
Canad. J. Math. Vol. 74 (4), 2022 pp. 1093–1136
http://dx.doi.org/10.4153/S0008414X21000171
© Canadian Mathematical Society 2021

Degenerating sequences of conformal
classes and the conformal Steklov spectrum
Vladimir Medvedev
Abstract. Let Σ be a compact surface with boundary. For a given conformal class c on Σ the
functional σ∗k (Σ, c) is defined as the supremum of the kth normalized Steklov eigenvalue over all
metrics in c. We consider the behavior of this functional on the moduli space of conformal classes
on Σ. A precise formula for the limit of σ∗k (Σ, cn) when the sequence {cn} degenerates is obtained.
We apply this formula to the study of natural analogs of the Friedlander–Nadirashvili invariants of
closed manifolds defined as inf c σ∗k (Σ, c), where the infimum is taken over all conformal classes c on
Σ. We show that these quantities are equal to 2πk for any surface with boundary. As an application of
our techniques we obtain new estimates on the kth normalized Steklov eigenvalue of a nonorientable
surface in terms of its genus and the number of boundary components.

1 Introduction and main results

Let (Σ, g) be a compact Riemannian surface with boundary. In this paper, we always
assume that Σ is connected and the boundary of Σ is nonempty and smooth. Consider
the Steklov problem defined in the following way

⎧⎪⎪⎨⎪⎪⎩

Δu = 0 in Σ,
∂u
∂n = σu on ∂Σ,

where Δ = −divg ○ gradg is the Laplace–Beltrami operator and ∂
∂n is the outward unit

normal vector field along the boundary. The collection of all numbers σ for which the
Steklov problem admits a solution is called the Steklov spectrum of the surface Σ. The
Steklov spectrum is a discrete set of real numbers called Steklov eigenvalues with finite
multiplicities satisfying the following condition (see e.g., [GP17])

0 = σ0(g) < σ1(g) ≤ σ2(g) ≤ ⋯ ↗ +∞.

The Steklov spectrum enables us to define the following homothety-invariant
functional on the set R(Σ) of Riemannian metrics on Σ

σ k(Σ, g) ∶= σk(g)Lg(∂Σ),
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1094 V. Medvedev

where Lg(∂Σ) stands for the length of the boundary of Σ in the metric g. The
functional σ k(Σ, g) is called the k-th normalized Steklov eigenvalue. It was shown in
[CSG11] (see also [Has11, Kok14]) that if Σ is an orientable surface, then the functional
σ k(Σ, g) is bounded from above. Moreover, the following theorem holds

Theorem 1.1 [GP] Let (Σ, g) be a compact orientable surface of genus γ with l
boundary components. Then one has

σ k(Σ, g) ≤ 2πk(γ + l).

In this paper, we prove that a similar estimate holds for nonorientable surfaces.

Theorem 1.2 Let Σ be a compact nonorientable surface of genus γ with l boundary
components. Then one has

σ k(Σ, g) ≤ 4πk(γ + 2l).

Here, the genus of a nonorientable surface is defined as the genus of its orientable
cover.

Remark 1.1 The estimate in Theorem 1.1 has been improved in [Kar17] by a bound
which is linear in k + γ + l instead of k(γ + l). However, the proof of this result uses
orientability in an essential way, see [Kar17, Section 6]. It would be interesting to obtain
a similar improvement in Theorem 1.2.

Theorems 1.1 and 1.2 enable us to define the following functionals

σ∗k (Σ) ∶= sup
R(Σ)

σ k(Σ, g),

and

σ∗k (Σ, [g]) ∶= sup
[g]

σ k(Σ, g).

Remark 1.2 Note that we cannot define the functionals σ∗k (Σ) and σ∗k (Σ, [g]) in
higher dimensions. Indeed, it was proved in the paper [CSG19] that if n = dim M ≥ 3
then the functional σ k(M , g) ∶= σk(g)Vol(∂M , g)1/(n−1), where Vol(∂M , g) denotes
the volume of the boundary with respect to the metric g, is not bounded from above
on the set of Riemannian metricsR(M). Moreover, it is not even bounded from above
in the conformal class [g].

The functional σ∗k (Σ) is an object of intensive research during the last decade (see
e.g., [FS11, FS16, CGR18, Pet19, GL20, MP20a]).

The functional σ∗k (Σ, [g]) which is called the kth conformal Steklov eigenvalue
is less studied. Let us mention some results concerning σ∗k (Σ, [g]). First, since the
disc admits the unique conformal structure one can conclude that σ∗k (D2 , [gcan]) =
σ∗k (D2), where gcan stands for the Euclidean metric onD

2 with unit boundary length.
The value of σ∗k (D2) is known: σ∗k (D2) = 2πk (see [Wei54] for k = 1 and [GP10] for
all k ≥ 1). Let us also mention the resent paper [FS20], where the authors particularly
obtain new results about the functional σ∗k (D2).

The functional σ∗k (Σ, [g]) is the main research object of the paper [Pet19].
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Degenerating sequences of conformal classes 1095

Theorem 1.3 [Pet19] For every Riemannian metric g on a compact surface Σ with
boundary one has

σ∗k (Σ, [g]) ≥ σ∗k−1(Σ, [g]) + σ∗1 (D2 , [gcan]),(1.1)

particularly

σ∗k (Σ, [g]) ≥ 2πk.(1.2)

Moreover, if the inequality (1.1) is strict then there exists a Riemannian metric g̃ ∈ [g]
such that σ k(Σ, g̃) = σ∗k (Σ, [g]).

New interesting results about the functional σ∗k (Σ, [g]) were recently obtained in
the paper [KS20].

Remark 1.3 The result analogous to Theorem 1.3 for the conformal spec-
trum of the Laplace–Beltrami operator on closed surfaces also holds (see
[NS15a, NS15b, Pet14, Pet18, KNPP20]). For further information concerning the
spectrum of the Laplace–Beltrami operator on closed surfaces see the surveys
[Pen13, Pen19] and references therein.

It is easy to see that the connection between the functionals σ∗k (Σ) and σ∗k (Σ, [g])
is expressed by the formula

σ∗k (Σ) = sup
[g]

σ∗k (Σ, [g]).

One can ask what do we get if we replace sup[g] by inf[g] in this formula? In this case,
we get the following quantity

Iσ
k (Σ) ∶= inf

[g]
σ∗k (Σ, [g]),

It is an analog of the Friedlander–Nadirashvili invariant of closed manifolds. The first
Friedlander–Nadirashvili invariant of a closed manifold was introduced in the paper
[FN99] in 1999. The kth Nadirashvili–Friedlander invariant of a closed surface has
been recently studied in the paper [KM20].

In the study of functionals like σ∗k (Σ) and Iσ
k (Σ), one considers maximizing and

minimizing sequences of conformal classes {cn} on the moduli space of conformal
classes on Σ, i.e., σ∗k (Σ, cn) → σ∗k (Σ) or σ∗k (Σ, cn) → Iσ

k (Σ) as n →∞. Due to the
Uniformization theorem conformal classes on Σ are in one-to-one correspondence
(up to an isometry) with metrics on Σ of constant Gauss curvature and geodesic
boundary. Therefore, any sequence of conformal classes {cn} on Σ corresponds to a
sequence of Riemannian surfaces of constant Gauss curvature and geodesic boundary
{(Σ, hn)}, hn ∈ cn and we can consider the moduli space of conformal classes on Σ
as the set of all (Σ, h), where h is a metric of constant Gauss curvature and geodesic
boundary, endowed with C∞-topology (see Section 4). Note that the moduli space
of conformal structures is a noncompact topological space. For any sequence {cn}
there are two possible scenarios: either this sequence remains in a compact part of
the moduli space or it escapes to infinity. Let (Σ∞, c∞) denote the limiting space,
i.e., (Σ∞, c∞) = limn→∞(Σ, cn). We compactify Σ∞ if necessary. Let Σ̂∞ denote the
compactified limiting space. It turns out that if the first scenario realizes, then we
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1096 V. Medvedev

get Σ̂∞ = Σ and c∞ is a genuine conformal class on Σ for which the value σ∗k (Σ) or
Iσ

k (Σ) is attained. If the second scenario realizes, then we say that the sequence {cn}
degenerates. It turns out that in this case there exists a finite collection of pairwise
disjoint geodesics for the metrics hn whose lengths in hn tend to 0 as n tends to ∞.
We refer to these geodesics as pinching or collapsing. They can be of the following
three types: the collapsing boundary components, the collapsing geodesics with no
self-intersection crossing the boundary ∂Σ at two points and the collapsing geodesics
with no self-intersection which do not cross ∂Σ. Note that in this case, the topology of
Σ necessarily changes when we pass to the limit as n →∞, i.e., the compact surfaces
Σ̂∞ and Σ are of different topological types. In particular, the surface Σ̂∞ can be
disconnected (see Figure 1). We refer to Section 4 for more details.

The following theorem establishes the correspondence between σ∗k (Σ̂∞, c∞) and
the limit of σ∗k (Σ, cn) when the sequence of conformal classes cn degenerates (see
Section 4 for the definition). It is an analog of [KM20, Theorem 2.8] for the Steklov
setting.

Theorem 1.4 Let Σ be a compact surface of genus γ with l > 0 boundary components
and let cn → c∞ be a degenerating sequence of conformal classes. Consider the corre-
sponding sequence {hn} of metrics of constant Gauss curvature and geodesic boundary.
Suppose that there exist s1 collapsing boundary components and s2 collapsing geodesics
with no self-intersection which cross the boundary at two points. Moreover, suppose that
Σ̂∞ has m connected components Σγ i , l i of genus γ i with l i > 0 boundary components,
γ i + l i < γ + l , i = 1, . . . , m. Then one has

lim
n→∞

σ∗k (Σ, cn) = max(
m
∑
i=1

σ∗k i
(Σγ i , l i , c∞) +

s1+s2

∑
i=1

σ∗r i
(D2)),

where the maximum is taken over all possible combinations of indices such that

m
∑
i=1

k i +
s1+s2

∑
i=1

r i = k.

Remark 1.4 Let Σ denote either cylinder or the Möbius band. Theorem 1.4 particu-
larly implies that if the sequence of conformal classes {cn} on Σ degenerates then we
necessarily have:

lim
n→∞

σ∗k (Σ, cn) = 2πk.

Remark 1.5 In Theorem 1.4 the sequence {hn} can also have collapsing geodesics not
crossing the boundary of Σ. Moreover, it can happen that the limiting space Σ̂∞ has
closed components (see Figure 2). Anyway, in Theorem 1.4 we take only components
of Σ̂∞ which have nonempty boundary.

The main tool that we use in the proof of Theorem 1.4 is the Steklov–Neumann
boundary problem also known as the sloshing problem. Let Ω be a Lipschitz domain in
(Σ, g) such that Ω ∩ ∂Σ = ∂S Ω ≠ Ø. Let ∂N Ω = ∂Ω/∂Σ. Then the Steklov–Neumann
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Figure 1: An example of a degenerating sequence of conformal classes {cn} on a surface
Σ of genus 2 with 4 boundary components. (a) The red curves correspond to collapsing
geodesics for the sequence of metrics of constant Gauss curvature and geodesic boundary
{hn}, hn ∈ cn corresponding to the degenerating sequence of conformal classes {cn}. (b) The
compactified limiting space Σ̂∞ (see Section 4). The black points correspond to the points of
compactification. (c) The surface Σ̂∞ is homeomorphic to the disjoint union of a disc and a
surface of genus 1 with 1 boundary component.

problem is defined as:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δgu = 0 in Ω,
∂u
∂n = 0 on ∂N Ω,
∂u
∂n = σ N u on ∂S Ω.
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Figure 2: An example of a degenerating sequence of conformal classes {cn} on a surface of
genus 2 with 1 boundary components such that the limiting space contains a closed component.
In Theorem 1.4, we take only the component on the left which has nonempty boundary. Note
that in this case s1 = s2 = 0.

The numbers σ N for which the Steklov–Neumann problem admits a solution are called
Steklov–Neumann eigenvalues. It is known (see [BKPS10] and references therein) that
the set of Steklov–Neumann eigenvalues is not empty and discrete

0 = σ N
0 (g) < σ N

1 (g) ≤ σ N
2 (g) ≤ ⋯ ↗ +∞.

Every Steklov–Neumann eigenvalue admits the following variational characterization:

σ N
k (g) = inf

Vk⊂H1(Ω)
sup

0≠u∈Vk

∫Ω ∣∇u∣2dvg

∫∂S Ω u2dsg
,

where the infimum is taken over all k-dimensional subspaces of the space H1(Ω) =
{u ∈ H1(Ω, g) ∣ ∫∂S Ω udsg = 0}.

Similarly to the case of the Steklov problem we define normalized Steklov–
Neumann eigenvalues as

σ N
k (Ω, ∂S Ω, g) ∶= σ N

k (g)Lg(∂S Ω).
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In this notation, we always indicate the Steklov part of the boundary at the second
place. Sometimes, we also use the notation σ N

k (Ω, ∂S Ω, g) for σ N
k (Ω, g) to emphasize

that the Steklov boundary condition is imposed on ∂S Ω.
Remark 1.6 Consider Ω as a surface with Lipschitz boundary. It also follows from
[Kok14, Theorem Ak] that the quantity σ N

k (Ω, ∂S Ω, g) is bounded from above on [g]
and we can define the invariant σ N∗

k (Ω, ∂S Ω, [g]) in the same way as the invariant
σ∗k (Σ, [g]).

Theorem 1.4 enables us to establish the value of Iσ
k .

Theorem 1.5 Let Σ be a compact surface with boundary. Then one has Iσ
k (Σ) =

Iσ
k (D2) = 2πk.

1.1 Discussion

Let us discuss the estimate obtained in Theorem 1.2. The first estimate on σ 1(Σ, g)
where Σ is a nonorientable surface of genus γ with boundary was obtained in the
paper [Sch13]. It reads

σ 1(Σ, g) ≤ 24π(γ + 1),

if γ ≥ 1 and
σ 1(Σ, g) ≤ 12π,

if γ = 0. Moreover, it follows from the papers [Kok14, Kar16] that

σ 1(Σ, g) ≤ 16π[γ + 3
2
],(1.3)

where [x] stands for the integer part of the number x.
Very recently, in the paper [KS20], estimate (1.3) has been improved and extended

for k = 2: consider Σ as a domain with smooth boundary on a closed surface M, then
one has

σ k(Σ, g) ≤ Λk(M), k = 1, 2.(1.4)

In this estimate, Λk(M) ∶= supg∈R(M) λk(g)Vol(M , g), where λk(g) is the kth
Laplace eigenvalue of the metric g, Vol(M , g) is the volume of M in the metric g and
R(M) is the set of Riemannian metrics on M. Note that estimate (1.4) does not depend
on the number of boundary components. Combining estimate (1.4) with our estimate
we get

σ k(Σ, g) ≤ min{Λk(M), 4πk(γ + 2l)}, k = 1, 2.

Particularly, for the Möbius band one has

σ k(MB, g) ≤ min{Λk(RP2), 8πk}, k = 1, 2,

since MB ⊂ RP2. The value Λk(RP2) is known for all k (see [Kar20]): Λk(RP2) =
4π(2k + 1). Hence,

σ k(MB, g) ≤ min{4π(2k + 1), 8πk} = 8πk, k = 1, 2.

In the paper [FS16] it was shown that σ 1(MB, g) ≤ 2π
√

3 which is obviously ≤ 8π.
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We proceed with the discussion of the functional Iσ
k . Unlike Theorem 1.4 in

[KM20], Theorem 1.5 says nothing about conformal classes on which the value Iσ
k (Σ)

is attained. We conjecture that

Conjecture 1.6 The infimum Iσ
k (Σ) is attained if and only if Σ is diffeomorphic to the

disc D2.

Note that this conjecture would be a corollary of the following one

Conjecture 1.7 Let Σ be a compact surface nondiffeomorphic to the disc. Then for every
conformal class c on Σ one has

σ∗1 (Σ, c) > σ∗1 (D2) = 2π.

This conjecture is an analog of the Petrides rigidity theorem for the first conformal
Laplace eigenvalue [Pet14, Theorem 1]. Recently this conjecture has been confirmed
in the case of the cylinder and the Möbius band (see [MP20b]). We plan to tackle
Conjectures 1.6 and 1.7 in the subsequent papers.

Let us discuss the analogy between the quantity Iσ
k and the Friedlander–

Nadirashvili invariant of closed surfaces Ik . In the paper [KM20], it was conjectured
that Ik are invariants of cobordisms of closed surfaces (see Conjecture 1.8). Similarly,
one can see that Iσ

k are invariants of cobordisms of compact surfaces with boundary.
Let us recall that two compact surfaces with boundary (Σ1 , ∂Σ1) and (Σ2 , ∂Σ2)
are called cobordant if there exists a three-dimensional manifold with corners Ω
whose boundary is Σ1 ∪∂Σ1 W ∪∂Σ2 Σ2, where W is a cobordism of ∂Σ1 and ∂Σ2
(i.e., W is a surface with boundary ∂Σ1 ⊔ ∂Σ2). Following [BNR16] we denote a
cobordism of two surfaces (Σ1 , ∂Σ1) and (Σ2 , ∂Σ2) by (Ω; Σ1 , Σ2 , W ; ∂Σ1 , ∂Σ2). One
can easily see that the cobordisms of surfaces with boundary are trivial. Indeed,
we can construct the following cobordism of a surface (Σ, ∂Σ) and (Ø, Ø): (Σ ×
[0, 1]; Σ × {0}, Ø, ∂Σ × [0, 1] ∪ Σ × {1}; ∂Σ, Ø). A fundamental fact about cobordisms
of surfaces with boundary is Theorem about splitting cobordisms (see [BNR16, Theorem
4.18]) which says that every cobordism of compact surfaces with boundary can be
split into a sequence of cobordisms given by a handle attachment and cobordisms
given by a half-handle attachment. We refer to [BNR16] for definitions and further
information about cobordisms of compact manifolds with boundary. Analysing the
proof of Theorem 1.5 one can remark that the value of Iσ

k does not change under handle
and half-handle attachments. Since by this procedure any surface Σ can be reduced to
the disc, we get Iσ

k (Σ) = Iσ
k (D2) = 2πk.

1.2 Plan of the paper

The paper is organized in the following way. In Section 2, we collect all the analytic
facts which are necessary for the proof of Theorem 1.4. The main result here is
Proposition 2.6. In Section 3, we prove Theorem 1.2 using the techniques developed
in the previous section. Section 4 represents the geometric part of the paper. Here, we
describe convergence on the moduli space of conformal structures on a surface with
boundary. Section 5 is devoted to the proof of Theorem 1.4. In Section 6, we deduce
Theorem 1.5 from Theorem 1.4. Finally, Section 7 contains some auxiliary technical
results.
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2 Analytic background

Here, we provide a necessary analytic background that we will use in the proof of The-
orem 1.4 in Section 5. The propositions in this section are analogs of the propositions
in [KM20, Section 4]. We postpone the proof of a proposition to Section 7.2 every
time when it follows the exactly same way as the proof of an analogous proposition in
[KM20, Section 4].

2.1 Convergence of Steklov–Neumann spectrum

We start with the following convergence result.

Lemma 2.1 Let (M , g) be a compact Riemannian manifold with boundary. Consider
a finite collection {Bε(p i)}l

i=1 of geodesic balls of radius ε centred at some points
p1 , . . . , p l ∈ M. Then the spectrum of the Steklov–Neumann problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δgu = 0 in M/ ∪l
i=1 Bε(p i),

∂u
∂n = 0 on ∪l

i=1 ∂Bε(p i)/∂M ,
∂u
∂n = λN

k (M/ ∪l
i=1 Bε(p i), g)u on ∂M/ ∪l

i=1 ∂Bε(p i)

converges to the Steklov spectrum of (M , g) as ε → 0.

Proof For the sake of simplicity, we only consider the case of one ball that we denote
by Bε centred at p ∈ M. First, we consider the case whenBε ∩ ∂M ≠ ∅, i.e., p ∈ ∂M.

Let E(u) denote the extension of the function u by the unique solution of the
problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ΔgE(u) = 0 in Bε ,
∂E(u)

∂n = 0 on ∂M ∩ ∂Bε ,
E(u) = u on ∂Bε/∂M .

Claim 1. The operator E(u) is uniformly bounded.

Proof The proof is similar to the proof of uniform boundedness of the harmonic
continuation operator into small geodesic balls [RT75, Example 1]. Fix 0 < r < ε and
let Br denote a geodesic ball of radius r with the same center as Bε . One has

∣∣E(u)∣∣2L2(Br ,g) ≤ C∣∣u∣∣2L2(M/Br ,g) + C∣∣∇u∣∣2L2(M/Br ,g)(2.1)

and

∣∣∇E(u)∣∣2L2(Br ,g) ≤ C∣∣∇u∣∣2L2(M/Br ,g).(2.2)

Inequality (2.1) follows from estimate (7.1) and the trace inequality

∣∣E(u)∣∣2L2(Br ,g) ≤ ∣∣E(u)∣∣2H1(Br ,g) ≤ C∣∣u∣∣2H1/2(∂Br/∂M ,g) ≤ C∣∣u∣∣2H1(M/Br ,g).

Suppose that inequality (2.2) was false. Then, there exists a sequence of functions {un}
in H1(M/Br , g) such that

∣∣∇un ∣∣L2(M/Br ,g) ≤ 1/n
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and

∣∣E(un)∣∣L2(Br ,g) ≥ 1.

Consider αn = 1
Vol(M/Br ,g) ∫M/Br

undvg . We show that

∣∣un − αn ∣∣H1(M/Br ,g) ≤ C/n.

Indeed, by the generalized Poincaré inequality one has

∣∣un − αn ∣∣L2(M/Br ,g) ≤ C∣∣∇un ∣∣L2(M/Br ,g) ≤ C/n

moreover

∣∣∇(un − αn)∣∣L2(M/Br ,g) = ∣∣∇un ∣∣L2(M/Br ,g) ≤ 1/n.

Note that E(un − αn) = E(un) − αn . Then, we can prove inequality (2.2)

∣∣∇E(un)∣∣L2(Br ,g) = ∣∣∇E(un − αn)∣∣L2(Br ,g) ≤ ∣∣E(un − αn)∣∣H1(Br ,g)

≤ ∣∣un − αn ∣∣H1/2(∂Br/∂M ,g) ≤ C∣∣un − αn ∣∣H1(M/Br ,g) ≤ C/n,

where in the second and third inequalities, we have used in order estimate (7.1) and
the trace inequality. We got a contradiction. Hence, inequality (2.2) is true.

Note that for any ρr < ε the first inequality scales as

∣∣E(u)∣∣2L2(Bρr ,g) ≤ C∣∣u∣∣2L2(M/Bρr ,g) + Cρ2∣∣∇u∣∣2L2(M/Bρr ,g),

while the second inequality scales as

∣∣∇E(u)∣∣2L2(Bρr ,g) ≤ C∣∣∇u∣∣2L2(M/Bρr ,g) .

Therefore, ∣∣E(u)∣∣2H1(Bρr ,g) ≤ C∣∣u∣∣2L2(M/Bρr ,g) + C∣∣∇u∣∣2L2(M/Bρr ,g) for ε small
enough. ∎

Claim 2. One has

lim sup
ε→0

σ N
k (M/Bε , g) ≤ σk(M , g).

Proof We only consider the case of Bε ∩ ∂M ≠ ø. The case of Bε ∩ ∂M = ø is easier
and follows the exactly same arguments. The proof is similar to the proof of [Bog17,
Theorem 3.5].

Let Vk be a k-dimensional subspace of H1(M , g) and v ∈ Vk such that

σk(M , g) = max
u∈Vk/{0}

∫M ∣∇u∣2dvg

∫∂M u2dsg
.

Let u1 , . . . , uk be an orthonormal basis in Vk . We modify the functions u i , i = 1, . . . , k
as

u i ,ε = u i −
1

L(∂M/∂Bε) ∫∂M/∂Bε

u i dsg .
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Then, ∫∂M/∂Bε
u i ,εdsg = 0. Consider the space Vk ,ε ∶= span(u1,ε , . . . , uk ,ε). Since

dim Vk ,ε = k one has

σ N
k (M/Bε , g) ≤ max

uε∈Vk ,ε/{0}

∫M/Bε
∣∇uε ∣2dvg

∫∂M/∂Bε
u2

ε dsg
.

Moreover, since the dimension of Vk ,ε is finite then there exists a function vε ∈ Vk ,ε
such that

σ N
k (M/Bε , g) ≤ ∫M/Bε

∣∇vε ∣2dvg

∫∂M/∂Bε
v2

ε dsg
.(2.3)

Let vε = ∑k
i=1 c i u i ,ε . We build the following function v = ∑k

i=1 c i u i ∈ Vk ⊂ H1(M , g).
Note that ∇vε = ∑k

i=1 c i∇u i ,ε = ∑k
i=1 c i∇u i = ∇v on M/Bε . Thus, ∫M/Bε

∣∇vε ∣2dvg =
∫M/Bε

∣∇v∣2dvg → ∫M ∣∇v∣2dvg as ε → 0. Moreover, it is easy to see that

∫
∂M/∂Bε

v2
ε dsg = ∑

i
c2

i (∫∂M/∂Bε

u2
i dvg −

1
L(∂M/∂Bε , g)(∫∂M/∂Bε

u i dsg)
2

)

+∑
i≠ j

2c i c j(∫
∂M/∂Bε

u i u jdsg −
1

L(∂M/∂Bε , g) ∫∂M/∂Bε

u i dsg ∫
∂M/∂Bε

u jdsg),

which converges to ∫∂M v2dsg as ε → 0. Then (2.3) implies

lim sup
ε→0

σ N
k (M/Bε , g) ≤ lim sup

ε→0

∫M/Bε
∣∇vε ∣2dvg

∫∂M/∂Bε
v2

ε dsg
= ∫M ∣∇v∣2dvg

∫∂M v2dsg
≤ σk(M , g). ∎

Now, we are ready to prove the Lemma. The proof is similar to the proof of [MS20,
Lemma 3.2]. Let uε be a normalized σ N

k -eigenfunction. By Claim 2 uε are uniformly
bounded. If Bε ∩ ∂M = Ø, then we take the harmonic continuation into Bε. It is known
that the operators of harmonic continuation into Bε are uniformly bounded (see
[RT75, Example 1]). Otherwise we extend uε into Bε by E(uε). By Claim 1 these
operators are also uniformly bounded. Therefore, we get a uniformly bounded in
H1(M , g) sequence {ũε}. Then there exists ε l → 0 such that ũε l ⇀ u in H1(M , g).
Thus, ũε l → u in L2(M , g) by the Rellich–Kondrachov embedding theorem. The
standard elliptic estimates imply uε l → u in C∞l oc(M/{p}). Consider a function φ ∈
C∞c (M/{p}) such that supp(φ) ⊂ M/BR for a ball BR centered at p with R fixed.
Extracting a subsequence by Claim 2 one can assume that σ N

k (M/Bε l , g) → σ . Then
we have

∫
M
⟨∇u,∇φ⟩dvg = lim

l→0∫M/BR

⟨∇uε l ,∇φ⟩dvg

= lim
l→0

σ N
k (M/Bε l , g)∫

M/BR

uε l φdvg = σ ∫
M

uφdvg .

Hence, u is an eigenfunction with eigenvalue σ . Thus all accumulation points of
{σ N

k (M/Bε l , g)} are in the Steklov spectrum of M. Our aim now is to show that
σ = σk(M , g). We will do this by showing that the u is orthogonal in L2(∂M , g) to
the first k − 1 Steklov eigenfunctions of (M , g). We use the proof by induction.
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Let uε be a first Steklov–Neumann eigenfunction of (M/Bε , g). We have already
shown that ũε ⇀ u in H1(M , g) then by the trace embedding theorem one has
ũε → u in H1/2(∂M , g) and hence in L2(∂M , g). In particular, one has ∣∣uε −
u∣∣L2(∂M/∂Bε ,g) → 0 as ε → 0. Then

∣∫
∂M/∂Bε

(uε − u)dsg ∣ ≤ ∫
∂M/∂Bε

∣uε − u∣dsg

≤ L(∂M/∂Bε , g)1/2∣∣uε − u∣∣1/2L2(∂M/∂Bε ,g),

which converges tp 0 as ε → 0. Since ∫∂M/∂Bε
uεdsg = 0 one then has that

limε→0 ∫∂M/∂Bε
udsg = ∫∂M udsg = 0. Therefore, u cannot be a constant and since

by Claim 2 lim supε→0 σ N
1 (M/Bε , g) = σ ≤ σ1(M , g) and σ belongs to the Steklov

spectrum of (M , g) we conclude that u is a first Steklov eigenfunction of (M , g) and
σ = σ1(M , g).

Now suppose that lim supε→0 σ N
i (M/Bε , g) = σi(M , g) for any i < k. Let uε be a

kth Steklov–Neumann eigenfucntion of (M/Bε , g). Since ũε ⇀ u in H1(M , g), then
the trace embedding theorem implies that ũε → u in H1/2(∂M , g) in particular ũε → u
in L2(∂M , g) whence ∣∣uε − u∣∣L2(∂M/∂Bε ,g) → 0. Let vε be an ith Steklov–Neumann
eigenfunction of (M/Bε , g) with i < k. Then ∫∂M/∂Bε

uεvεdsg = 0; moreover, we have
supposed that v is an ith Steklov eigenfunction of (M , g). One has

∣∫
∂M/∂Bε

(uεvε − uv)dsg ∣

≤ ∫
∂M/∂Bε

∣uεvε − uv∣dsg = ∫
∂M/∂Bε

∣uεvε − uεv + uεv − uv∣dsg

≤ ∫
∂M/∂Bε

∣uε(vε − v)∣dsg + ∫
∂M/∂Bε

∣v(uε − u)∣dsg

≤ (∫
∂M/∂Bε

u2
ε dsg)

1/2

(∫
∂M/∂Bε

(vε − v)2dsg)
1/2

+ (∫
∂M/∂Bε

v2
ε dsg)

1/2

(∫
∂M/∂Bε

(uε − u)2dsg)
1/2

→ 0 as ε → 0.

Hence, ∫∂M/∂Bε
uεvεdsg → ∫∂M uvdsg as ε → 0. But ∫∂M/∂Bε

uεvεdsg = 0 for all ε. Thus,
∫∂M uvdsg = 0. We conclude that u is orthogonal in L2(∂M , g) to the first k − 1 Steklov
eigenfunctions. Thus, σ = σ N

k (M , g). ∎

We endow the set of Riemannian metrics on Σ with the C∞−topology. Then the
following “continuity” result holds.

Proposition 2.2 Let Σ be a surface with boundary and Ω ⊂ Σ be a Lipschitz domain.
Let the sequence of Riemannian metrics gm on Σ converge in C∞−topology to the metric
g. Then σ∗k (Σ, [gm]) → σ∗k (Σ, [g]). Similarly, if hm ∣Ω converge to g∣Ω in C∞-topology,
then σ N∗

k (Ω, ∂S Ω, [hm ∣Ω]) → σ N∗
k (Ω, ∂S Ω, [g∣Ω]).

Proof We provide a proof for the functional σ∗k (Σ, [g]). The proof for the functional
σ N∗

k (Ω, [g∣Ω]) follows the exactly same arguments.
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Choose any ε > 0 and consider m large enough. One has

1
1 + ε

f gm(v , v) ≤ f g(v , v) ≤ (1 + ε) f gm(v , v), ∀v ∈ Γ(TM/{0}),

where f is any positive smooth function on Σ. Then by [CGR18, Proposition 32] one
has

1
(1 + ε)6 σ̄k(Σ, f gm) ≤ σ̄k(Σ, f g) ≤ (1 + ε)6 σ̄k(Σ, f gm).

Taking the supremum over all f yields

1
(1 + ε)6 σ∗k (Σ, [gm]) ≤ σ∗k (Σ, [g]) ≤ (1 + ε)6σ∗k (Σ, [gm]),

which completes the proof since this inequality holds for any ε > 0. ∎

2.2 Discontinuous metrics

Let Σ be a compact surface with boundary. Consider a set of pairwise disjoint
Lipschitz domains {Ω i}s

i=1 in Σ such that Σ = ⋃s
i=1 Ω i . Let C∞+ (Σ, {Ω i}) denote a set

of functions on ⋃s
i=1 Ω i such that ρ ∈ C∞+ (Σ, {Ω i}) means that ρ∣Ω i = ρ i ∈ C∞(Ω i)

are positive for every i. Similarly, C∞(Σ, {Ω i}) denotes a set of “smooth” functions
on ⋃s

i=1 Ω i . We introduce discontinuous metrics on Σ defined as ρg ∈ [g], where
ρ ∈ C∞+ (Σ, {Ω i}) and g is a genuine Riemannian metric. The set Ck(Σ, {Ω i}) of
functions which are of class Ck in every Ω i is defined in a similar way. The Steklov
spectrum of the metric ρg is defined as the set of critical values of the Rayleigh quotient

Rρ g[φ] =
∫Σ ∣∇g φ∣2g dvg

∫∂Σ ρ 1
2 φ2dsg

.

This is the Rayleigh quotient of the Steklov problem with density ρ. The Steklov
spectrum with density ρ is well-defined for any non-negative ρ ∈ L∞(Σ, g) (see
[Kok14, Proposition 1.3]). Elliptic regularity implies that the eigenfunctions are at least
1/2-Hölder continuous on ∂Σ. Therefore, Steklov eigenvalues of the metric ρg admit
the following variational characterization

σk(Σ, ρg) = inf
Ek+1

sup
φ∈Ek+1

Rρ g[φ],

where Ek+1 ranges over all (k + 1)-dimensional subspaces of C0(Σ).
We introduce the following notation

σ∗k (Σ, {Ω i}, [g]) = sup{σ̄k(ρg) ∣ ρ ∈ C∞+ (Σ, {Ω i})},

where σ̄k(ρg) is the normalized kth eigenvalue given by

σ̄k(ρg) = σk(ρg)Lρ g(∂Σ).

The following lemma particularly asserts that the quantity σ∗k (Σ, {Ω i}, [g]) is well-
defined.
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Lemma 2.3 Let (Σ, g) be a Riemannian surface with boundary. Consider a set of
pairwise disjoint Lipschitz domains Ω i such that Σ = ⋃s

i=1 Ω i . Then one has
σ∗k (Σ, {Ω i}, [g]) = σ∗k (Σ, [g]).

Proof The proof follows the same steps as the proof of Lemma 2 in the paper [FN99].
We provide it here.

Since the set of discontinuous metrics is larger than the set of continuous ones, we
have σ∗k (Σ, {Ω i}, [g])) ≥ σ∗k (Σ, [g]). Therefore, we have to prove that

σ∗k (Σ, {Ω i}, [g])) ≤ σ∗k (Σ, [g]),

which is equivalent to
σk(Σ, ρg) ≤ σ∗k (Σ, [g]),(2.4)

where ρ ∈ C∞+ (Σ, {Ω i}) and ∫∂Σ ρ1/2dsg = 1.
Let Ek be the eigenspace corresponding to the kth Steklov eigenvalue of the metric

ρg. We put

S = {u ∈ H1(Σ, ρg) ∣ u ⊥L2(∂Σ,ρ g) E0 , . . . , Ek−1 ,∫
∂Σ

ρ1/2u2dsg = 1}

For any ε > 0 we consider the functional

Fρ[u] ∶= ∫
Σ
∣∇gu∣2dvg − (σk(Σ, ρg) − ε)∫

∂Σ
ρ1/2u2dsg .

It immediately follows that Fρ[u] ≥ ε,∀u ∈ S.
Let 0 < a ∶= min∪{Ω i} ρ and max∪{Ω i} =∶ b < ∞. We define a smooth nondecreas-

ing function χ(t) on R+ that equals zero if t < 1/2 and equals 1 when t > 1 and define
the following parametrized family of functions:

ρδ(x) =
⎧⎪⎪⎨⎪⎪⎩

ρ(x) if x ∉ U ,
ρ(x)χ( d2(x)

δ ) + b(1 − χ( d2(x)
δ )) if x ∈ U ,

where d is the distance function from a point x ∈ Σ to ∪{∂Ω i ∩ ∂Ω j}, i ≠ j and U is a
sufficiently small tubular neighborhood of ∪{∂Ω i ∩ ∂Ω j}, i ≠ j where d2 is smooth.
We have:

(i) ( a
b )ρ ≤ ρδ ≤ ( b

a )ρ;
(ii) limδ→0 ∫∂Σ ρ1/2

δ dsg = 1; and
(iii) limδ→0 ∫∂Σ ∣ρ

1/2
δ − ρ1/2∣qdsg = 0,∀q < ∞.

We want to prove that Fρδ [u] ≥ 0,∀u ∈ S.
Consider T = (σk(Σ, ρg) − ε)

√
b
a and divide the set S into two parts S1 and S2:

S1 ∶= {u ∈ S∣ ∫
Σ
∣∇gu∣2dvg ≥ T} ,

S2 ∶= S/S1 = {u ∈ S∣ ∫
Σ
∣∇gu∣2dvg < T} .

If u ∈ S1 then

Fρδ [u] = ∫Σ
∣∇gu∣2dvg − (σk(Σ, ρg) − ε)∫

∂Σ
ρ1/2

δ u2dsg
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≥ (σk(Σ, ρg) − ε)
⎛
⎝

√
b
a
− ∫

∂Σ
ρ1/2

δ u2dsg
⎞
⎠

≥ (σk(Σ, ρg) − ε)
√

b
a
(1 − ∫

∂Σ
ρ1/2u2dsg) = 0.

Let us show that ∣∣u∣∣Lp(∂Σ,g) with p ≥ 2 is bounded for any u ∈ S2. We consider the
following operator L[u] ∶= ∫∂Σ uρ1/2dsg . For this operator, one has

∣L[u]∣ ≤ C ∫
∂Σ
∣u∣dsg ≤ C∣∣u∣∣L2(∂Σ,g) ≤ C∣∣u∣∣H1(Σ,g) ,

which implies that L ∈ H−1(Σ, g). Here, we used in order the boundedness of ρ,
the Cauchy–Schwarz and the trace inequalities. We also used the convention that C
denotes any positive constant depending only on Σ. [AH96, Lemma 8.3.1] applied to
the operator L implies that there exists a constant C > 0 depending only on Σ such
that

∣∣u∣∣2L2(Σ,g) ≤ C∣∣∇u∣∣2L2(Σ,g) < CT ,

where we used the fact that L[u] = 0 ∀u ∈ S. By the trace theorem one then has

∣∣u∣∣2H1/2(∂Σ,g) ≤ C′∣∣u∣∣2H1(Σ,g) < C′′ ,

where C′′ = C′(CT + T). Finally by the Sobolev embedding theorem (see for instance
[DNPV12, Theorem 6.9]) we get

∣∣u∣∣Lp(∂Σ,g) ≤ C′′′∣∣u∣∣H1/2(∂Σ,g) < C̃ ∀2 ≤ p < ∞,

where C̃ = C′′′
√

C′′. Therefore, if u ∈ S2 then

Fρδ [u] = ∫Σ
∣∇gu∣2dvg − (σk(Σ, ρg) − ε)∫

∂Σ
ρ1/2

δ u2dsg

= ∫
Σ
∣∇gu∣2dvg − (σk(Σ, ρg) − ε) − (σk(Σ, ρg) − ε)∫

∂Σ
(ρ1/2

δ − ρ1/2)u2dsg

≥ ε − (σk(Σ, ρg) − ε)(∫
∂Σ
(ρ1/2

δ − ρ1/2)qdsg)
1/q

(∫
∂Σ
∣u∣pdsg)

2/p

≥ ε − (σk(Σ, ρg) − ε) ε
σk(Σ, ρg) − ε

= 0.

In the last inequality, we put

(∫
∂Σ
(ρ1/2

δ − ρ1/2)qdsg)
1/q

(∫
∂Σ
∣u∣pdsg)

2/p

= ε
σk(Σ, ρg) − ε

since ∫∂Σ(ρ1/2
δ − ρ1/2)qdsg → 0 as δ → 0 and ∫∂Σ ∣u∣pdsg < +∞.

Hence, Fρδ [u] ≥ 0,∀u ∈ S which implies σk(Σ, ρδ g) ≥ σk(Σ, ρg) − ε. We then
have

σ̄k(Σ, ρδ g) = σk(Σ, ρδ g)Lρδ g(∂Σ) ≥ σk(Σ, ρg)Lρδ g(∂Σ) − εLρδ g(∂Σ).
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Therefore, σ∗k (Σ, [g]) ≥ σk(Σ, ρg)Lρδ g(∂Σ) − εLρδ g(∂Σ). Letting δ → 0 one then
gets σ∗k (Σ, [g]) ≥ σk(Σ, ρg) − ε that implies (2.4) since ε is arbitrary small. ∎

Lemma 2.3 implies the following lemma whose proof is postponed to Section 7.2.
Lemma 2.4 Let (Σ, g) be a Riemannian surface with boundary. Consider a set of
pairwise disjoint domains Ω i such that Σ = ⋃s

i=1 Ω i and Ω i ∩ ∂Σ = ∂S Ω i . Let (Ω, h) =
⊔(Ω i , g∣Ω i

) and ∂S Ω = ⊔∂S Ω i . Then for all k ≥ 0 one has

σ∗k (Σ, [g]) ≥ σ N∗
k (Ω, ∂S Ω, [h]).

2.3 Steklov–Neumann spectrum of a subdomain

This section is devoted to the following technical lemma

Lemma 2.5 Let ρδ ∈ C∞+ (Σ, {Ω, Σ/Ω}) such that ρδ ∣Ω ≡ 1 and ρδ ∣Σ/Ω ≡ δ. Then one
has

lim inf
δ→0

σk(ρδ g) ≥ σ N
k (Ω, ∂S Ω, g),

where σ N∗
k (Ω, ∂S Ω, g) is the kth Steklov–Neumann eigenvalue of the domain (Ω, g)

and ∂S Ω = ∂Σ ∩Ω ≠ Ø.

Proof The idea of the proof comes from the proof of [EPS15, Section 2, Step 2].
Case I. First, we consider the case when Ωc ∩ ∂Σ ≠ Ø. Let Ωc denotes int(Σ/Ω)

and ∂S Ωc = ∂Ωc ∩ ∂Σ. Since by elliptic regularity eigenfunctions of the Steklov prob-
lem with bounded density are in H1 on the boundary we can restrict ourselves to the
space H1(∂Σ, g). More precisely, let ψ be an eigenfunction with eigenvalue σ then by
elliptic regularity:

∣∣ψ∣∣2H1(∂Σ,ρδ g) ≤ C(∣∣σψ∣∣2L2(∂Σ,ρδ g) + ∣∣ψ∣∣2L2(∂Σ,ρδ g)) ≤ C(σ 2 + 1)∣∣ψ∣∣2L2(∂Σ,ρδ g)

for some positive constant C. This implies

∣∣∇ψ∣∣2L2(∂Σ,ρδ g)

∣∣ψ∣∣2L2(∂Σ,ρδ g)
≤ C(σ 2 + 1) − 1.

More generally we see that if φ ∈ span⟨ψ0 , . . . , ψk⟩, where ψ i is in the ith eigenspace
of (Σ, gδ) then there exists a constant Ck > 0 such that

∣∣∇φ∣∣2L2(∂Σ,ρδ g)

∣∣φ∣∣2L2(∂Σ,ρδ g)
≤ Ck .

Therefore, we set

H ∶= {φ ∈ H1(∂Σ, g) ∣
∣∣∇φ∣∣2L2(∂Σ,ρδ g)

∣∣φ∣∣2L2(∂Σ,ρδ g)
≤ Ck},

H1 ∶= {φ ∈H ∣ ∂φ̂
∂n

= 0 on ∂S Ωc} ,

where φ̂ stands for the harmonic continuation of φ into Σ and

H2 ∶= {φ ∈H ∣ φ ∈ H1
0(∂S Ωc , g), φ∣Ω = 0}.
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Claim 1. One has

∫
Σ
⟨∇φ̂,∇ψ̂⟩ g̃ dv g̃ = 0,∀φ ∈H1 , ψ ∈H2 ,

for any metric g̃ ∈ [g].

Proof

∫
Σ
⟨∇φ̂,∇ψ̂⟩ g̃ dv g̃ = ∫

Σ
Δ g̃ φ̂ψ̂dv g̃ + ∫

∂Σ

∂φ̂
∂ñ

ψds g̃

= ∫
∂S Ωc

∂φ̂
∂ñ

ψds g̃ + ∫
∂S Ω

∂φ̂
∂ñ

ψds g̃ = 0. ∎

For the sake of simplicity, we use the symbols σ δ
k for σk(ρδ g), gδ for ρδ g and Rδ

for the Rayleigh quotient

Rδ[φ] =
∫Σ ∣∇φ̂∣2gδ

dvgδ

∫∂Σ φ2dsgδ

.

Claim 2. There exists a constant that we also denote by Ck > 0 such that σ δ
k ≤ Ck .

Proof Theorem 1.1 implies that there exists a constant C(k) > 0 such that

σ∗k (Σ, [g]) ≤ C(k).

By Lemma 2.3 for every δ one has

σ δ
k Lgδ(∂Σ) ≤ σ∗k (Σ, [g]) ≤ C(k).

Therefore,

σ δ
k ≤

C(k)
Lgδ(∂Σ) =

C(k)
Lg(∂S Ω) + δ1/2Lg(∂S Ωc) ≤

C(k)
Lg(∂S Ω) = Ck . ∎

Let Wk be the set of k + 1-dimensional subspaces of H satisfying the condition
that Rδ ∣Wk ≤ Ck . Claim 2 particularly implies that the space spanned by the first k + 1
eigenfunctions is in Wk , i.e., Wk ≠ Ø.

Consider the operator E defined in section 2.1 by
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ΔgE(u) = 0 in Σ,
∂E(u)

∂n = 0 on ∂S Ωc ,
E(u) = u on ∂S Ω.

For a function φ ∈ H1(∂Σ, g), we fix its decomposition φ1 + φ2 with

φ1 =
⎧⎪⎪⎨⎪⎪⎩

φ on ∂S Ω,
E(φ) on ∂S Ωc

and φ2 = φ1 − φ. Note that φ̂1 = E(φ1).
Claim 3. For every φ ∈ V ∈ Wk there exists a constant C > 0 such that

∫
∂S Ωc

φ2
2 dsgδ ≤ C

√
δ∫

∂Σ
φ2dvgδ .
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Proof By Claim 1, one has

∫
Σ
⟨∇φ̂1 ,∇φ̂2⟩g dvg = 0.

Further, since φ ∈ V ∈ Wk , we have

Ck ≥ Rδ[φ] =
∫Σ ∣∇φ̂∣2g dvg

∫∂Σ φ2dsgδ

= ∫Σ ∣∇φ̂1∣2dvg + ∫Σ ∣∇φ̂2∣2g dvg

∫∂Σ φ2dsgδ

≥ ∫Ωc ∣∇φ̂2∣2g dvg

∫∂Σ φ2dsgδ

= 1
δ1/2

∫Ωc ∣∇φ̂2∣2g dvg

∫∂S Ωc φ2
2dsg

∣∣φ2∣∣2L2(∂S Ωc ,gδ)

∣∣φ∣∣2L2(∂Σ,gδ)

≥ σ D
1 (Ωc , ∂S Ωc , g)√

δ

∣∣φ2∣∣2L2(∂S Ωc ,gδ)

∣∣φ∣∣2L2(∂Σ,gδ)
,

where σ D
1 (Ωc , ∂S Ωc , g) is the first nonzero Steklov–Dirichlet eigenvalue of (Ωc , g)

(see [BKPS10]). ∎

Claim 4. For every φ ∈ V ∈ Wk and for every sufficiently small δ there exists a
constant C > 0 such that

∫
∂Σ

φ2 dsgδ ≤ (1 + Cδ1/4)∫
∂Σ

φ2
1 dsgδ .

Proof One has

∣∣φ∣∣2L2(∂Σ,gδ) = ∫∂S Ωc
(φ1 + φ2)2dvsδ + ∫∂S Ω

φ2
1 dsgδ

≤ (1 + 1
ε
)∫

∂Σ
φ2

2dsgδ + (1 + ε)∫
∂Σ

φ2
1 dsgδ ,

for every ε > 0. Applying Claim 3, we obtain

∣∣φ∣∣2L2(∂Σ,gδ) ≤ C
√

δ (1 + 1
ε
)∫

∂Σ
φ2dsgδ + (1 + ε)∫

∂Σ
φ2

1 dsgδ ,

and hence,

(1 − C
√

δ (1 + 1
ε
)) ∣∣φ∣∣2L2(∂Σ,gδ) ≤ (1 + ε)∣∣φ1∣∣2L2(∂Σ,gδ).

Choosing ε = δ1/4 completes the proof. ∎

Claim 5. For every φ ∈ V ∈ Wk and for every sufficiently small δ, there exists a
constant C > 0 such that

∫
∂S Ωc

φ2
1 dsg ≤ C ∫

∂S Ω
φ2

1 dsg .

Proof

Ck ≥
∫∂Σ ∣∇φ∣2gδ

dvgδ

∫∂Σ φ2dsgδ

≥ ∫∂S Ω ∣∇φ∣2g dsg

∫∂Σ φ2dsgδ

= ∫∂S Ω ∣∇φ1∣2g dsg

∫∂Σ φ2dsgδ

,
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since φ = φ1 on ∂S Ω. Then by Claim 4, one has

Ck ≥
∫∂S Ω ∣∇φ1∣2g dsg

∫∂Σ φ2dsgδ

≥ 1
1 + Cδ1/4

∫∂S Ω ∣∇φ1∣2g dsg

∫∂Σ φ2
1 dsgδ

,

which implies

∫
∂S Ω

∣∇φ1∣2g dsg ≤ Ck(1 + Cδ1/4)∫
∂Σ

φ2
1 dsgδ

= Ck(1 + Cδ1/4)(∫
∂S Ω

φ2
1 dsg + δ1/2 ∫

∂S Ωc
φ2

1 dsg).
(2.5)

For the rest of the proof C stands for any positive constant depending possibly on Σ
and g but not on δ or φ.

Note that ∂s Ω has positive capacity (see [HP18, pp.102-105]). Applying in order the
trace inequality, estimate (7.1), the Sobolev embedding and inequality (2.5) yield

∣∣φ1∣∣2L2(∂S Ωc ,g) ≤ C∣∣φ̂1∣∣2H1(Σ,g) ≤ C∣∣φ1∣∣2H1/2(∂S Ω,g)

≤ C∣∣φ1∣∣2H1(∂S Ω,g) = C(∣∣φ1∣∣2L2(∂S Ω,g) + ∣∣∇φ1∣∣2L2(∂S Ω,g))

≤ C(1 + Cδ1/4)(∣∣φ1∣∣2L2(∂S Ω,g) + δ1/2∣∣φ1∣∣2L2(∂S Ωc ,g)),

which implies the required inequality for δ small enough. ∎

Further, by the fact that ∫Σ⟨∇φ̂1 ,∇φ̂2⟩g dvg = 0 and by Claim 4 for every φ ∈ V ∈
Wk and one has

Rδ[φ] =
∫Σ ∣∇φ̂∣2g dvg

∫∂Σ φ2dsgδ

= ∫Σ ∣∇φ̂1∣2g dvg + ∫Σ ∣∇φ̂2∣2g dvg

∫∂Σ φ2dsgδ

≥ 1
1 + Cδ1/4

∫Σ ∣∇φ̂1∣2g dvg + ∫Σ ∣∇φ̂2∣2g dvg

∫∂Σ φ2
1 dsgδ

≥ 1
1 + Cδ1/4

∫Σ ∣∇φ̂1∣2g dvg

∫∂Σ φ2
1 dsgδ

= 1
1 + Cδ1/4

∫Σ ∣∇φ̂1∣2g dvg

∫∂S Ω φ2
1 dvg + δ1/2 ∫∂S Ωc φ2

1 dvg

and by Claim 5, we get

Rδ[φ] ≥
1

(1 + Cδ1/4)(1 + δ1/2C)
∫Σ ∣∇φ̂1∣2g dvg

∫∂S Ω φ2
1 dsg

≥ 1
(1 + Cδ1/4)(1 + δ1/2C)

∫Ω ∣∇φ̂1∣2g dvg

∫∂S Ω φ2
1 dsg

≥ 1
(1 + Cδ1/4)(1 + δ1/2C)RN

(Ω,∂S Ω,g)[φ∣Ω ],

where RN
(Ω,∂S Ω,g) denotes the Rayleigh quotient for the Steklov–Neumann problem in

the domain (Ω, g).
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Let V = span⟨ψ0 , . . . , ψk⟩, where ψ i is in the ith eigenspace of (Σ, gδ). Then

σ δ
k = max

φ∈V
Rδ[φ] ≥

1
(1 + Cδ1/4)(1 + δ1/2C) max

φ∈V
RN
(Ω,∂S Ω,g)[φ∣Ω ]

≥ 1
(1 + Cδ1/4)(1 + δ1/2C)σ N

k (Ω, ∂S Ω, g),
(2.6)

since the restriction to Ω of the functions ψ i form the space of the same dimension by
unique continuation. Finally, passing to the lim inf as δ → 0 in (2.6) yields the lemma.

Case II. The case when Ωc ∩ ∂Σ = Ø is trivial. Indeed, in this case, we have ∂S Ω =
∂Σ. Then for any function φ, one has

Rδ[φ] =
∫Σ ∣∇φ̂∣2g dvg

∫∂Σ φ2dsgδ

≥ ∫Ω ∣∇φ̂∣2g dvg

∫∂S Ω φ2dsg
= RN

(Ω,∂S Ω,g)[φ∣Ω ].

Therefore, considering V = span⟨ψ0 , . . . , ψk⟩, where ψ i is in the ith eigenspace of
(Σ, gδ) yields

σ δ
k = max

φ∈V
Rδ[φ] ≥ max

φ∈V
RN
(Ω,∂S Ω,g)[φ∣Ω ] ≥ σ N

k (Ω, ∂S Ω, g).

Taking lim inf as δ → 0 completes the proof.

Lemma 2.5 is the key ingredient in the proof of the following proposition. We
postpone the proof to Section 7.2.

Proposition 2.6 Let (Σ, g) be a Riemannian surface with boundary, Ω ⊂ Σ a Lipschitz
domain and ∂S Ω = ∂Σ ∩Ω ≠ Ø. Then for all k one has

σ∗k (Σ, [g]) ≥ σ N∗
k (Ω, ∂S Ω, [g∣Ω]).

Similarly, let (Σ, g) be a Riemannian surface whose boundary. Let ∂S Σ denote all
boundary components with the Steklov boundary condition and Ω ⊂ Σ be a Lipschitz
domain such that ∂S Ω ⊂ ∂S Σ. Then for all k one has

σ N∗
k (Σ, ∂S Σ, [g]) ≥ σ N∗

k (Ω, ∂S Ω, [g∣Ω]).

As a corollary of Proposition 2.6, we get

Corollary 2.7 Let (M , g) be a compact Riemannian surface with boundary. Consider
a sequence {Kn} of smooth domains Kn ⊂ M such that
• Kr ⊂ Ks ∀r > s and
• ∩n Kn = {p1 , . . . , p l} for some points p1 , . . . , p l ∈ M.
Then one has

lim
n→∞

σ N∗
k (M/Kn , ∂M/∂Kn , [g]) = σ∗k (M , [g]).

The proof is postponed to Section 7.2.

2.4 Disconnected surfaces

The proofs of two lemmas below follow the exactly same arguments as the proofs of
Lemmas 4.9 and 4.10 in [KM20]. Their proofs are postponed to Section 7.2.
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Lemma 2.8 Let (Ω, g) = ⊔s
i=1(Ω i , g i) be a disjoint union of Riemannian surfaces with

Lipschitz boundary. Set ∂S Ω = ⊔s
i=1∂S Ω i . Then for all k > 0 one has

σ N∗
k (Ω, ∂S Ω, [g]) = max

s
∑
i=1

k i=k , k i>0

s
∑
i=1

σ N∗
k i
(Ω i , ∂S Ω i , [g i]).

Lemma 2.9 Let (Σ, g) be a Riemannian surface with boundary. Consider a set of
pairwise disjoint Lipschitz domains {Ω i}s

i=1 in Σ such that Σ = ⋃s
i=1 Ω i and Ω i ∩ ∂Σ =

∂S Ω i ≠ Ø for 1 ≤ i ≤ s′. Then one has

σ∗k (Σ, [g]) ≥ max
∑s′

i=1 k i=k , k i≥0

s′

∑
i=1

σ N∗
k i
(Ω i , ∂S Ω i , [g]).

3 Proof of Theorem 1.2

The proof is inspired by the methods of the papers [YY80, GP, Kar16]. Let Σ be
a nonorientable compact surface of genus γ and l boundary components. We pass
to its orientable cover π∶ Σ̃ → Σ. Note that Σ is of genus γ and has 2l boundary
components. Let τ denote the involution exchanging the sheets of π. If h is a metric
on Σ then g ∶= π∗h is a metric on Σ̃ invariant with respect to τ, i.e., τ is an isometry
of g. Let DΣ̃ be the Dirichlet-to-Neumann map acting on functions on Σ̃. Then
τ ○DΣ̃ =DΣ̃ ○ τ and hence Steklov eigenfunctions are divided into τ-odd and τ-even
ones. The corresponding Steklov eigenvalues are also divided into odd and even ones.
Let σ τ

k (Σ̃, g) the kth τ-even Steklov eigenvalue. Then σ τ
k (Σ̃, g) = σk(Σ, h).

By a well-known theorem of Ahlfors [Ahl50], there exists a proper conformal
branched cover ψ∶ (Σ̃, g) → (D2 , gcan). The word “proper” means ψ(∂Σ̃) = S1. Let
d be its degree. Define the following pushed-forward metric g∗ on D

2: consider a
neighborhood U of a nonbranching point p ∈ D2. Its pre-image is a collection of
d neighborhoods U i , i = 1, . . . , d on Σ̃. Moreover, ψ i ∶= ψ∣Ui

∶U i → U is a diffeomor-
phism. Then the metric g∗ is defined on U as∑(ψ−1

i )∗g. The metric g∗ is a metric on
D

2 with isolated conical singularities at branching points of ψ. The following lemma
is trivial

Lemma 3.1 For any function u ∈ C∞(D2) one has

∫
S1

udvg∗ = ∫
∂Σ̃
(ψ∗u)dvg

and

d ∫
D2
∣∇g∗u∣2dvg∗ = ∫

Σ̃
∣∇g(ψ∗u)∣2dvg .

Further, suppose that there exists an involution ι of D2 such that

ψ ○ τ = ι ○ ψ.(3.1)

Lemma 3.2 The involution ι is an isometry of (D2 , g∗).
Proof Indeed, let the neighborhood U ⊂ D2 be small enough and do not contain
branching points. Then ψ−1(U) = ⊔d

i=1U i and applying τ one gets: τ(ψ−1(U)) =
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⊔d
i=1τ(U i). Note that condition (3.1) implies τ(ψ−1(U)) = ψ−1(ι(U)). Whence

ψ−1(ι(U)) = ⊔d
i=1τ(U i). Let ψ̃ i ∶= ψτ(U i). Then on U, one has

g∗ =
d
∑
i=1
(ψ̃ i
−1)∗g =

d
∑
i=1
(ψ̃ i
−1)∗τ∗g =

d
∑
i=1
(ψ̃ i
−1 ○ τ)∗g

=
d
∑
i=1
(ι ○ ψ̃ i

−1)∗g =
d
∑
i=1

ι∗(ψ̃ i
−1)∗g = ι∗g∗ . ∎

Consider a jth ι-even eigenfunction u j on (D2 , g∗)with corresponding eigenvalue
σ ι

j(D2 , g∗). Then the function ψ∗u j on Σ̃ is τ-even and hence it projects to a well-
defined function v j on Σ. We can construct the following function v = ∑k−1

j=0 c jv j .
Note that π∗v = ∑k−1

j=0 c jψ∗u j = ψ∗u, where u ∶= ∑k−1
j=0 c ju j . Further, let w i denote an

ith eigenfunction on Σ with eigenvalue σi(Σ, h). It is easy to see that one can always
find some coefficients c0 , . . . , ck−1 such that ∫∂Σ vw i dvh = 0, i = 0, . . . , k − 1. Then, we
can use v as a test function for σk(Σ, h):

σk(Σ, h) ≤ ∫Σ ∣∇hv∣2dvh

∫∂Σ v2dvh
= ∫Σ̃ ∣∇gψ∗u∣2dvg

∫∂Σ̃(ψ∗u)2dvg
= d ∫D2 ∣∇g∗u∣2dvg∗

∫S1 u2dvg∗
= dσ ι

k(D2 , g∗),

where we used Lemma 3.1. Moreover, the second identity in Lemma 3.1 implies
Lg∗(S1) = Lg(∂Σ̃) = 2Lh(∂Σ). Whence

σ k(Σ, h) ≤ d
2

σ ι
k(D2 , g∗)Lg∗(S1).(3.2)

Consider a conformal map ψ between surfaces with involution ψ∶ (Σ̃, τ) → (D2 , ι)
of minimal degree d. The map ψ is conformal, moreover, every involution exchanging
the orientation on D

2 is conjugate to the involution ι0(z) ∶= z̄, where we identify D
2

with the unit disc on the complex plane. Therefore, without loss of generality, we can
assume that ι = ι0. The fixed point set of ι0 is the diameter {z ∈ D2 ∣ Re(z) = 0}. Let
HD

2 denote a half-disc for example the right one and ∂S HD
2 is the right half-circle.

Thus, σ ι0
k (D2 , g∗) = σ N

k (HD
2 , ∂S HD

2 , g∗) and inequality (3.2) implies:

σ k(Σ, h) ≤ d
2

σ ι
k(D2 , g∗)Lg∗(S1) = dσ N

k (HD
2 , ∂S HD

2 , g∗)

≤ dσ N∗
k (HD

2 , ∂S HD
2 , [g∗]) ≤ dσ∗k (D2 , [gcan]) = 2πkd ,

(3.3)

where in the last inequality, we used Lemma 2.6 and the fact that there exists a unique
up to an isometry conformal class [gcan]onD

2. We want to estimate d in formula (3.3).
It is known that there exists a proper conformal branched cover f ∶ (Σ̃, g) → (D2 , gcan)
of degree d′ ≤ γ + 2l (see [Gab06]). One can construct the following map F(x) ∶=
f (x) f̄ (τ(x)). Note that F̄(x) = F(τ(x)) = ι(F(x)) and hence ι = ι0. Moreover, F is
proper and the degree of F is not greater than 2d′ = 2(γ + 2l). Hence, there exists
a proper map between (Σ̃, τ) and (D2 , ι0) of degree not exceeding 2d′ = 2(γ + 2l)
satisfying (3.1). Inequality (3.3) then implies

σ k(Σ, h) ≤ 4πk(γ + 2l).
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4 Geometric background

The aim of this section is the proof of Theorem 1.4. For this purpose, we provide a
necessary background concerning the geometry of moduli space of conformal classes
on a surface with boundary. We start with closed orientable surfaces.

4.1 Closed orientable surfaces

Let us recall the Uniformization theorem.

Theorem 4.1 Let Σ be a closed surface and g be a Riemannian metric on it. Then in the
conformal class [g], there exists a unique (up to an isometry) metric h of constant Gauss
curvature and fixed area. The area assumption is unnecessary except in the case of the
torus for which we fix the volume of h to be equal to 1.

Remark 4.1 It follows from the Gauss–Bonnet theorem that the metric h in the
Uniformization theorem is of Gauss curvature 1 in the case of the sphere, 0 in the
case of the torus and −1 in the rest cases.

Recall that a Riemannian metric h of constant Gaussian curvature −1 is called
hyperbolic and a Riemannian surface (Σ, h) endowed with a hyperbolic metric h is
called a hyperbolic surface. Note also that a hyperbolic surface is necessarily of negative
Euler characteristic. We also say that the torus endowed with a metric of curvature
h = 0 is a flat torus and the sphere endowed with the metric h = 1 is the standard
(round) sphere.

4.2 Hyperbolic surfaces

We recall that a pair of pants is a compact surface of genus 0 with 3 boundary com-
ponents. The following theorem plays an underlying role in the theory of hyperbolic
surfaces.

Theorem 4.2 (Collar theorem (see e.g., [Bus92])) Let (Σ, h) be an orientable compact
hyperbolic surface of genus γ ≥ 2 and let c1 , c2 , . . . , cm be pairwise disjoint simple closed
geodesics on (Σ, h). Then the following holds
(i) m ≤ 3γ − 3.

(ii) There exist simple closed geodesics cm+1 , . . . , c3γ−3 which, together with c1 , . . . , cm ,
decompose Σ into pairs of pants.

(iii) The collars

C(c i) = {p ∈ Σ ∣ dist(p, c i) ≤ w(c i)}
of widths

w(c i) =
π

l(c i)
(π − 2 arctan( sinh l(c i)

2
))

are pairwise disjoint for i = 1, . . . , 3γ − 3.
(iv) Each C(c i) is isometric to the cylinder

{(t, θ)∣ −w(c i) < t < w(c i), θ ∈ R/2πZ}
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with the Riemannian metric

( l(c i)
2π cos ( l(c i)

2π t)
)

2

(dt2 + dθ2).

The decomposition of (Σ, h) into pair of pants which we denote by P is called the
pants decomposition. We also say that the geodesics c1 , . . . , c3γ−3 form P.

4.3 Convergence of hyperbolic metrics

We endow the set of hyperbolic metrics on a given surface Σ with C∞−topology. In
this section, we describe the convergence on this topological set which is called the
moduli space of conformal classes on Σ. Essentially, two cases can happen: the injectivity
radii of a sequence of hyperbolic metrics do not go to 0 or they do. The first case
is described by Mumford’s compactness theorem and the second one is treated by the
Deligne–Mumford compactification.

Proposition 4.3 (Mumford’s compactness theorem (see e.g., [Hum97])) Let {hn} be
a sequence of hyperbolic metrics on a surface Σ of genus ≥ 2. Assume that the injectivity
radii inj(Σ, hn) satisfy lim sup

n→∞
inj(Σ, hn) > 0. Then there exists a subsequence {hnk},

sequence {Φk} of smooth automorphisms of Σ and a hyperbolic metric h∞ on Σ such
that the sequence of hyperbolic metrics {Φ∗k hnk} converges in C∞-topology to h∞.

If lim
n→∞

inj(Σ, hn) = 0 then we say that the sequence {hn} degenerates. The thick-
thin decomposition implies that if the sequence {hn}degenerates then for each n there
exists a collection {cn

1 , . . . , cn
s } of disjoint simple closed geodesics in (Σ, hn) whose

lengths tend to 0 and the length of any geodesic in the complement Σn = Σ/(cn
1 ∪⋯∪

cn
s ) is bounded from below by a constant independent of n. We call the geodesics
{cn

1 , . . . , cn
s } “pinching” or “collapsing.” The surface (Σn , hn) is possibly a discon-

nected hyperbolic surface with geodesic boundary. Let Σ̂∞ denote the surface having
the same connected components as Σn , but with boundary component replaced by
marked points. Note that each sequence {cn

i } corresponds to a pair of marked points
{p i , q i} on Σ̂∞, i = 1, . . . , s. Then the punctured surface Σ̂∞/{p1 , q1 , . . . , ps , qs} that
we denote by Σ∞ admits the unique hyperbolic metric h∞ with cusps at punctures.
Now we are ready to formulate one of the underlying results in the theory of moduli
spaces of Riemann surfaces.

Proposition 4.4 (Deligne–Mumford compactification (see e.g., [Hum97])) Let
(Σ, hn) be a sequence of hyperbolic surfaces such that inj(Σ, hn) → 0. Then up to
a choice of subsequence, there exists a sequence of diffeomorphisms Ψn ∶ Σ∞ → Σn
such that the sequence {Ψ∗n hn} of hyperbolic metrics converges in C∞loc-topology to the
complete hyperbolic metric h∞ on Σ∞. Furthermore, there exists a metric of locally
constant curvature ĥ∞ on Σ̂∞ such that its restriction to Σ∞ is conformal to h∞.

We call (Σ̂∞, ĥ∞) a limiting space of the sequence (Σ, hn). We also say that the
limit of conformal classes [hn] is the conformal class [ĥ∞] on Σ̂∞.
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Remark 4.2 We emphazise that ĥ∞ has locally constant curvature, since Σ̂∞ is
possibly disconnected and different connected components could have different signs
of Euler characteristic.

4.4 Orientable surfaces with boundary of negative Euler characteristic

Our exposition of this topic essentially follows the book [Jos07].
Let Σ be an orientable surface of genus γ with l boundary components. Consider

its Schottky double Σd defined in following way. We identify Σ with another copy Σ′
of Σ with opposite orientation along the common boundary. We get a closed oriented
surface of genus 2γ + l − 1. For example, the Schottky double of the disk is the sphere
and the Schottky double of the cylinder is the torus. In the rest cases we always get
a hyperbolic surface as the Schottky double. We endow the surface Σ with a metric
g. The next theorem plays a role of the Uniformization theorem for surfaces with
boundary.

Proposition 4.5 [OPS88] In the conformal class [g] of a metric g on the surface Σ,
there exists a unique (up to an isometry) metric of constant Gauss curvature and geodesic
boundary. More precisely, this metric is of curvature 1 in the case of D2, of the curvature
0 in the case of the cylinder and of curvature −1 in the rest cases.

Denote the metric of constant Gauss curvature and geodesic boundary from
Theorem 4.5 by h. Consider a Riemannian surface with boundary (Σ, h). Its Schottky
double admits the metric hd defined as hd

∣Σ = h and hd
∣′Σ
= h. It is a metric of constant

curvature and the involution ι ∶ Σd → Σd that interchanges Σ and Σ′ becomes an
isometry with ∂Σ as the fixed set. Moreover, (Σ, hn) = (Σd , hd

n)/ι.
Theorem 4.5 also says that the set of conformal classes on the surface Σ with

boundary is in one-to-one correspondence with the set of metrics of constant Gauss
curvature and geodesic boundary which is in the one-to-one correspondence with the
set of “symmetric” metrics (metrics that go to themselves under the involution ι) of
constant curvature on the Schottky double. We endow the set of metrics of constant
Gauss curvature and geodesic boundary with C∞−topology. Consider a sequence
of conformal classes {cn} on Σ. It uniquely defines a sequence of “symmetric”
metrics of constant curvature {hd

n} on Σd . For this sequence, we have the same
dichotomy as we have seen in the previous sections. Precisely, either inj(Σd , hd

n) ↛ 0
or inj(Σd , hd

n) → 0. In the first case we get a genuine Riemannian metric on Σd which
is obviously “symmetric” and of constant curvature while in the second case one can
find a set of simple closed geodesics {cn

1 , . . . , cn
s }, where s ≤ 6γ + 3l − 6 whose lengths

lhd
n
(cn

i ) → 0. For the geodesics cn
i there exist two possibilities: either ι(cn

i ) = cn
i or

ι(cn
i ) = cn

j with j ≠ i. The first possibility implies that the geodesic cn
i crosses ∂Σ which

corresponds to two situations as well: either cn
i has exactly two points of intersection

with ∂Σ or it belongs to ∂Σ, i.e., it is one of the boundary components. The second
possibility implies that cn

i does not crosse ∂Σ. Taking quotient by ι, we then get
three types of pinching geodesics on (Σ, hn)with inj(Σ, hn) → 0: pinching boundary
components, pinching simple geodesics which have exactly two points of intersection
with the boundary and pinching simple closed geodesics which do not cross the
boundary.
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4.5 Nonorientable surface with boundary of negative Euler characteristic

Let Σ be a compact nonorientable surface with l boundary components. Note that
the Uniformization Theorem 4.5 also holds for nonorientable surfaces. Pick a metric
h of constant Gauss curvature and geodesic boundary. We pass to the orientable
cover that we denote by Σ̃. The surface Σ̃ is a compact orientable surface with 2l
boundary components. The pull-back of the metric h that we denote by h̃ is a metric
of constant Gauss curvature and with geodesic boundary. Moreover, this metric is
invariant under the involution changing the orientation on Σ̃. Consider a sequence
{hn} on Σ of metrics of constant Gauss curvature and geodesic boundary such
that inj(Σ, hn) → 0 as n →∞. This sequence corresponds to the sequence {h̃n} on
Σ̃ such that inj(Σ̃, h̃n) → 0 as n →∞. As we discussed in the previous section for
the sequence {h̃n}, one can find pinching geodesics of the following three types:
pinching boundary components, pinching simple geodesics crossing the boundary at
two points and pinching simple closed geodesics which do not cross the boundary.
Note that for the geodesics of the second type the points of intersection with the
boundary are not identified under the involution. Indeed, if the were identified then
the corresponding pinching geodesic had fixed ends under the involution. Applying
the involution to this geodesic we would get a pinching closed geodesic crossing
the boundary at two points which is not one of the possible types of pinching
geodesics. Consider now the geodesics of the third type. For every such geodesic
there are two possible cases: either this geodesic maps to itself under the involution
changing the orientation or it maps to another simple closed geodesic which does
not cross the boundary. Then taking the quotient by the involution changing the
orientation we get two types of simple closed geodesics on Σ which do not crosse
the boundary: one-sided geodesics which are the images of the geodesics described in
the first case and two-sided geodesics which are the images of the geodesics described
in the second case. The collars of one-sided geodesics are nothing but Möbius bands
while the collars of two-sided geodesics are cylinders. Therefore, if inj(Σ, hn) → 0
as n →∞, then one can find pinching geodesics of the following types: pinching
boundary components, pinching simple geodesics which have exactly two points of
intersection with the boundary, one-sided pinching simple closed geodesics not cross-
ing the boundary and two-sided pinching simple closed geodesics not crossing the
boundary.

4.6 Surfaces with boundary of non-negative Euler characteristic

Here we consider the cases of the disc, the cylinder C and the Möbius band MB.
It is known that the disc has a unique conformal class (up to an isometry). We

denote this conformal class as [gcan] or ccan , where gcan is the flat metric on the disc
D

2 with unit boundary length.
Accordingly to Theorem 4.5 in a conformal class on C there exists a flat metric with

geodesic boundary, i.e., a metric on the right circular cylinder. This metric is unique if
we fix the length of the boundary. The right circular cylinder is uniquely determined by
its height. Therefore, conformal classes on C are in one-to-one correspondence with
heights of right circular cylinders, i.e., the set of conformal classes is R>0. We will
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identify conformal classes on C with points of R>0. We say that the sequence {cn}
of conformal classes degenerates if either cn → 0 or cn →∞. The case cn → 0 corre-
sponds to a pinching geodesic having intersection with two boundary components
(i.e., the generatrix of the right circular cylinder). The case cn →∞ corresponds to
pinching boundary components.

In the case of the Möbius band we also use Theorem 4.5 which implies that in every
conformal class on MB there exists a flat metric with geodesic boundary which is
unique if we fix the length of the boundary. Passing to the orientable cover and pulling
back the flat metric from MB we get a flat cylinder with geodesic boundary. Then the
discussion in the previous paragraph implies that the conformal classes onMB are also
encoded byR>0. Identifying again conformal classes onMBwith points ofR>0, we get
two possible cases for a sequence of conformal classes {cn}: either cn → 0 or cn →∞.
In both cases, we say that the sequence {cn} degenerates. The first case corresponds
to a pinching geodesic having two points of intersection with boundary. The second
case corresponds to the collapsing boundary.

5 Proof of Theorem 1.4

Negative Euler characteristic. Let Σ be a surface with boundary and cn → c∞ a
degenerating sequence of conformal classes. Consider the corresponding sequence
of metrics hn of constant Gauss curvature and geodesic boundary. Then as we have
noticed in Section 4.4, one can find s = s1 + s2 + s3 pinching geodesics of the following
three types: s1 pinching boundary components, s2 pinching geodesics that have two
points of intersection with boundary and s3 pinching simple closed geodesics that do
not intersect the boundary.

We introduce the following notations

• γn
i for collapsing geodesics, i = 1, . . . , s. If we do not indicate the superscript then

the symbol γ i stands for the genus;
• Cn

i for collars of collapsing geodesics, i = 1, . . . , s. Their widths are denoted by wn
i .

Moreover, Cn
i ∶= {(t, θ) ∣ 0 ≤ t < wn

i , 0 ≤ θ ≤ 2π} for 1 ≤ i ≤ s1 and Cn
i ∶= {(t, θ) ∣ −

wn
i < t < wn

i , 0 ≤ θ ≤ 2π} for s1 + 1 ≤ i ≤ s (if the geodesic is one-sided then we
consider Cn

i ∶= {(t, θ) ∣ −wn
i < t < wn

i , 0 ≤ θ ≤ 2π}/ ∼, where ∼ stands for (t, θ) ∼
(−t, π + θ)). Note that geodesics correspond to the line {t = 0}, the segments {θ =
0} and {θ = 2π} are identified for 1 ≤ i ≤ s1 and for s1 + s2 + 1 ≤ i ≤ s and they are
not identified for s1 + 1 ≤ i ≤ s1 + s2 and correspond to the segments of intersection
with the boundary;

• for 0 < a < wn
i , we denote Cn

i (0, a) the subset {(t, θ) ∣ 0 ≤ t ≤ a, 0 ≤ θ ≤ 2π} ⊂ Cn
i

for 1 ≤ i ≤ s1 and for −wn
i < a < b < wn

i , we denote Cn
i (a, b) the subset {(t, θ) ∣ a ≤

t ≤ b, 0 ≤ θ ≤ 2π} ⊂ Cn
i for s1 + 1 ≤ i ≤ s;

• Γn
i ∶= {(t, θ) ∈ Cn

i ∣ θ = 0 or θ = 2π} for s1 + 1 ≤ i ≤ s1 + s2;
• for −wn

i < a < b < wn
i , we set Γn

i (a, b) ∶= {(t, θ) ∈ Γn
i ∣ a ≤ t ≤ b} for s1 + 1 ≤ i ≤

s1 + s2;
• Σn

j for the jth connected component of Σ/ ∪s
i=1 C

n
i . We enumerate Σn

j by 1 ≤
j ≤ M such that M denotes the number of Σn

j and for all 1 ≤ j ≤ m one has
Σn

j ∩ ∂Σ ≠ Ø;
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• let αn = ∪s1+s2
i=1 {αn

i ,− , αn
i ,+}, where 0 ≤ αn

i ,± < wn
i . We denote by Σn

j (αn) the con-
nected component of

Σ/(
s1+s2

⋃
i=1

Cn
i (αn

i ,− , αn
i ,+) ∪

s
⋃

i=s1+s2+1
γn

i )

which contains Σn
j ;

• for αn = ∪s1+s2
i=1 {αn

i ,− , αn
i ,+}, where 0 ≤ αn

i ,± < wn
i we set In

j (αn) = Σn
j (αn) ∩ ∂Σ and

In
j = Σn

j ∩ ∂Σ where 1 ≤ j ≤ m;
• we use the notation an ≪ bn for two sequences {an} and {bn} satisfying an , bn →
+∞ and an

bn
→ 0 as n →∞.

5.1 Inequality ≥

We prove that

lim inf
n→∞

σ∗k (Σ, cn) ≥ max(
m
∑
i=1

σ∗k i
(Σγ i , l i , c∞) +

s1+s2

∑
i=1

σ∗r i
(D2)),(5.1)

For this aim we consider the domains Cn
i (0, αn

i ,+) for 1 ≤ i ≤ s1, Cn
i (αn

i ,− , αn
i ,+) for

1 + s1 ≤ i ≤ s1 + s2, where wn
i − αn

i ,± ≪ wn
i , αn

i ,± →∞ and the domains Σn
j (αn) for 1 ≤

j ≤ m. By Lemma 2.9, we have

σ∗k (Σ, cn) ≥ max(
s1

∑
i=1

σ N∗
r i
(Cn

i (0, αn
i ,+), γn

i , cn)

+
s1+s2

∑
i=1+s1

σ N∗
r i
(Cn

i (αn
i ,− , αn

i ,+), Γn
i (αn

i ,− , αn
i ,+), cn) +

m
∑
j=1

σ N∗
k j
(Σn

j (αn), In
j (αn), cn)).

(5.2)

For 1 ≤ i ≤ s1, we define the conformal maps Ψn
i ∶ (Cn

i (0, αn
i ,+), cn) →

(D2 , [gcan]) as

Ψn
i (t, θ) = e

√
−1(θ+

√
−1t) .

The images of Ψn
i are the annuli D2/D2

e−αn
i ,+

exhausting D
2 as n →∞. We also note

that Ψn
i (γn

i ) = S1.
For s1 + 1 ≤ i ≤ s1 + s2, we define the conformal maps Ψn

i ∶ (Cn
i (αn

i ,− , αn
i ,+), cn) →

(D2 , [gcan]) as

Ψn
i (t, θ) = tan(θ − π +

√
−1t

4
) .

The images of Ψn
i that we denote by Ωn

i exhaust D2 as n →∞. We also denote the
image of Γn

i (αn
i ,−, αn

i ,+) by ∂S Ωn
i . Note that ∂S Ωn

i exhaust S1 as n →∞.
Finally, we take restrictions of the diffeomorphisms Ψ−1

n given by Proposition 4.4
to obtain the conformal maps Ψ̌n

j ∶ (Σn
j (αn), cn) → (Σ∞, Ψ∗n cn) where 1 ≤ j ≤ m. Let

Ω̌n
j ⊂ Σ∞ be the the image of Ψ̌n

j and ∂S Ω̌n
j ∶= Ψ̌n

j (In
j (αn)). The following lemma

holds
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Lemma 5.1 Let Σ∞j be the connected component Ψ̌n
j (Σn

j ) ⊂ Σ∞ where 1 ≤ j ≤ m. Then
the domains Ω̌n

j exhaust Σ∞j and ∂S Ω̌n
j exhaust ∂Σ∞j .

Proof Passing to the Schottky double of the surface Σ, we immediately deduce this
lemma from [KM20, Lemma 5.1]. ∎

Further, we apply the conformal transformations to (5.2) to get

σ∗k (Σ, cn) ≥ max(
s1

∑
i=1

σ N∗
r i
(D2/D2

e−αn
i ,+

, S1 , [gcan])

+
s1+s2

∑
i=1+s1

σ N∗
r i
(Ωn

i , ∂S Ωn
i , [gcan]) +

m
∑
j=1

σ N∗
k j
(Ω̌n

j , ∂S Ω̌n
j , [(Ψn)∗hn])).

(5.3)

It follows from Corollary 2.7 that the first two terms on the right hand side converge
to σr i (D2 , [gcan]). To complete the proof we will need the following lemma

Lemma 5.2 Let Σ̂∞j ⊂ Σ̂∞ be a closure of Σ∞j , 1 ≤ j ≤ m. Then for all r one has

lim inf
n→∞

σ N∗
r (Ω̌n

j , ∂S Ω̌n
j , [(Ψn)∗hn]) ≥ σ∗r (Σ̂∞j , [ĥ∞]).

We postpone the proof to Section 7.3.
Finally, taking lim inf n→∞ in (5.3) completes the proof of (5.1).

5.2 Inequality ≤

We prove the inverse inequality,

lim sup
n→∞

σ∗k (Σ, cn) ≤ max(
m
∑
i=1

σ∗k i
(Σγ i , l i , c∞) +

s1+s2

∑
i=1

σ∗r i
(D2)).(5.4)

For this aim we choose a subsequence cnm such that

lim
nm→∞

σ∗k (Σ, cnm) = lim sup
n→∞

σ∗k (Σ, cn).

Then we relabel the subsequence and denote it by {cn}. Therefore, one can choose
subsequences without changing the value of lim sup.

Case 1. Suppose that up to a choice of a subsequence the following inequality holds

σ∗k (Σ, cn) > σ∗k−1(Σ, cn) + 2π.

Then by [Pet19, Theorem 2] in the conformal class cn there exists a metric gn of unit
boundary length induced from a harmonic immersion with free boundary Φn to some
N(n)-dimensional ball BN(n), i.e.,

gn =
⟨Φn , ∂νn Φn⟩hn

σ∗k (Σ, cn)
hn

and such that σk(gn) = σ∗k (Σ, cn). Here, the metric hn is the canonical representative
in the conformal class cn . It is known that for any compact surface the multiplicity of
σk(gn) is bounded from above by a constant depending only on k and the topology of
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Σ (see for instance [FS12, KKP14]). Therefore, one can choose the number N(n) large
enough such that N(n) does not depend on n.

Assume that for the sequence {cn} the following inequality holds

lim sup
n→∞

σ∗k (Σ, cn) > max(
m
∑
i=1

σ∗k i
(Σγ i , l i , c∞) +

s1+s2

∑
i=1

σ∗r i
(D2)).(5.5)

For 1 ≤ i ≤ s1 we consider the conformal map Ψn
i ∶ (Cn

i , cn) → (D2 , [gcan]) defined
as Ψn

i (θ , t) = e
√
−1(θ+

√
−1t). The image of this map is nothing but D2/D2

e−wn
i

which
exhausts D2 as n →∞. The image of a pinching geodesic is S1. Then the map Φn

i ∶=
Φn ○ (Ψn

i )−1 ∶ D2/D2
e−wn

i
→ B

N satisfies the bubble convergence theorem for harmonic
maps with free boundary [LP17, Theorem 1]. Hence, there exist a regular harmonic map
with free boundary Φ i ∶ D2 → B

N and some harmonic extensions of nonconstant 1/2-
harmonic maps ω i

1 , . . . , ω i
t i
∶ D2 → B

N such that

∫
D2
∣∇Φ i ∣2dvgcan +

t j

∑
j=1
∫
D2
∣∇ω j

t i
∣2dvgcan = lim

n→∞∫γn
i

dsgn .

We denote limn→∞ ∫γn
i

dsgn by m i .

Proposition 5.3 For s1 + 1 ≤ i ≤ s1 + s2 there exist integers t i ≥ 0, non-negative
sequences {an

i , l}, {bn
i , l} with 1 ≤ l ≤ t i and a sequence {αn

i } such that

−wn
i ≪ αn

i ,− = bn
i ,0 ≪ an

i ,1 ≪ bn
i ,1 ≪⋯≪ an

i ,t i
≪ bn

i ,t i+1 ≪ an
i ,t i+1

= αn
i ,+ ≪ wn

i

and

m i , l = lim
n→∞

Lgn(Γn
i (an

i , l , bn
i , l)) > 0.

Moreover, there exists a set J ⊂ {1, . . . , m} such that for every j ∈ J one has

m j = lim
n→∞

Lgn(In
j (αn)) > 0

satisfying
s1

∑
i=1

m i +
s1+s2

∑
i=1

t i

∑
l=s1+1

m i , l +∑
j∈J

m j = 1,

with s1 +∑s1+s2
i=s1+1 t i is maximal.

Proof The proof follows the proofs of Claim 16, Claim 17 by [Pet19]. Precisely,
denying the proposition one can construct k + 1 test-functions such that σk(gn) ≤ o(1)
which contradicts inequality (1.2). The construction of these functions is given in the
proofs of Claim 16, Claim 17 by [Pet19]. Note that these functions equal 1 on Σn

j for
every m + 1 ≤ j ≤ M. ∎

We proceed with considering a sequence {dn
i , l} where s1 + 1 ≤ i ≤ s1 + s2 and 1 ≤

l ≤ t i such that

lim
n→∞

Lgn(Γn
i (an

i , l , dn
i , l)) = lim

n→∞
Lgn(Γn

i (dn
i , l , bn

i , l)) = m i , l /2.
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Let qn
i , l ≪ an

i , l , qn
i , l → +∞. Consider the conformal maps

Ψn
i , l ∶ (Cn

i (an
i , l − qn

i , l , bn
i , l + qn

i , l), cn) → (D2 , [gcan])

defined as

Ψn
i , l(t, θ) = tan(

θ − π +
√
−1(t − tn

i , l)
4

)

Let

Dn
i , j = Ψn

i , l(Cn
i (an

i , l − qn
i , l , bn

i , l + qn
i , l))

and

Sn
i , j = Ψn

i , l(Γn
i (an

i , l − qn
i , l , bn

i , l + qn
i , l))

Then Dn
i , j exhausts D2 and Sn

i , j exhausts S1 as n →∞. We also set

lim
n→∞

L(Ψn
i , l )∗ gn(Sn

i , j) = m i , l .

Consider the map Φn
i , l = Φn ○ (Ψn

i , l)−1∶ (Dn
i , j , Sn

i , j) → (BN , SN−1). We endow Dn
i , j

with the metric (Ψn
i , l)∗gn andB

N with the Euclidean metric. Then the map Φn
i , l is har-

monic with free boundary since Φn is harmonic with free boundary and Ψn
i , l is con-

formal. Moreover, it is shown in [Pet19] that the measure 1Sn
i , j
⟨Φn

i , l , ∂νΦn
i , l ⟩gcan dsgcan

does not concentrate at the poles (0, 1) and (0,−1) of D2. Indeed, if the measure
concentrated at the poles then one would obtain a contradiction with the maximality
of s1 +∑s1+s2

i=s1+1 t i .
The exactly same procedure can be carried out for components Σn

j (αn), j ∈ J.
The only difference is that now we use restrictions of diffeomorphisms Ψn given by
Proposition 4.4 instead of the explicit harmonic map as above. As a result, one obtains
domains Ω̌n

j ⊂ Σ∞ and harmonic maps with free boundary Φ̌n
j ∶ Ω̌n

j → B
N such that

the measure 1∂Ω̌n
j
⟨Φn

i , l , ∂νΦn
i , l ⟩gcan dsgcan does not concentrate at the marked points of

Σ̂∞.
Now thanks to inequality (5.5), we can construct k + 1 well-defined test-functions

for the Rayleigh quotient of σk using the limit functions of the sequences of maps Φ̂n
i , l

and Φ̂n
i as it was shown in [Pet19]. Precisely, let p i be the maximal integers such that

σ∗p i
(D2)
m i

< lim sup
n→∞

σ∗k (Σ, cn),(5.6)

where 1 ≤ i ≤ s1, p i , l the maximal integers such that

σ∗p i , l
(D2)

m i , l
< lim sup

n→∞
σ∗k (Σ, cn),(5.7)

where s1 + 1 ≤ i ≤ s1 + s2 and p j the maximal integers such that

σ∗p j
(Σ̂∞j , ĉ∞)

m j
< lim sup

n→∞
σ∗k (Σ, cn), j ∈ J .(5.8)
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Then one has

σ∗p i+1(D2) ≥ m i lim sup
n→∞

σ∗k (Σ, cn), 1 ≤ i ≤ s1 ,

σ∗p i , l+1(D2) ≥ m i , l lim sup
n→∞

σ∗k (Σ, cn), s1 + 1 ≤ i ≤ s1 + s2

and

σ∗p j+1(Σ̂∞j , ĉ∞) ≥ m j lim sup
n→∞

σ∗k (Σ, cn), j ∈ J .

If∑s1
i=1(p i + 1) +∑s1+s2

i=s1+1∑
t i
l=1(p i , l + 1) +∑ j∈J(p j + 1) ≤ k then by inequality (5.5) we

have
s1

∑
i=1

σ∗p i+1(D2) +
s1+s2

∑
i=s1+1

t i

∑
l=1

σ∗p i , l+1(D2) +∑
j∈J

σ∗p j+1(Σ̂∞j , ĉ∞) < lim sup
n→∞

σ∗k (Σ, cn),

which implies ∑s1
i=1 m i +∑s1+s2

i=s1+1∑
t i
l=1 m i , l +∑ j∈J m j < 1 and we arrive at a

contradiction with Proposition 5.3. Hence, ∑s1
i=1(p i + 1) +∑s1+s2

i=s1+1∑
t i
l=1(p i , l +

1) +∑ j∈J(p j + 1) ≥ k + 1.
Further, let dvg i

∞
= limn→∞(Ψn

i )∗dvgn , dvg i , l
∞
= limn→∞(Ψn

i , l)∗dvgn and dvg j
∞
=

limn→∞(Ψn
j )∗dvgn . Denote by d̂vg i

∞
, d̂vg i , l

∞
and d̂vg j

∞
the measures induced

by the compactification on D
2 for 1 ≤ i ≤ s1 and s1 + 1 ≤ i ≤ s1 + s2 and on Σ̂∞j ,

respectively. These measures are well-defined due to the nonconcentration argu-
ment explained above. Take orthonormal families of eigenfucntions (ϕ0

i , . . . , ϕp i
i )

in L2(D2 , d̂vg i
∞
) 1 ≤ i ≤ s1, (ϕ0

i , . . . , ϕp i , l
i ) in L2(D2 , d̂vg i , l

∞
) s1 + 1 ≤ i ≤ s1 + s2 and

(ψ0
j , . . . , ψp j

j ) in L2(Σ̂∞j , d̂vg j
∞
) such that for 0 ≤ e ≤ p i the function ϕe

i is an eigen-
function with eigenvalue σe(d̂vg i

∞
) on D

2, for 0 ≤ e ≤ p i , l the function ϕe
i is an

eigenfunction with eigenvalue σe(d̂vg i , l
∞
) onD

2 and for 0 ≤ r ≤ p j the function ψr
j is an

eigenfunction with eigenvalue σr(d̂vg j
∞
) on Σ̂∞j . The standard capacity computations

(see for instance [Pet19, Claim 1]) imply the existence of smooth functions supported
in a geodesic ball of a Riemannian manifold and having bounded Dirichlet energy.
More precisely, there exist positive smooth functions η i , η i , l , and η j for (D2 , d̂vg i

∞
),

(D2 , d̂vg i , l
∞
), and (Σ̂∞j , d̂vg j

∞
), respectively supported in geodesic balls B(x , r) cen-

tered at the compactification points x of radius r such that η ∈ C∞0 (B(x , r)) and η = 1
on B(x , ρnr) ⊂ B(x , r), where ρn → 0 as n →∞ and ∫Ω ∣∇η∣2g dvg ≤ C

log 1
ρn

, where η is
one of the functions η i , η i , l and η j , (Ω, dvg) is one of the corresponding manifolds
(D2 , d̂vg i

∞
), (D2 , d̂vg i , l

∞
) and (Σ̂∞j , d̂vg j

∞
). Moreover, if (Ω, dvg) = (D2 , d̂vg i , l

∞
) then

we additionally require ρn to satisfy ∂Dn
i , l /Sn

i , l ⊂ B(x , ρnr). Then, we define the
desired test-functions as

ξe
i = (Ψn

i )−1η i ϕe
i , 1 ≤ i ≤ s1

extended by 0 on Σ,

ξe
i , l = (Ψn

i , l)−1η i , l ϕe
i , s1 + 1 ≤ i ≤ s1 + s2
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extended by 0 on Σ and

ξr
j = Ψn

j η jψr
j , j ∈ J

extended by 0 on Σ. Note that all these functions have pairwise disjoint supports. Then
from the variational characterization of σk(gn) one gets

σk(gn) ≤ max{ max
1≤i≤s1

∫Σ ∣∇ξe
i ∣2gn

dvgn

∫∂Σ(ξe
i )2dsgn

, max
s1+1≤i≤s1+s2

∫Σ ∣∇ξe
i , l ∣2gn

dvgn

∫∂Σ(ξe
i , l)2dsgn

,

max
j∈J

∫Σ ∣∇ξr
j ∣2gn

dvgn

∫∂Σ(ξr
j)2dsgn

},

and passing to lim sup as n →∞, we get

lim sup
n→∞

σ∗k (Σ, cn) ≤ max{ max
1≤i≤s1

σ∗p i
(D2)
m i

, max
s1+1≤i≤s1+s2

σ∗p i , l
(D2)

m i , l
,

max
j∈J

σ∗p j
(Σ̂∞j , ĉ∞)

m j
}

which contradicts (5.6), (5.7), and (5.8). This means that if inequality (5.5) holds then
the sequence {cn} cannot degenerate. We arrived at a contradiction and inequality
(5.4) is proved.

Remark 5.1 Note that if s2 = 0, i.e., there are no pinching geodesics having inter-
section with boundary components, then we take the set J as J = {1, . . . , m}, i.e., we
consider Σn

j (αn), where 1 ≤ j ≤ m. If all the boundary components are getting pinched
then we set J = Ø and we only have deal with the functions ξe

i = (Ψn
i )−1η i ϕe

i extended
by 0 on Σ and σ∗p i

(D2) where 1 ≤ i ≤ s1. If s1 = s2 = 0, i.e., only geodesics of the third
type are getting pinched then we only have deal with functions ξr

j = Ψn
j η jψr

j , j ∈ J
extended by 0 on Σ and σ∗p j

(Σ̂∞j , ĉ∞) where J = {1, . . . , m}.

Case 2. Assume that up to a choice of a subsequence the following inequality holds

σ∗k (Σ, cn) ≤ σ∗k−1(Σ, cn) + 2π

then we prove inequality (5.4) by induction.
Consider the case k = 1 then by inequality (1.2) σ∗1 (Σ, cn) ≥ 2π. Suppose that up to

a choice of a subsequence one has σ∗1 (Σ, cn) > 2π. Then the case k = 1 falls under Case
1. Otherwise one has lim supn→∞ σ∗1 (Σ, cn) = 2π and the inequality (5.4) reads as

2π = lim sup
n→∞

σ∗1 (Σ, cn) ≤ max{σ∗1 (Σγ i , l i , c∞); 2π},

which is true. The base of induction is proved.
Suppose that the inequality holds for all numbers k′ ≤ k. We show that it also holds

for k + 1. Indeed, one has

σ∗k+1(Σ, cn) ≤ σ∗k (Σ, cn) + 2π = σ∗k (Σ, cn) + σ∗1 (D2)
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and we get

lim sup
n→∞

σ∗k+1(Σ, cn) ≤ max(
m
∑
i=1

σ∗k i
(Σγ i , l i , c∞) +

s1+s2

∑
i=1

σ∗r i
(D2)) + σ∗1 (D2)

≤ max(
m
∑
i=1

σ∗k i
(Σγ i , l i , c∞) +

s1+s2

∑
i=1

σ∗r i
(D2)),

where the maximum is taken over all possible combinations of indices such that
m
∑
i=1

k i +
s1+s2

∑
i=1

r i = k + 1,

since the term σ∗1 (D2) can be absorbed by one of the terms inside max using inequality
(1.1). The proof is complete.

Zero Euler characteristic. The case of the cylinder was essentially considered in
[Pet19, Section 7.1]. Indeed, it was proved that if the sequence of conformal classes
{cn} degenerates then

lim
n→∞

σ∗k (C, cn) ≤ max
i1+⋯+is=k

s
∑
q=1

σ∗iq
(D2) = 2πk.

Applying then inequality (1.2), one immediately gets that limn→∞ σ∗k (C, cn) = 2πk.
Consider the case of the Möbius band. If the sequence {cn} goes to 0 then it follows

from [Pet19, Section 7.1] that

lim
n→∞

σ∗k (MB, cn) ≤ max
i1+⋯+is=k

s
∑
q=1

σ∗iq
(D2) = 2πk.(5.9)

Indeed, we pass to the orientable cover which is a cylinder. Then inequality (5.9)
follows from [Pet19, Section 7.1, the case Rα → 1as α → +∞ in Petrides’ notations].

If the sequence {cn} goes to∞ then we prove that inequality (5.9) also holds. The
proof follows the exactly same arguments as in the proof of inequality (5.4). The analog
of the Case 1 forMB corresponds to the case of pinching boundary (see Remark (5.1)).

Therefore, in both cases inequality (5.9) holds. Applying inequality (1.2) once again
we then get that limn→∞ σ∗k (MB, cn) = 2πk.

6 Proof of Theorem 1.5

For the proof of Theorem 1.5, we will need to choose a “nice” degenerating sequence
of conformal classes, i.e., a degenerating sequence of conformal classes such that the
limiting space looks as simple as possible.

Lemma 6.1 Let Σ be a compact surface with boundary of negative Euler characteristic.
Then there exists a degenerating sequence of conformal classes such that the limiting space
is the disc.

Proof The proof is purely topological.
Assume that Σ is orientable. Then we consider collapsing geodesics shown in

Figure 3. Passing to the limit when the lengths of all pinching geodesics tend to zero
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Figure 3: Orientable surface with boundary. The lengths of all red geodesics tend to zero.

Figure 4: Orientable cover of a non-orientable surface of genus 0 with boundary. The lengths
of all red geodesics tend to zero.

and using the one-point cusps compactification we get an orientable surface of genus
0 with one boundary component, i.e., the disc.

If Σ is nonorientable then we pass to its orientable cover and we consider collapsing
geodesics shown in Figure 4 for genus 0 and Figure 5 for genus ≠ 0 (the pictures are
symmetric with respect to the involution changing the orientation, “the antipodal
map”). Passing to the limit when the lengths of all pinching geodesics tend to zero
and using the one-point cusps compactification, we get a disconnected surface with
two connected components which are topologically discs. The involution changing the
orientation maps one component to another one and hence passing to the quotient by
this involution we get just one disc. ∎

Now we are ready to prove Theorem 1.5.
Zero Euler characteristic. Let Σ be either the cylinder C or the Möbius band MB.

Then this case immediately follows from Theorem 1.4 by Remark 1.4. Indeed, if {cn}
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Figure 5: Orientable cover of a non-orientable surface of genus ≠ 0 with boundary. The lengths
of all red geodesics tend to zero.

denotes a degenerating sequence of conformal classes on Σ then by Theorem 1.4:

Iσ
k (Σ) ≤ lim

n→∞
σ∗k (Σ, cn) = 2πk.

But Iσ
k (Σ) ≥ 2πk by (1.2). Thus, Iσ

k (Σ) = limn→∞ σ∗k (Σ, cn) = 2πk and the degenerat-
ing sequence {cn} is minimizing.

Negative Euler characteristic. By Lemma 6.1, there exists a sequence of conformal
classes {cn} such that the limiting space Σ̂∞ is the disc. Then by Theorem 1.4, we have

lim
n→∞

σ∗k (Σ, cn) = max
∑ k j=k

∑ σ∗k j
(D2).

Moreover, we know that σ∗k (D2) = 2πk. Hence,

Iσ
k (Σ) ≤ lim

n→∞
σ∗k (Σ, cn) = 2πk.

Finally, by (1.2) one has Iσ
k (Σ) ≥ 2πk whence Iσ

k (Σ) = 2πk which completes the proof.

7 Appendix

7.1 A well-posed problem

In this section, we consider the problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δu = 0 in M ,
u = g on D,
∂u
∂n = 0 on N ,

(7.1)

where (M , h) is a Riemannian manifold with boundary such that D ∪ N = ∂M and D
has positive capacity.
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Let G be a smooth function such that G∣D = g and consider the function v = G − u.
Then substituting u = G − v into (7.1) implies:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δv = ΔG in M ,
v = 0 on D,
∂u
∂n =

∂G
∂n on N .

(7.2)

We introduce the space H1
D(M , h) as the closure in H1-norm of C∞-functions

vanishing on D. For a function u ∈ H1
D(M , h), we have the following coercivity

inequality:

∣∣u∣∣L2(M ,h) ≤ C∣∣∇u∣∣L2(M ,h) ,(7.3)

with the best constant C = 1√
λDN

1 (M ,h)
, where λDN

1 (M , h) is the first non zero eigen-

value of the mixed problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δu = λu in M ,
u = 0 on D,
∂u
∂n = 0 on N .

By the Lax–Milgram theorem and by virtue of the inequality (7.3) the problem (7.2)
admits a unique solution on the space H1

D(M , h). Thus, problem (7.1) also has a
solution. Moreover, it is easy to see that this solution is unique.

Our aim now is the following lemma.

Lemma 7.1 Let u satisfy the problem (7.1). Then one has

∣∣u∣∣H1(M ,h) ≤ C∣∣g∣∣H1/2(D ,h).

Proof The weak formulation of (7.1) reads

∫
M
⟨∇u,∇v⟩dvh = 0, ∀v ∈ H1

D(M , h).

Let G be any continuation of the function g into M, i.e., G ∈ H1(M , h) is any function
such that G∣D = g. Then substituting v = u −G in the previous identity yields

0 = ∫
M
⟨∇u,∇u −∇G⟩dvh = ∫

M
∣∇u∣2dvh − ∫

M
⟨∇u,∇G⟩dvh ,

whence

∫
M
∣∇u∣2dvh = ∫

M
⟨∇u,∇G⟩dvh ≤

1
2 ∫M

∣∇u∣2dvh +
1
2 ∫M

∣∇G∣2dvh .(7.4)

Further, it is easy to see that

∣∣u∣∣L2(M ,h) ≤ ∣∣u −G∣∣L2(M ,h) + ∣∣G∣∣L2(M ,h) .

Moreover, since u −G ∈ H1
D(M , h) one has

∣∣u −G∣∣L2(M ,h) ≤ C∣∣∇u −∇G∣∣L2(M ,h) ≤ C(∣∣∇u∣∣L2(M ,h) + ∣∣∇G∣∣L2(M ,h)).
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Substituting it in the previous inequality, we get
∣∣u∣∣L2(M ,h) ≤ C(∣∣∇u∣∣L2(M ,h) + ∣∣∇G∣∣L2(M ,h)) + ∣∣G∣∣L2(M ,h) .(7.5)

Plugging (7.4) in (7.5) yields
∣∣u∣∣L2(M ,h) ≤ C∣∣G∣∣H1(M ,h).(7.6)

Finally (7.4) and (7.6) imply
∣∣u∣∣H1(M ,h) ≤ C∣∣G∣∣H1(M ,h)(7.7)

for any function G ∈ H1(M , h) such that G∣D = g.

Lemma 7.2 The norms

inf
G∈H1(M ,h), G∣D=g

∣∣G∣∣H1(M ,h) and ∣∣g∣∣H1/2(D ,h)

are equivalent.

Proof By the trace inequality there exists a positive constant C1 such that for every
G ∈ H1(M , h) one has

∣∣g∣∣H1/2(D ,h) ≤ C1∣∣G∣∣H1(M ,h) ,

which implies:
∣∣g∣∣H1/2(D ,h) ≤ C1 inf

G∈H1(M ,h), G∣D=g
∣∣G∣∣H1(M ,h);(7.8)

Further, we construct a continuation G′ ∈ H1(M , h) of g with the property that there
exists a positive constant C2 such that for every g ∈ H1/2(D, h) one has:

∣∣G′∣∣H1(M ,h) ≤ C2∣∣g∣∣H1/2(D ,h).(7.9)

Let g̃ be any continuation of g on ∂M such that ∣∣g̃∣∣H1/2(N ,h) ≤ ∣∣g∣∣H1/2(D ,h). There-
fore, ∣∣g̃∣∣H1/2(∂M ,h) ≤

√
2∣∣g∣∣H1/2(D ,h) < ∞ and g̃ ∈ H1/2(∂M , h). Then we take the

harmonic continuation of g̃ into M as G′. By [Tay11, Proposition 1.7] there exists a
positive constant that C3 such that:

∣∣G′∣∣H1(M ,h) ≤ C3∣∣g̃∣∣H1/2(∂M ,h).

Since ∣∣g̃∣∣H1/2(∂M ,h) ≤
√

2∣∣g∣∣H1/2(D ,h) we get (7.9) with C2 =
√

2C3.
Therefore, (7.8) and (7.9) imply:

C−1
2 ∣∣G′∣∣H1(M ,h) ≤ ∣∣g∣∣H1/2(D ,h) ≤ C1 inf

G∈H1(M ,h), G∣D=g
∣∣G∣∣H1(M ,h),

whence
C−1

2 inf
G∈H1(M ,h), G∣D=g

∣∣G∣∣H1(M ,h) ≤ ∣∣g∣∣H1/2(D ,h) ≤

≤ C1 inf
G∈H1(M ,h), G∣D=g

∣∣G∣∣H1(M ,h),

since
∣∣G′∣∣H1(M ,h) ≥ inf

G∈H1(M ,h), G∣D=g
∣∣G∣∣H1(M ,h) .

And lemma follows. ∎
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Finally, taking the infimum over all G ∈ H1(M , h) such that G∣D = g in (7.7) and
using Lemma 7.2 complete the proof. ∎

7.2 Proofs of propositions of Section 2

This section contains the proofs of propositions in Section 2 analogous to propositions
in [KM20, Section 4] whose adaptation to the Steklov setting is rather technical.

Proof of Lemma 2.4 Let hm ∈ [h] be a maximizing sequence of metrics for
σ N∗

k (Ω, ∂S Ω, [h]) and gm ∈ [g] be a discontinuous metric on Σ defined as g∣Ω i =
h i . By the variational characterization of eigenvalues for all k one has σk(Σ, gm) ≥
σ N(Ω, hm) since the set of test functions for the Steklov–Neumann eigenvalues
C0(Σ, {Ω i}) is larger than the set C0(Σ) of test functions for σk(Σ, gm). Using the fact
that Lgm(∂Σ) = ∑i Lhm(∂S Ω i) ≥ Lgm(∂S Ω i) for any i and taking the limit as m →∞
we get

σ∗k (Σ, {Ω i}, [g]) ≥ σ N∗
k (Ω, ∂S Ω, [h]).

Finally by Lemma 2.3 one gets

σ∗k (Σ, [g]) ≥ σ N∗
k (Ω, ∂S Ω, [h]). ∎

Proof of Proposition 2.6 The proof is similar for both cases. The obvious analog of
Lemma 2.5 for the second case holds since its proof follows the exactly same arguments
as the proof of Lemma 2.5. For that reason we only provide the proof of Proposition
2.6 for the first case.

Take a maximizing sequence of metrics {h i ∣ h i ∈ [g∣Ω]} for the functional
σ N∗

k (Ω, ∂S Ω, [g]), i.e.,

lim
i→∞

σ̄ N
k (Ω, ∂S Ω, h i) = σ N∗

k (Ω, ∂S Ω, [g])

Let h i = f i g∣Ω , where f i ∈ C∞+ (Ω̄). We then define the metric h̃ i = f̃ i g on Σ, where
f̃ i is any positive continuation of the function f i into Ωc . It enables us to consider the
metric ρδ h̃ i , where as before

ρδ =
⎧⎪⎪⎨⎪⎪⎩

1 in Ω,
δ in Σ/Ω.

Lemma 2.5 implies

lim inf
δ→0

σk(ρδ h̃ i) ≥ σ N
k (Ω, ∂S Ω, h i).

Moreover, Lρδ h̃ i
(∂Σ) → Lh i (∂S Ω). By Lemma 2.3, we have

σ∗k (Σ, [g]) = σ∗k (Σ, {Ω, Σ/Ω}, [g]) ≥ lim inf
δ→0

σ̄k(ρδ h̃ i) ≥ σ̄ N
k (Ω, ∂S Ω, h i).

Therefore, passing to the limit as i →∞ one gets,

σ∗k (Σ, [g]) ≥ σ N∗
k (Ω, ∂S Ω, [g]). ∎
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Proof of Corollary 2.7 We show that
σ∗k (M , [g]) ≤ lim inf

n→∞
σ N∗

k (M/Kn , ∂M/∂Kn , [g]).

Let gm be a maximizing sequence for the functional σ∗k (M , [g]). For a fixed m, we
consider geodesic balls Bεn(p i) of radius εn → 0 in metric gm centered at the points
p1 , . . . , p l ∈ M such that Kn ⊂ ∪l

i=1Bεn(p i). We see that M/ ∪l
i=1 Bεn(p i) ⊂ M/Kn .

Then by Proposition 2.6 one has
σ N∗

k (M/Kn , ∂M/∂Kn , [g])
≥ σ N∗

k (M/ ∪l
i=1 Bεn(p i), ∂M/ ∪l

i=1 ∂Bεn(p i), [g])
≥ σ̄ N

k (M/ ∪l
i=1 Bεn(p i), ∂M/ ∪l

i=1 ∂Bεn(p i), gm).

(7.10)

Note that L(∂M/ ∪l
i=1 ∂Bεn(p i), gm) → L(∂M , gm) as n →∞ and by Lemma

2.1 one has σ N
k (M/ ∪l

i=1 Bεn(p i), ∂M/ ∪l
i=1 ∂Bεn(p i), gm) → σk(M , gm). Hence,

σ̄ N
k (M/ ∪l

i=1 Bεn(p i), ∂M/ ∪l
i=1 ∂Bεn(p i), gm) → σ̄k(M , gm) as n →∞. Taking

lim inf n→∞ in (7.10) one then gets
lim inf

n→∞
σ N∗

k (M/Kn , ∂M/∂Kn , [g]) ≥ σ̄k(M , gm).

Passing to the limit as m →∞, we get the desired inequality.
The inequality

lim sup
n→∞

σ N∗
k (M/Kn , ∂M/∂Kn , [g]) ≤ σ∗k (M , [g])

follows from Proposition 2.6. This completes the proof. ∎
Proof of Lemma 2.8 Essentially the idea of the proof comes from the paper [WK94].
We denote by ∂S Ω the part of the boundary with the Steklov boundary condition. We
also call ∂S Ω “Steklov boundary” and Lg(∂S Ω) “the length of Steklov boundary” in
metric g.

Inequality ≥.
Fix the indices k i > 0 satisfying ∑ k i = k and consider a maximizing sequence of

metrics {gm
i } such that σ̄ N

k i
(Ω i , ∂S Ω i , gm

i ) → σ N∗
k i
(Ω i , ∂S Ω i , [g i]). One can assume

that σ N
k i
(Ω i , ∂S Ω i , gm

i ) = σ N∗
k (Ω, ∂S Ω, [g]). Then, one has

Lgm
i
(∂S Ω i) →

σ N∗
k i
(Ω i , ∂S Ω i , [g i])

σ N∗
k (Ω, ∂S Ω, [g]) .

Let {gm} be a sequence of metrics on Ω defined as gm ∣Ω i = gm
i . Then for large

enough m one has that σ N
k (Ω, ∂S Ω, gm) = σ N∗

k (Ω, ∂S Ω, [g]), since the spectrum
of disjoint union is the union of spectra of each component. By definition of
σ N∗

k (Ω, ∂S Ω, [g]) we also have
σ N∗

k (Ω, ∂S Ω, [g])Lgm(∂S Ω) = σ N
k (Ω, ∂S Ω, gm)Lgm(∂S Ω) ≤ σ N∗

k (Ω, ∂S Ω, [g]),

i.e., Lgm(∂S Ω) ≤ 1. Thus, one has

1 ≥ Lgm(∂S Ω) = ∑
i

Lgm
i
(∂S Ω i) →

∑i σ N∗
k i
(Ω i , ∂S Ω i , [g i])

σ N∗
k (Ω, ∂S Ω, [g]) .

Passing to the limit m →∞ yields the inequality.
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Inequality ≤
Assume the contrary, i.e.,

σ N∗
k (Ω, ∂S Ω, [g]) > max

s
∑
i=1

k i=k , k i>0

s
∑
i=1

σ N∗
k i
(Ω i , ∂S Ω i , [g i]).(7.11)

Consider a maximizing sequence of metrics {gm} of unit total length of Steklov
boundary such that σ N

k (Ω, ∂S Ω, gm) → σ N∗
k (Ω, ∂S Ω, [g]). Let gm

i be a restric-
tion of gm to Ω i and dm

i be the largest number satisfying σ N
d m

i
(Ω i , ∂S Ω i , gm

i ) <
σ N∗

k (Ω, ∂S Ω, [g]) and lim supm→∞ σ N
d m

i
(Ω i , ∂S Ω i , gm

i ) < σ N∗
k (Ω, ∂S Ω, [g]). Let Lm

i

denote Lgm
i
(∂S Ω i). Then, we have dm

i ≤ k and Lm
i ≤ 1. Therefore, up to a choice of

a subsequence one can assume that dm
i = d i does not depend on m and Lm

i → L i as
m →∞.

We claim that∑i(d i + 1) ≥ k + 1. Otherwise, by (7.11) and definition of d i we have

σ N∗
k (Ω, ∂S Ω, [g])∑

i
L i ≤ ∑

i
lim sup

m→∞
σ̄ N

d i+1(Ω i , ∂S Ω i , gm
i )

≤ ∑
i

σ N∗
d i+1(Ω i , ∂S Ω i , [g]) < σ N∗

k (Ω, ∂S Ω, [g]).

Moreover, ∑i L i = 1 since gm are of unit Steklov boundary length. Thus, we arrive at
σ N∗

k (Ω, ∂S Ω, [g]) < σ N∗
k (Ω, ∂S Ω, [g]), which is a contradiction.

Therefore, the inequality∑(d i + 1) ≥ k + 1 holds. Since the spectrum of a union is
a union of spectra, we have

σ N
k (Ω, ∂S Ω, gm) ∈ ⋃

i
{σ0(Ω i , gm

i ), . . . , σd i (Ω i , gm
i )},

hence

σ N∗
k (Ω, ∂S Ω, g) = lim sup

m→∞
σ N

k (Ω, ∂S Ω, gm) ≤ max
i

lim sup
m→∞

σd i (Ω i , gm
i )

< σ N∗
k (Ω, ∂S Ω, [g]).

Since gm are of unit Steklov boundary length we arrive at a contradiction. ∎

Proof of Lemma 2.9 Fix indices k i ≥ 0 such that ∑s′
i=1 k i = k and set I = {i ∣ k i >

0}. Let Ω1 = ∪i∈I Ω i ⊂ Σ, ∂S Ω1 = ∪i∈I ∂S Ω i , (Ω2 , h) = ⊔i∈I(Ω i , gΩ i
) and ∂S Ω2 =

⊔i∈I ∂S Ω i . One gets

σ∗k (Σ, [g]) ≥ σ N∗
k (Ω1 , ∂S Ω1 , [g]) ≥ σ N∗

k (Ω2 , ∂S Ω2 , [h])

≥ ∑
i∈I

σ N∗
k i
(Ω i , ∂S Ω i , [g]) =

s′

∑
i=1

σ N∗
k i
(Ω i , ∂S Ω i , [g]),

where we used in order: Proposition 2.6, Lemmas 2.4 and 2.8 and the fact that
σ N∗

0 (Ω j , ∂S Ω j , [g]) = 0 for any j in the last equality. ∎
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7.3 Proof of Lemma 5.2

Fix ε > 0. An application of Corollary 2.7 to a compact exhaustion of Σ∞j yields the
existence of a compact set K ⊂ Σ∞j ⊂ Σ̂∞j such that

∣σ∗r (Σ̂∞j , [ĥ∞]) − σ N∗
r (K , ∂S K , [ĥ∞])∣ < ε,

where ∂S K = K ∩ ∂Σ∞j ≠ Ø. Since Ω̌n
j exhaust Σ∞j , then for all large enough n one has

K ⊂ Ω̌n
j . Then, by Proposition 2.6

σ N∗
r (Ω̌n

j , ∂S Ω̌n
j , [(Ψn)∗hn]) ≥ σ N∗

r (K , ∂S K , [(Ψn)∗hn]).

Taking lim inf of both sides in the above inequality and using Proposition 2.2 yields

lim inf
n→∞

σ N∗
r (Ω̌n

j , ∂S Ω̌n
j , [(Ψn)∗hn]) ≥ σ N∗

r (K , ∂S K , [ĥ∞]) > σ∗r (Σ̂∞j , [ĥ∞]) − ε.

Since ε is arbitrary, this completes the proof.
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