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Abstract
A deep-deferred annuity is a deferred annuity where payments start very late in life, i.e. well after
the normal retirement age. This annuity has received much attention lately as it was made accessible to
401(k) plans in the United States in 2014. By transferring the risk of outliving retirement savings at high
ages to annuity providers, deep-deferred annuities provide annuitants with enhanced later-life financial
security. However, the valuation of this annuity suffers from high uncertainty because the mortality
data at high ages are sparse and possibly unreliable. In this paper, we use risk ratio to measure
demographic risk in the valuation. Demographic risk is decomposed into the following four compo-
nents: (1) mortality tail curve risk, (2) mortality improvement model risk, (3) parameter risk in mortality
tail curves, and (4) parameter risk in mortality improvement rate models. Our quantitative analysis aims
to provide insights into the development and risk management of deep-deferred annuities.
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1. Introduction

According to the Employee Benefit Research Institute’s 2014 Retirement Confidence Survey, only
18% of workers are confident that they will have enough money for a comfortable retirement while
many are concerned about outliving their retirement savings. A deep-deferred annuity, an innovative
annuity product proposed by Milevsky (2005), can potentially alleviate this concern. Also known as
advanced life deferred annuity or longevity annuity, a deep-deferred annuity is a deferred annuity
which is usually purchased just before or after retirement but does not begin to make regular
payments until annuitants reach a certain high age, typically 85.

This type of annuity is designed to enhance later-life financial security in a cost-effective way. It has a
pure survivorship benefit, i.e. there is no death benefit if the policyholder dies before the annuity start
age. Gong & Webb (2010) showed that deep-deferred annuities provide a substantial proportion of
longevity risk protection offered by immediate annuities at a much lower cost. Blake & Turner
(2014) stated that the extra financial security from deep-deferred annuities helps retirees better
manage their post-retirement assets. The purchaser of deep-deferred annuities only needs to plan for
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a fixed period from the retirement date to the date at which the annuity benefits start, instead of
planning for the uncertain lifespan.

With the rapid mortality improvement we have been experiencing recently, there is a high likelihood of
retirees underestimating their life expectancy and outliving their retirement assets. Deep-deferred annuities
can potentially relieve this problem and thus play an important role in our social security system. In fact,
the US Department of Treasury and the Internal Revenue Service approved the usage of longevity annuities
in the 401(k) and Individual Retirement Account (IRA) markets in 2014. However, only a few insurance
companies in the United States offer this annuity, and no insurance companies in the United Kingdom
currently provide this product. Blake & Turner (2014) argued that the current low supply of deep-deferred
annuities in the private sector is primarily attributable to the systematic longevity risk, especially at very
high ages. In particular, the increased difficulty of assessing longevity risk due to the long deferral period
and lack of appropriate longevity risk-hedging tools will lead to a large increase of reserve requirement for
this type of annuity.

The biggest challenge in assessing longevity risk in deep-deferred annuities is how to model and
forecast high age mortalities. This question has remained open despite numerous past attempts. The
sparseness and low reliability of mortality data at high ages exacerbate the problem, thereby leading
to concerns of model risk and parameter risk in annuity valuation. In this paper, we aim to quantify
these two risks and identify their driving factors. In addition, we use immediate annuity as a
comparative tool and show that it has very different risk profiles than deep-deferred annuity.

The conventional mortality modelling approaches, such as the log-bilinear structure (Lee & Carter,
1992; Brouhns et al., 2002; Renshaw & Haberman, 2003), directly model the mortality rates
over time and then extrapolate the pattern using a simple time series method. These approaches work
well when the focus is on relatively low ages at which mortality data are accurate. However, for
deep-deferred annuities, we are more concerned with high ages where data are sparse. Since it is
difficult to validate models using a small amount of data, we are more interested in how model
assumptions affect the valuation of deep-deferred annuities. Therefore, we opt for an approach that
is comprised of two parts: a base mortality curve and a mortality improvement model. This approach
allows us to adapt different assumptions of high age mortality curves and mortality improvement
patterns, and thus isolate their impacts on annuity valuation.

The base mortality curve determines how mortality changes with age, and – more importantly for
deep-deferred annuities – how we close the mortality table. There have been different views of the
trajectory of mortality at high ages. Researchers (Perks, 1932; Beard, 1963, 1971; Kannisto, 1992)
have described the mortality pattern by logistic models, and suggested that exponential growth of
mortality with age is followed by slower rates of mortality increase at higher ages. Gompertz (1825)
and Greenwood & Irwin (1939) observed a late-life mortality plateau, i.e. level or declining
mortality at high ages. Nusbaum et al. (1996) and Weitz & Fraser (2001) have built models to
incorporate and explain this phenomenon. However, Gavrilov & Gavrilova (2011) have pointed out
that evidence supporting mortality decelerations at high ages was caused by population hetero-
geneity, and the authors concluded that the Gompertz law is a good fit for the population studied up
to the age of 106. To date, there is no consensus on mortality tail shape. In this paper, we consider
various mortality curves and assess the model risk resulting from this assumption.

Mortality improvement rates have been modelled directly with parametric structures in Mitchell et al.
(2013) and Haberman and Renshaw (2012). In this paper, we consider both the Mitchell et al. (2013)
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model and an indirect method which obtains the improvement rates based on the Lee–Carter model.
Proposed by Lee & Carter (1992), this model has been well-recognised for its parsimony and easy
interpretation. It is often regarded as the benchmark in mortality modelling.

Another important determinant of annuity value is gender. Male and female mortalities are different
but highly correlated. It is necessary to model them jointly using a two-population mortality model,
such that their correlations can be adequately captured. Failure to do so may lead to underestimation
of potential risk in the annuity. Multi-population mortality models have been studied by
several researchers (Cairns et al., 2011; Dowd et al., 2011; Li & Hardy, 2011; Zhou et al., 2014; Li
et al., 2015a, 2015b). We follow Zhou et al. (2014) and consider two versions of two-population
Lee–Carter model: one with non-divergence constraints and one without.

With the non-divergence constraints, the mortality forecasts of the two populations being modelled will
not diverge indefinitely over time. These constraints have been used by Li & Lee (2005), Cairns et al.
(2011), Dowd et al. (2011), and Li et al. (2015a). Non-divergence has been supported by certain
empirical observations. For instance, Wilson (2001) found a global convergence in mortality levels by
comparing the distributions of the global population by life expectancy over three different time periods:
1950–1955, 1975–1980, and 2000. However, some researchers believe that the non-divergence con-
straints are too strong. Oeppen & Vaupel (2002) studied the trend of highest female life expectancy
across countries and observed that US females have moved away from this trend in recent years. Li et al.
(2015b) introduced the semi-coherent concept to allow temporary divergence, and demonstrated that
the assumption of divergence/non-divergence has significant impact on longevity risk pricing and
hedging. Inspired by the literature, we compare the value of deep-deferred annuities under divergence
and non-divergence assumptions, and evaluate the model risk stemming from this assumption.

As mentioned above, parameter risk is also of great concern because of the scarcity and low quality of
mortality data at high ages. To quantify the parameter risk in valuing deep-deferred annuities, we use the
bootstrap method to determine the variability of estimated parameters and its impact on annuity values.

The remainder of this paper is organised as follows: section 2 introduces mortality tail curves;
section 3 describes the single-population and two-population Lee–Carter models; sections 4 and
5 examine model risk and parameter risk in valuing deep-deferred annuities, respectively; and section
6 concludes the paper.

2. Mortality Tail Curves

2.1. Three shapes of mortality curves

Since a deep-deferred annuity does not start to pay benefits until the annuitant reaches a very
advanced age, its cash flow may be greatly affected by the tail of a mortality curve. To examine the
impact of mortality tail assumption on the annuity value, we consider the following three models:

(1) Gompertz law (Gompertz, 1825):

μx = eax + b

where μx is the force of mortality for a life at age x, and a and b are constants. Under Gompertz law,
the force of mortality increases exponentially with age. The mortality curve is concave upward
without bound. Gompertz law has been used widely because of its simplicity and tractability.
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(2) Cubic model with a flat tail (Panjer & Russo, 1992; Panjer & Tan, 1995):

μx =min ax3 + bx2 + cx + d; ln2
� �

where a, b, c, and d are constants. The force of mortality increases as a cubic function of age until it
reaches the cap, ln2, and then remains at ln2 for higher ages. This mortality curve models a late-life
mortality plateau. The recently released RP-2014 Mortality Tables1 by the Society of Actuaries (SoA)
uses a similar mortality curve, and sets the death probability to 0.5 for males over 110-year-old and
females over 112-year-old.

(3) Logistic model (Perks, 1932)

μx =
ed + eax +b

1 + eax + c

where a, b, c, and d are constants. The force of mortality accelerates first, and then decelerates at
higher ages, gradually approaching an asymptotic maximum. There are two variants of this model:
Beard (1963), where ed = 0; and Kannisto (1992), where ed = 0 and b = c.

2.2. Data and fitting

We use Japanese mortality data in year 2012 with the age range of 75–1052 to fit the three mortality
curves described above.

We recognise that the market for deep-deferred annuities mainly lies in the United States. We choose to
use Japanese mortality data because there is no US annuitant mortality data publicly available. Our
paper focuses on how the assumptions of mortality tail curve and mortality improvement at high ages
affect deep-deferred annuity valuation. High age mortality data are crucial for our study. One alternative
is to use the US national population data, but it is recognised that annuitant mortality is much lighter
than national population mortality due to adverse selection (Mitchell & McCarthy, 2002). Using the
national population data may result in underestimation of demographic risk in deep-deferred annuities.

Japan is one of the countries that have the world’s lowest mortality rates (Robine et al., 2010), and
it has a relatively large population. Japanese mortality data are of high quality since Japan
implemented a national family registration system in 1872. Researchers (Robine & Saito, 2003) have
found that Japanese mortality data offer some unique information on the demographic trends for
extremely old population. Japanese data are also reliable for investigating the determinants and
limits of human longevity and the important plasticity in longevity with regard to environmental
conditions (Arai et al., 2014). These features of Japanese mortality data prompt us to use them in
studying demographic risk in deep-deferred annuity valuation.

The number of deaths at each age is assumed to follow a Poisson distribution with mean equal to the
expected number of deaths under a mortality curve model:

Dx;2012 � PoissonðEx;2012μx;2012Þ

where Dx,t, Ex,t, and μx,t are the number of deaths, the number of exposures-to-risk, and the force of
mortality of lives at age x in year t, respectively. Maximum likelihood estimation is used to

1 The abbreviation “RP” stands for Retirement Plans.
2 Data were downloaded from Human Mortality Database, http://www.mortality.org
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estimate the parameters in the mortality curve models. The log-likelihood function can be
expressed as

X
x

ðDx;2012lnμx;2012�μx;2012Ex;2012Þ + constant

To maximise the log-likelihood, we can use standard Newton’s method or optimisation functions in
computational softwares. We obtain our estimates using the optimisation function in Matlab.
Table 1 summarises the parameter estimates.

We use the Bayesian information criteria (BIC)3 to compare the goodness of fit of the three models. Perks’
logistic model has the lowest BIC for females and is thus the best fit for female mortality data. While
Cubic model is the best fit for male mortality data, Perks’ model fits male mortality data slightly worse.
We have also fitted Beard’s and Kannisto’s logistic models, and found that they do not yield better
goodness of fit than Perks’ model. Therefore, we will only consider Perks’ logistic model hereinafter.

The upper panel of Figure 1 plots raw mortality rates and fitted curves for males and females. The
three curves have similar fits for ages under 95; however, they show very different patterns for ages
over 95. The fitted male mortality curve using Perks’ model is concave upward before age 97 and
concave downward after age 97. It gradually approaches an asymptote of 0.686. The fitted female
mortality curve using Perks’ model has a reflection point at age 100 and an asymptote of 0.660.
The fitted curve using cubic model is concave upward for ages over 75. It reaches the imposed cap of
ln2 at age 106 for males and age 109 for females, respectively.

The goodness of fit of Gompertz law is much less accurate than that of the other two models.
The fitted curve deviates significantly from the raw mortality rates beyond age 95 for males and age
97 for females. However, Gavrilov & Gavrilova (2011) found that Gompertz law fits the US Social
Security Administration (SSA) Death Master File mortality data4 of ages 88–106 better than logistic

Table 1. Parameter estimates of the three mortality curves.

Males Females

Parameters Gompertz Cubic Perks’ Gompertz Cubic Perks’

a 0.1115 1.1103×10−5 0.1149 0.1320 1.0880×10−5 0.1658
b −11.8143 −0.0023 −14.5120 −14.1673 −0.0023 −16.9970
c 0.1548 −14.1351 0.1553 −16.5817
d −3.5622 −5.2205 −3.5479 −5.7801
ln(L) −586.36 −198.73 −201.98 −1271.52 −331.85 −244.56
BIC 1179.59 411.20 417.70 2549.91 677.44 502.86

Note: BIC, Bayesian information criteria.

3 The BIC is defined as BIC = − 2 ln(L) + k ln(n), where ln(L) is the log-likelihood, k the number of para-
meters, and n the number of data points. The smaller the BIC is, the better fit the model has.

4 There is no publicly available US annuity portfolio data that can be used for our purpose. As pointed out in
Gavrilov & Gavrilova (2011), mortality rates of ages 85–88 before 1970 cannot be estimated using the SSA
Death Master File mortality data due to incomplete death registration before 1970. The SSA life tables cannot be
used either, because mortality rates for age 95 and above are extrapolated. Our results will be significantly
affected by the extrapolation method employed in the SSA life tables.
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models. They concluded that improvement of data quality at advanced ages results in a mortality
trajectory closer to that of the Gompertz law. Therefore, determining which model fits best appears
to be very much data dependent. Practitioners should carefully choose the model for mortality tail
curve based on the mortality experience of their own annuity portfolios. The large difference
between the three fitted mortality curves suggests that mortality tail curve may be an important
source of model risk for deep-deferred annuity valuation.

Denote f75(t) as the probability density function of the future lifetime of a person aged 75 in
2012, and f75(t) = tp75μ75 + t,2012, where tp75 is the probability that this person survives t years. In the
lower panel of Figure 1, we plot f75(t), t = 25, 26,… , 45 for both males and females using the
three mortality tail curves. Gompertz law has the lightest tail because it yields the lowest probability
of surviving to very high ages among the three mortality tail curves. We also notice that the value of
f75(t) for males is much smaller than that for females, because males have much lower probability
of surviving to very high ages. In order to display the difference between the density functions
using various mortality tail curves clearly, we use different scales for males and females in these
two plots.
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Figure 1. (a) Raw mortality rates and the three fitted mortality curves for a male and female
currently at age 75. (b) Probability density function of the future lifetime of a person aged 75 in
2012 using the three mortality curves.
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We construct the complete mortality curve with raw mortality rates for ages below 75 and
fitted mortality rates for ages above 75 using the models described in section 2.1 because the raw
mortality rates for younger ages are believed to be reliable. We use raw mortality rates for ages below
75 in the mortality curve to avoid fitting errors. In addition, using the same mortality rates for
younger ages ensures that the difference of annuity values comes solely from the mortality tail curve
assumption.

3. Mortality Improvement Rate

3.1. Single-population Lee–Carter model

In the main text, we use the Lee–Carter model to obtain mortality improvement rates, because it is
often regarded as the benchmark for mortality modelling. In Appendix A, we introduce the Mitchell
et al. (2013) model and show that these two models result in similar findings.

Mathematically, the Lee–Carter model can be expressed as follows:

lnmx;t = αx + βxκt

where mx,t is the central death rate for a life aged x in year t, αx the age-specific mortality level, κt the
time-varying mortality index, and βx the age-specific sensitivity to the mortality index. Following
Brouhns et al. (2002), we assume that Dx,t follows a Poisson distribution with mean equal to
Ex,tmx,t. Note that Poisson assumption is commonly violated by overdispersion, which is often
evident in death count data due to population heterogeneity. Li et al. (2009) addressed this problem
by adding a gamma distribution for the unobserved heterogeneity. For simplicity, we continue to use
the classic Poisson distribution and maximum likelihood estimation to obtain parameter estimates.
To ensure parameter uniqueness, two identification constraints are imposed:∑xβx = 1 and∑tκt = 0.
κt is further modelled by an autoregressive integrated moving average (ARIMA) model.

Mortality improvement rate at age x and time t can be written as follows:

rx;t = ln
mx;t

mx;t� 1
= ln

eαx + βxκt

eαx + βxκt� 1
= βxðκt � κt� 1Þ (3.1)

Equation (3.1) indicates that mortality improvement rate for age x is determined by βx and
the change in κt. It is important to note that the cohort effect is another important factor
driving mortality improvement due to the phenomenon that people born in certain years have
experienced more rapid mortality improvement than others. Cohort effect has been observed in both
United Kingdom and Japanese populations by Willets (2004). Several researchers (Renshaw &
Haberman, 2003; Cairns et al., 2009) have incorporated cohort effect in mortality modelling,
and it is considered an important factor in annuity pricing and valuation. Although the Lee–Carter
model cannot capture cohort effect, it has been chosen because the focus of our study is
on the uncertainty stemming from the assumption of mortality tail curve and the dependence
structure of male and female mortality. Future research may consider a collection of mortality
models with cohort effect in the analysis.

The forecast of mortality rates is the multiplication of the base year mortality curve and the projected
mortality improvement rate. This two-step approach allows us to separately examine the impact
of mortality improvement model and the base mortality curve on deep-deferred annuity valuation.
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In this paper, we use 2012 as the base year. For a life aged x at the beginning of 2013, his/her death
rate in year 2013 + s, where s = 0, 1, 2,… , can be expressed as follows:

mx + s;2013 + s = μx + s;2012
Ys
j=0

erx + s;2013 + j

= μx + s;2012
Ys
j=0

eβx + s κ2013 + j � κ2013 + j� 1ð Þ

= μx + s;2012e
βx + s κ2013 + s � κ2012ð Þ

where μx+ s,2012 is obtained from the base mortality curve in section 2. This approach is analogous to
the mortality improvement scale approach used in the SoA’s Mortality Improvement Scale MP –

2015. In SoA’s approach, future mortality rates in year t+ s are calculated by

mx;t + s =mx;t

Ys
j¼1

ð1� ISðx; t þ jÞÞ

where IS (x; s) is the improvement scale, retrieved from a two-dimensional table with one dimension
for age and the other for calendar year. The base year mortality curve is the RP-2014 Mortality
Table. However, this tabulated approach can only provide point forecasts of future mortality rates,
but not the uncertainty of the forecasts. In contrast, our approach is stochastic and can capture the
uncertainty in mortality improvement rates.

If we use the Lee–Carter model directly, the forecasted value of mx+ s,2013 + s is

mx + s;2013+ s = eαx+ s + βx + sκ2013 + s

= eαx+ s + βx + sκ2012 + βx + s κ2013 + s � κ2012ð Þ

= m̂x+ s;2012eβx + s κ2013+ s � κ2012ð Þ

where m̂x + s;2012 = eαx + s + βx + sκ2012 and it is the fitted value of mx+ s,2012. Therefore, using the Lee–Carter
model to directly forecast mortality rates is equivalent to our two-step approach with the base
mortality curve set to the fitted Lee–Carter mortality rates in the base year.

We fit the Lee–Carter model to the Japanese male and female mortality data from the sample period
of 1965–2012. Due to the concern of data reliability, we use the sample age range of 60–95. Data
before year 1965 were dropped due to greater volatility compared to subsequent years. Figure 2
demonstrates the estimated values of αx, βx, and κt for males and females, respectively. αx
increases almost linearly with age, indicating that mortality rates increase with age. As shown in
equation (3.1), mortality improvement rate is determined by βx and κt− κt − 1. Since κt decreases with t
and βx is positive, mortality rates decrease over time for all ages. βx attains its maximum value at
approximately age 75, thus suggesting that people who were approximately age 75 experienced
faster mortality improvement than other age groups. We also observe that female κt has a steeper
slope than male κt, and females over age 77 have higher βx than males. This observation implies that
the mortality improvement of females over age 77 is faster than that of males. Note that other
countries may have different experiences. For example, the mortality of UK males has improved
more rapidly than females since 1970, according to the 2012-based National Population Projections
report by the Office for National Statistics (2013).
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We selected ARIMA(0, 1, 1) model for both male and female κt based on BIC values. The ARIMA(0, 1, 1)
model can be expressed as follows:

Δκt = a0 + zt + a1zt� 1

where Δκt = κt− κt−1 and {zt} are independently and identically distributed normal random variables with
mean 0 and variance σ2. The parameter estimates for the ARIMA model and their standard errors (in
parentheses) are shown in Table 2. Depending on the choice of identifiability constraints, the estimates of
κt may change, thereby changing the estimates of ARIMA parameters as well. However, the structure of
the fitted ARIMA model and future morality forecast will remain the same.

Since the sample age range of the data is 60–95, we can only obtain the estimates of αx and βx up to
age 95. For ages above 95, we extrapolate the patterns of αx and βx using deterministic functions. It is
reasonable to assume that βx is non-negative, because mortality is expected to continue to improve,
or at least not to deteriorate. With this constraint, we consider two models for βx: a Gaussian
function with an asymptote of 0, and a quadratic function with a minimum value of 0. Using
Gaussian function, βx decreases slowly and approaches 0 as x goes to infinity. Using a quadratic
function, βx decreases quickly and reaches the floor of 0 when x = 105. Both cases are displayed in
Figure 3. Since αx does not determine mortality improvement rate, as seen in equation (3.1), the
choice of extrapolation function will not affect our conclusion. We can use either a Gaussian
function or linear function with a cap of 0 to extrapolate αx.
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Figure 2. Estimates of αx, βx, and κt.
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3.2. Two-population Lee–Carter model

To build a two-population model, we use one Lee–Carter model for each population:

lnmðiÞ
x;t = αðiÞx + βðiÞx κðiÞt

where i = 1 for males and 2 for females. Following Zhou et al. (2014), we further model
Δκð1Þt ;Δκð2Þt

h i
′ by a pth order vector autoregressive (VAR) process:
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Figure 3. Extrapolation of αx and βx at high ages.

Table 2. Parameter estimates of ARIMA(0, 1, 1) for κt in the single-population Lee–
Carter model.

Gender a0 a1 σ

Male �0:6794
ð0:0662Þ

�0:3784
ð0:1350Þ

0:5606
ð0:1649Þ

Female �0:9521
ð0:0835Þ

�0:3728
ð0:1397Þ

0:8150
ð0:2238Þ

Note: ARIMA, autoregressive integrated moving average.
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where A0 is a 2× 1 vector, Aj, for j = 1, 2,… , p, is a 2× 2 matrix, and ½zð1Þt ; zð2Þt �′ follows a bivariate
normal distribution with 0 mean and variance–covariance matrix of Σ.

We use likelihood ratio tests to determine the lag order p. Using a significance level of 5%, a p-value
smaller than 5% implies strong evidence against the null model. Table 3 summarises the test
results and shows that the tests favour VAR(1), VAR(2), and VAR(3) over VAR(4), indicating that
lag order of <4 should be used. Similarly, the tests favour VAR(1) and VAR(2) over VAR(3),
indicating that lag order of <3 should be used. Lastly, the test of VAR(1) versus VAR(2) rejects
VAR(1) at the p-value of 0.0309. Therefore, we select VAR(2) to model Δκð1Þt ;Δκð2Þt

h i
′.

The parameter estimates and their standard errors (in parentheses) are displayed below:

A0 =

�1:1174
ð0:2118Þ

�1:2597
ð0:2639Þ

2
64

3
75; A1 =

1:0202
ð0:4252Þ

�1:1513
ð0:3313Þ

0:9640
ð0:5299Þ

�1:0658
ð0:4129Þ

2
64

3
75; A2 =

�0:6644
ð0:4292Þ

0:4750
ð0:3846Þ

�1:2924
ð0:5349Þ

1:0120
ð0:4793Þ

2
64

3
75; andΣ=

0:4307 0:5075

0:5075 0:6689

" #

This two-population Lee–Carter model can capture the correlation between the mortality rates
of the two populations. However, it does not impose any non-divergence conditions. Researchers
(Li & Lee, 2005; Cairns et al., 2011; Dowd et al., 2011; Li et al., 2015b) have argued that mortality
rates of different populations should not diverge indefinitely due to biological reasonableness.
To incorporate the non-divergence assumption and study how it affects deep-deferred annuity
valuation, we consider the following constraints:

1. βð1Þx = βð2Þx ;

2. Δκð1Þx and Δκð2Þx share the same unconditional mean.

Under these two constraints, the mortality improvement rates of the two populations have the same
unconditional mean. The female and male mortality rates will eventually run in parallel. We follow
Zhou et al. (2014) and estimate this model by maximum likelihood estimation.

Figure 4 plots the estimates of αðiÞx , βðiÞx , and κðiÞt when the non-divergence constraints are applied.
We observe that αðiÞx and the common βðiÞx follow similar patterns as those in Figure 2. Therefore, we

continue to extrapolate αðiÞx by linear function and βðiÞx by Gaussian or quadratic function.

The new parameter estimates of the VAR(2) model for ½Δκð1Þt ;Δκð2Þt �′ are A0 =
�0:9872
�1:0340

� �
;

A1 =
1:1344 �1:2043
0:9852 �1:0241

� �
; A2 =

�0:7530 0:6210
�1:4681 1:2480

� �
; and Σ=

0:4674 0:5397
0:5397 0:6963

� �
:

Figure 5 shows the mean mortality forecasts of an 80-year-old Japanese male and an 80-year-old
Japanese female over 40 years using the three dependence structures: independent (left), correlated

Table 3. p-values of likelihood ratio tests for determining vector autoregressive (VAR) lag order.

Alternative

Null VAR(2) VAR(3) VAR(4)

VAR(1) 0.0309 0.0687 0.1347
VAR(2) 0.4179 0.5167
VAR(3) 0.5822
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but allowing divergence (centre), and correlated with non-divergence constraints (right). The upper
panel uses Gaussian extrapolation for βx and the lower panel uses quadratic function with a floor
of 0. Perks’ model is used in the base mortality curve for illustration. When using Gaussian extra-
polation for βx, there is no obvious difference between the left and centre plots. Incorporating
correlation without imposing non-divergence constraints leads to marginal changes in the mean
forecasts of both male and female mortality. However, comparing the centre and right plots of the
upper panel, we find that the non-divergence constraints shift male mortality significantly downward
and female mortality slightly upward. This may have a major impact on the annuity values.

To understand the reasons behind this difference, we calculate the unconditional mean of Δκð1Þt and
Δκð2Þt under all three structures, as presented in Table 4. When no constraints are imposed, EðΔκð1Þt Þ
is significantly higher than EðΔκð2Þt Þ, indicating slower mortality improvements for males. After
imposing the non-divergence constraints, EðΔκð1Þt Þ decreases and EðΔκð2Þt Þ increases, such that they
agree on the same value. With faster mortality improvement, male mortality forecasts become lower.
The opposite occurs for female mortality forecasts.

When using quadratic extrapolation for βx, the three plots in the lower panel of Figure 5 show no
difference for ages above 105. In Figure 3, we have seen that βx decreases quickly and reaches the
floor of 0 at x = 105. Male and female mortality will not improve further after age 105. Therefore,
the choice of correlation structure has no influence on the mortality forecasts for ages above 105.
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Figure 4. Estimates of αðiÞx , βðiÞx , and κðiÞt of the two-population Lee–Carter model with non-
divergence constraints.
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4. Model Risk

4.1. Measuring model risk

According to Draper (1995), a model formalises assumptions about how unknown quantities are
related to known quantities. A model typically has two parts: structural assumption, such as the
form of the link function and the choice of error distribution in a generalised linear model; and
parameters, whose meaning is specific to a given choice of structural assumptions. The uncertainty of
a model arises from two sources:

1. Uncertainty in the values of parameters given a specific model structure, i.e. parameter risk; and

2. uncertainty in the model structure itself, i.e. model risk.

In this section, we aim to quantify the exposure of annuity value to the second source of uncertainty.
To simplify the problem and maintain our focus on model risk, we assume that annuity value is the

Table 4. Unconditional mean of Δκð1Þt and Δκð2Þt under various correlation structures.

Correlation structures EðΔκð1Þt Þ EðΔκð2Þt Þ

Independent −0.6794 −0.9521
Correlated but allowing divergence −0.7128 −0.9731
Correlated with non-divergence −0.8213 −0.8213

(a)

(b)
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Figure 5. Force of mortality forecasts of an 80-year-old over the next 40 years using the three
dependence structures, assuming Gaussian extrapolation (a) and quadratic extrapolation (b) for
βx, and the Perks’ mortality curve.
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actuarial present value of all future benefit payments. Consider an n-year deferred annuity issued to a
life aged x at the beginning of 2013. This annuity pays $10,000 at the beginning of each year
contingent on the survival of the annuitant. Its value at issue can be expressed as

n j €ax =
Xω� 1

k=n

10; 000ð1 + iÞ� k
kpx

where ω is the limiting age, i the annual effective interest rate, and kpx the probability that this life
survives k years. When n = 0, this annuity becomes an immediate annuity. Assuming constant force
of mortality between integral ages, kpx can be approximated by

kpx =
Yk� 1

s=0

px+ s =
Yk� 1

s=0

e�mx + s;2012 + ð1 + sÞ

Danielsson et al. (2015) proposed to use risk ratio to quantify model risk. The risk ratio measures the
level of disagreement amongst candidate models by calculating the ratio of the maximum to
the minimum risk forecasts. The difference between risk ratio and one indicates the extent to which
the candidate models disagree. When risk forecasts come from similar models, then risk ratio should
be close to one. In this paper, we use 95% value at risk (VaR) of annuity values as the risk forecasts.
If we have N candidate models, then the risk ratio can be expressed as

Risk ratio=
maxiVaRi

95% ðn j €axÞ
miniVaRi

95% ðn j €axÞ
(4.1)

where i denotes the ith model and i = 1, 2,… , N. The mortality model we use for annuity valuation
is comprised of two parts: mortality tail curve and mortality improvement rate model. We examine
the model risk in these two parts separately. Since we do not know the exact distribution of annuity
value, we use the 95th percentile of simulated annuity values as the 95% VaR.

4.2. Model risk in mortality tail curves

To start with, we assume there is no mortality improvement and examine how the annuity value
changes with the choice of mortality tail curves. With zero mortality improvement rate, we have

kpx =
Qk� 1

s= 0 e�mx + s;2012 . Once the mortality curve in 2012 is determined, there is no uncertainty in kpx.
Therefore, annuity value is a constant and the 95% VaR of annuity value is equal to this constant.

We use immediate annuities and deep-deferred annuities with various deferral periods for illustra-
tion. Assume that these annuities are purchased at age 75 and annual effective interest rate is 2%.
Table 5 lists risk ratios and average annuity values using various mortality tail curves. Although we
observed a large discrepancy of mortality rates at high ages in Figure 1, Table 5 shows that there is
insignificant difference in immediate annuity values from using different mortality curves because the
three mortality curves only start to diverge at approximately age 95. Immediate annuity values are
heavily weighted by benefits paid in earlier years due to less discounting and higher survival prob-
ability. The actuarial present value of benefits paid after age 95 is relatively small. Therefore, the
choice of mortality tail curve does not have a significant impact on the values of immediate annuities.

As expected, deep-deferred annuities are much less costly than immediate annuities. The value of a
15-year deferred annuity issued to a 75-year-old male is ~9.7% of the corresponding immediate
annuity value because a 75-year-old male has only an ~54% chance of surviving to age 90, and the
annuity payments at high ages are deeply discounted.
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Although deep-deferred annuities have a low-cost advantage, they have a higher model risk than
immediate annuities. Figure 6 plots the risk ratios of n j €a75 for n = 0, 1, 2,… , 20 under various
interest rate assumptions. While the focus of this discussion is on males, the female plot can be
analysed in a similar fashion.

The pattern of risk ratio is determined largely by the relative impacts of mortality rates in two age
ranges: 82–94 and above 95. As the deferral period increases, the impact of age range 82–94 decreases
while that of ages above 95 increases due to increasing weights of payments in later life. Recall that in
Figure 1, Gompertz law has the lowest force of mortality for males in the age range of 82–92 and the
highest force of mortality for males who are age 95 and above among the three mortality curves. In
contrast, Perks’model has the highest or close to the highest force of mortality for males in the age range
of 82–92 and the lowest force of mortality for males who are age 95 and above.

When n≤18, the impact of age range 82–94 outweighs that of ages over 95 and causes Gompertz
law to yield the highest annuity value. Because the gap between Gompertz and Perks’ mortality

Table 5. Annuity values under various mortality tail curves and zero mortality improve-
ment, i = 2%.

Annuity value

Annuity Gompertz Cubic Perks Risk ratio

Males
€a75 105,437 105,484 105,501 1.001

10 j €a75 28,870 28,597 28,614 1.010

15 j €a75 10,262 10,093 10,098 1.017

20 j €a75 2,260 2,310 2,349 1.040
Females
€a75 133,481 133,598 133,637 1.001

10 j €a75 49,518 49,270 49,335 1.005

15 j €a75 22,732 22,339 22,407 1.018

20 j €a75 7,220 7,179 7,161 1.008
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Figure 6. Risk ratios of n j €a75 amongst the three mortality tail curves and zero mortality
improvement rate.
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curves increases from age 82 to age 88, the risk ratio increases for n<15. When 15≤ n≤ 18, the risk
ratio decreases. The reasons are twofold: (1) the gap between Gompertz mortality curve and Perks’
mortality curve shrinks from age 89 to age 92; (2) the impact of mortality at age 95 and above
weighs more in annuity values as n increases. With n continuing to increase, the impact of mortality
at age 95 and above eventually outweighs that of mortality in the age range of 82–94. This results in
Perks’ model having the highest annuity value for n> 18, and hence a kink point at n = 18 in the left
plot of Figure 6. As the gap between Perks’ and Gompertz mortality curves enlarges quickly for ages
above 95, the risk ratio also increases steeply for n> 18.

The impact of interest rate also depends on the length of the deferral period. We observe that higher
interest rate leads to higher risk ratio for 10≤n≤18, but lower risk ratio for n>18. When interest rate
increases, the present value of benefit payment becomes lower. However, the present value of payments
made in the age range of 82–94 is less affected than the value of payments made at age 95 and above due
to discounting. Therefore, the impact of mortality in the age range of 82–94 on annuity value is amplified
for deferred annuities with 10≤n≤18, thus resulting in higher risk ratio. When n>18, annuity value is
mostly determined by the mortality at age 95 and above. With a lower interest rate, payments made at
higher ages when a larger discrepancy of mortality rate is observed between Gompertz and Perks’
mortality curve gain more weight in annuity value. The risk ratio increases as a result.

Next we incorporate mortality improvement rates and further study the model risk from mortality
tail curves. We first use the single-population Lee–Carter model to obtain 1,000 trajectories of future
mortality improvement rates. We then multiply the improvement rates by the base year mortality
curve to calculate simulated trajectories of mortality rates. Again, we consider the three types of
mortality tail curves described in section 2. Simulated annuity values are determined for each
combination of mortality improvement trajectory and base mortality curve. Table 6 lists the average
simulated annuity value using various mortality tail curves and the risk ratios assuming Gaussian
extrapolation for βx and i = 2%.

After incorporating mortality improvement trend, the probability of a 75 years old surviving to
advanced ages increases. As a result, annuity prices increase significantly compared to those in

Table 6. Average annuity values under various mortality tail curves, assuming single-
population Lee–Carter model for mortality improvement, Gaussian extrapolation for βx and
i = 2%.

Average annuity value

Annuity Gompertz Cubic Perks Risk ratio

Males
€a75 111,439 111,581 111,645 1.002

10 j €a75 34,086 33,912 33,977 1.004

15 j €a75 13,769 13,676 13,730 1.005

20 j €a75 3,730 3,856 3,945 1.061
Females
€a75 143,867 144,304 144,385 1.004

10 j €a75 59,280 59,386 59,481 1.005

15 j €a75 30,668 30,621 30,720 1.005

20 j €a75 12,000 12,241 12,267 1.028
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Table 5, especially for annuities with a longer deferral period. The risk ratio for 20-year deferred
annuity becomes higher. The value of a 20-year deferred annuity is largely driven by mortalities at
ages above 95. With higher surviving probabilities, the actuarial present value of payments made at
high ages gains more weight in annuity value. The large discrepancy between different mortality
curves at age 95 and above exerts more impacts, thereby resulting in higher risk ratios. In contrast,
the values of 10-year and 15-year deferred annuities are mostly determined by mortalities at ages
below 95, where the discrepancy between mortality curves is small. Hence, their risk ratios are
also small.

In Figure 7, we plot the relation between risk ratios amongst mortality tail curves and length of
deferral period assuming various interest rates and extrapolation methods for βx. Due to the reasons
explained above, risk ratios increase sharply when the deferral period is >17. We also observe that
risk ratios using Gaussian extrapolation for βx are slightly higher than those using quadratic
extrapolation. Gaussian extrapolation admits more mortality improvement for ages above 95 and
thus increases the weights of payments at these ages in the annuity value. Since the discrepancy
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Figure 7. Risk ratios of n j €a75 amongst the three mortality tail curves, assuming single-population
Lee–Carter model for mortality improvement, Gaussian extrapolation for βx (a) and quadratic
extrapolation for βx (b).
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between mortality curves for these ages is particularly large, higher weights of payments at these ages
lead to higher risk ratios.

Overall, the model risk from mortality tail curve appears to be low for annuities issued to a 75-year-
old male with a deferral period of less than 17 years. When the deferral period is longer than
17 years, the model risk increases sharply. In practice, deferred annuities often have payments starting
no later than age 85. Therefore, model risk from mortality tail curve should not be a major concern.

Figure 8 examines the total model risk from the two sources: mortality tail curve and extrapolation
method for βx. The risk ratios are based on six combinations of mortality tail curve and extrapolation
method for βx, since we have three mortality tail curves and two extrapolation methods. Since extra-
polation method for βx is part of the mortality improvement model, the effects of adding mortality
improvement are twofold: (1) amplifying the model risk from mortality tail curves as shown in Table 6;
and (2) introducing model risk from extrapolation method for βx. A comparison of Figures 7 and 8
indicates that male annuity values are subject to more model risk from mortality tail curve while female
annuity values are subject to more model risk from extrapolation method for βx.

4.3. Model risk in two-population Lee–Carter model

In this section, we study model risk in the two-population Lee–Carter model. We consider three
different assumptions about the dependence structure between male and female mortality improvement:

∙ independent;

∙ correlated but allowed to diverge over the long run;

∙ correlated and non-divergent over the long run.

Table 7 lists risk ratios and average annuity values using various dependence structures assuming
Gaussian extrapolation for βx, Perks’ mortality curve, and 2% annual effective interest rate. The
difference in average annuity values under these three structures can be explained by the mortality
forecasts in Figure 5. When imposing the non-divergence constraints with Gaussian extrapolation for
βx, male mortality shifts down significantly and female mortality shifts up slightly. This leads to
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Figure 8. Risk ratios of n j €a75 amongst six combinations of mortality tail curve and extrapolation
method for βx, assuming single-population Lee–Carter model for mortality improvement.
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higher male annuity values and lower female annuity values. A comparison of Tables 5–7 indicates that
model risk caused by two-population Lee–Carter model is much more significant than that caused by
mortality for male annuities. For female annuities, the model risk from all three sources is low.

Figure 9 plots the risk ratios of n j €a75, for n = 0, 1,… , 20, among the three dependence structures
assuming Gaussian extrapolation for βx and Perks’ mortality curve. Annuities with a longer deferral
period have cash flows concentrated at higher ages. Since the difference of mortality forecasts from
using the three structures increases with the length of the forecasting period, a longer deferral period
results in higher risk ratios. Gaussian extrapolation for βx allows for more mortality improvement
and heavier cash flows at advanced ages than quadratic extrapolation. It amplifies the impact of
dependence structures on annuity values, thereby resulting in higher risk ratios than quadratic
extrapolation.

Figure 10 studies how risk ratios change when we gradually add the three sources of model risk.
Annual effective interest rate is assumed to be 2%. The left panel shows that the model risk of male
annuity values is high, and it is primarily attributable to dependence structure. The model risk from
extrapolation method for βx and mortality curve is almost negligible for annuities with deferral
period of less than 10 years; however, this risk becomes more significant when the deferral period
increases. The right panel shows that the model risk of female annuity values mainly comes from
dependence structure and extrapolation method for βx, and this risk is much lower than the model
risk of male annuity values. Overall, the model risk from the two-population mortality improvement
model is much more significant than that from mortality tail curve.

5. Parameter Risk

5.1. Incorporating parameter risk

According to Draper (1995), a major source of uncertainty is parameter risk. The values of para-
meters given a specific model structure have uncertainty because only a finite set of data are used to
estimate these parameters and the estimates cannot be exact. Due to the sparseness of high age
mortality data, parameter risk may be more severe for deep-deferred annuities.

Table 7. Average annuity values using various dependence structures assuming Gaussian extrapolation method
for βx, Perks’ mortality curve, and i = 2%.

Average annuity value

Annuity Independent Allowing divergence Non-diverging Risk ratio

Males

€a75 111,645 112,512 113,852 1.028

10 j €a75 33,977 34,697 35,938 1.081

15 j €a75 13,730 14,200 15,163 1.143

20 j €a75 3,945 4,151 4,710 1.268
Females
€a75 144,385 144,191 142,546 1.003

10 j €a75 59,481 59,305 57,718 1.006

15 j €a75 30,720 30,594 29,241 1.015

20 j €a75 12,267 12,203 11,313 1.029
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To quantify parameter uncertainty in mortality tail curve and mortality improvement model, we
adopt the parametric bootstrap method. To apply bootstrap for mortality tail curve, we follow
Brouhns et al. (2005) and bootstrap death counts by applying a Poisson noise to the observed
numbers of deaths as follows:

1. Generate one bootstrap sample of death counts in year 2012, assuming that the bootstrapped
death counts are from Poisson distributions with mean equal to the observed number of deaths.

2. Estimate the three mortality tail curves by using the bootstrap sample.

3. Construct base mortality curves using each estimated mortality tail curve.

Since we use a two-stage method to fit the Lee–Carter model, parameter risk comes from both stages
and bootstrapping should be performed for both stages as well. In the first stage, we estimate the
Lee–Carter model and obtain estimates of αðiÞx , βðiÞx , and κðiÞt . To capture the parameter risk in this
stage, we again follow Brouhns et al. (2005) and bootstrap death counts by applying a Poisson noise
to the observed numbers of deaths. In the second stage, we estimate the extrapolation function using
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Figure 9. Risk ratios of n j €a75 amongst various correlation structures with Perks’ mortality curve,
Gaussian extrapolation for βx (a) and quadratic extrapolation for βx (b).
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the estimates of αðiÞx and βðiÞx , and estimate the time series model using the estimates of κðiÞt from the
first stage. To take into account the parameter risk in this stage, we apply residual bootstrap.

The detailed procedures to apply bootstrap in the Lee–Carter model are as follows:

1. Generate one bootstrap sample of death counts for the sample period of 1965–2012, assuming
that the bootstrapped death counts are from Poisson distributions with mean equal to the
observed number of deaths.

2. Estimate the mortality improvement rate model using the bootstrap sample and obtain estimates
of αðiÞx , βðiÞx , and κðiÞt .

3. Estimate the extrapolation functions for αðiÞx and βðiÞx .

4. Generate one bootstrap sample of αðiÞx and βðiÞx using residual bootstrap5 and re-estimate the
extrapolation functions by using this sample.

5. Extrapolate αðiÞx and βðiÞx to desired age using the re-estimated function.

6. Estimate the time series model for κðiÞt .

7. Generate one bootstrap sample of κðiÞt using residual bootstrap6 and re-estimate the time series
model by using this sample.

8. Simulate one path of κðiÞt , for t = 2013, 2014,… , using the re-estimated time series model.

9. Calculate the path of future mortality improvement rates based on extrapolated αðiÞx and βðiÞx , and
simulated path of κðiÞt .
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Figure 10. Comparison of risk ratios of n j €a75 in three cases: Case 1: risk ratios amongst
dependence structures, assuming Gaussian extrapolation for βx and Perks’ mortality curve; Case
2: risk ratios amongst six combinations of dependence structure and extrapolation method for βx,
assuming Perks’ mortality curve; and Case 3: risk ratios amongst 18 combinations of dependence
structure, extrapolation method for βx, and mortality tail curve. i = 2%.

5 We re-sample with replacement the residuals from the initial estimation in step (3); and then generate the
bootstrap sample by adding the re-sampled residuals to the fitted values of αðiÞx and βðiÞx in step (3).

6 We re-sample with replacement the residuals from the initial estimation in step 6); and then generate the
bootstrap sample by adding the re-sampled residuals to the fitted values of κðiÞt in step (6).
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After obtaining the base mortality curve and future mortality improvement rates, we determine the
path of future mortality rates and calculate a simulated annuity value. These procedures are repeated
1,000 times to obtain 1,000 simulated annuity values. The new risk ratio is then calculated as
follows:

New risk ratio=
maxiVaRi

95% n j €ax
� �

with bootstrapping

miniVaRi
95% n j €ax

� �
without bootstrapping

(5.1)

where i = 1, 2,… , N and N is the number of models investigated. The extent of parameter risk is
indicated by the difference between the new risk ratio and the risk ratio without considering para-
meter uncertainty as defined in equation (4.1).

5.2. Parameter risk in single-population mortality model

A full single-population mortality model includes a base mortality curve and a single-population
mortality improvement model. To examine its parameter risk, we follow the bootstrap procedures
described in section 5.1 and obtain simulated annuity values for each combination of mortality tail
curve and extrapolation method for βx. We then determine VaR95% n j €ax

� �
for all six models con-

sidered and use the highest one as the numerator in equation (5.1) to calculate the new risk ratio.

Figure 11 plots the risk ratios of n j €a75, for n = 0, 1, 2,… , 20, amongst six combinations of mortality
tail curve and extrapolation method for βx. We consider three cases: no bootstrapping, partial
bootstrapping, and full bootstrapping. The dark lower part of each bar displays the risk ratio
without considering parameter uncertainty. It represents the model risk from mortality tail curve and
extrapolation method for βx used in the single-population Lee–Carter model.

In partial bootstrapping, we apply bootstrap only to the mortality tail curve, and not to the mortality
improvement model. Partial bootstrapping increases risk ratios by adding parameter uncertainty
from mortality tail curve. The grey part of each bar depicts the increased risk, i.e. parameter risk
from mortality tail curve.
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Figure 11. Risk ratios of n j €a75 amongst six combinations of mortality tail curve and
extrapolation method for βx, with parameter uncertainty incorporated. i = 2%.

Demographic risk in deep-deferred annuity valuation

307

https://doi.org/10.1017/S174849951700001X Published online by Cambridge University Press

https://doi.org/10.1017/S174849951700001X


In full bootstrapping, we apply bootstrap to both the mortality tail curve and the mortality
improvement model. Full bootstrapping further increases risk ratios by adding parameter uncer-
tainty from the mortality improvement rate model. The upper white part of each bar represents the
increased risk, i.e. parameter risk from the mortality improvement model.

For male annuity values, both model risk and parameter risk play important roles. However, parameter
risk from mortality tail curve is much smaller than that from mortality improvement rate model. For
female annuity values, model risk is of more concern, while parameter risk appears to be low.

5.3. Parameter risk in two-population mortality models

In section 4.3, we examined model risk from the dependence structure in the two-population
Lee–Carter model. We found that the model risk is significant, especially for males, and this risk
increases steadily with the length of deferral period. In this section, we study the parameter risk in the
two-population mortality model and compare it with the model risk.

We consider 18 combinations of mortality tail curve, extrapolation method for βx, and dependence
structure. For each combination, we use the bootstrapping method described in section 5.1 to
simulate 1,000 annuity values and calculate VaR n j €a75

� �
. The highest VaR n j €a75

� �
is used to

calculate the new risk ratio.

Figure 12 demonstrates the risk ratios of n j €a75 amongst the 18 combinations of mortality tail curve,
extrapolation method for βx, and dependence structure. Three levels of bootstrapping are considered:
no bootstrapping, partial bootstrapping, and full bootstrapping. In partial bootstrapping, we again
apply bootstrap only to the mortality tail curve, and not to the mortality improvement model. The
dark lower part of each bar depicts the risk ratios without parameter uncertainty. It measures the
variation of VaR n j €a75

� �
stemming from model risk. The grey part is almost invisible indicating that

parameter risk from mortality tail curve is negligible. The upper white part represents the increase of
risk ratio due to parameter uncertainty in the two-population mortality improvement model, which
turns out to be the most significant source of risk in both male and female annuity values. The overall
risk in male annuity values is much higher than that in female annuity values.
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Figure 12. Risk ratios of n j €a75 amongst 18 combinations of mortality tail curve, extrapolation
method for βx, and dependence structure, with parameter uncertainty incorporated. i = 2%.

Min Ji and Rui Zhou

308

https://doi.org/10.1017/S174849951700001X Published online by Cambridge University Press

https://doi.org/10.1017/S174849951700001X


6. Conclusion

As deep-deferred annuity is allowed in 401(K) plan, there will be more interest in purchasing and
providing the annuity. In order to develop effective risk management solutions for this annuity, it is
necessary to understand its risk profile. In this paper, we focus on the model risk and parameter risk
in valuing deep-deferred annuities. We use risk ratio to measure the disagreement between different
models. Higher risk ratio indicates higher model uncertainty in annuity valuation. This measure can
be used for both model risk and parameter risk, and thus allows us to compare the magnitude of the
two types of risks.

The mortality model we use for high ages is comprised of two parts: a base mortality curve and a
mortality improvement model. This mortality model has the flexibility of adapting different
assumptions of mortality tail and mortality improvement patterns, and thus allows us to decompose
the demographic risk of deep-deferred annuity valuation into four components: model risk in
mortality tail curve, model risk in mortality improvement model, parameter risk in mortality tail
curve, and parameter risk in mortality improvement model.

In the single-population mortality model, model risk comes from the mortality tail curve and the
extrapolation method for βx. Our analysis shows that the model risk of male annuity values is mainly
from the mortality tail curve, while the model risk of female annuity values is mainly from the
extrapolation method for βx. Bootstrap method is used to incorporate parameter risk. Both model
risk and parameter risk play significant roles in male annuity values and most of the parameter risk
comes from the Lee–Carter model. In contrast, model risk dominates in female annuity values.

When we factor in dependence between male and female mortality, model risk increases sharply for
male annuity values but only marginally for female annuity values. Parameter risk becomes much
more significant than model risk for both genders. Parameter risk is primarily attributed to the two-
population Lee–Carter model and parameter risk from mortality tail curves is trivial. The overall risk
in female annuity value is much smaller than that in male annuity values.

Immediate annuity has very low model risk and parameter risk compared to deep-deferred annuity.
Since high age cash flows have low weights in immediate annuity values, the large discrepancy from
using different mortality tail curves and mortality improvement assumptions has marginal impact on
immediate annuity values. In contrast, deep-deferred annuities have cash flows concentrated at high
ages and are thus more sensitive to these assumptions.

In Appendix A, we directly model the mortality improvement rates following Mitchell et al. (2013).
The findings using the Mitchell et al. (2013) model are similar to those from using the Lee–Carter
model. We should point out that we only consider a limited number of models in this paper and thus
may underestimate model risk. It would therefore be warranted to examine more model structures in
the future, such as M1–M8 models described in Cairns et al. (2009) and the two-population models
in Li et al. (2015b), such that model risk is studied more comprehensively.

In the absence of an effective hedging instrument, the alarmingly high uncertainty in deep-deferred
annuity valuation will lead to high reserve requirement and high cost of providing the annuity. In order
to promote provisions of deep-deferred annuity, it is crucial to develop solutions that can provide
effective longevity risk hedge. A possible venue of future work is to examine existing capital market
solutions and study their hedging effectiveness in consideration of model risk and parameter risk.
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Appendix A. Mitchell et al. (2013) model

Mitchell et al. (2013) directly models mortality change rates as follows:

rx;t = αx + βxκt

where rx;t = ln mx;t

mx;t� 1

� �
, αx is the average change in log mortality rate for age x, κt the mortality change

index, and βx the age-specific sensitivity to the mortality change index. Single value decomposition is
used to estimate this model. To ensure parameter uniqueness, we let αx to be the average change in

log mortality rates for age x over the sample period, i.e. αx =
P2012

t= 1965
rx;t

48 , and also impose an iden-
tification constraint: ∑xβx = 1. κt is further modelled by an autoregressive moving average model.
Figure A.1 demonstrates the estimated values of αx, βx, and κt for males and females, respectively. We
choose AR(2) model for κt based on BIC for model selection. Since the constant term of the estimated
model is not significant, we omit the constant term. The AR(2) model can be expressed as follows:

κt = a1κt�1 + a2κt� 2 + zt

where {zt} are independently and identically distributed normal random variables with mean 0 and
variance σ2. Parameter estimates of this model and their standard errors (in parentheses) are shown
in Table A.1.

Since the sample age range of the data is 60–95, we can only obtain the estimates of αx and βx for
x = 60, 61,… , 95. For ages above 95, αx and βx cannot be directly obtained. We model αx and βx as
deterministic functions of age x, and then extrapolate them to higher ages. Figure A.1 shows that
αx is slightly concave upward, and βx appears to increase linearly. We simply use a linear function of
x to model βx. Since αx represents the average log mortality improvement rate at age x and mortality
is expected to improve over time, we assume that αx is non-positive. With this constraint, we
consider two models for αx: a Gaussian function with an asymptote of 0, and a quadratic function
with a cap of 0.

To build a two-population mortality improvement rate model, we use one Mitchell et al. (2013)
model for each population. ½κð1Þt ; κð2Þt �′ is further modelled by a pth order VAR process. We select
VAR(2) model based on BIC values. When estimating the model, we also find that the constant term
is not significant. Therefore, we omit the constant term in the VAR(2) model.

To incorporate the non-divergence assumption and study how it affects deep-deferred annuity
valuation, we consider the following constraints:

1. αð1Þx = αð2Þx ;

2. βð1Þx = βð2Þx ;

3. κð1Þx and κð2Þx share the same long-term unconditional mean.

Under these constraints, the mortality improvement rates of males and females have the same
unconditional mean. Since the constant term of the VAR(2) model is set to 0, both κð1Þx and κð2Þx have
zero unconditional mean and thus the third constraint is satisfied automatically.

Future mortality rates are then generated by multiplying the base mortality curve with the mortality
improvement rates using the Mitchell et al. (2013) model. To study the model risk, we consider three
mortality tail curves, two extrapolation methods for αðiÞx , and three dependence structures for males and
females. Figure A.2 shows how the risk ratios change when we gradually add the three sources of model
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risk. The model risk from the dependence structure in the two-population Mitchell model dominates in
male annuity values. The model risk from dependence structure and extrapolation method for αðiÞx is
more significant than that from mortality tail curve for female annuity values. The overall model risk of
female annuity values is much smaller than that of male annuity values. These findings are similar with
what we observe in Figure 10 from using the Lee–Carter model for mortality improvement rates.

In Figure A.3, we plot the risk ratios of n j €a75 amongst 18 combinations of morality tail curve,
extrapolation method for αðiÞx , and dependence structure in the two-population Mitchell model.
We consider three cases of bootstrapping: no bootstrapping, partial bootstrapping, and full boot-
strapping. In partial bootstrapping, we apply bootstrap only to the mortality tail curve, and not to
the two-population Mitchell model. The grey part is invisible indicating that parameter risk from
mortality tail curve is negligible. The parameter risk in the two-population Mitchell model,
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Figure A.1. Estimates of αx, βx, and κt for the Mitchell et al. (2013) model.

Table A1. Parameter estimates for κt in the single-population Mitchell et al. (2013) model.

Gender a1 a2 σ

Male �0:662853
ð0:108711Þ

�0:630002
ð0:0815341Þ

1:53245
ð0:205336Þ

Female �0:505672
ð0:0989214Þ

�0:537079
ð0:0930713Þ

1:59606
ð0:26323Þ

Demographic risk in deep-deferred annuity valuation

313

https://doi.org/10.1017/S174849951700001X Published online by Cambridge University Press

https://doi.org/10.1017/S174849951700001X


represented by the white part, is very significant for both male and female annuity values. The overall
risk in male annuity values is much higher than that in female annuity values. These findings are
again similar with what we observe in Figure 12 from using the Lee–Carter model for mortality
improvement rates.
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Figure A.2. Comparison of risk ratios of n j €a75 in three cases, using the Mitchell et al. (2013)
model for mortality improvement rates: Case 1: risk ratios amongst dependence structures,
assuming Gaussian extrapolation for αðiÞx and Perks’ mortality curve; Case 2: risk ratios amongst
six combinations of dependence structures and extrapolation methods for αðiÞx , assuming Perks’
mortality curve; Case 3: risk ratios amongst 18 combinations of dependence structures,
extrapolation methods for αðiÞx , and mortality tail curves. i = 2%.
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Figure A.3. Risk ratios of n j €a75 amongst 18 combinations of mortality tail curve, extrapolation
method for αðiÞx , and dependence structure in two-population Mitchell model, with parameter
uncertainty incorporated. i =2%.
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