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We have analysed the structure of the irrotational flow near the minimum radius
of an axisymmetric bubble at the final instants before pinch-off. The neglect of
gas inertia leads to the geometry of the liquid–gas interface near the point of
minimum radius being slender and symmetric with respect to the plane z = 0. The
results reproduce our previous finding that the asymptotic time evolution for the
minimum radius, Ro(t), is τ ∝ R2

o

√
− lnR2

o , τ being the time to breakup, and
that the interface is locally described, for times sufficiently close to pinch-off, by
f (z, t)/Ro(t) = 1 − (6 ln Ro)

−1(z/Ro)
2. These asymptotic solutions correspond to the

attractor of a system of ordinary differential equations governing the flow during the
final stages before pinch-off. However, we find that, depending on initial conditions,
the solution converges to the attractor so slowly (with a logarithmic behaviour) that
the universal laws given above may hold only for times so close to the singularity
that they might not be experimentally observed.

1. Introduction
Unlike the capillary-driven breakup of drops or liquid threads in a gas environment

and the viscous breakup of a bubble, which have been precisely described and ex-
perimentally verified (Eggers 1993; Chen & Steen 1997; Day, Hinch & Lister 1998;
Chen, Notz & Basaran 2002; Doshi et al. 2003; Suryo, Doshi & Basaran 2004; Burton,
Waldrep & Taborek 2005), the description and measurement of the final stages
before pinch-off of axisymmetric bubbles at high Reynolds numbers is still an open
problem that has recently aroused great interest. A main difference between bubble
and drop pinch-off at high Reynolds numbers is that the final instants of the former
are driven either by liquid inertia or by a balance between gas and liquid inertia and
not by capillary forces as is the case for drop breakup in air (Chen & Steen 1997; Day
et al. 1998; Leppinen & Lister 2003). Indeed, inviscid bubble breakup is a process
which can be driven solely by liquid inertia if the gas pressure drop through the bubble
minimum radius is negligible. In this case, bubble breakup is slender and symmetric
(Burton et al. 2005; Gordillo et al. 2005; Rodrı́guez-Rodrı́guez, Gordillo & Martı́nez-
Bazán 2006; Bergmann et al. 2006; Leppinen, Lister & Eggers 2005) whereas, if
gas inertia becomes of the order of the liquid inertia, breakup is non-slender and
asymmetric (Gordillo et al. 2005).

The first analytical description of the time evolution of the bubble minimum
radius was provided by Longuet-Higgins, Kerman & Lunde (1991) using a continuity
argument, and by Oguz & Prosperetti (1993), who made use of the cylindrical
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Figure 1. Time evolution of the bubble interface near the minimum radius, showing that
bubble breakup is slender. The simulation has been performed with the boundary integral
numerical code described in Rodrı́guez-Rodrı́guez et al. (2006).

(or two-dimensional) Rayleigh equation. In both contributions the liquid convective
acceleration was neglected compared to the local one and the authors concluded that
the bubble minimum radius approaches the singularity as Ro ∝ τ 1/2, with Ro and τ

the dimensionless minimum radius and time to singularity respectively. However, as
shown in Gordillo et al. (2005), the effect of liquid convective terms is to slow down the
breakup process or, equivalently, that the exponent in the power law for the minimum
radius to be larger than 1/2. More precisely, the analysis retaining convective terms
yields a time evolution of the form τ ∝ R2

o

√
−logR2

o , which introduces a logarithmic
correction to that found by the previous authors. An exponent in the power law
larger than 1/2 was also experimentally and numerically reported by Bergmann et al.
(2006) and numerically by Leppinen et al. (2005).

We have extended the analysis for the case of negligible gas inertia presented in
Gordillo et al. (2005) in order to describe the time evolution of both the bubble mini-
mum radius and the radius of curvature of the interface. Figure 1 shows the time
evolution of the bubble interface near the minimum radius and close to the time the
bubble pinches off under conditions in which gas inertia is negligible. Consistently
with what was stated above, breakup is slender and symmetric. We have analysed
the structure of the flow near the minimum radius assuming that: (i) breakup is
axisymmetric, (ii) the flow is irrotational, (iii) liquid inertia dominates over surface
tension and (iv) gas inertia can be neglected. Regarding liquid viscosity, our analysis
will be valid if the initial Reynolds number satisfies Rec = ρlucac/µ � 1, µ and
ρl being, respectively, the liquid viscosity and liquid density and ac and uc the
characteristic initial values of the radius of the bubble and liquid velocity, respectively.
If the local Reynolds number is large, surface tension will be irrelevant describing
the final instants before pinch-off, independently of the characteristic initial value of
the Weber number, namely, Wec = ρl u

2
c ac/σ , with σ the surface tension. In effect,

note that, since τ = tb − t ∝ R2
o

√
−logR2

o , with tb the time to breakup, radial liquid

velocity is of the order of ucṘo ∝ uc/(Ro

√
−logR2

o), with Ṙo = dRo/dτ . Consequently,

the ratio of viscous stress ∼ µucṘo/(acRo) to liquid inertia ∼ ρlu
2
c(Ṙo)

2, yields
µ/(ρlucacṘoRo) = Re−1

c

√
− ln(Ro) and the ratio of pressure drop across the interface

∼ σ/(acRo) to liquid inertia yields We−1
c [−Ro ln(Ro)] → 0 for Ro → 0. This latter

estimate indicates that surface tension effects can be safely neglected in the analysis
provided that the local Reynolds number [Re−1

c

√
− ln(Ro)] is large. This condition is

always satisfied if Rec � 1 as Ro < 10−30 in order for
√

− ln(Ro) ∼ O(10). Note that
Rec � 1 is commonly satisfied in the usual case of bubble breakup in water. Indeed,
the minimum value of the Reynolds number of the flow to break up a gas bubble in
water is Rec > 250 for the typical values of water viscosity µ = 10−3 kg m−1 s−1, air-
water surface tension σ = 7 × 10−2 Nm−1, ac = 10−3 m, and the minimum characteristic
liquid velocity to breakup the bubble, which can be estimated to be uc � [σ/ρlac]

1/2
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(this estimate can be deduced from the fact that Wec � O(1) is a necessary condition
to breakup the bubble, as pointed out in Rodrı́guez-Rodrı́guez et al. 2006). As
shown in Revuelta, Rodriguez-Rodriguez & Martinez-Bazan (2006), Rec = 250 is
sufficiently large for viscous effects to be neglected in a first approach and therefore,
many common bubble breakup events take place at high Reynolds numbers (for
experimental evidence see, for instance, Rodrı́guez-Rodrı́guez et al. 2006; Bergmann
et al. 2006). Furthermore, our analysis will be valid if during the breakup process, gas
inertia is negligible compared with liquid inertia, namely, ρg[Qg/(acRo)

2]2 � ρlu
2
c(Ṙo)

2,
with ρg and Qg the gas density and gas flow rate trough the minimum radius.
Otherwise bubble breakup will be non-slender and asymmetric (see Gordillo et al.
2005). Finally, note that our results will be valid to describe the final 1%–0.1 % of
the total time evolution of the bubble interface; this means that, for the typical values
provided above, our analysis will cover the final 100 µs–10 µs of the breakup process.

2. Analysis of the irrotational flow near the minimum radius
In this section we analyse the final stages of the breakup process of an axisymmetric

gas bubble enclosed by an infinite volume of an incompressible and inviscid liquid.
For simplicity, the density of the gas within the bubble will be assumed negligible
compared to that of the liquid so that the motion of the latter will not be affected by
the former. The irrotational, axisymmetric flow of the liquid surrounding the bubble
is governed by the Laplace and Bernoulli equations for the velocity potential, φ, and
the pressure, p, respectively,

∇2φ = (1/r)(rφr )r + φzz = 0, (2.1)

∂φ

∂t
+

|∇φ|2
2

+ p = P, (2.2)

where subscripts r and z denote partial derivatives with respect to the radial and axial
coordinates respectively. In (2.1) and (2.2) all quantities have been made dimensionless
using the liquid density, ρl , and the characteristic initial radius of the bubble and
liquid velocity, ac and uc respectively; the term P in (2.2) depends only on time
and can be set equal to zero (by redefining φ) without affecting the velocity field.
Equations (2.1) and (2.2) must be solved together with the equation governing the
motion of the free surface (gas–liquid interface), r = f (z, t),

∂F

∂t
+ v · ∇F = 0, (2.3)

where F = r − f (z, t). As justified above, the capillary pressure jump across the
interface can be neglected in the analysis and, consequently, equation (2.2) simplifies
to

∂φ

∂t
+

|∇φ|2
2

= 0. (2.4)

In order to solve (2.1) and (2.3) first note that, since the bubble is symmetric respect
to the plane z = 0, in a sufficiently small region near the minimum radius, Ro(t), both
the free surface and the local potential can be expanded in even powers of z as

f (z, t) = Ro(t) + r1(t)z
2 + O(z4), (2.5)

φ(r, z, t) = Φ(r, t) + (rϕr )rrz
2/2 + O(z4), (2.6)

where Φ(r, t), ϕ(r, t), Ro(t) and r1(t) are unknown functions, the determination of
which yields the solution of the problem; note that r1 represents the curvature (inverse

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

13
88

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006001388


306 J. M. Gordillo and M. Pérez-Saborid

of the radius of curvature) at the point of minimum radius. If (2.6) is introduced
into (2.1) and terms of order z2 are neglected one obtains a differential equation in r

which can be readily integrated to give

Φ = A(t) ln r − rϕr + ϕ, (2.7)

where A(t) is an unknown function of time. On the other hand, substitution of (2.6)
and (2.5) in (2.3) yields

−
(

dRo

dt
+

dr1

dt
z2

)
+ [Φr + (rϕr )rrrz

2/2 − 2r1(rϕr )rrz
2]r=Ro+r1z2 = 0. (2.8)

Note that it is always possible to find a region sufficiently close to the point
of minimum radius (r = Ro(t), z = 0) where the axial distances satisfy the relation
r1z

2 � Ro. Therefore, we can linearize the second term in (2.8) around r = Ro and
equate terms in powers of z0 and z2 in the resulting expression, which yields the
equations

dRo

dt
=

A

Ro

− Roϕrr(Ro), (2.9)

dr1

dt
=

[
− A

R2
o

− (rϕrr)r (Ro)

]
r1 +

1

2
(rϕr )rrr(Ro) − 2r1(rϕr )rr(Ro). (2.10)

Equations (2.9) and (2.10) relate the unknowns A and ϕ defining the potential with
those defining the free surface, namely, Ro and r1. Another two relations between the
unknowns are obtained from Bernoulli’s equation evaluated at the free surface (2.5).
In effect, substitution of (2.6) into (2.4) yields the equation[

ln r
dA

dt
+

∂

∂t
(ϕ − rϕr ) +

z2

2

∂

∂t
(rϕr )rr +

1

2
Φ2

r

+
z2

2
[Φr (rϕr )rrr + [(rϕr )rr]

2]

]
r=Ro+r1z2

= 0. (2.11)

which, after linearizing around Ro and equating terms in powers of z0 and z2, gives

lnRo

dA

dt
+

[
∂ϕ

∂t
− Ro

∂ϕr

∂t
+

1

2

(
A

Ro

)2

+
1

2
[Roϕrr]

2 − Aϕrr

]
r=Ro

= 0, (2.12)

r1

Ro

dA

dt
+

[
r1

∂ϕr

∂t
− r1

∂

∂t
[(rϕr )r ] +

1

2

∂

∂t
[(rϕr )rr]

+ r1[ΦrΦrr] +
1

2

{
[Φr (rϕr )rrr] + [rϕr ]

2
rr

}]
r=Ro

= 0. (2.13)

Note that (2.9)–(2.10) and (2.12)–(2.13) constitute a system of four equations for the
unknowns Ro(t), r1(t), A(t) and ϕ together with its temporal and radial derivatives.
Therefore, to close the problem we need to know the functional dependence of ϕ on r

and t . This will be achieved by matching the solution (2.6)–(2.7) of Laplace’s equation
valid in the region (r ∼ Ro, r1z

2
end � Ro), which will be called the inner solution, with

an outer solution valid in a region such that r � Ro and r � zend, where zend is a value
of the axial coordinate such that points with z > zend have a negligible influence on
the potential at the point (r, z). The conditions defining the outer region can both
be satisfied due to the slenderness assumption; in that region the potential at the
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plane z = 0 is approximately that corresponding to the superposition of a continuous
distribution of sources and dipoles along the bubble axis, namely

φ(r, z = 0) = 2

∫ zend

0

Q0(t) + Q2z
′2

√
r2 + z′2

dz′ + 2

∫ zend

0

D1(t)z
′2 + D3z

′4

(r2 + z′2)3/2
dz′. (2.14)

The integrations in (2.14) can be carried out analytically and, in the limit r/zend � 1,
they provide at leading order

φ(r, z = 0) = C + A(t) ln r + B(t)r2 ln r + O(r2) (2.15)

where C is a constant. Thus, the matching of expressions (2.15) and (2.7) yields ϕ as

ϕ − rϕr = B(t)r2 ln r → ϕ = B(t)r2(1 − ln r), (2.16)

and the functional form of the potential in the inner region now becomes completely
determined by (2.6) as

φ = A(t) ln r + Br2 ln r − 2z2B(1 + ln r). (2.17)

Inserting (2.16)–(2.17) into (2.9)–(2.10) we obtain, after some algebra,

A = p + q, B = − q

R2
o(1 + 2 lnRo)

, (2.18)

with

p = Ro

dRo

dt
, q = −R2

o

2 lnRo + 1

−2 + 12(1 + lnRo)Ror1

d(Ror1)

dt
. (2.19)

The equations for p and q can now be readily obtained by using (2.16)–(2.17) and
(2.18)–(2.19) in (2.12)–(2.13) which yields, in terms of s = − ln Ro and the dependent
variables ln p and v = q/p:

s
d lnp

ds

(
1 + s

Ror1

1 − s

)
+

(
1

2
+ s2 Ror1

1 − s

)
+

2s

1 − s

(
s − 2(1 − s)

1 − 2s

)
v − 8v2s2(1 − s)

(1 − 2s)2
= 0,

(2.20)

s

(
1 + s

Ror1

1 − s

)
dv

ds
=

(
v +

Ror1

2

1 − 2s

1 − s

)(
1

2
+ s2 Ror1

1 − s
+

2s

1 − s

[
s − 2(1 − s)

1 − 2s

]
v

− 8v2s2(1 − s)

(1 − 2s)2

)
+ s

(
1 + s

Ror1

1 − s

)(
− Ror1

2

1 − 2s

1 − s
− v

1 − s

×
(

2(1 − s) +
1

1 − 2s

)
+

4v2(1 − s)

1 − 2s

)
. (2.21)

Note that equations (2.20)–(2.21), together with the pair of equations (2.19) defining
p and q , which can be written as

d(Ror1)

ds
=

v[−2 + 12Ror1(1 − s)]

1 − 2s
, (2.22)

dt

ds
= −exp(−2s)

p
, (2.23)

form a system of four equations for p, v, Ror1 and t as functions of s = − lnRo;
also note that equations (2.21)–(2.22) are decoupled from (2.20) and (2.23). System
(2.20)–(2.23) can be readily integrated numerically once appropriate initial conditions
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–0.05 0.05 0.10
–0.10
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Figure 2. Different trajectories in the v−Ror1 plane resulting from the integration of equations
(2.24)–(2.25) for s0 = 6. Note that all trajectories tend to the line v = −(1/2) Ror1 for sufficiently
large values of s. If initially Ror1 > 0 solutions tend to Ror1 = 0, thus becoming more slender.
However, if initially Ror1 < 0 bubble breakup is no longer slender. This is a general trend,
independent of the initial value of s.

are provided. However, since we are interested in the description of the final instants
before pinch-off (Ro → 0) it is worthwhile to look first at the behaviour of the
solutions for large values of s = − lnRo. For that purpose, observe that for s → ∞
equations (2.21)–(2.22) have a critical point at Ror1 = 0, v = 0 and, therefore, they can
be linearized around that point, simplifying to

dRor1

ds
=

v(1 + 6sRor1)

s
, (2.24)

dv

ds
= −2v − Ror1. (2.25)

From expansions in inverse powers of s for Ror1 and v, one obtains from (2.24)–
(2.25) the asymptotic behaviors for large s,

Ror1 =
1

6s
+ O(1/s2), v = − 1

12s
+ O(1/s2), (2.26)

which show that the critical point is an attractor. The results (2.26) can be checked
with those in figure 2 which represents the trajectories in the (Ror1,v)-plane resulting
from the numerical integration of the reduced system (2.24)–(2.25) for several initial
conditions. We have also performed numerical calculations (not shown here) for the
complete system (2.21)–(2.22) and checked that the critical point is indeed a global
attractor if Ror1 > 0. It can be seen that, independently of the initial values of s,
Ror1 > 0 and v, the system approaches the asymptotic values (2.26). However, the
speed of convergence strongly depends on the initial values. In fact, as depicted in
figure 3(a), for some initial conditions the trajectories approach the attractor for
values of s so large that the corresponding Ro = exp (−s) are so small that these
could never be observed in practice; only if the initial conditions are appropriate
do the solutions converge rapidly to their asymptotic values and may be observable.
Note also from figure 2 the important fact that if the initial value of the curvature is
negative (Ro r1 < 0), the absolute value of Ror1 < 0 grows larger with s, and eventually
breakup will not be slender. Therefore, slender breakup can only be achieved for
positive values of Ror1, while perturbations of the interface for which Ro is a local
maximum will amplify and the breakup will not remain slender. On the other hand,
linearization of (2.20) near the attractor yields

d lnp

ds
= −1/2 − sRor1 − 2sv

s
(2.27)
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(a) Ror1 = 0.1, v = 0.05
Ror1 = 0.1, v = –0.05

Ror1 = 0.01, v = –0.05

Ror1 = 0.05, v = –0.05

Ror1 = 0.01, v = 0.05
Ror1 = 0.05, v = 0.05

Ror1 = 0.1, v = 0.05

Ror1 = 0.1, v = –0.05

Ror1 = 0.05, v = 0.05

Ror1 = 0.05, v = –0.05
Ror1 = 0.01, v = 0.05

Ror1 = 0.01, v = –0.05

4

–2.3

–2.4

ps
1/

2

–2.5

–2.6

–2.7
5 10 15 20

s
25 30 35 40

3

2

6s
 R

o 
r 1

1

0
1 10 100

s
1000 10000

(b)

Figure 3. Dependence of (a) Ror1 and (b) p on s for several initial conditions: s0 = 6, p = −1,
and the initial values for v and Ror1 are indicated in the figure. Note that, independently of
the initial conditions, both Ror1 and p tend to their asymptotic values, but with a different
rate of convergence. More precisely, Ror1 tends to its asymptotic value faster the larger its
initial value, while the opposite trend is observed for p. This result is consistent with the fact
that the smaller the values of Ror1, the more closely the free surface approaches a cylinder.

and, since sRor1 + 2sv ∼ O(1/s) � 1/2 (see (2.26)), equation (2.27) can be readily
integrated provided at leading order

p
√

s = K1 + O(1/s). (2.28)

As depicted in figure 3(b), p
√

s tends to a constant for sufficiently large values of
s, confirming the result in (2.28). By using equation (2.19) defining p,

dR2
o

dt
=

2
√

2K1√
− lnR2

o

→
∫ 0

R2
o

√
− lnR2

odR2
o = 2

√
2K1(tb − t). (2.29)

On integration by parts one obtains

−R2
o

√
− lnR2

o +
1

2

∫ 0

R2
o

dR2
o√

− lnR2
o

= 2
√

2K1τ → τ = K2R
2
o

√
− lnR2

o + O
(
1/ lnR2

o

)
,

(2.30)

which is the result found in Gordillo et al. (2005). Also observe in figure 3(b) that
the asymptotic limit, τ ∝ R2

o

√
− log R2

o , is reached at a length scale which is smaller
the larger is the initial curvature of the interface (r1). Consequently, the asymptotic
limit will be easily measurable in those cases in which the initial shape of the
bubble surface is sufficiently slender or, equivalently, if r1 is initially small. This
explains why the asymptotic solution is easily reached for the limit of large Froude
numbers in Bergmann et al. (2006). When the initial curvature of the interface is
large, the asymptotic limit can only be reached for such small length scales that it
would be difficult to measure experimentally (see the case Ror1 = 0.1 in figure 3b).
In these situations, different time evolutions with exponents larger than 1/2 will be
observed depending on the initial conditions and, consequently, the discrepancies
of some experiments with respect to the analytical solution may be explained as
a consequence of the slow convergence to the asymptotic limit (2.30). This could
be interpreted as a lost of universality in bubble pinch-off (Bergmann et al. 2006).
However, the universal solution (2.30), can always be numerically calculated under
the initial assumptions for which the analysis is valid provided that the computation
is carried out for sufficiently small values of Ro. Moreover, on introducing (2.26) into
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–0.1

–0.2

–0.3
ps1/2

r
Ro

–0.4
0 1 2 3 4

s
5 6 7

–0.5 –0.3 –0.1 0.1 0.3 0.5
z*

r
Ro

1

1
–1.0

Wec = 48

Wec = 24

Wec = 24

Wec = 48

Ro = 0.0036

Ro = 0.004

Ro = 0.015

Ro = 0.015

Ro = 0.008

Ro = 0.008

–0.5 0

(c)

(b)

(a)

z*
0.5 1.0

2

Figure 4. Boundary integral numerical simulations with Wec = 24 and 48, ρg/ρ = 1.2 × 10−4

and 513 nodes. Note that, consistently with the asymptotic results, p
√

s tend to a constant in
(a). The local bubble shape in (b) and (c) approach the analytical solution (2.31), represented
with a thick continuous line. z∗ = z/(Ro

√
−6 lnRo).

(2.5), one obtains the shape of the interface near the minimum for sufficiently large
values of s, namely

f (z, t) = Ro

[
1 − 1

6 lnRo

(
z

Ro

)2]
. (2.31)

In figure 4 we show numerical simulations obtained with the boundary integral code
described in Rodrı́guez-Rodrı́guez et al. (2006). The bubble centre is initially placed
at r = 0, z = 0 within an axisymmetric straining flow whose potential at infinity is
given by φ∞ = −(1/8)r2 + (1/4)z2; the density ratio between the inner to outer fluids
is 1.2 × 10−4, and Wec = 24 or 48. For more details on the numerical integration,
the interested reader is referred to Rodrı́guez-Rodrı́guez et al. (2006). Consistently
with the previous analysis, it is shown in figure 4(a) that d(ps1/2)/ds decreases
monotonically with s. Moreover, d(ps1/2)/ds < 2 × 10−2 at s = 6; consequently, p

√
s

tends to a constant. Figure 4(b, c), in which z∗ = z/(Ro

√
−6 lnRo), also shows that the

bubble free surface approaches its universal shape (2.31) for sufficiently large values
of s.

3. Conclusions
We have found an analytical asymptotic solution for the final stages before pinch-off

of slender axisymmetric bubbles. Our results reproduce the asymptotic time evolution
for the minimum radius, Ro(t), found in Gordillo et al. (2005) (τ ∝ R2

o

√
− log R2

o) and
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also show that the interface is locally described, for times sufficiently close to pinch-
off, by f (z, t)/Ro(t) = 1 − (6 lnRo)

−1(z/Ro)
2, which is in good agreement with existing

potential flow numerical simulations of the bubble breakup process. However, we also
find that in general these universal, asymptotic solutions are reached extremely slowly,
for times so close to pinch-off that they may be difficult to observe, either numerically
or experimentally. Most importantly, bubble pinch-off cannot be considered universal
from an experimental point of view. Indeed, the time evolution of the bubble interface
strongly depends on the initial value of the Reynolds number: if Rec is sufficiently
small, the time evolution of the minimum radius near the singularity will be linear,
as described in Doshi et al. (2003) and Burton et al. (2005). At high values of Rec,
the dynamics near the singularity of axisymmetric bubbles depends on whether gas
inertia becomes of the order of the liquid inertia at a measurable length scale or not
(Gordillo et al. 2005). In addition, any asymmetry in the boundary conditions or in
the flow can lead to bubble breakup being non-axisymmetric (Neim et al. 2005). But,
even under the restrictions imposed by assuming large values of Rec, axisymmetry
and negligible gas inertia, the time evolution of the bubble interface close to pinch-off
strongly depends on initial conditions. If one starts the numerical integration with
an interface of large positive curvature (r1 > 0), the asymptotic analytical solutions
(2.30)–(2.31) are numerically reached only for extremely small values of the minimum
radius, Ro. Therefore, these solutions might not be experimentally measured due to
a number of reasons such as: experimental limitations, the unavoidable effect of gas
inertia, viscosity, the growth of axisymmetric perturbations with a negative radius of
curvature, the growth of asymmetric perturbations, or the failure of the continuum
approach.
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