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Abstract

The development of autonomous greenhouses has caught the interest of many researchers and
industrial considering their potential of offering an optimal environment for the growth of
high-quality crops with minimum resources. Since an autonomous greenhouse is a mechatro-
nic system, the consideration of its subsystem (e.g. heating systems) and component (e.g.
actuators and sensors) interactions early in the design phase can ease the product develop-
ment process. Indeed, this consideration could shorten the design process, reduce the number
of redesign loops, and improve the performance of the overall mechatronic system. In the case
of a greenhouse, it would lead to a higher quality of the crops and a better management of
resources. In this work, the layout design of a general autonomous greenhouse is translated
into an optimization problem statement while considering product-related dependencies.
Then, a genetic algorithm is used to carry out the optimization of the layout design. The
methodology is applied to the design of a fully autonomous greenhouse (45 cm × 30 cm ×
30 cm) for the growth of plants in space. Although some objectives are conflictual, the devel-
oped algorithm proposes a compromise to obtain a near-optimal feasible layout design. The
algorithm was also able to optimize the volume of components (occupied space) while con-
sidering the energy consumption and the overall mass. Their respective summed values are
2844.32 cm3, which represents 7% of the total volume, 5.86 W, and 655.8 g.

Introduction

Autonomous greenhouses have been developed as a means to grow plants in an optimal envi-
ronment defined in terms of humidity, temperature, lighting, and gases concentration (Sabri
et al., 2011; Vera et al., 2017). Such technology has many advantages such as a better manage-
ment of resources and an off-season growth of high-quality crops (Rabago et al., 2013; Abas
and Dahlui, 2015). However, the design of such a greenhouse is not an easy task. One major
issue is its layout design. In general, the layout design is the spatial management of different
elements in a given space based on domain-specific objectives. In architecture and urban
design, the ease of access from rooms to hallways could be a domain-specific objective
(Koenig and Schneider, 2012). Another example closer to the design of a greenhouse is the
design of a satellite where the domain-specific objective is to ensure that every element can
carry out their functions (Taura and Nagasaka, 1999). Furthermore, layout and domain-
specific objectives are usually conflictual. Indeed, the layout design of an autonomous green-
house needs to manage two important conflictual objectives, which are to maximize the size of
the pack soil and to minimize the amount of resources needed. On top of those objectives, the
greenhouse must be functional and must allow an optimal environment for the growth of spe-
cific plants. Since an autonomous greenhouse is a mechatronic system, it is essential to con-
sider interactions among the components during the design phase (Mohebbi et al., 2014;
Torry-Smith et al., 2014) to increase its efficiency. To overcome this challenge, the layout
design of a greenhouse consists of concurrently solving three main issues.

The first issue is to define the size and location of the pack soil as well as the storage of
resources (e.g. water tank). The size of both the pack soil and storage of resources is defined
by the plants chosen to be grown in the greenhouse. Indeed, plant seeds need a space between
each other to properly grow, which means that the size of the pack soil depends on the number
of seeds. As for the storage of resources, each individual plant needs to consume a certain
amount to properly grow as well. This means that a prior knowledge about the ideal environ-
ment of the chosen plant is needed.

Since the greenhouse has to be autonomous, a set of sensors to acquire data of the current
environment is required. Hence, the second issue is the need to define the size and
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performance of sensors (e.g. humidity) and actuators (e.g. water
pump) which control the greenhouse environment. A set of actua-
tors must be present to modify the environment. Depending on
the model of sensors and actuators, the size and the performance
of the system can change in terms of the volume allocated for
both the plant growth and the assessment of the environment.

As for the locations of these components, they depend on the
third and last main issue, which is the interaction between all the
greenhouse components. Indeed, the sensors, actuators, pack soil,
and storage of resources must be carefully positioned to avoid the
malfunction of the greenhouse. A malfunction can occur when
one component has adverse/negative effects on other components
as reported by Chouinard et al. (2017, 2019). For example, the
temperature sensor cannot be placed close to the heater to
avoid an erroneous reading of the temperature, which could
lead to freezing, or drying the pack soil. It is worth mentioning
that in this paper, we will consider the same categories in terms
of heat, electromagnetic effects (EMFs), and vibrations when
present.

The main contribution of this paper is the development of a
methodology to formulate an optimization problem for the auto-
mated layout design of a greenhouse considering the three issues
mentioned above in terms of (1) size and location of pack soil and
storage of resources, (2) size and performance of sensors and
actuators, and (3) location of components considering their
adverse effects.

First, the problem statement of the layout design of a green-
house is carried out and translated into an optimization problem.
Using evolutionary computing [a genetic algorithm (GA)], the
size, location, and parameters of every component of the green-
house are optimized.

Background and literature review

We focus on studies of autonomous greenhouse design and green-
house layout design. The research trends concerning autonomous
greenhouses are generally targeting climate control, wireless net-
works, and integrated design.

Autonomous greenhouse

This part of the literature review is carried out to identify the
product specifications needed to design an autonomous green-
house. It is destined to systematically formulate the problem state-
ment presented in the next section.

Researchers are interested in improving the assessment of the
environment of a greenhouse in different situations.
Castañeda-Miranda and Castaño (2017) made a comparison
between an autoregressive algorithm (ARX) and an artificial
neural network to predict the internal temperature of a green-
house based on both external and internal parameters, such as
the outside temperature and the humidity. This study found
that the artificial neural network provides a better prediction
than ARX. The method is tested with data from a greenhouse
and a weather station. Romantchik et al. (2017) designed a cooling
control system to prevent the temperature of the greenhouse of
exceeding 25°C using fan-pad systems. Based on a ventilation sys-
tem, an algorithm is developed to support the design of a photo-
voltaic solution, which would supply the necessary energy. Vera
et al. (2017) built a greenhouse with its environment controlled
by monitoring the temperature, humidity, carbon dioxide, and
illumination levels. In this greenhouse, a heat sensor and a heater

controlled the temperature. A humidity sensor for soil controlled
the humidity of the soil and a solenoid valve fed the water. A rel-
ative humidity sensor and a micro-sprayer controlled the humid-
ity of the air. A carbon dioxide sensor and a fan regulated carbon
dioxide levels. Finally, a combination of a luminosity sensor,
luminosity source, and a timer controlled the illumination. In
their research works, Abas et al. (2015, 2016) used the tempera-
ture, humidity, and irradiance acquired by sensors to control
the temperature, the humidity, and the interval of time between
the activation of an irrigation system. An intruder detector acti-
vates the intruder repellent using electric fences and ultrasonic
sound. The whole system is powered by a solar panel. Matos
et al. (2015) automated a fodder production part of a hydroponic
system (growing plants without soil). The system automatically
placed seeds in the trays, and managed the nutrient solution pre-
paration and the water distribution. Paraforos and Griepentrog
(2013) used a multivariable control of a greenhouse in terms of
carbon dioxide quantity, temperature, and humidity. A nonlinear
steady-state model is used to develop an input/output linear
decoupled controller by linearizing and discretizing the model
for given operation points. Pala et al. (2014) proposed a control
strategy for an aeroponic system. In their work, first, a network
of sensors and actuators is implemented to monitor the environ-
ment through a user interface to relay the information to the user
and to allow the user to manually control the system if needed.
Second, the aeroponics system design called Aero Pot is pre-
sented. The Aero Pot is a nutrient distribution system composed
of two nozzles, where the nutrients are given to a plant and a
motor to move the nozzle from one plant to another. The optimi-
zation of the system is done using a GA. The user can define the
number of lights and pumps and their power consumption. The
GA first optimizes the power consumption, then provides the
power schedule of components for 1 day. The preliminary results
of this optimization are promising since the first experiments
demonstrated that with a reasonable power consumption, the
plant was healthy. Rabago et al. (2013) designed a solar-powered
automatic greenhouse. The system controlled the moisture, the
temperature, and the irrigation schedule using information
about the humidity, the moisture, the temperature, and the soil
mixture. The components were solar panels, batteries, valves, a
relative humidity sensor for the air, a humidity sensor for the
soil, a halogen lamp to heat, fans, and microcontrollers. In the
work presented by Hahn (2011), a fuzzy controller is developed
to prevent tomatoes from cracking because of the overheating.
To control the temperature of the crop, a shading screen control
and an irrigation system control are used. The solar radiation, the
substrate temperature, and the canopy temperature were the
inputs of the fuzzy controller, while the output was the command
sent to the irrigation system and the motor controlling the shad-
ing screen position. Schubert et al. (2011) proposed a greenhouse
module design for extraterrestrial habitats. The system design
started by suggesting multiple designs of the greenhouse module,
which contained the growth system. The growth system is com-
posed of the germination unit which starts the growth of the
plants before transferring them in a grow pallet. The growth pallet
is then placed in a growth channel, where the environment is con-
trolled to satisfy the needs of a given plant for every stage of its
growth. The growth channel unit is filled with multiple growth
channels installed on a conveyor system. Finally, the greenhouse
module is integrated with eight subsystems to control the environ-
ment of the plants. Xu and Li (2008) developed a greenhouse con-
trol system using multiple agents. The intelligent control center is
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composed of a collecting artificial agent to gather data from the
greenhouse, which is processed by the data processing one. The
data transmitting agent then stores the information in a data-
base. The intelligent control center also has an agent, which con-
trols the greenhouse environment in terms of temperature,
illumination, humidity, and carbon dioxide concentration.
Herrero et al. (2007) implemented an elitist multiobjective evo-
lutionary algorithm to identify the parameters of a greenhouse
model. The greenhouse model used is composed of 15 parame-
ters to estimate the internal temperature and humidity. Using
the implemented evolutionary algorithm and a set of data
obtained from an operating greenhouse, a Pareto-optimal set
of the greenhouse model was found. Then, the greenhouse
model from the set of criteria closer to the ideal optimality cri-
teria was validated using another set of data obtained from the
same operating greenhouse.

Most of the time, researchers use wireless communication
networks of components to monitor and control the climate of
the greenhouse. Hence, the use of wireless communication
adds complexity in the design of autonomous greenhouses. In
Azaza et al. (2016), a fuzzy logic-based controller combined
with a wireless communication system based on the ZigBee plat-
form controlled the climate of a greenhouse. The temperature,
humidity, carbon dioxide, and illumination integrated a fuzzy
set beside the external meteorological variables and the set
points given by a user. Then, a decision scheme, which repre-
sented the observer design flow, was set up in terms of ventila-
tion, heating, humidification, and dehumidification. Finally, the
fuzzy logic controller is implemented using FPGA programming
to assess the greenhouse environment in terms of temperature
and humidity using the heating and ventilating system. In
Krishna et al. (2016), a wireless network based on ZigBee
assessed the greenhouse environment in terms of humidity,
moisture, and temperature. The sensors sent the data to an
ARM7 microcontroller, which is used as a ZigBee transmitter.
The data are then sent in real time to a central unit combined
with a Zigbee transmitter in order to monitor the data.
Goumopoulos (2012) and Goumopoulos et al. (2014) developed
an automatic irrigation control system using machine learning
and wireless sensor network (WSN) information formed of mul-
tiple nodes, where one node monitored a zone containing multi-
ple plants. The control strategy had three main components.
First, the ontology of the plant is used to define the rules for
the decision-making based on prior knowledge. Second, the
decision support system acquired all the information from the
data analysis of the greenhouse in order to make a decision
for the well-being of the plant. Finally, the machine learning is
used to obtain new connections among the data acquired.
Three types of sensors are used: soil moisture sensors, humidity
sensors, and thermistors for air temperature. In Sabri et al.
(2011), a fuzzy logic approach and a wireless network based
on ZigBee controlled the greenhouse. The differences in tem-
perature and humidity of the greenhouse are monitored and
used as inputs for the fuzzy controller. The fan, heater, and
humidifier command are the output of the controller.
Ferentinos et al. (2017) made a sensitivity analysis of a WSN
reading in function of the solar exposition level. They made
experiments to evaluate which readings were more stable
between three expositions level. The first exposition level was
labeled as “exposed nodes” and was a WSN directly exposed
to solar radiation. The second one was labeled as “boxed
nodes” and was fully protected from solar radiation by a

ventilated box. The last one was labeled as “shaded nodes” and
used a metallic surface to protect the nodes from direct sunlight.
The analysis showed that the most stable reading was from the
“shaded nodes”. Hence, they used “shaded nodes” in a commer-
cial cucumber greenhouse. Using this system, they studied plant
conditions such as the transpiration of the crops and the leaf
temperatures.

The climate control of a greenhouse adapted and integrated to
infrastructure or uncommon environments is also an area of
research. Nadal et al. (2017) proposed an integrated rooftop
greenhouse (iRTG) at the Autonomous University of Barcelona
campus. To grow crops successfully, the iRTG recycled many
resources from the building to control airflow and temperatures
of a greenhouse. Indeed, the whole building adopted a mode of
operation depending on the season to control the ventilation sys-
tem of the building. For example, when the temperature was too
high, the windows are open to cool down the greenhouse. With
the iRTG, tomatoes and lettuce crops are produced. Poulet and
Doule (2014) made a preliminary design of a greenhouse for
food and for a Zen garden (for crew emotional state) called
GreenHab. The GreenHab purpose is to eventually be used as a
greenhouse on Mars. At the moment, the growth of different let-
tuces in GreenHab is being studied and tested at the Mars Desert
Research Station of the Mars Society of Utah. The study of
GreenHab is carried out in terms of temperature, illumination,
and humidity. The system is only partially automated since the
crew can also modify the environment of the greenhouse.
Giroux et al. (2006) designed a greenhouse for Mars’s environ-
ment. The greenhouse is equipped with sensors to monitor the
humidity, temperature, and radiation. The actuators used were
the heaters, the fan, and the exhaust fan, which are controlled
based on the temperature of the greenhouse environment. The
greenhouse can operate all year long by changing its operation
mode based on the external environment, such as the outdoor
temperature. Furthermore, the water distribution is done manu-
ally. An analysis of a greenhouse environment and power con-
sumption over a year is also carried out.

From this literature review, one can conclude that the main
function of an autonomous greenhouse is to ensure the growth
of plants by controlling the climate of the greenhouse. Based on
this main function, a list of product specifications will be listed
in the next section for the layout design of an autonomous
greenhouse.

Greenhouse layout design

Komasilovs et al. (2013) used a GA called GAMBot-Eva to opti-
mize the design of a robotic system traveling through the green-
house layout, evaluating health conditions of plants, and
spraying pesticides on them if needed. The optimization problem
took into account tasks of the robot, the price, and the energy
consumption of the robot components. However, the greenhouse
layout is fixed, and the optimization is done with parameters of
the robotic system. Eben-Chaime et al. (2011) optimized the over-
all cost of a greenhouse layout based on different expenses, such
as seedlings and labor costs, for different greenhouse layouts.
The layout can be changed in many ways to reduce the overall
cost of the greenhouse. Four different layouts are presented, and
the overall cost is calculated. Hence, the performance of the
greenhouse is not taken into account to choose the layout.
Ferentinos et al. (2005) and Ferentinos and Tsiligiridis (2007)
optimized the topology of the WSN for precise agriculture
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applications in terms of energy consumption and sensor sensitiv-
ity characteristics. The problem is also subjected to connectivity
and spatial density constraints. This multiobjective optimization
is turned into a single-objective optimization using a weighted
sum approach. The optimization problem is solved with a GA
using binary representation. A dynamic optimal design algorithm
is also included in the GA for sensors with battery capacities.
Ferentinos and Albright (2005) also used a GA using binary rep-
resentation for the placement of the lighting system for a green-
house. The optimization considered a different lighting
characteristic, such as the light uniformity, as well as economical
aspects, such as the investment costs. They also used a penaliza-
tion function in order to avoid shading effects that can happen
when designing a lighting system. The problem is rewritten as a
single-objective optimization problem using a weighted sum
approach.

Main objective and contributions

Our previous section shows that, until now, there are only a few
works covering the greenhouse layout design. Moreover, these
works do not fully consider the layout in the design of the auton-
omous greenhouse. This might be caused by an incomplete prob-
lem statement of the layout design. Hence, the problem statement
of the layout design needs to be improved to rigorously define the
components needed and their interaction.

To the best of our knowledge, the evolutionary layout design of
greenhouses considering the placement of components and their
interaction (dependencies) has never been done. The main contri-
bution of this paper is a novel methodology to formulate a more
comprehensive problem statement for layout design as shown in
Figure 1. Furthermore, the methodology also considers the trans-
lation of a problem statement from an engineering design per-
spective to the formulation of an optimization problem. First, a
problem statement is developed by identifying the components
of an autonomous greenhouse and their interactions. The prob-
lem statement is then translated into an optimization problem
which is solved using a GA.

The rest of the paper will be structured as follows: “Problem
statement” defines the problem statement of the layout design
of a greenhouse. “GA implementation” reviews similar problems

solved using algorithmic approaches and describe the implemen-
tation of the GA. “Results and discussion” report the results and
analysis of the design of an autonomous greenhouse obtained by
the GA used in this paper. Based on these results, the main lim-
itations and future research avenues are identified. Finally,
“Conclusion” concludes on this paper.

Problem statement

Identification of autonomous greenhouse components and
interactions

Using the six product-related dependencies presented by
Torry-Smith et al. (2014), we identify the components needed
for the development of an autonomous greenhouse. The
product-related dependencies are defined in terms of function
(Fu), property (Pr), and mean (M) of the product and their inter-
actions. The function is defined as the tasks that systems and/or
subsystems must be able to complete. Here, property refers to a
property of the system such as the mass. Often, the property is
affected by the choice of means. Finally, the mean is what is
used to accomplish a function. The approach developed here is
framed by the product-related dependencies methodology which
offers a general framework that is generally used in multidomain
system design. This can be easily generalized to other complex
system design activities, such as for mechatronics, where designers
can have a more thought out starting point early in the design
process.

Fu–M can be explained by the following: a function is realized
by a mean, which can be further decomposed into subfunctions
and so on. Using this definition, some components can be
identified:

1) Fu–M disposition and cumulative Fu–M: Figure 2 presents the
results of the Fu–M decomposition to identify the
components.

2) Adverse effect: As mentioned above, the adverse effects consid-
ered in this paper are categorized in terms of heat, vibration,
and EMFs. We also add another category which is the obstruc-
tion of a component field of view. This will be represented by
OBS in Table 1. Although, it is difficult to evaluate this fourth
category considering that the dimensions of each component

Fig. 1. Highlights of contributions in the general methodology.
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are still unknown, it is possible to estimate an order of magni-
tude for each of the component. For example, generally a water
tank is bigger than a heat sensor; hence, the water tank has
more chance to obstruct the field of view of a component
such as a camera. A table such as Table 1 is used by
Chouinard et al. (2017, 2019) to identify components generat-
ing adverse effect and those who are affected by these adverse
effects. The first column is the list of components. The second
column is a qualitative evaluation of the intensity of adverse
effects generated by the component. The last column is a qual-
itative evaluation of the negative impact of the component
affected by adverse effects.

Considering Table 1, it is possible to identify the most detri-
mental combinations of components and to formulate the follow-
ing guidelines to avoid these adverse effects:

i. Heater cannot be close to heat sensor.
ii. LED cannot be close to heat sensor.
iii. The components cannot prevent the LED from lighting the

pack soil.
iv. The components cannot prevent the camera from filming

the pack soil.

Pr–M can be explained by the following: a property is affected
by the chosen means. Using this definition, the rest of the com-
ponents can be identified:

Property scheme:

Property 1: Mass of the system. The mass is calculated by making
the sum of all the mass of the means. For autonomous green-
house, a low mass can be an indicator of low consumption of
resources and is generally favorable.

Property 2: Electrical current of the system. We approximate the
electrical current by summing all the electrical current of the
means. Generally, a low electrical current consumption is
also favorable.

Property 3: Electrical voltage of the system. The mean with the
highest voltage will be the reference point of this property.
Generally, a low electrical voltage is favorable.

M–M can be explained as a dependency between two means:

1) Volume allocation:
i. The space between the LED and the pack soil is the vol-
ume allocated to the plant since plants grow toward the
light.

ii. Enough space must be allocated to store water and the
amount of water depends on the plant.

iii. The camera must be able to film the pack soil as much as
possible.

2) Physical interface:
i. The water tank, water pump, and pack soil must be
linked by pipes to ensure the water distribution system.

ii. The LED must light as much as possible the pack soil.
iii. The fan must be close to the heater for better heat

convection.

Fig. 2. Organigram representing the Fu–M decomposition.
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It is possible to see that by identifying the Fu–M disposition
and cumulative Fu–M, the list of components needed to synthe-
size an autonomous greenhouse is found:

C1.Heater: to heat the greenhouse.
C2.Water tank: to contain the water for the plants.
C3.Pack soil: to contain the seeds of the plant.
C4.Heat sensor: to acquire temperature data from the

environment.
C5.Camera: to follow the growth of the plants.
C6.Fan: to ensure air circulation in order to stabilize the room

temperature.
C7.LED: to provide the light necessary for photosynthesis.
C8.Water pump: to allow water distribution from the water tank

to the pack soil.
C9.PCB: to monitor pressure, humidity, O2, and CO2 (sensors).
C10.Pipes: to link the water tank, the water pump, and the pack

soil for water distribution.

Furthermore, the adverse effects as well as the Pr–M and M–
M dependencies give guidelines to handle the placement of com-
ponents within the system. To assign the strength of a depen-
dency, the design structure matrices (DSMs) (Pimmler and

Eppinger, 1994; Browning, 2016) is used in this work. DSMs
have been used for modeling interactions between components
and/or subsystems in many fields such as mechatronic design.
The DSM representation and the scale value represented by
Pimmler and Eppinger (1994) are adapted to model the layout
component interactions. In this work, a layout component inter-
action is composed of three characteristics: closeness, field of
view (FOV), and physical connection. These three matrices
can model the layout design of most complex systems including
mechatronic systems.

1) Closeness of two components: In this matrix, each value follows
the scale shown in Table 2 to evaluate the closeness of two
components.

And so, closeness matrix for the first nine components men-
tioned above (the pipes are excluded from the DSMs) is:

C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 0 0 0 −2 0 2 0 0 0

C2 0 0 1 0 0 0 0 1 0

C3 0 1 0 0 0 0 0 1 0

C4 −2 0 0 0 0 0 −2 0 0

C5 0 0 0 0 0 0 0 0 0

C6 2 0 0 0 0 0 0 0 0

C7 0 0 0 −2 0 0 0 0 0

C8 0 1 1 0 0 0 0 0 0

C9 0 0 0 0 0 0 0 0 0

The selection of weights for the closeness matrix is justified as
follows: the assigning of the weight is based on the interaction of
the components and the impact on the main function require-
ment which is to ensure the growth of the plant. Hence, the
most detrimental interaction is related to the temperature regula-
tion. The heat sensor (C4) absolutely needs to be as far as possible
from any heat sources. In our case, the heater (C1) and the LED
(C7) are the main heat sources. Therefore, the (C1, C4) and (C7,
C4) cells have the value −2. Still considering the temperature
aspect of the greenhouse, the environment temperature must be
uniform. A local hot spot or cool spot on the pack soil could pre-
vent the growth of plants. For this reason, the heater (C1) and the
fan (C6) need to be as close as possible in order to assure a proper
heat flow. This explains why the value of (C1, C6) cell is 2. Finally,
the water distribution is composed of a water pump (C8), a water
tank (C2), and the pack soil (C3) which are connected by the
tubes. The length of the tube could be reduced if all the three
components are closed to one another. There are advantages
coming along with the reduction of tubes such as decreasing
the active time of the pump which leads to a decrease of energy
consumption. Hence, the (C2, C3), (C2, C8), and (C3, C8) cells
have the value of 1.

2) Interaction between the FOV of two components: In this matrix,
each value follows the scale shown in Table 3 to estimate the
importance of the interaction between the two components
FOV.

Table 1. Relation between components and adverse effects

Component Affecting Affected

Heater Heat: high –

OBS: low –

Water tank OBS: high –

Pack soil OBS: high –

Heat sensor EMF: low Heat: high

OBS: low EMF: low

Camera EMF: low EMF: low

OBS: medium OBS: high

Fan EMF: low

OBS: low OBS: low

LED Heat: high

OBS: low OBS: high

Water pump Vibration: high

EMF: medium

OBS: medium Vibration: medium

Pipes OBS: low -

CO2 sensor EMF: low Heat: low

OBS: low EMF: low

O2 sensor EMF: low EMF: low

OBS: low Heat: low

Humidity sensor EMF: low Heat: low

OBS: low EMF: low

Pressure sensor EMF: low Heat: low

OBS: low EMF: low
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And so, the FOV matrix is given by:

C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 0 0 0 0 0 0 0 0 0

C2 0 0 0 0 0 0 0 0 0

C3 0 0 0 0 2 0 2 0 0

C4 0 0 0 0 0 0 0 0 0

C5 0 0 2 0 0 0 0 0 0

C6 0 0 0 0 0 0 0 0 0

C7 0 0 2 0 0 0 0 0 0

C8 0 0 0 0 0 0 0 0 0

C9 0 0 0 0 0 0 0 0 0

This matrix refers to two components which are the LED (C7)
and the camera (C5) which need to illuminate and capture the
pack soil (C3), respectively. The values of cells (C3, C5) and
(C3, C7) are 2 because the fulfilment of their functional require-
ments is more sensitive to the relative position of the pack soil.
Indeed, the LED must uniformly illuminate the pack soil as
much as it can to allow every seed a chance to grow. As for the
camera, it must capture most of the pack soil to help the operator
identify a malfunction or to visually assess the health of the
plants.

3) Physical connection of two components: In this matrix, each value
indicates the number of links (wire and/or pipe) that two compo-
nents need. And so, the physical connection matrix is:

C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 0 0 0 0 0 0 0 0 0

C2 0 0 0 0 0 0 0 1 0

C3 0 0 0 0 0 0 0 1 0

C4 0 0 0 0 0 0 0 0 0

C5 0 0 0 0 0 0 0 0 0

C6 0 0 0 0 0 0 0 0 0

C7 0 0 0 0 0 0 0 0 0

C8 0 1 1 0 0 0 0 0 0

C9 0 0 0 0 0 0 0 0 0

Formulation of the optimization problem

Based on the problem statement for the synthesis of an autono-
mous greenhouse mentioned in the last section. The translation
of the problem statement to an optimization problem will be
done in this section.

First, two types of objectives included in the overall objective of
the solution are developed. The first type is the component-
specific objectives (CSOs). CSOs concern only the design of the
component itself. The second type is the layout design objectives
(LDOs). LDOs cover the layout design based on the placement of
components of the greenhouse.

The CSOs are:

1. Minimizing the volume (except for the pack soil and water
tank volume, which need to be maximized)

2. Minimizing the mass.
3. Minimizing the energy consumption.

The LDOs are:

1. Minimize the distances between the pack soil, the water tank,
and the water pump.

2. Minimize the distance between the heater and the fan.
3. Minimize the distance between connection points linking two

components.
4. Maximize the distance between the LED and the heat sensor.
5. Maximize the distance between the heater and the heat sensor.
6. Maximize the lighting of the pack soil by the LED.
7. Maximize the view of the pack soil captured by the camera.

For LDOs, a weight is assigned to every one of them based on
the DSMs mentioned before. Moreover, all distances and lengths
use the 3D Euclidean distance. As for the sixth and seventh LDOs,
the objectives use the 3D Euclidean distance between the line of
sight (LOS) of two components as shown in Figure 3. The ideal
LOS for the second component (C2) is the desired LOS presented
in Figure 3. Hence, the distance between the desired LOS and C2
needs to be minimized.

Second, the design of an autonomous greenhouse is necessar-
ily subjected to a set of constraints coming from multiple sources.
All of these constraints need to be respected in order to obtain a
feasible solution. In this work, we consider three sources of con-
straints. The first source of constraints is based on the limited
space allowed and the physical boundary of every component.
The second source originates from the interaction of the compo-
nents. The third and last source is the specifications of the green-
house which would be given by a customer. In this work, the
following constraints are considered:

Table 2. Closeness strength scale

Closeness Really far Far Unaffected Close Really close

Value −2 −1 0 1 2

Table 3. Field of view strength scale

FOV Detrimental Undesired Unaffected Desired Required

Value −2 −1 0 1 2
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1. The overall volume occupied by the components must be lower
than the greenhouse volume.

2. The boundaries of a component must fit within the boundaries
of the greenhouse.

3. The boundaries of a component cannot overlap another com-
ponent’s boundaries.

4. The FOV of the camera must be wide enough to capture the
pack soil.

5. The FOV of the LED must be wide enough to light the pack
soil.

6. The overall mass must be lower than a defined mass.
7. The overall energy consumption must be lower than a defined

quantity of energy.
8. The voltage and current of each component cannot exceed

given thresholds.

The first three constraints come from the limited volume
allowed. The fourth and fifth constraints are related to the inter-
action between components. The last three constraints are the
product specifications which stem from customers’ needs.

Finally, the optimization problem can be summarized as a
single-objective optimization problem

Minimize
∑n
i=1

wiO(�x)i

subjected to
CTj for j = 1, . . . , m.

⎧⎪⎪⎨
⎪⎪⎩

(1)

where �x is the decision variable vector. It contains the parameters
of every component as shown in Figure 4, O (�xi) is the ith objec-
tive of all the objectives (CSOs + LDOs), wi is the weight asso-
ciated with the ith objectives of all the objectives, and CTj is the
jth constraints.

The weight is 1 for all CSOs because they need to be optimized
in order to overcome the constraints and to respect the product
specification, but they are not the most important aspect of the
optimization to accomplish the main function which is ensuring
the growth of the plant. For LDOs, the weight can be found in the

DSMs. For our formulation, n is the total number of objectives
and m is the total number of constraints. In this work, n is
equal to 10 and m is equal to 8.

GA implementation

Considering the optimization problem given in “Problem
Statement”, the design of an autonomous greenhouse can be
seen as a many-objective optimization problem (MaOP) like
most real-life applications in engineering (Fleming et al., 2005).
Even though algorithms have been developed since 2003 (Hisao
et al., 2008; Li et al., 2015; Huang et al., 2019) to solve MaOPs,
we will use a single-objective optimization to solve the layout
design of an autonomous greenhouse for two main reasons.
First, we are not searching for a Pareto front of design. The
main objective of this research is to thoroughly express a problem
statement and its optimization formulation for autonomous
greenhouse. Hence, we attempt to find one near-optimal design
to validate the formulations based on the a priori preferences of
the designers. Second, selecting an adequate algorithm for a
given problem is not a trivial task as shown by the comparative
study of Panerati and Beltrame (2014). The study consists of eval-
uating the performance of 15 multi-objective design-space
exploration algorithms on the optimization of three real-life appli-
cations using three performance metrics such as the average dis-
tance from the reference set. The comparison showed that no
algorithm outperforms the others; however, general guidelines
on the simulation time and size of the design space were found.
Another example (Saldanha et al., 2017) defines the best algo-
rithm between non-dominated sorting GA-II, predator–prey,
and multiobjective particle swarm optimization (PSO). To achieve
this, they needed to evaluate the results of each algorithm with
performance metrics and a decision-making method called
PROMETHEE. They found that the multiobjective PSO was the
best algorithm in order to design a shell-and-tube heat exchanger
because of its robustness. Furthermore, the no-free lunch theorem
(Wolpert and Macready, 1997) inform us that a priori no algo-
rithm outperforms another one in all optimization problems.
Consequently, selecting an inadequate algorithm could output a
poor set of Pareto front solutions which could erroneously lead
us to believe that the formulation is inadequate. Hence, we decide
to aggregate all the objectives using scalarizing functions (Marler
and Arora, 2004; Kaim et al., 2018) into a single-objective optimi-
zation. Scalarizing functions can be used to articulate the prefer-
ences of the designers in order to find one solution from the
Pareto front. Using this, we will better assess if our formulation
is able to find a feasible and near-optimal solution.

Evolutionary algorithms are also known to be effective when it
comes to solving single-objective combinatorial optimization
problems as explained in surveys concerning facility layout prob-
lems (Drira et al., 2007; Moslemipour et al., 2012; Ahmadi et al.,
2017). Other domains also use evolutionary algorithms. Yu et al.
(2007) used a parallel genetic implementation to optimize

Fig. 3. Objective based on the LOS of components.

Fig. 4. Decision variable vector: vector representation
of components within a solution and the parameters
within a component.
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shopping routes of shoppers in terms of the shortest car-based
route. The parallel genetic implementation is used to reduce the
computational time by dividing the resources of the computer
to execute the GA operators. The implementation is tested on a
case study in Dalian City, China. Zhao et al. (2016) implemented
a GA to minimize the mental workload of human operators in the
mixed-model assembly line based on many factors such as the
assembly complexity and operator experience. The motivation
of this work is to reduce the errors resulting from human mental
fatigue and to improve the efficiency of the assembly line. Ribas
et al. (2013) combined hybrid micro-GA and mixed integer linear
programming to schedule and plan an oil pipeline network. The
scheduling considered the management of the production and the
operation, the inventory management, and the transportation of
oil to name a few. The use of micro-GAs was to lower the com-
putational time and resources while keeping good solutions.
The developed algorithm is tested on Brazilian pipeline networks.
Zhang and Zhang (2007) developed a GA to design a network
based on the network partition problem. This optimization prob-
lem goal was to reduce the inter-network communication while
managing the traffic distribution over subnetworks. The imple-
mented GA considered the traffic matrix, the devices needed in
a network as well as the current devices used in the industry.
To validate the effectiveness of the GA, a simulation is carried
out. Király and Abonyi (2015) made a GA implementation to
solve a multi-traveling salesmen problem (mTSP). This work
was greatly inspired by an industrial case study, where an electric
and gas energy supplier needed to transfer materials from differ-
ent sources to a specific location. This issue is an mTSP, which is a
combinatorial optimization problem. Cheng et al. (2017) com-
bined PSO with a multitasking coevolution mechanism. The nov-
elty resides in the multitasking coevolution mechanism, where
two or more tasks have their own objective functions to optimize
for an overall problem. The tasks were usually influencing each
other, which led to a concurrent optimization problem. To vali-
date the developed algorithm, the optimization of the productivity
of a composite manufacturing is simulated. The two tasks to be
optimized were the resin transfer molding and the injection/
compression-liquid composite molding because these processes
shared a part of the design space. Saleh and Chelouah (2004)
used an algorithm based on the GA to locate the position of an
unknown point on Earth using the satellite equipment. Such
problems are called a GPS surveying network, which is a variation
of the problem from the classical survey network problem. The
goal is to optimize the robustness of a GPS network based on
the resources available to the network (e.g. cost, personnel, and
satellite). Guzmán-Cruz et al. (2009) compared five optimization
algorithms in order to define which algorithm is better for the
calibration of a specific greenhouse model. The five algorithms
are GAs, evolutionary programming, evolutionary programming,
least squares, and sequential quadratic programming. The green-
house model is composed of 16 parameters and is used to esti-
mate the internal humidity and temperature. For the calibration
of the greenhouse model, the evolutionary programming was
the best choice. Elferchichi et al. (2009) used a weighted sum
GA to define the optimal inflow hydrograph to provide water to
different farmers without emptying the reservoirs available. The
objective function as well as the constraints were formulated
using the water level of every reservoir. The weight associated
with an objective function was defined with a sensitivity analysis.
Based on the on-demand water quantity of the farmers, the GA
was able to find an inflow hydrograph to supply the farmers

without emptying the reservoirs for a specific period of time.
Ushada and Murase (2009) made the design of a customizable
greening material combining three main tools. The first tool
was the swarm modeling to set the design attributes. Then, the
second tool was the desirability model to define the importance
of design attributes based on the consumer mentality con-
straints. Finally, the third tool was the PSO to optimize the
design of a greening material. The developed methodology was
tested in a case study designing Sungoke moss. Utamina et al.
(2019) developed a novel evolutionary algorithm called evolu-
tionary hybrid neighborhood search (EHNS) which combine
mutation-based neighborhood search and Tabu search algo-
rithms. The first step of the EHNS loop was the mutation-based
neighborhood search algorithm which uses the roulette wheel
selection to pick individuals within the population. Then, muta-
tion operators were applied to the chosen individuals. The sec-
ond step was the replacement of the current individuals by the
mutated individuals. If the best new individual is not better
than the previous best individual, the Tabu search is chosen to
make a local search around the best new individual. The last
step is the setup of the next generation using elitism and scram-
ble principle. The EHNS was used to solve many agricultural
problems from the literature. Moreover, the results of the algo-
rithm were compared to other algorithms such as ant colony
optimization and GA.

Since the performance of different types of evolutionary algo-
rithms greatly depends on the problem at hand as mentioned in
Youssef et al. (2001)) and Ma et al. (2013). We choose a GA con-
sidering it has a low complexity of its basic implementation. The
global search effectiveness of the GA is also adequate for our
problem since we do not consider an initial solution. There are
seven main components in a GA: encoding/decoding, initial pop-
ulation, parent selection, crossover, mutation, survivor selection,
and termination condition.

Encoding/decoding and initial population

For the encoding, an individual is considered as a solution, which
is represented by a vector of components. The vector is repre-
sented in Figure 4, where the CX are the components for X = 1,
2, 3…

Each component has a set of parameters represented by a vec-
tor as well. Two types of parameters can be given to a compo-
nent. The first type is the common parameters that every
component has. For example, the xyz position of the component
within the greenhouse. The second type of parameters is specific
to the component. For example, the energy consumption in
terms of the voltage (V) and the current (A). The vector is
represented in Figure 4, where XYZ is an example of
common parameters and the PX are the specific parameters
for X = 1,2,3…

The common parameters of components are:

1. The XYZ position of the component within the greenhouse.
2. The XYZ dimensions of the component (length, width, and

height).
3. The mass of the component.

The specific parameters considered are:

1. Energy consumption in terms of voltage and current for all the
components except for the pack soil and water tank.
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2. FOV of the component only for the camera and the LED.
3. Location of the connection of the pipes on a given

component only for the water tank, water pump, and
pack soil.

The initial population is randomly generated but must respect
the set of constraints defined above. For each parameter, a ran-
dom number is generated within a defined range of values. It is
important to note that there is no code implemented to check
if a solution appears more than once in the initial population.
Since there are numerous combinations, it is less likely to find
the same solution twice.

Parent selection and crossover

The parent selection implementation is based on the roulette
wheel selection (Marler and Arora, 2004). The principle of the
roulette wheel selection is to divide a wheel considering the
number of solutions and their overall objective function within
a population. A fixed point is then randomly chosen on the cir-
cumference of the wheel. After spinning the wheel, the solution
that stops in front of the fixed point is chosen as a parent. In
other words, the parent selection is randomized as well. After
using this method to choose two parents, the crossover function
creates two children based on the parents’ solution vector. A
random crossover point is selected within the parents’ solution
vector. All components of the first parent after the crossover
point is replaced by the components of the second parent and
vice versa (see Fig. 5). The two vectors created are considered
as the children.

Mutation

The mutation process for this implementation has two steps (Fig. 6).
The first step is a randomly selection of a component within a solu-
tion. The second step is a randomly selection of a parameter from
the selected solution and a replacement of the parameter value
by a random value within the range of values of this parameter.

Survivor selection

The selection of individuals for the next generation only considers
a single-objective function which is the summation of the
weighted CSOs and LDOs. Indeed, the maximum population
size is fixed. This means that a new child, mutated or not, is com-
pared to rest of the population in terms of the single-objective
function when the population reaches its maximum. If the single-
objective function is better than the worst solution of the popula-
tion, the child replaces this solution. Otherwise, the child is dis-
carded. If the child is an infeasible solution, it is also discarded.

Termination conditions

The terminal condition for this implementation of the GA is
based on improvement through generations. If there is no
improvement in the population after several generations, the
GA is then stopped. However, the counter is reset to zero every
time there is an improvement. The number of generations is
defined through trials and errors.

Figure 7 shows the convergence graph of the implemented GA.
Figure 7 was generated with the average of the overall objective of

Fig. 5. Crossover operation.

Fig. 6. Mutation operation.
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the best solution by generation of 10 GA runs with a terminal
condition of 500 generations without improvement in the popu-
lation. Furthermore, the 95% confidence interval by generation
was computed to evaluate the uncertainty of the average. After
68,224 generations, the 95% confidence interval drop down to 0
because the terminal condition does not set a finite number of
generations. In other words, one GA run can have more genera-
tions than another one. Knowing this, the average values after
68,224 generations are the values of the longest GA run. The dif-
ferent amounts of generations per run can also explain the
increase in the values of the 95% confidence interval between
10,000 and 45,000 generations. In this interval, some GA runs
had already been terminated with a low objective value, while
other runs were still optimizing and had a higher objective value.

Results and discussion

The simulation parameters have been chosen by the authors to
design a general autonomous greenhouse. The parameters related
to the GA operators are fine-tuned by trials and errors of the algo-
rithm. For the parameters of components, the maximum and
minimum values of each component come from technical data-
sheets from different manufacturers. For example, the range of
values for the parameters of the water pumps were chosen
based on different models of the component in the market
(Alibaba, 2019; Amazon, 2019; Enabler, 2019; good, 2019;
Systems, 2019).

The component parameters and the size of the autonomous
greenhouse were chosen based on different works related to the
field of space biology such as Kibo, a small experiment module
sent to the ISS in order to conduct experiments with the
Arabidopsis plant (Yano et al., 2013). Another example can be
found in Fu et al. (2013) where a horn-type producer is designed
as a life-support system. The study of plants in the space environ-
ment is getting a lot of attention for different reasons such as pro-
viding food and managing gas cycle for astronauts (Häuplik-
Meusburger et al., 2011; Haeuplik-Meusburger et al., 2014).

The parameters of the simulation and the components are,
respectively, given in Tables 4, 5.

It is important to explain the red, blue, and green lines in
Figures 8, 9. The red lines are the LOS of the component starting
from the middle of the component. The blue and green lines
make a cone, which represents the FOV of the component.

Figures 8, 9 show that the algorithm applied the guidelines
given by the identification of the components and their interac-
tions presented in the “Background and Literature Review”. It is
possible to see that the placement of components was mainly
affected by the following dependencies: adverse effect and physi-
cal interface.

First, the GA avoids adverse effects by placing the heat sensor
on the opposite side of the heater to avoid erroneous readings of
the temperature. Erroneous readings of the temperature are also

Fig. 7. Convergence graph of the GA.

Table 4. Simulation parameters (The parameters in a dark gray shading are GA
parameters and those in light gray shading are product specifications)

Parameters Values

Maximum population size 100

Number of unimproved generations to terminate
the algorithm

500

Number of crossovers (if there is crossovers) 20

Probability of crossover 80%

Probability of mutation 5%

Probability of a random solution generated 80%

Maximum voltage for one component in a solution 9 V

Maximum current for one component in a solution 1000 mA

Maximum mass of a solution 1500 g

Maximum energy consumption of an individual 15 W

Greenhouse dimension 450 × 300 × 300 mm3
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avoided because the LEDs are far from the heat sensor.
Furthermore, every component does not prevent the LEDs and
the camera to light and capture the pack soil, respectively, except
for the water tank. Indeed, the water tank is blocking a part of the
FOV of the LEDs and the camera. However, most of the pack soil
is within these FOVs. Considering that one of the goals of the GA
is also to maximize the size of the water tank and the pack soil, it
is more likely that a small portion of the FOVs will be blocked by
the water tank as it can be seen in Figure 9.

Finally, the GA algorithm followed the guidelines from the
physical interface by positioning the fan and the heater side by
side in order to improve the heat convection. The LEDs and
the camera are positioned above the pack soil, where they can
maximize the lighting and the capturing of the pack soil, respec-
tively. The pack soil, water tank, and water pump are close to each
other even if the pack soil and water tank have important
volumes. Hence, the algorithm minimizes the length of the pipe
by minimizing the distance between these components.

Table 6 presents the values of the position and parameters of
all components found with the GA. PX, PY, and PZ are the xyz
positions; DX, DY, and DZ are the xyz dimensions; M, V, and
C are, respectively, the mass, voltage, and current; the FOV is
the field of view. Table 7 presents all connection points of the
pipes on a given component.

It is possible to see that most of the sensors are close to their
minimum values (see Table 5) in terms of volume, mass, voltage,
and current. The only ones that are close to their maximum vol-
ume are the pack soil and water tank, which are the ones that we
wanted to maximize. The occupied volume is 2,844,316, 28 mm3

which is only 7% of the total volume of the autonomous green-
house. The weight and energy consumption constraints are also
respected since the obtained values are, respectively, 655.8 g and
5.86 W. The presented problem statement of the layout design
of a greenhouse is flexible enough to take into consideration phy-
sics analysis. For example, gravity can be included in the place-
ment of components to favor the placement of heavy items on
the base of the greenhouse, which would make the system more
stable. The minimization of the gravitational potential energy
could be added as an objective function. Another interesting
physical analysis would be a heat analysis, which could help
place components and identify missing components in the heat
system. For example, the heat analysis based on external and
internal parameters could inform the designer if a cooling system
is needed. The optimization problem could also include and opti-
mize complexity metrics, which would help define the simplest
robust solution.

One of the major issues in the presented algorithm is the
parameters of the components are given in terms of the range

Table 5. Parameters of components

Pack soil
Dimensions range: 250 × 175 × 8 to
450 × 300 × 20 mm3

Mass range: 300–425 g

Water tank
Dimensions range: 50 × 50 × 50 to
100 × 100 × 100 mm3

Mass range:150–1200 g

Heater
Dimensions range: 30 × 30 × 5 to
80 × 80 × 10 mm3

Mass range: 20–50 g
Voltage range: 3.3–12 V
Current range: 400–7000 mA

Heat sensor
Dimensions range: 12 × 12 × 5 to
25 × 25 × 10 mm3

Mass range: 0.1–1 g
Voltage range: 1.7–3.6 V
Current range: 0.01–0.02 mA

Camera
Dimensions range: 10 x10 × 2.5 to
22 × 26 × 11 mm3

Mass range: 0.1–6.4 g
Voltage range: 1.7–5 V
Current range: 50–160 mA
Field of view: 60–90 °

LED
Dimensions range: 40 × 40 × 1.84 to
100 × 100 × 2 mm3

Mass range: 10–35 g
Voltage range: 2.9–3.7 V
Current range: 700–1400 mA
Field of view: 60–90 °

Fan
Dimensions range: 40 x40 × 10 to
80 × 80 × 25 mm3

Mass range: 18.6–62.6 g
Voltage range: 2–5.5 V
Current range: 66–170 mA

Water pump
Dimensions range: 32 × 32 × 23 to
54 × 54 × 46 mm3

Mass range: 80–150 g
Voltage range: 3–12 V
Current range: 200–500 mA

PCB
Dimensions range: 30 × 30 × 1 to
50 × 50 × 4 mm3

Mass range: 5–10 g
Voltage range: 3.3–6 V
Current range: 5–50 mA

Fig. 8. Layout optimization of the greenhouse (side view).
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of values; hence, it is therefore possible to get a solution for
which components are not available in the market. Although
it remains interesting to keep the parameters of components
as a value range, a version of this algorithm could be developed
to include a database containing different models of the same
component. Furthermore, it would also be possible to change
the shape of components from the rectangle approximation
that is currently used to a realistic shape of the component
based on the dimensions given by the database. It would also
give a more precise position of the LOS of components similar
to a camera. Another interesting future improvement would be
to consider and allow combinations of certain components to
minimize the space occupation of components. For example,
instead of using a heater and a fan, a compact coaxial fan/heater
could be used.

If the simulation parameters presented in Table 4 were to be
changed, the output solution is most likely to change. However,
the degree of impact on the solution has not been thoroughly
studied. Hence, the GA parameters should be optimized to find

the ideal simulation parameters using tuning algorithms (Eiben
and Smit, 2012; Montero et al., 2018). For example, Ooi et al.
(2019) proposed a self-tune linear adaptive GA which modifies
the mutation probability rate and the population size based on
the diversity of the population. Moreover, the product specifica-
tions should undergo a sensitivity analysis to evaluate the robust-
ness of the design.

The optimization problem statement presents many objectives,
which can be conflicting. For example, the optimization algorithm
needs to minimize the overall volume and to maximize the vol-
ume of the pack soil. Currently, these conflicting objectives are
implicitly considered by a weighted sum approach in the single-
objective optimization. In future work, it is possible to explicitly
consider them with a multiobjective optimization without assign-
ing weights to them (Kalyanmoy, 2001; Simon, 2013). By using a
multiobjective optimization, a wider range of solutions would be
available to the designer to choose from. As mentioned before, the
layout design of autonomous greenhouse can also be considered
as an MaOP which requires a more sophisticated algorithm to
be solved (Hisao et al., 2008; Li et al., 2015; Huang et al.,
2019). However, the selection process of the ideal algorithm to
find the best range of solutions needs to be done carefully.
Furthermore, the designer would still need to choose one solution
among a Pareto-optimal set of solutions given by the multiobjec-
tive optimization algorithm using a posteriori approaches (Wang
et al., 2017; Yu et al., 2019), which is not a trivial task as reported
by Torry-Smith et al. (2011) and Mørkeberg Torry-Smith et al.
(2012). Also, the presented algorithm rejects automatically a solu-
tion that does not respect constraints. Although, it is one way to
deal with constraints, other methods based on penalties or the

Table 6. Numerical results of the simulation

Component Colour PX PY PZ DX DY DZ M V C FOV

Heater Red 450 138 232 35 40 5 21 3.6 783 –

Water tank Green 132 119 300 92 96 98 207 – – –

Pack soil Brown 405 0 52 391 244 20 307 – – –

Heat sensor Purple 0 22 187 15 13 5 0.1 1.8 0.01 –

Camera Yellow 120 300 133 10 16 2.6 0.4 1.7 50 73

Fan Cyan 450 164 291 49 44 13 19.3 2.2 73 –

LED Magenta 271 300 209 43 42 1.88 11 2.9 716 64

Water pump Orange 0 43 272 34 38 23 85 3 233 –

PCB Black 450 166 162 39 30 1 4.5 4.5 5 –

Table 7. Connection points of pipes on components

Pipes connection points PX PY PZ

Water tank 132 156 260

Pack soil 32 20 250

Water pump #1 21 77 264

Water pump #2 23 48 255

Fig. 9. Layout optimization of the greenhouse (top
view).
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dominating concept could also be used and might yield better
results (Kalyanmoy, 2001).

Finally, the output design of the presented algorithm should be
validated by prototyping an autonomous greenhouse. By doing
so, new phenomenon or interactions between components
could emerge or the importance of one interaction over another
could be identified. The algorithm could be then improved, and
a new design might be output.

Conclusion

This paper presented how a general problem statement of the lay-
out design of an autonomous greenhouse based on the placement
of components is defined and translated into an optimization
problem. A GA is then used to solve the optimization problem
composed of multiple functional and spatial objective functions
and constraints aggregated into a single overall objective using a
weighted sum approach. As mentioned before, the problem state-
ment is flexible enough to include physical analysis, such as heat
analysis if the designer wants to consider them. Although, the
proposed methodology presents weaknesses for the modeling of
real components, we deemed that the approximations used in
this paper are adequate to give a general idea of the layout design
of an autonomous greenhouse and therefore a starting point for a
designer. Indeed, we were able to make the design of an autono-
mous greenhouse for space biology applications where the volume
of all the components are 2844, 32 cm3, which is 7% of the total
volume. The greenhouse also consumes 5.86 W and weighs
655.8 g, which respect the constraints of the problem statement.
Furthermore, the GA is able to output a promising solution by
compromising between several spatial guidelines, such as keeping
the heat sensor far from the LED and the heater. The GA is also
able to find and evaluate an enormous amount of design varia-
tions in a reasonable time based on guidelines from the designer.
Moreover, the GA can converge toward a near-optimal solution.
The validation of the algorithm has yet to be done by prototyping
the greenhouse and evaluate its capacity to ensure the plant
growth.
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