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We study the performance of a M/DK/1 queue under Fair Sojourn Protocol (FSP).
We use a Markov process with mixed real- and measure-valued states to characterize
the queuing process of system and its related processor sharing queue. The infinites-
imal generator of the Markov process is derived. Classifying customers according
to their service time, using techniques in multiclass queuing system, and borrowing
recently developed heavy traffic results for processor-sharing queues, we are able to
derive approximations for average waiting time for the jobs.

1. INTRODUCTION

Fair Sojourn Protocol (FSP) was proposed by Friedman and Henderson [4] for the
purpose of achieving both fairness and efficiency in a single-server queuing system.
The main idea of the policy is to take advantage of both processor sharing (PS) for
fairness and first come first server (FCFS) for efficiency. More specifically, the policy
enforces the departures to follow the order of the departures of the same queue (a queue
with almost surely the same sample path of arrivals) under the PS policy, whereas the
server serves one job at a time. The performance advantage of the FSP policy was
established in [4], more specifically, it was shown that FSP dominates PS policy; that
is, the jobs in a FSP system always depart earlier than those in a PS system with the
same arrival sample path, and no other policy dominates FSP. It is understood that
quantitative analysis of queuing performance under FSP, such as the calculation of
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average waiting time, is very hard to obtain. The difficulty lies at the fact that the
performance depends on the status of a PS queue with the same arrival sample path,
which, from now on, will be called the associated PS queue. The purpose of this study
is to use some recently developed heavy traffic approximation results in a PS queue
to approximate the average waiting time for jobs in a FSP system in heavy traffic
(i.e., when the arrival rate is close to the service rate).

Another main idea of our study is to treat a single queue under FSP as a multiclass
queuing system. We observed that when the service time is constant for all jobs, the
FSP is equivalent to a FCFS queue. In a queue with general service time, for any two
jobs with the same service time, the order of departures under PS, hence FSP, is the
same as the order of the arrivals. Based on these observations, we put jobs that have
the same processing time in the same class, and within each class, the jobs will follow
FCFS. For the convenience of our analysis, we also assume that our service distribution
has finite sample space. For most applications, this should not be a problem because
we can have the sample space large enough to cover all of the different choices of
service time. From a theoretical standpoint, it is known that any distribution can be
approximated within any given degree of accuracy by a distribution with finite sample
space; since our study also falls into the category of approximation, this assumption
will not become a major restriction.

Multiclass queues and queuing networks, as a family of important mathemati-
cal models for manufacturing and communication networks, have been intensively
studied in the past several decades. Much progress have been made in the area of per-
formance analysis and optimal control. Among them, approximation schemes, mainly
including fluid and diffusion approximations, have been considerably enriched and
expanded. Efficient approximations are established under different scheduling and
routing policies and applied successfully to the study of stability and control. The
works mostly related to ours are that of the fluid and diffusion approximations of gen-
eral PS queues. In a series of articles, [?,6,7] fluid and diffusion approximation for PS
queues were obtained through the approximation of the residual service time process,
a measure-valued process. To be more specific, a measure-valued process is derived as
the fluid limit of the residual service time process under proper scaling; furthermore,
this fluid limit has a stationary point as time goes to infinity. It is also shown that,
asymptotically, the residual service process can be approximated by applying a lifted
map upon the workload process, whose limit is the same as any work-conserving
queue and has been known previously. The last two points will play crucial roles in
our analysis. Related results can also be found in the work of Grishechkin, such as [5].

To facilitate our analysis, we assume that the arrival process is a Poisson process.
We demonstrate that the mixed process of the queue length, residual service time
for the FSP system, and residual service time for the PS system is a mixed-valued
Markov process. We are able to obtain the probabilistic characterization of this process
(i.e., its infinitesimal generator). The expression of the average sojourn time in the
form of functionals of the mixed-value Markov process will be derived with the aid
of the tagged job arguments used in Kleinrock [9] The property of PASTA (Poisson
arrival see time average) allows us to replace the observations of each arrival with the

https://doi.org/10.1017/S0269964809000060 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000060


“S0269964809000060jra” — 2008/11/11 — 13:12 — page 63 — #3

�

�

�

�

FAIR SOJOURN PROTOCOL IN HEAVY TRAFFIC 63

stationary quantities, which are then approximated by the fluid and diffusion limits
we discussed earlier.

The rest of the article is organized as the follows, in Section 2, we give detailed
description of FSP and some basic facts, then we will derive probabilistic characteriza-
tion of the state process under Poisson arrival; in Section 3, we develop approximations
for the average waiting time for FSP.

2. PROBABILISTIC CHARACTERIZATIONS OFTHE SYSTEM

In this section we will first present detailed descriptions of our mathematical model—
in particular, a mixed (measure and real)-valued process that characterizes the
dynamics of the queuing process under FSP and its associated PS queue. Then we
will derive basic probabilistic characterization of this mixed (measure and real)-valued
process. Since the arrivals follow a Poisson process, it is evident that the joined pro-
cess of the queue length and residual service time of the FSP queue and the residual
of the associated PS queue is Markovian, so the probabilistic characterization will be
realized through the computation of the infinitesimal generator.

The arrival process follows a Poisson process with rate λ. The required service
times are mutually independent, independent of the arrival process, and identically
distributed random variables in the form of DK , (i.e., a discrete random variable with a
finite sample space of size K). Let us denote the sample space by S = {�1, �2, . . . , �K}.
Without loss of generality, we assume that �1 < �2 < · · · < �K . Let us also denote
p1, p2, . . . , pK as the probability associated with each value (i.e., P[DK = �k] = pk ,
k = 1, 2, . . . , K , so the overall service rate μ = 1/

∑
pi�i). To ensure that we have a

stable queue with a heavy traffic condition, assume that λ/μ < 1 and λ/μ ≈ 1.
Under the FSP rule, whenever a job is completed or departs, the system needs to

rank all of the remaining jobs in the queue according to their departure time in the asso-
ciated PS queue; then the one with the earliest departure time will be served. Since the
event of two jobs having the same remaining service time in the PS queue has negligi-
ble probability, it will be ignored in the analysis. In practice, arbitrary tier break rules
can be applied, and they will not affect any of the results in this article. From the view-
point of multiclass queuing system, we can treat this queuing system as a queue with
K classes of arrivals, each class of arrivals follow an independent Poisson with rate
pkλ for k = 1, 2, . . . , K , and jobs in each class k require deterministic service time �k .

We define a mixed-valued Markov process to characterize the joined process of
the FSP queue and its associated PS queue. By a mixed-valued Markov process, we
refer to a Markov process that takes a value in a product of R and MF , where MF

denotes the space of finite, nonnegative Borel measures equipped with the topology
of weak convergence of measures (see, e.g., [10]). Let qk(t), k = 1, 2, . . . , K be the
number of jobs of class k that are waiting in the FSP queue and let r(t) denote the
residual service time process of the job that is being processed in the FSP queue at
time t and μk(t) denote the measure-valued process of the residual service time for
the class k jobs in the associated PS queue. More specifically, at any time t, for any
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Borel set B on R+, μk(t)(B) equals to the number of class k jobs in the system that
has the residual processing times that are in B. From the definition of FSP and its
associated PS queue, we can conclude the following.

THEOREM 1: The process (q1(t), q2(t), . . . , qK(t), r(t), μ1(t), μ2(t), . . . , μK(t)) in
Z

K+ × R+ × MK
F is a Markov process.

Next, we derive the infinitesimal generator of this Markov process. To do this,
we need to introduce some fundamental functional on the space MF . For any
bounded continuous function f (·) on R+ and any measure σ ∈ MF , let us denote
< f , σ>= ∫

R+ f (x) dσ . It is easy to see that QPS(t), t ≥ 0, the queue length process

for the associated PS queue, can be expressed QPS(t) = <1, μt>, where 1 denotes the
function of f (x) = 1, and the work load process W(t) = <χ , μt>, where χ(x) = x.
For any bounded continuous function f (x, y, z) defined on Z

K+ × R+ × MK
F , define

<f , (q, r, μ)> =
∫

R+
f (q, r, z) dμ,

For our mixed-valued process, similar to the measure-valued Markov process
(see, e.g., [2,8]), the transition probability operator Tt is defined by

Tt<f , (q, r, μ)> � E[<f , X(t)>|X(0) = (q, r, μ)];
then the infinitesimal generator for the semigroup of Tt , hence the Markov process, is
defined by

G<f , (q, r, μ)> � d

dt
Tt<f , (q, r, μ)>|t=0.

We know that for �t sufficient small, the probability that there is an arrival of type
k is λk�t + o(�t). In that event, the queue length will become q + ek and the residual
equals to r − �. For μk(0) = ∑Qk(0)

i=1 δxi , where δx denotes the Dirac measure at x,

μk(δ) =
Qk(0)∑
i=1

δxi−�t/
∑K

k=1<1,μk>
;

hence,

E[<f , X(�t)>|X(0) = (q, r, μ)] =
K∑

k=1

λk�t
∫

f (q + ek , r − �t, z) d(μ̃ + δ�k )

+
(

1 −
K∑

k=1

λk�t

) ∫
f (q + ek , r − �t, z) dμ̃ + o(�t),

where

μ̃ =
∑

δx−�t/
∑K

k=1<1,μk>
,

when μ = ∑
δx.
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Take the limit as �t → 0, we have, when r > 0,

G<f , (q, r, μ)> =
K∑

k=1

λk(<f , (q + ek , r, μ + δ�k )> − <f , (q, r, μ)>)

+ <
∂f

∂y
, (q, r, μ)> +

K∑
k=1

< ∂f /∂zk , (q, r, μ) >∑K
k=1 < 1, μk >

;

similarly, when r = 0,

G<f , (q, r, μ)> =
K∑

k=1

λk[<f , (q + ek , r, μ + δ�k )> − <f , (q, r, μ)>]

+ (<f , (q − ek∗
, r, μ)> − <f , (q, r, μ)>)

+ <
∂f

∂y
, (q, δ�k∗ , μ)> +

K∑
k=1

<∂f /∂zk , (q, r, μ)>∑K
k=1 <1, μk>

,

where

a = sup

{
s :

K∑
k=1

< 1{s, ∞}, μk >=
K∑

k=1

qk

}
,

k∗ = {k : (<1{a + 0, ∞}, μk> − <1{a, ∞}, μk>) > 0, }.
Following the same arguments, we have the following.

COROLLARY 2: The process (μ1(t), μ2(t), . . . , μK(t)) in ×MK
F is a measure-valued

Markov process. Its infinitesimal generator is given by,

G<f , (μ1, μ2, . . . , μK)> =
K∑

k=1

λk(<f , μ + δ�k )> − <f , (μ1, μ2, . . . , μK)>)

+
K∑

k=1

<∂f /∂zk , (μ1, μ2, . . . , μK)>∑K
k=1 <1, μk>

.

3. AVERAGE WAITINGTIME APPROXIMATIONS

In this section we will derive our approximation scheme for the average waiting time
for a FSP queue. It requires that we have knowledge of the associated PS queue at the
arrival epoches (in other words, the state of the PS queue at any arrival epoch). It is
unrealistic to obtain such a characterization exactly; therefore, we will use recently
developed fluid and diffusion approximations for the PS queue instead. Hence, this
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section will be divided into two parts. In the first part we present the basic results of
fluid and diffusion approximation of a multiclass queue under the PS discipline; then,
in the second part, we will make use of these approximations and the “tagged job”
argument of Kleinrock to derive an approximation scheme for average waiting time
under FSP.

3.1. Approximations for the Multiclass PS Queue

In this subsection we will present fluid and diffusion approximations to the associate
PS queue as a multiclass queuing system. Most of the results are direct adaptions of
those in [6,7,11], the only exception is the fluid limit, which is weaker in the limit
sense, but more proper to our application, meanwhile, its proof come directly from
applying Dynkin’s formula using the infinitesimal generator we derived in the last
section.

As we have defined, for each k = 1, 2, . . . , K , μk(t) denotes the measure-valued
process of the residual service time for the class k jobs in a PS queue. μ(t) ∈ MF

is the measure-valued process of residue service time for the queue at time t; that
is, μ(t) = ∑m

k=1 μk(t), equivalently, μ(t) = ∑QPS(t)
k=1 δrk , where QPS(t) denotes the

number of jobs in the PS queue at time t and Rk denotes their remaining service time.
In the following, we will discuss its fluid limit, the asymptotic behavior of the fluid
limit, and the diffusion approximations.

Fluid and diffusion limits are obtained through proper scaling of time and space.
For this purpose, define

μ̄r
k(t) = 1

r
μk(rt), μ̄(t) = 1

r
μ(rt), μ̂r

k(t) = 1

r
μk(r

2t), μ̂(t) = 1

r
μ(r2t).

Let us investigate their behavior as r → ∞.

3.1.1. Tightness and fluid limit. Our goal is to show that the measure-
valued processes {μ̄r

k(t)} is tight. By Jakubowski’s criterion (see, e.g., [3]), it suffices
to show the following:

1. For each T > 0 and 0 < η < 1, there exists a compact set KT ,η ∈ MF such
that

lim inf
r→∞ P[μ̄r

k(t) ∈ KT ,η ∀t ∈ [0, T ]] ≥ 1 − η.

2. For each g ∈ C1
b(R+), the space of a bounded and continuous function on

R+, the real-valued processes {<g, μ̄r
k(t)>}, is tight.

The second statement is relatively conventional to verify; in fact, the proof in [7]
using fundamental results in [3] in the case of a single-class PS queue can be directly
applied here. For the first one, we will prove by contradiction. Suppose that it is not
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true, then there exist a sequence of Tn such that for each compact set K ∈ MF , we have

lim
n→∞ lim inf

r→∞ P[μ̄r
k(t) ∈ K ∀t ∈ [0, Tn]] = 0 (1)

On the other hand, for each compact set K ′ ⊂ R × R+, let us denote K ∈ MF to be
its preimage of the mapping μ → <χ , μ>. Then we know that K is compact since
the mapping is closed, and

P[μ̄r
k(t) ∈ K , ∀t ∈ [0, Tn]] = P[<χ , μ̄r

k(t)> ∈ K ′ ∀t ∈ [0, Tn]].
Then (1) contradicts with the fact that the workload processes <χ , μk(t)> is tight.
Therefore, we can conclude the following.

THEOREM 3: For each k, the process μ̄r
k(t) is tight.

Next, we demonstrate that μ̄r
k(t) converge, to a fluid solution, which will be called

the fluid limit. To define a fluid solution, let us first define the following function space
S0 = {f ∈ S, f (0) = 0, f ′(0) = 0}, where S denotes the space of Schwartz functions.
Then a fluid solution is a measure-valued process satisfies the following conditions:

• μ̄(t) is continuous;

• For each t ≥ 0, < 1{0}, μ̄(t) >= 0,

• For each continuous function f ∈ S0,

< f , μ̄k(t)> = <f (·), μ̄k(0)> −
∫ t

0

<f ′, μ̄k(s)>

<1, μ̄(s)>
ds

+ λt<f , νk>, ∀k (2)

for all t < ∞.

Now, let us construct k measure-valued processes μk(t) that can be verified to
be a fluid solution. We will also show that the fluid solution is uniquely determined
by the initial system data, hence implying its uniqueness. For any measure ξ ∈ MF ,
define

Hξ (x) :=
∫ x

0
<1(y, ∞), ξ > dy, x ∈ R+;

also, denote Ue(u) as the renewal measure for the service time:

Ue(u) =
∞∑

n=0

(F∗n
e )(u).

Then, given the fluid limit μ̄k(t) and μ̄(t), define the system size as

Q̄(t) = <1, μ̄(t)>,
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and the cumulative service per job can be expressed as

S̄(t) =
∫ t

0

ds

Q̄(s)
.

In [7], it is shown that

S̄′(t) = 1

T̄ ′(S(t))
, T̄ = Hξ � Ue.

In other words, they are uniquely determined by the initial condition of the fluid
solution. From the definition of the fluid solution, we can see that they in turn uniquely
determine the fluid solution. On the other hand, construct the following μ̄k ∈ MF for
k = 1, 2, . . . , K :

<1(0,w), μ̄k(t)> = <1(0,w)(· − S̄(t)), ξk(t)>

+ α

∫ t

0
<1(0,w)(· − S̄(t) − S̄(s)), νk(s)>ds.

It is easy to verify that μ̄k satisfy all of the conditions in the definition of the fluid
solution. Therefore, we have Theorem 4.

THEOREM 4: The fluid solution as we defined uniquely exists.

In turn, we will have Theorem 5.

THEOREM 5: μ̄r
k(t) converges to the fluid solution weakly, as r → ∞ in the following

sense:

E[<f , μ̄r
k(t)>] → <f , r̄k(t)>

for any continue function function f .

PROOF: This weak form of fluid approximation can be obtained through Dynkin’s
formula (see, e.g. [12, Sect. III.10]):

E[<f , μ̄r
k(t)>] =

∫ nt

0
G<f , μ> ds.

Then the fluid limit can be obtained by the usual functional law of large number and
the following:

1

n

∫ nt

0

<f , μk(s)>∑K
k=1 <1, μk(s)>

ds =
∫ t

0

<f , μ̄k(u)>∑K
k=1 <1, μ̄k(u)>

du,

which is the result of change of variable nu = s. �
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Remark:

• The fluid limit in the strong sense of those in [7] can be obtained following
the arguments there; the reason we elect to present a weak form of result is
twofold. First, for our application, the weak form suffices; second, the deriva-
tion from the Dynkin’s formula seems to reveal more connections between
the original process and the fluid limit.

• We use a different function space in characterizing the action on MF than
the one used in [6,7,11] because for the problems we deal with in this article,
both are sufficient. In general, the Schwartz function space, of course, is much
more widely used.

• The fluid limit can also be characterized by a differential equation. From the
definition, we know that the fluid limit as a measure is absolute continuous
with respect to the Lebesgue measure. Let hk(t, ·) be its Radon–Nykodim
derivative with respect to the Lebesgue measure at any time t, then hk(t, x)
should satisfy

∂

∂t
fk(t, x) = ∂/∂xfk(t, x)∑

k

∫ ∞
0 f (t, x) dx

+ λfνk ,

where fνk is the density of ν. The existence and uniqueness can also be derived
from the theory of nonlinear differential equation (see, e.g., [1]).

3.1.2. Stationary behaviors of the fluid limits. Under the heavy traffic
condition, the fluid limit has a stationary limit as t → ∞. This limit is, of course, a
measure in MF and will serve as an approximation for the remaining service status
in the later part of our analysis. Here, we will first identify this limit and then show
that the fluid limit indeed converges.

We start with a definition.

DEFINITION 6: A nontrivial measure ν ∈ MF (i.e., ν �= 0) is called an invariant state
if μt(ν) = ν, ∀t. and the set of all invariant states,

I = {(νk)k ∈ MF : μk(t)(νk) = νk ∀t},
is called the invariant manifold of the fluid limit.

A class of measures can be easily shown to be part of the invariant mani-
fold; that is, ξk = cνk

e , where νk
e is the lift with respect to νk (i.e., νk

e is defined
as νk

e ([0, x]) = <χ , νk>−1
∫ x

0 μk(y, ∞) dy for any x ∈ R). To see that, we need the
following fundamental relationship;

LEMMA 7: For each g ∈ S0, we have

α<g, ν> = <g′, νe>. (3)
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This is the Proposition 3.1 in [11], a direct application of integration by parts. An
argument similar to that in [11], we can show that the class in fact contains all of the
measures that are invariant. Hence, we have Theorem 8.

THEOREM 8: The invariant manifold is {cνk
e , c ∈ R+}.

PROOF: We can adapt the proof in [11]. It is easy to verify that each member
in the defined set is an invariant measure. Now, let us show the other direction,
given any invariant measure vector (ξk), then we know that its corresponding fluid
limit μ̄ξk (t) = ξk for any t ≥ 0. Now, the fluid limit tells us that for any g ∈ S0,
we have <g′

k , ξk> = <1, ξ>αk<gk , μk>. Hence, according to Lemma 7, we have
<g′

k , ξk> = <1, ξ><g′
k , νe

k>. Since g ∈ S0, we know that this implies ξk = cνe
k for

c = <1, ξ>. �

It is also evident that if the fluid limit has stationary limit, then it must be a point
of the invariant manifold. In order to show the convergence, let us revisit the fluid
limit. For simplicity, let us assume that we start from a empty system, then

<g, μk(t)> =
∫ t

0

<g′, μk(s)>

<1, μ(s)>
ds + αt<g, νk> ∀k;

therefore,

<g, μk(t)> = α

( ∞∑
n=1

<g(n), νk>

∫
�n(t)

sn∏n
1 <1, μ(si)>

dσn

)
∀k,

where we denote∫
�n(t)

f (s1, s2, . . . , sn) dσn =
∫ t

0

∫ s1

0
· · ·

∫ sn−1

0
f (s1, s2, . . . , sn) ds1 ds2 · · · dsn.

From the results in [11], we know that there exists an δ > 0 such that

n∏
1

(< 1, μ(·) >) ≥ δ;

then we have

<g, μ(t)> ≤ α

∞∑
n=1

(t/δ)n

n! <gn, μ(0)>.

Since g is a Schwartz function, <g, μ(t)> is bounded for any t ≥ 0. From Theorem
7, we know that the invariance measure is uniquely determined by the initial data and
we can conclude that <g, μ(t)> converges as t → ∞.
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3.1.3. Diffusion approximations. In this subsection we introduce a result
in [6] needed in the computation later in the article.

To derive diffusion approximations of the PS queue, Gromoll [6] proposed
a “bootstrap”-type approach. The key idea is to replace the diffusion-scaled pro-
cess μ̂r(t) by the so-called shifted fluid-scaled process, μ̄r,m(t) := μ̄r(mt), with
m ∈ [0, rT ]. Thus, as r → ∞, it can be shown that μ̄r,m(t) behaves asymptotically
like its stationary limit, to be more precise, we have

μ̄r,m(t) ≈ �ν<χ , μ̄r,m(t)>

and this leads to

μ̂r(t) ≈ �ν<χ , μ̂r(t)>.

<χ , μ̂r(t)> is the workload process of the queue, which is known to converge to a
reflected Brownian motion.

THEOREM 9 (Gromoll): Under the heavy traffic condition, the residue service process
of the process sharing queue can be approximated by

μ∗ = �νW∗,

where W∗ denotes the measure of the reflected Brownian motion that approximates
the workload process.

Note that the workload process of a PS queue is the same as the workload process
of a FCFS queue; therefore, we know that W∗ is a reflected Brownian process with
mean λ − μ and variance λ + λC2

s .

3.2. Calculate the Average WaitingTime for FSP

To estimate the average waiting time for FSP, we follow the “tagged arrival” argument
used in Kleinrock [9]. Suppose that an arrival belongs to class k = 1, 2, . . . , K ; its
waiting time, then, is made of three parts—first, the unfinished service at the server;
second, the service time of those jobs that already in the queue and will be processed
before the tagged job; third, the service time of those jobs that arrives later but will
be served before the tagged arrival. In summary, we have

Wk = W0 +
K∑

i=1

(Nik + Mik)�i, k = 1, 2, . . . , K , (4)
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where

Wk � waiting time for class k job

Nik � number of class i customers founded in the queue by a tagged job

(from class k) and receive service before the tagged job

Mik � number of class i customers arriving to the system while the tagged

job (from class k) is in the queue and receiving serve before the

tagged job

W0 � remaining service observed by the tagged job

W0, since we have Poisson arrivals, can be treated as long-run average remaining
service; hence, see, for example, [9] and

EW0 =
K∑

k=1

λi�
2
i

2
. (5)

Now, let us consider other terms in eqn (4). We start with Nip. Suppose that at
time t, when the tagged job arrives, one observes the status of the associated PS queue
being

(μ1(t), μ2(t), . . . , μK(t)).

We know that for any z ≥ 0, <1{z, ∞}, μk(t)> denotes the number of class k jobs in
the associated PS system that has more than z units of workload; meanwhile, if these
jobs are in the queue of the FSP system, the workload is �k . Hence, there exist a ≥ 0
such that

a = min

{
z :

K∑
k=1

<1{z, ∞}, μk(t)>�k− < χ , μ(t)> < 0

}
. (6)

Then for each k = 1, . . . , K , <1{a, ∞}, μk(t)> represents the number of the class k
jobs currently in the queue of the FSP system, and <1{a, ∞}, μ(t)> represents the
total number of jobs in the queue in FSP system. Meanwhile, <1{�p, ∞}, μi(t)> is
the number of the class i jobs that will be served after the tagged job. Hence, their
difference will be exactly what we desired; that is,

Nip = <1{a, ∞}, μi(t)> − <1{�p, ∞}, μi(t)>. (7)

Next, let us look at the quantity Mip, which refers to the number of class i jobs
that arrive after the tagged class p job but receive service before the tagged job.
Of course, when i ≥ p and �i ≥ �p, Mik = 0. When i < p, Mip equals the number of
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class i jobs that arrive before the remaining process time for the tagged job reaches
�p − �i. Therefore, with the Poisson arrival assumption, we have

E[Mip] = λiE[τip], τip := inf{t :
∫ t

0

ds

QPS(s)
≥ �p − �i}.

Assume that we use QPS(∞), the stationary distribution of the PS queue length, to
replace QPS(s) by Wald’s identity; we have

Eτip = �i − �p

E[1/QPS(∞)|QPS(∞) ≥ 1] . (8)

We will employ the fluid and diffusion approximations described in the previous
section. Recall that in the associated multiclass PS queue, for any initial data ξ , the
fluid limit of the residual time descriptor μ̄k(t) has limit <1, ξ>�νk . Especially, we
take ξ to have the first moment as the stationary queue length. Plug this into (6);
we have

a =
(∑

n

λn�n

) / (
2

∑
n

λn

)
.

Hence, we have

ENik = 2
(
�i − (

∑
n λn�n)/(2

∑
n λn)

)
�p

∑
n λn�n

EQPS.

The key to the calculation of (8) is to compute E[1/QPS(∞)|QPS(∞) ≥ 1]; thus,

E
[

1

QPS(∞)
|QPS(∞) ≥ 1

]
=

∫ ∞

1

1

x
P[QPS(∞) ∈ dx|QPS(∞) ≥ 1].

From the diffusion approximation, we know that QPS(∞) can be approximated by an
exponential distribution Exp(2(1 − ρ)/[ρ(1 + σ 2

s ∧ 1)]). Therefore, we have

E
[

1

QPS(∞)

∣∣∣∣QPS(∞) ≥ 1

]
≈ 2(1 − ρ)

ρ(1 + σ 2
s ∧ 1)

exp

(
2(1 − ρ)

ρ(1 + σ 2
s ∧ 1)

)
I

(
2(1 − ρ)

ρ(1 + σ 2
s ∧ 1)

)
,

where I(y) := ∫ ∞
y (e−σx/x)dx.

Combine what we have derived; we can have the following approximation, for
each k = 1, 2 . . . , K :

EWk =
K∑

k=1

λi�
2
i

2
+

k−1∑
i=1

⎡
⎣

(
�i −

∑
n λn�n

2
∑

n λn

)
(�p

∑
n λn�n)

λ(1 + σ 2
s )

(1 − ρ)

⎤
⎦

+
K∑

i=k+1

(λk(�k − �i))

/ [
2(1 − ρ)

ρ(1 + σ 2
s ∧ 1)

exp

(
2(1 − ρ)

ρ(1 + σ 2
s ∧ 1)

)
I

(
2(1 − ρ)

ρ(1 + σ 2
s ∧ 1)

)]−1

.

(9)

https://doi.org/10.1017/S0269964809000060 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000060


“S0269964809000060jra” — 2008/11/11 — 13:12 — page 74 — #14

�

�

�

�

74 Y. Lu

References

1. Cabré, X. & Caffarelli, L.A. (1995). Fully nonlinear elliptic equations. Providence, R: American
Mathematical Society. Colloquium Publications, Vol. 43.

2. Dawson, D.A. (1993). Measure-valued markov processes, Ecole d’Eté de Probabilités de Saint Flour
XX1-1991, Lecture Notes in Mathematics No. 1541. New york; Springer.

3. Ethier, S. & Kurtz, T. (1986). Markov processes: Characterization and convergence. NewYork: Wiley.
4. Friedman, E.J. & Henderson, S.G. (2003). Fairness and efficiency in web server protocols. In

Proceedings ACM/SIGMETRICS’03.
5. Grishechkin, S. (1994). GI/GI/1 processor sharing queue in heavy traffic. Advances in Applied

Probability 26: 539–555.
6. Gromoll, H.C. (2004). Diffusion approximations for a processor sharing queue in heavy traffic. Annals

of Applied Probability 14: 555–611.
7. Gromoll, H.C., Puha, A.L., & Williams, R.J. (2002). The fluid limit of a heavily loaded processir

sharing queue. Annals of Applied Probability 12: 797–859.
8. Kallenberg, O. (1976). Random measures. Berlin: Akademie-Verlag.
9. Kleinrock, L. (1976). Queueing systems, Vol. II: Computer applications, New York: Wiley.

10. Prohorov, Y.V. (1956). Convergence of random processes and limit theorems in propability theory.
Theory of Probability and its Applications 1: 157–214.

11. Puha, A.L. & Williams, R.J. Invariant states and rates of convergence for a critical fluid model of a
processor sharing queue. Annals of Applied Probability 14: 517–554.

12. Rogers, L.C.G. & Williams, D. (2000). Diffusions, Markov processes and martingales. Cambridge:
Cambridge University Press.

https://doi.org/10.1017/S0269964809000060 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000060

