2/3
f

, (3.2)

where p is the power of the hyperviscosity. Since we are keeping ν the same for both
species, we do not distinguish between Rei or Ren and simply call it Re. Note that our
use of hyperviscosity means that the parameter we call Re is not exactly a Reynolds
number. However, Re can still be seen as the ratio of eddy to diffusive time scales, and
thus measures the relative importance of advection compared to diffusion.

From now on, during any discussion of our numerical results, all references to these
variables will be the numerical versions defined above. A summary of our runs can be
seen in table 1.

Since we are numerically integrating the two-fluid equations, when χ becomes very
small we begin to encounter time-scale separation issues in the equations of motion,
causing numerical difficulties (Falle 2003; O’Sullivan & Downes 2007). Furthermore,
at extremely small values of χ we would be forced to alter the equations of motion to
those seen in (A 1a) and (A 1b). For these reasons, and the fact that we are interested
in spanning ionization fractions from zero to one, we chose to ignore extreme values of
ionization fraction in our work. Set K8 was the most extensive set, with runs spanning
α̃ = [1.6 × 10−4 to 1.6 × 103]. Since each set has a specific, fixed kf and fk, α̃ was
modified by varying the numerical value of α. For each value of α̃, six runs were performed
in which we varied χ from 0.1 to 0.99. The other sets were all run at χ = 0.5 and focused
mainly on the effect of the collisional strength on the dynamics.

In the forthcoming section, we will present and analyse the results of our simulations.
We divide the analysis into two subsections: § 4.1, ‘global’ analysis, where we investigate
the behaviour of volume-averaged statistics and compare to the predictions in § 2.2; and
§ 4.2, ‘spatial’ analysis, where we investigate the scale-by-scale effects of the collision
strength on the two fluids.
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2-D partially ionized MHD turbulence 900 A28-11

4. Results

4.1. Global
In § 2.2 we saw that the collisional strength α̃ sets the degree of coupling between the
two fluids: in the small-α̃ limit we expect the two fluids to move independently, whereas,
in the large-α̃ limit, they should be almost identical, following the MHD equations
(2.8a) and (2.8b). In figure 1 we see three snapshots of the vorticity for each species,
ωs ≡ ∇ × vs, representing, from left to right, α̃ � 1, α̃ ∼ 1 and α̃ 	 1, all from the
K4 runs. The top row shows the neutral vorticity for each run, whereas the bottom row
shows the ion vorticity for those runs. By visual inspection of figure 1(a) and (d), with
α̃ = 0.003, one can indeed see that for small α̃ the two species behave as they would
in a completely uncoupled regime. The neutral vorticity shows clear signs of the 2-D
HD inverse cascade of kinetic energy given by the two large-scale vortices, whereas
the ion vorticity shows many filamented structures, typical of 2-D MHD turbulence. In
this regime, we can approach the question of whether or not a one-fluid description is
adequate for the proper determination of the dynamics by going into the centre-of-mass
frame, typically done in other plasma settings (e.g. when deriving MHD itself). We define
V ≡ χvi + (1 − χ)vn and D = vi − vn . The question now becomes: Is it possible only
to account for the dynamics of V without knowing or integrating the dynamics of D?
Although it is not shown here, the simulations reveal that in the α̃ � 1 regime this is
generally not possible – that is, the dynamics of V is partially determined by D and vice
versa. However, as χ → 0 or χ → 1, we find that a one-fluid description (V only) is
sufficient, as one might expect. This was shown by comparing the relative magnitudes of
V and D and noting when |D| � |V |.

As we increase α̃ so that it is of order one, we see the neutral species begin to lose
the large-scale vortices, which are dissipated away by collisional heating. In figure 1(b)
and (e), at α̃ = 3.15, we no longer see obvious 2-D HD behaviour from the neutral species,
but it also does not appear to be of a similar nature to the ion vorticity. Later scale-by-scale
analysis will reveal that this regime is where the highest collisional heating is found
and that most of the energy injected into the neutrals will be transferred to the ions or
simply dissipated away. In figure 1(c) and ( f ), we see the case of α̃ = 314.98, and note
immediately that the two fluids look identical from visual inspection. The two fluids are
coupled and so the neutral species is behaving like an MHD fluid, as was predicted.

Although our predictions seem to agree qualitatively given the snapshots in figure 1, we
now aim to confirm our results from § 2.2 in a quantitative way. In figure 2 we see two
panels comparing global (time- and volume-averaged) quantities, where each data point is
a single simulation. All runs performed in this study are included. Each panel aims to test
the predictions made for each extreme of α̃.

Figure 2(a) compares total energy with the collision strength rescaled by the
energy injection rate of the neutral species over the ionization fraction, based on the
right-hand side of (2.6), and with tildes representing suitable non-dimensionalization by
a combination of uf and kf . The red dashed line shows the prediction from (2.6), which
is valid for small values of α̃, and represents the balance between collisional heating and
energy injection rate into the neutral species. The collapse of the data – for various values
of ionization fraction, Re and forcing wavenumber – on a single line, whose slope agrees
with the predicted relationship over various orders of α̃, confirms our claims.

Figure 2(b) focuses on the highly coupled regime, where the prediction for collisional
heating was based on an expansion over α̃−1, revealing that CH was given by the square
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FIGURE 1. Snapshots at steady state from K4 runs of the vorticity for each species,
ωs ≡ ∇ × vs, representing, from left to right, α̃ � 1, α̃ ∼ 1 and α̃ 	 1. Panels (a)–(c) show
the neutral vorticity for the three values of α̃ whereas panels (d)–( f ) show the ion vorticity for
those runs.
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FIGURE 2. (a) Non-dimensional total energy versus the collision strength α̃, rescaled by the
energy injection rate of the neutrals over the ionization fraction. The red dashed line shows the
prediction from (2.6), valid in the α̃ � 1 limit. (b) Non-dimensional collisional heating, rescaled
by the square of the averaged Lorentz force, versus collision strength α̃. The red dashed line
shows the prediction from (2.8c), valid in the α̃ 	 1 limit.

of the difference in the forces acting on each species – given by (2.8c). This prediction
is quite general but simplifies significantly for our simulations due to the fact that
densities are uniform, νi = νn , and F i = F n . After non-dimensionalizing using uf and kf ,
we are left with C̃H = (1 − χ)χ−1α̃−1L̃F, where L̃F = 〈|J̃ × B̃|2〉 and (̃·) denotes the
dimensionless version. Moving everything except α̃ to the left-hand side, we get that, in
the high collisional limit, the rescaled collisional heating (y-axis of figure 2b) should be
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2-D partially ionized MHD turbulence 900 A28-13

proportional to α̃−1, denoted by a red dashed line. We see that indeed the data collapse onto
a single line, once again for various ionization fractions, Re and forcing wavenumbers. The
slope of the rescaled collisional heating seems to approach the theoretical one for large
values of α̃, confirming our predictions for the highly collisional limit.

4.2. Spatial
Our spatially averaged (‘global’) predictions for the extreme limits of α̃, taken from § 2.2,
have been confirmed. However, turbulence is an out-of-equilibrium, multi-scale process
whose scale-by-scale analysis can reveal further interesting phenomena that are difficult
to identify or predict otherwise. This is the purpose of the current subsection.

In our scale-by-scale analysis we will look at two general quantities – spectra, which
tell how a quadratic quantity is distributed over scales, and fluxes, which tell us how
that quadratic quantity is flowing through scales (Alexakis & Biferale 2018). The
one-dimensional spectrum KEs(k) of the kinetic energy of a species s is

KEs(k) = 1
2

∑
|k|=k

|v̂s|2(k), (4.1)

where (̂ · ) denotes the Fourier transform of vs. We will also be looking at the
dimensionless collisional heating spectra,

C̃H(k) = (1 − χ)χα

u3
f kf

∑
|k|=k

|v̂i − vn|2(k), (4.2)

and the dimensionless spectra of the square of the Lorentz force

L̃F(k) = 1
k2

f u4
f

∑
|k|=k

|̂J × B|2(k). (4.3)

We have seen that α̃ measures the relative strength between collisions and the nonlinear
term at a typical scale L with velocity U (or, in the case of our simulations, k−1

f and uf ).
Therefore, it measures the degree of coupling between the two fluids at L. However, due
to the multi-time-scale nature of turbulence, different length scales couple at different
values of α̃. The global results from the last subsection showed us how to predict the
average coupling of the fluid, given some information about the collision strength at the
forcing scale. However, a scale-by-scale analysis allows us to see exactly how the two fluids
gradually couple together among scales and to better understand non-extreme cases for α̃.
In figure 3 we see the steady-state average kinetic energy spectra of both species, for three
different values of α̃, as in figure 1. These spectra have ionization fraction χ = 0.5 and
were taken from the K8 set of runs, forced at intermediate wavenumbers so as to be able
to resolve approximate inertial ranges in both large and smaller scales.

In figure 3(a) we have the uncoupled limit, evident by the two spectra and their distinct
shapes. The black dot-dashed lines show a −5/3 slope, the prediction for the large scales
of KEn and the small scales of KEi. The slope of the neutral kinetic energy is a bit steeper
at large scales due to the presence of a condensate. Despite this, as well as a poorly
resolved inertial range for the ion kinetic energy, we see reasonable agreement between
expected and observed behaviour for each individual species. Figure 3(b) shows α̃ = 2.52,
a moderately coupled case. In this figure we see that, indeed, the energies at scales down
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FIGURE 3. Kinetic energy spectra for the neutral species (orange, solid line) and ion species
(green, dashed line) at (a) α̃ = 0.002, (b) α̃ = 2.520 and (c) α̃ = 29.923, all with ionization
fraction χ = 0.5. As α̃ increases, the two species become more and more coupled, starting from
the largest scales which couple first.

to the forcing scale seem to be lying on top of each other, implying a coupling at those
scales. The collisions are strong enough at these scales to completely remove the inverse
cascade of kinetic energy in the neutral species, either by dissipation or by transfer of
energy to the ions (to be discussed further when we look at the fluxes). However, at scales
smaller than the forcing there is a clear distinction between the two energies, implying a
lack of coupling. It is this remaining ‘slippage’ between the ions and the neutrals in the
small scales, along with the fact that α̃ ∼ O(1), that maintains a large collisional heating,
despite the small value of |vi − vn| at large scales. In fact, collisional heating is largest at
these values of α̃, as seen in figure 2(b).

Finally, figure 3(c) shows a higher collisional case with α̃ = 29.923. In this figure we
observe that scales smaller than the forcing scale are now beginning to couple; however, α̃
is small enough so that the smallest scales are still not coupled. The two fluids look almost
identical, like the same MHD fluid. At this point a natural question arises: At what scales
do the fluids decouple and how does that depend on α̃? We have attempted to numerically
investigate the dependence of the decoupling wavenumber, which we are calling kcoll, on α̃,
but were not able to reach a definitive conclusion. Possible issues include: a small inertial
range (limited by the numerical capabilities); a failure of time-scale assumptions common
in homogeneous, isotropic turbulence which only are valid in a true inertial range (here,
dissipation due to collisions might render that irrelevant); and more. We do, however, think
that the results are worth showing, and so we have included this work in appendix B.

A quantity intimately related to the degree of coupling between the two species is the
collisional heating, which is proportional to |vi − vn|2. A scale-by-scale decomposition
of CH can tell us where kinetic energy dissipation (heating) due to collisions is most
active, which might be of interest in astrophysical applications. In figure 4 we plot the
non-dimensional spectra of CH, the black dashed curves, for the usual three cases of α̃.
These are taken from steady-state averages in the K32 set of runs, which were forced at
small scales.

Focusing only on the black dashed curves for now, we look first at figure 4(a), the
low coupling case. Since the two species are not coupled, we can approximately say that,
at scales larger than the forcing, the kinetic energy of the neutrals dominates and hence
CH ∝ |vi − vn|2 ≈ |vn|2 ∝ KEn . This is confirmed by the −5/3 slope shown by the thin
dot-dashed black line. Hence, the collisional heating is acting like a friction term for the
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FIGURE 4. The spectra of dimensionless collisional heating C̃H (bold, black, dashed lines) and
of the dimensionless right-hand side of (2.8c), proportional to the spectrum of the Lorenz force
squared, L̃F (bold, light blue, solid lines). These two curves are expected to be equal when
the two species are highly coupled. Shown are three limits of α̃, namely (a) weak coupling,
(b) moderate coupling and (c) strong coupling, allowing one to see the gradual coupling of the
species and the change in form of the CH spectrum.

neutral species, causing significant dissipation at the largest scales where the condensate
lies. Although not shown here, apart from directly dissipating energy to heat, collisions
also act to transfer energy from neutrals to ions at large scales (particularly for low
ionization fractions). This possibility is evident by looking at (2.2a) – when |vn| 	 |vi|,
the sign-indefinite term will dominate |vi|2 for the ion species kinetic energy equation,
thus providing the possibility to gain kinetic energy via collisions with the highly energetic
neutrals at those scales. The species first begin to couple at the largest scales, as we saw
when looking at the kinetic energy spectra. This coupling reduces CH, causing the length
scale of maximal collisional heating to become smaller and smaller as we increase α̃.

This is exemplified in figure 4(b), where we already see a significant change in the shape
of the collisional heating spectrum, its peak around k = 15. This happens until α̃ > 1,
after which the maximal heating is at the forcing scale and the shape of the CH spectrum
remains practically unchanged, with only its magnitude being reduced (proportional to
α̃−1). The shape of the collisional heating spectrum at scales that are already coupled is set
by the spectrum of 〈|J × B|2〉, as predicted by (2.8c). The light blue, solid lines in figure 4
represent the spectra of the right-hand side of this equation, and indeed the two curves lie
on top of each other at the scales that are coupled. Thus, understanding the spectrum of the
square of the Lorentz force is key to understanding the scale-by-scale collisional heating.
The small dark blue dashed line depicting a slope of 2.4 (found by fitting that region of
the spectrum) can be seen in figure 4(a) and (c), showing that the spectrum of the Lorentz
force has not changed and is not affected by the collisions. One would still like to know
what sets the spectrum of the Lorentz force (and hence of CH). A very clear power law
with a positive exponent is seen in the figure, so one is tempted to speculate about its
origins, particularly using equilibrium spectra arguments, as is done in 3-D homogeneous
and isotropic turbulence. However, such equilibrium spectra are not necessarily universal
if the forcing in the spectral shell around kf is dense, as is ours (Alexakis & Brachet 2019).
A prediction of the spectral slope of the Lorentz force, although interesting and relevant
for our applications, is beyond the scope of this paper.

The spectra have revealed the length scales at which coupling between the species
occurs, as well as allowed us to observe at what scales collisional heating dominates
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and confirm our predictions about the spectral shape of CH. While these spectra have
informed us of the distribution of various quantities among length scales, also of interest
in turbulence is how certain conserved quantities, such as energy, move across scales. This
is measured by the (spectral) flux. In this study, we will only look at two components of
energy flux, what we call the kinetic component of energy flux for a species s, ΠUs , and
the magnetic component of energy flux for the ions, denoted by ΠB. The former is defined
to be

ΠUs(k) = 〈v<k
s · (vs · ∇vs)〉, (4.4)

where v<k
s stands for a filtering of the velocity vs in Fourier space so that only the

wavenumbers with modulus smaller than k are kept. The flux ΠUs expresses the rate at
which kinetic energy of a species s is flowing out of scales larger than � = 2π/k due to
nonlinear interactions only in velocity. Therefore, if energy is going from large to small
scales, the energy flux will be positive, and vice versa. The magnetic component of energy
flux for the ion species is defined to be

ΠB(k) = −〈v<k
i · (B · ∇B)〉 + 〈B<k · (vi · ∇B − B · ∇vi)〉. (4.5)

As a reminder, in 2-D HD turbulence, energy flows to larger scales whereas 2-D MHD
turbulence has been shown to cascade total energy forward to smaller scales. Thus, in an
uncoupled system with α̃ = 0, we expect the neutral kinetic energy flux ΠUn to be negative
at scales larger than the forcing and zero at scales smaller than the forcing. On the other
hand, ΠUi + ΠB ought to be zero at large scales and positive at scales smaller than the
forcing. Although KEi and EB are not individually conserved, the nonlinear interactions
that cause the respective fluxes ΠUi and ΠB each conserve energy and can thus also be
analysed.

In figure 5 we look at all four fluxes, ΠUn , ΠUi , ΠB and ΠUi + ΠB, normalized by the
total energy injection rate Itot = In + Ii + IB. We look at three cases of α̃, the first two
taken from the K8 set of runs, and the large α̃ limit from the K8R run (all with χ = 0.5).
These fluxes are averaged over the steady state. The α̃ � 1 case, figure 5(a), confirms the
uncoupled predictions. The neutral kinetic energy flux (orange solid line) is negative and
roughly equal to the neutral injection rate: In/Itot = 4/9 (recall that In = Ii = 4IB). The
total ion energy flux (black solid line) is positive and seen to be close to (Ii + IB)/Itot =
5/9. Since α̃ /= 0, we do see a hint of some large-scale energy dissipation in the neutrals,
given by the slight negative slope of the flux at large wavenumbers.

Turning now to the case where α̃ ≈ 1, figure 5(b) shows that the neutral kinetic
energy flux is practically zero for all wavenumbers, meaning that collisions have almost
completely stopped any nonlinear transfer of kinetic energy among the neutrals. At the
forcing scale and larger, the two species are coupled and behave like MHD, as we have
seen. Since MHD has no inverse cascade of kinetic energy, the neutrals have no inverse
cascade at these scales. At scales smaller than the forcing, the species are not yet coupled,
and since the neutral species does not have a forward cascade of energy, the flux remains
zero. However, there is still constant injection rate of kinetic energy into the neutrals of
magnitude In , and this energy must go somewhere. That energy is either dissipated away
by collisions, or transferred to the ion species. Seeing as, at best, approximately half of
the total energy injection rate is being transferred spectrally by the ions, it seems that in
this case approximately half of the energy injected at the forcing scale is immediately
dissipated by collisions, the rest being transferred away by the ion species. For the case of
uncoupled 2-D MHD turbulence, one would expect this flux of energy by the ion species
and magnetic field to be constant in the inertial range down to the dissipation scales.
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FIGURE 5. Kinetic component of energy flux for the neutral species, ΠUn (orange, solid line),
and ion species, ΠUi (green, dashed line), as well as the magnetic component of energy flux for
the ions, ΠB (blue, dot-dashed line). Total ion energy flux is denoted by the solid, black line, and
grand total energy flux (ΠUn + ΠUi + ΠB) by the thin, solid, red line, seen only in panel (c). The
three panels depict the three limiting cases for α̃: (a) uncoupled, where we see the HD and MHD
predictions for fluxes; (b) moderate coupling, which is highly dissipative; and (c) high coupling,
in which the neutrals are fully coupled to the ions and we recover the prediction from § 2.2 that
the system behaves as a single MHD fluid with F = F i + F n .

However, in figure 5(b) we see a gradual drop-off of energy flux. This non-constant flux
is a sign of strong dissipation of energy in the would-be inertial range due to collisional
heating, which is largest in the runs where α̃ ∼ O(1), as we have seen.

Moving on to figure 5(c), we notice that the ion and neutral species are fully coupled,
even at the small scales, as seen by the fact that ΠUn = ΠUi . Now that the two species
are coupled throughout most of the scales, the collisional heating is very weak and does
not dissipate practically any energy that is being injected at the forcing scale. Figure 5(c)
indicate that all of the energy being injected by the forcing – including the neutral energy
injection – is going to small scales. This is shown by the total energy flux from all fields,
denoted by the thin, red, solid line, which we see is positive and very close to 1. This
is consistent with our α̃ → ∞ limit studied in § 2.2, where we showed that the system
behaves as a single MHD fluid with F = F i + F n , as seen in (2.8a). Sticking to vi and vn ,
what seems to be happening is that the two species exchange energy between each other
very efficiently due to collisions, but, since ions also exchange energy with the magnetic
field, part of the energy being injected into the neutral species ends up as magnetic energy,
which is transferred to smaller scales. Although it is not shown here, we ran a few decaying
turbulence experiments with no forcing to see if this description holds true. Indeed, after
initializing the two species with identical random initial conditions (and KEi = KEn = EB
at t = 0), the runs with very large α̃ showed larger initial magnetic field growth, implying
an indirect transfer of energy from the neutrals.

5. Discussion and conclusions

5.1. Conclusions
In this work we have investigated the 2-D partially ionized magnetohydrodynamic
(PIMHD) system, a two-fluid model used for studying plasmas where some fraction of
the ions have recombined to form neutral molecules that interact with the other ions via
collisions. Although ionization fraction certainly plays a role in the dynamics of such
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plasmas, we focused more on the role that collisions have on the dynamics. In the limit
where collision time scales are long compared to dynamical time scales, we found that the
two species were weakly coupled and behaved like their uncoupled fluid counterparts –
hydrodynamics (HD) for neutral species and magnetohydrodynamics (MHD) for the ions.
In this limit, collisions act like a frictional force for whichever species has larger kinetic
energy at that scale. Hence, collisions took the role of a large-scale dissipation for the
neutral species. Using this observation and an energy balance argument we were able to
predict the amount of collisional heating in these runs. For low ionization fractions, it
is possible that ions may gain some kinetic energy via collisions at these large scales.
At intermediate collision strengths, where dynamic and collision time scales are similar,
we found the dynamics to be quite dissipative. Approximately half of the energy injected
into the system is dissipated immediately at the forcing scale, and another quarter of it is
dissipated by collisions along the forward cascade range. In this case, the neutral species
has little to no nonlinear energy transfers.

For collision time scales much shorter than dynamical time scales we found that the two
species are coupled and act like a single MHD fluid whose density, pressure, viscosity
and external forces are the sum of each from the two species. This was confirmed
numerically, particularly in figure 5(c), which showed all of the energy injected at the
forcing scale being transferred to smaller scales. This species coupling in turn reduces
the collisional heating significantly, which we showed, and also confirmed numerically,
is determined by the square of the difference of accelerations of each species. In our
specific implementation, the nature of the Lorentz force meant that the collisional heating
no longer dominates at the largest scales (as in the low collisional case) but is present
at smaller scales. A scale-by-scale analysis of our runs allowed us to further understand
how the coupling of the two species gradually occurs as the collision time scale decreases.
Although we numerically investigated 2-D PIMHD, our results for the strong collisional
case are expected to hold for the 3-D counterpart since dimensionality did not play a role
in the derivation of the predictions made.

5.2. Connection to Jupiter
This work was motivated by the transition region between the ionized interior and neutral
upper atmosphere of gas giant planets such as Jupiter, where partial ionization effects are
expected to be present. The current treatment of the dynamics in the transition region
have been single-fluid models, either of MHD with large resistivity, or HD with a drag
term to parametrize any magnetic effects (‘MHD drag’). Given our characterization of the
behaviour of such a two-fluid plasma, we will attempt to apply some of what we learned
here to the transition region of gas giant planets. In order to do so we must first estimate
the ratio of eddy turnover time to collision time scale, α̃, for the case of Jupiter’s transition
region, whose densities, temperatures, pressures and typical velocities and length scales
are better constrained than any other gas giant planet.

Following (2.4), we must choose a typical velocity U and length scale L, as well as
total density ρtot, and finally the collision strength α. Typical velocities for the transition
region can range from U = 10−2 m s−1 close to the edge of the ionized interior, at a radius
of roughly 0.9 Jupiter radii, to U = 102 m s−1 at the surface (Kaspi et al. 2018). We take
the typical length scale in this region from Cao & Stevenson (2017), who estimated a
convective length scale of L = 6 × 105 m. The total density is found from simulations
by French et al. (2012), who give values of ρtot = 103 kg m−3 at 0.9 Jupiter radii to
ρtot = 2 × 102 kg m−3 closer to the surface.
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The final piece is the collision strength α, whose value is much harder to constrain,
given the fact that, to date, no plasma experiment has been able to measure collision
cross-sections at such high densities. Therefore, any value used in our estimate will
be questionable, but we feel it would be best to give some estimate rather than none.
Following § 5.2.1 in Meier (2011) and § III.D.2 from Meier & Shumlak (2012), under the
assumptions that ions and neutrals have the same temperature and that both are in thermal
equilibrium, we get the following expression for α:

α = α1

√
T − α2 ln

(
205

√
T
) √

T, (5.1)

where α1 = 1.34 × 1011 m2 kg−1 s−1 K−1/2 and α2 = 8.78 × 109 m2 kg−1 s−1 K−1/2. We
should note that these numbers are taken from cross-section estimates for charge exchange
reactions (e.g. an electron hopping from a neutral molecule to an ionized molecule),
which are expected to be dominant even at the relatively low (sub-10 000 K) temperatures
considered here (E. T. Meier, personal communication), rather than more standard
collisions. However, the functional form of the collision term does not change. To get
an estimate for α at 0.9 Jupiter radii and near the surface, we use the temperature
profile from French et al. (2012), giving approximately 5000 K and 1000 K, respectively.
This in turn results in a range of α between 3.4 × 1012 m2 kg−1 s−1 in the interior and
1.8 × 1012 m2 kg−1 s−1 closer to the surface. Previous studies on shock waves in the
interstellar medium (Smith & Mac Low 1997) and for hot Jupiters (Perna et al. 2010),
have obtained similar values. Owing to the temperature dependence, and the relatively
small size of the transition region in Jupiter, the collision strength does not change much.
In a planet such as Saturn, with a much larger transition region (Cao & Stevenson 2017),
this might not be the case.

Combiningeverything, we are able now to give an estimate for the range of α̃:
closer to 0.9 Jupiter radii we estimate α̃ = 2 × 1023, whereas towards the surface we
estimate α̃ = 2 × 1018. Given the α̃−1 dependence of CH from (2.8c), this would imply
an incredibly small (and presumably negligible) amount of collisional heating in the
transition region of Jupiter, as well as single-species MHD-like dynamics, with two-fluid
effects being negligible. In fact, α is so large that the two species would be coupled
(and therefore behave as an MHD fluid) even for extremely low ionization fractions
– since τeddyνin = LρiαU−1 would be very large. This therefore seems to validate the
single-fluid MHD models used so far in dynamo studies which include the transition
zone (Jones et al. 2011; Gastine et al. 2014; Jones 2014; Dietrich & Jones 2018). We
want to emphasize, however, that, although the single-species MHD description holds
throughout most of the transition region, whether the fluid behaves as an MHD or HD
fluid depends on whether the Lorentz force is significant or not. Since we also expect
ηMHD to depend on temperature, it is quite possible that in the transition region the
single-species description, although technically an MHD fluid, does not feel the Lorentz
force and thus behaves as an HD system. Thus, the transition from MHD to HD could
happen continuously, although not because neutrals make up the majority of the fluid,
but because the Lorentz force becomes weaker and weaker as the magnetic diffusivity
significantly increases as a function of radius, leading to neutral-like behaviour of the
MHD fluid (Tobias, Diamond & Hughes 2007; Seshasayanan, Benavides & Alexakis
2014; Seshasayanan & Alexakis 2016). As this transition happens, we go into the regime
of low-magnetic-Reynolds-number MHD turbulence, which is where the MHD drag
prescription is applied.
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Appendix A. Limiting cases of ionization fraction χ

Note that no longer having both χ ∼ O(1) and (1 − χ) ∼ O(1) now means that the two
species feel collisions to a different degree, since, as we saw in § 2.2, τcoll,i = τcoll/(1 − χ)
and τcoll,n = τcoll/χ . In the fully ionized limit, χ → 1, the collisional time scale in the ion
equation, τcoll,i, becomes very large, yet for neutrals τcoll,n does not change. This results
in the ions not feeling collisions in the low collisional limit, whereas neutrals are still
affected. In the high collisional limit, the collision term is still at least of order one for
both species; however, the highest order dynamics are slightly different. Away from the
dissipation range, a similar expansion in α̃−1 results in v(0)

n = v
(0)

i + (F n − ∇pn)/(ρiρnα)

so that the order-one dynamics is simply the MHD of vi but with a modified pressure
P = pi + pn and force F = F i + F n .

In the low ionization limit, χ → 0, it is now the neutrals that are less affected by
collisions. This limit is a bit more involved because it encompasses the breakdown of
the validity of other approximations in the derivation of the MHD equations, regardless
of the value of α̃. There are two parameters of interest to recall: the electron-to-ion mass
ratio, β ≡ me/mi, and the ratio of ion skin depth, di ≡ √

c2mi/(4πe2ni), to typical length
L, which we call λ. Here me and mi are the masses of the electron and ion, respectively, c is
the speed of light, e is the electric charge of the electron and ni = ρi/mi. In the derivation
of MHD, these two parameters are taken to be much smaller than unity. However, when
deriving PIMHD, ratios of χ , λ and β appear and so, when χ � 1, terms that would
normally be negligible in MHD are no longer small. It can be shown that, if χ ∼ λ ∼
β � 1, then the induction equation (2.1c) must be modified to include the Hall term,
so that the nonlinear term becomes ∇ × (vi × B − di(J × B)/ρi) (Pandey & Wardle
2008). Note that this is now true even at large scales, not just small scales, as is
normally the case. In the low collisional limit, the neutrals do not feel the collisions
whereas the ions do. On the other hand, when α̃ 	 1, we have, to highest order,
v

(0)

i = v(0)
n + (J × B − ∇pi + F i)/(ρiρnα), leading to what is typically called ‘ambipolar

MHD’ in the astrophysics community:

ρn

(
∂

∂t
+ vn · ∇

)
vn = −∇( pn + pi) + J × B + F i + F n, (A 1a)

∂B
∂t

= ∇ ×
(

vn × B − di

ρi
J × B + 1

ρiρnα
(J × B − ∇pi + F i) × B

)
. (A 1b)

Counter to intuition, despite the neutrals making up the majority of the density in the
fluid, the neutrals indirectly interact with the magnetic field via their collisional interaction
with the ions and the dynamics is still that of MHD. It is only when χ � λ ∼ β � 1 that
the behaviour of the fluid reverts to regular HD without interaction with the magnetic field.
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We should note here that we have treated χ and ηMHD from (2.3) independently and have
effectively held the latter fixed while varying χ . In our claim that it is possible to have
MHD behaviour even for χ � 1, we have assumed that the magnetic diffusivity is low
enough so that the Lorentz force is still of order one. In a realistic situation, it is likely that
ionization fraction and idealized magnetic diffusivity ηMHD are both related to temperature
and so, as χ → 0, we would also expect ηMHD to increase significantly; therefore, it is
possible that the Lorentz force is negligible when χ ∼ β ∼ λ� 1, making the dynamics
that of HD (Tobias et al. 2007; Seshasayanan et al. 2014; Seshasayanan & Alexakis 2016).
However, this is a separate effect than that of ionization fraction, and our claims above still
hold in general.

Appendix B. Determining kcoll versus α̃

A typical argument would tell us that, when the eddy turnover time at a scale k−1
coll,

τeddy(kcoll), is equal to the collision time, τcoll = (ρtotα)−1, then that length scale is coupled.
This sort of argument has been used before for estimating decoupling scales for both
MHD waves and nonlinear dynamos in a partially ionized system (Xu et al. 2016; Xu
& Lazarian 2017). This time-scale argument relies on an important assumption: that the
velocity scales in the nonlinear (or wave) term and in the collision term have similar orders
of magnitude independent of α̃, i.e. kcollU2 ∼ ρtotαU, making U cancel out and leaving
one with a ratio of time scales. This assumption is equivalent to stating that |V | ∼ |D|
(defined in § 4.1). However, the results of § 2.2 tell us that |D| = |vi − vn| ∝ α−1, whereas
|V | ∼ O(1). Although this scaling with α̃ is only true for scales that are already highly
coupled, we only expect |D| ∼ |V | far from the coupling scale, thus making the scaling
non-trivial. The difficulty arises in the fact that, by definition, at the coupling scale, we
are not in any extreme limit of α̃ and so we cannot make a general statement about
how |D| scales with α̃. Furthermore, although it is not shown, we note that the spectra
for |V | and |D| do not have the same power-law exponents, implying different τeddy

tendencies with k, further complicating any length-scale analysis for finding kcoll. We
therefore revert to simply observing the decoupling wavenumber kcoll versus α̃ in our
simulations. We define kcoll such that |D|(kcoll)/|V |(kcoll) = δ, where we have the freedom
to choose δ as long as it is small. This is equivalent to saying that the fluid is coupled when
|vi − vn| � |χvi + (1 − χ)vn|, with the freedom to define just how much smaller.

In figure 6 we see kcoll versus α̃ for two cases: (a) kcoll < kf and (b) kcoll > kf . For each
case, a δ was chosen so that the maximum number of runs could have kcoll within the
inertial range. Only these runs were kept in the figure. The former case is taken from
various runs in the K32 set, which is forced at small scales to be able to better resolve
the inertial range at scales larger than the forcing. The latter is taken from various runs
in the K4 set, which is forced at larger scales to be able to better resolve the inertial
range at scales smaller than the forcing. Notice that different values of δ are used for
each case, but that δ < 1 for both cases. Owing to the limited scale separation possible
in numerical experiments, this restricted the possible values of δ and made it difficult to
test the robustness of the calculations of kcoll as one varies δ. The dashed lines represent
best-fit power laws, whose exponents are seen in the legends of each panel. Although the
power laws are very close to integer values, this may be a coincidence and we do not
claim any physical significance, although we also have no reason to reject any. We see that
the scaling of kcoll with α̃ depends strongly on which inertial range one is looking at, a
reflection of the difference of behaviour in the two inertial ranges. Our results tell us that
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FIGURE 6. Decoupling wavenumber kcoll versus collision strength α̃ for (a) kcoll < kf and
(b) kcoll > kf . We define kcoll such that |D|(kcoll)/|V |(kcoll) = δ. The dashed lines represent the
best-fit power law, whose exponent is shown in the legend.

the scales larger than the forcing couple more slowly than those at scales smaller than the
forcing.
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