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The 3-uniform tight cycle C3
s has vertex set Zs and edge set {{i, i + 1, i + 2} : i ∈ Zs}. We

prove that for every s �≡ 0 (mod 3) with s � 16 or s ∈ {8, 11, 14} there is a cs > 0 such that

the 3-uniform hypergraph Ramsey number r(C3
s , K

3
n ) satisfies

r(C3
s , K

3
n ) < 2csn log n.

This answers in a strong form a question of the author and Rödl, who asked for an upper

bound of the form 2n
1+εs

for each fixed s � 4, where εs → 0 as s → ∞ and n is sufficiently

large. The result is nearly tight as the lower bound is known to be exponential in n.
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1. Introduction

A triple system or 3-graph H with vertex set V (H) is a collection of 3-element subsets of

V (H). Write K3
n for the complete 3-graph with vertex set of size n. Given 3-graphs F,G,

the Ramsey number r(F,G) is the minimum n such that every red/blue colouring of K3
n

results in a monochromatic red copy of F or a monochromatic blue copy of G. In this

paper we consider the 3-graph Ramsey number of cycles versus complete 3-graphs.

For fixed s � 3 the graph Ramsey number r(Cs,Kn) has been extensively studied. The

case s = 3 is one of the oldest questions in Ramsey theory and it is known that

r(C3, Kn) = Θ(n2/ log n)

(see [1, 9] and [3, 8] for recent improvements). The next case r(C4, Kn) seems substantially

more difficult. An old open problem of Erdős [6] asks whether there is a positive ε for

which r(C4, Kn) = O(n2−ε). The current best upper bound r(C4, Kn) = O(n2/ log2 n) is an

unpublished result of Szemerédi which was re-proved in [4], and the current best lower
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bound is Ω(n3/2/ log n) from [2]. For longer cycles, the best known bounds can be found

in [2, 13], and the order of magnitude of r(Cs,Kn) is not known for any fixed s � 4.

There are several natural ways to define a cycle in hypergraphs. Here we consider tight

cycles. For s > 3, the tight cycle C3
s is the 3-graph with vertex set Zs (integers modulo s)

and edge set

{{i, i + 1, i + 2} : i ∈ Zs}.

We can view the vertex set of C3
s as s points on a circle and the edge set as the s

subintervals each containing three consecutive vertices.

The author and Rödl [11] investigated the hypergraph Ramsey number r(C3
s , K

3
n ) for

fixed s � 5 and large n. When s ≡ 0 (mod 3) the tight cycle C3
s is 3-partite, and in this case

it is trivial to observe that r(C3
s , K

3
n ) grows like a polynomial in n. Determining the growth

rate of this polynomial appears to be a very difficult problem, and the order of magnitude

is not known for any s > 3. When s �≡ 0 (mod 3) the Ramsey number is exponential in n

as shown in [11].

Theorem 1.1 ([11]). Fix s � 5 and s �≡ 0 (mod 3). There are positive constants c1 and c2

such that

2c1n < r(C3
s , K

3
n ) < 2c2n

2 log n.

Note that when s = 4, the cycle C3
4 is K3

4 ; in this case the lower bound was proved

much earlier by Erdős and Hajnal [7], and in fact has been improved to 2c1n log n more

recently by Conlon, Fox and Sudakov [5].

As s gets large, the tight cycle C3
s becomes sparser, so one might expect that r(C3

s , K
3
n )

decreases as a function of n (for fixed s). This was asked by Rödl and the author in [11].

Problem 1.2 ([11]). Show that for each fixed s � 4 there exists εs such that εs → 0 as

s → ∞ and

r(C3
s , K

3
n ) < 2n

1+εs

for all sufficiently large n.

In this short note we give an affirmative answer to this problem by proving the following

stronger upper bound.

Theorem 1.3. Fix a positive integer s �≡ 0 (mod 3) such that s � 16 or s ∈ {8, 11, 14}. There

is a positive constant cs such that

r(C3
s , K

3
n ) < 2csn log n.

Proving a similar result for small values of s remains an open problem, in particular,

for the cases s ∈ {4, 5, 7, 10, 13}.
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2. Proof

The proof of Theorem 1.3 has three components. The first is an observation from [11]

that the supersaturation phenomenon from extremal hypergraph theory can be applied to

hypergraph Ramsey problems. The crucial new observation here is that we can apply this

idea to families of hypergraphs rather than just individual ones. The second component is a

strengthening of the original proof due to Erdős and Hajnal [7] that r(K3
4 \ e,K3

n ) < 2cn log n

for some absolute c > 0, where K3
4 \ e is the triple system with four vertices and three

edges (another proof of this upper bound has been given in [5], though that proof is not

suitable for our purposes). Finally, the third component is an explicit homomorphism of

C3
8 into a particular 3-graph H6 on six vertices.

In order to apply the program above to solve Problem 1.2 (and prove Theorem 1.3), we

need to find an F for which r(F,K3
n ) = 2n

1+o(1)
on the one hand, and C3

s can be embedded

in a blowup of F on the other hand. We remark that there are no (non 3-partite) 3-graphs

F for which the order of magnitude of log r(F,K3
n ) is known, and the only (non 3-partite)

F for which the bound r(F,K3
n ) = 2n

1+o(1)
is known is F = K3

4 \ e. But tight cycles do not

embed into a blowup of K3
4 \ e. We overcome this problem by finding a (new) family F of

3-graphs for which we can prove r(F , K3
n ) = 2n

1+o(1)
and yet embed tight cycles in blowups

of each member of F .

2.1. Supersaturation

Given a hypergraph H and vertex v ∈ V (H), we say that w ∈ V (H) is a clone of v if

(1) no edge contains both v and w, and

(2) for any set X ⊂ V (H) with v, w �∈ X, X ∪ {v} ∈ H if and only if X ∪ {w} ∈ H .

Given a triple system F and a vertex v in F , let F(v) be the triple system obtained from

F by adding a new vertex w that is a clone of v. We will use the following result of the

author and Rödl.

Theorem 2.1 ([11]). Let F be a triple system with f vertices and v ∈ V (F). Then

r(F(v), K3
n ) < (r(F,K3

n ))
f + f.

A blowup of F is a hypergraph obtained by successively applying the cloning operation.

In particular, if each vertex is cloned p − 1 times, then denote the obtained blowup as

F(p). By applying Theorem 2.1 repeatedly, we obtain the following easy corollary.

Corollary 2.2 ([11]). Fix a k-graph F and an integer p � 2. There exists c = c(F, p) such

that

r(F(p), K3
n ) < (r(F,K3

n ))
c.

Given a finite family F of 3-graphs, define r(F , K3
n ) to be the minimum N such that

every red/blue colouring of K3
N results in a red copy of some member of F or a blue copy

of K3
n . Also, for a positive integer p, define F(p) = {F(p) : F ∈ F}. By using the pigeonhole
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principle, a trivial modification of the proof of Corollary 2.2 yields the following extension

to finite families.

Corollary 2.3. Fix a finite family F of k-graphs and an integer p � 2. There exists c =

c(F , p) such that

r(F(p), K3
n ) < (r(F , K3

n ))
c.

2.2. The triple systems H5 and H6

Let H5 be the 3-graph with vertex set {a, b, u, v, w} and edge set {abu, abv, abw, auv, buw}
and H6 the 3-graph with vertex set {a, b, u, v, w, x} and edge set {abu, abv, abw, abx, auv,
bwx}. We will need the following result of Spencer [12]. Suppose H is an N-vertex triple

system with average degree at most D. Then H has an independent set of size at least

(2/3)N/D1/2.

Theorem 2.4. There is an absolute positive constant c such that

r({K3
4 , H5, H6}, K3

n ) < 2cn log n.

Proof. Suppose that H is an N-vertex triple system with no independent set of size n. We

will show that H contains a copy of some member of {K3
4 , H5, H6} as long as N � 4n(n!)2.

By interpreting the edges of H as the red edges in a red/blue colouring of K3
N , this proves

the theorem.

We proceed by induction on n. The result is clearly true for n = 1. Suppose it holds for

n − 1 and let us show it for n. If every pair of vertices in H lies in at most d = 4n−1(n − 1)!2

edges, then the number of edges of H is at most
(
N
2

)
d/3 and the average degree of H is

at most

D =

(
N
2

)
d

N
=

d(N − 1)

2
.

Therefore, by [12], H has an independent set of size at least

2

3

N

D1/2
=

2

3

N

(d(N − 1)/2)1/2
>

2

3

N1/2

d1/2
� 2

3

2nn!

2n−1(n − 1)!
> n,

a contradiction.

We may therefore assume that there is pair of vertices a, b in H that lie in at least d + 1

edges. Consider the set N(a, b) = {x : abx ∈ H}. Since |N(a, b)| > d, by induction, N(a, b)

contains a copy of some member of {K3
4 , H5, H6} or an independent set S of size at least

n − 1. We may assume the latter, otherwise we are done. Now we may use a or b to

enlarge the independent set S by one. If we succeed, then we obtain an independent set

of size n, which is a contradiction, so we may assume that there is an edge of the form

auv and an edge of the form bwx where u, v, w, x ∈ S . Let t = |{u, v} ∩ {w, x}|. If t = 2,

then a, b, u, v forms a copy of K3
4 , if t = 3, then we get a copy of H5 and if t = 4, then

a, b, u, v, w, x forms a copy of H6.
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Using Theorem 2.4, Corollary 2.3, and the fact that H6 is a subhypergraph of K3
4 (2)

and a subhypergraph of H5(2), we obtain the following.

Corollary 2.5. There is an absolute positive constant c such that

r(H6, K
3
n ) < 2cn log n.

2.3. Embedding cycles

Proof Proof of Theorem 1.3. We will show that for all s � 5,

(1) C3
8 ⊂ H6(2),

(2) C3
s+3 ⊂ C3

s (2), and

(3) C3
2s ⊂ C3

s (2).

We will apply (1)–(3) together with Corollaries 2.2 and 2.5. Using (1), we obtain

r(C3
8 , K

3
n ) � r(H6(2), K3

n )) < (r(H6, K
3
n ))

O(1) < 2O(n log n).

Using (2) repeatedly, we obtain for all s ≡ 2 (mod 3) and s � 11 that

r(Cs,K
3
n ) � r(C8(2

(s−8)/3), K3
n ) < (r(C8, K

3
n ))

O(1) < 2O(n log n).

Using (3) for s = 16 ≡ 1 (mod 3), we obtain

r(C16, K
3
n ) � r(C8(2), K3

n ) < (r(C8, K
3
n ))

O(1) < 2O(n log n).

Finally, applying (2) again will finish the proof for all s ≡ 1 (mod 3) and s � 16.

We now turn to the proofs of (1)–(3). Recall that H6 = {abu, abv, abw, abx, auv, bwx}.
Showing that C3

8 ⊂ H6(2) is equivalent to producing a homomorphism φ from C3
8 to H6

where every vertex of H6 has at most two pre-images. Define φ as follows:

φ(1) = u,

φ(2) = v,

φ(8) = φ(3) = a,

φ(7) = φ(4) = b,

φ(5) = x,

φ(6) = w.

It is easy to check that for every i ∈ Z8 we have φ(i)φ(i + 1)φ(i + 2) ∈ H6. Next we show

that (2) holds by producing φ : Zs+3 → Zs as follows: let φ(i) = i for i ∈ {1, . . . , s}, φ(s +

1) = s − 2, φ(s + 2) = s − 1 and φ(s + 3) = s. It is easy to check that φ is a homomorphism

from V (C3
s+3) to V (C3

s ). Finally, (3) holds due to φ : Z2s → Zs as follows: let φ(i) =

φ(s + i) = i for i ∈ {1, . . . , s}.
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[10] Kostochka, A., Mubayi, D. and Verstraëte, J. (2014) On independent sets in hypergraphs.

Random Struct. Alg. 44 224–239.
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