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ON THE GRADUATION OF 'AMOUNTS'

BY A. E. RENSHAW, Ph.D. AND P. HATZOPOULOS, M.SC.

(of The City University, London)

ABSTRACT
The provision of graduated mortality rates, for the United Kingdom pensioners' experience,

based on the so-called 'amounts' data sets is addressed. Specifically a methodology is
investigated, building on the existing methods practiced by the CMI Bureau, which takes a
more detailed account of the underlying structure of the data involved. The method is applied
to the U.K. pensioners' experience and recent mortality trends in this experience revealed.
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1. INTRODUCTION

The graduation of mortality data for the pensioners' experience under
United Kingdom life office pension schemes gives rise to some distinctive
technical problems. These have their origin in the work of the Continuous
Mortality Investigation (CMI) Bureau, which exercises a collective
responsibility for the collation and graduation of these data. Typically, for
any such experience based on a fixed observation window consisting of one
or more consecutive calendar years, two sets of data are available for
analysis. These comprise the number of pension policies ceasing through
death together with the associated exposures, the so-called 'lives' data, and
the total amounts of pension ceasing through death together with the
associated exposures, the so-called 'amounts' data. Both types of data sets
are graduated as separate exercises by the CMI Bureau. We emphasise a key
feature of this work, namely that it is a well accepted result that 'amounts'
based experiences (for pensioners, annuitants, etc.) show a lower set of
mortality rates than the corresponding 'lives' based experiences, except
possibly at very high ages. Also, the average amount of pension per policy
ceasing is less than the average amount of pension per policy in force in the
exposed to risk. For a more detailed description of these and other issues
involved the reader is referred to Section 5 of the CMI (1974) paper, to
Section 3 of CMI Report No. 2 (1976) and the accompanying tables, and to
Section 16.4 of the comprehensive paper on U.K. actuarial parametric
graduation practice by Forfar, McCutcheon & Wilkie (1988) (referred to as
FMW).

This paper is primarily concerned with the practice of graduating
'amounts', and aims to contribute to the discussion on the methodology for
conducting these graduations instigated and practiced by the CMI Bureau in
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186 On the Graduation of 'Amounts'

the papers cited above. For data based on 'amounts', the Bureau resolved to
divide both the deaths and exposures at each age by a constant factor before
graduation proceeds in the manner outlined in FMW for data based on
'lives'. The factor is calculated by dividing the total exposure across all ages
based on 'amounts' by the total exposure across all ages based on 'lives'.
The reasons given for applying this simple transformation to the data before
graduation proceeds are not compelling other than to accommodate the
application of certain well tried tests of a graduation, while possibly hinting
at the need for further research into the practice of graduating 'amounts'. In
Section 2 of this paper we introduce a number of assumptions designed to
take a more detailed account of structure in the 'amounts' data sets than is
allowed for by the simple data transformation currently applied. The
assumptions, which are then discussed in Section 3, are formulated in the
spirit of the graduation methods advocated by FMW and extended by
Renshaw (1991,1992). In Section 4 the alternative approach developed here
is applied to the graduation of the 'amounts' for the male pensioners' 1979-
82 experience, and the results compared with the FMW graduation of these
data. In Section 5 the methods are used to investigate recent mortality trends
in the U.K. male pensioners' experience.

In essence, the proposed method for graduating 'amounts' gives a different
graduation to the CMI because variation in claim size is modelled, whereas
the CMI methodology intrinsically assumes that all claim sizes are the same.

2. DISTRIBUTION ASSUMPTIONS

2.1 Preliminaries
For notational convenience, focus on a set of cells or units {«}. Either

u = x when mortality is modelled over a set of ages {x} for a fixed
observation window in real time, or u = x, t when mortality is modelled over
a rectangular grid defined by a set of ages {x} and a set of calendar years
{t}. Define the following (for each cell):

Nu = random variable representing the number of pension policies ceasing
through deaths

ru = exposure to risk based on 'lives'
Au = random variable representing the amounts of pension ceasing through

deaths
eu = exposure to risk based on 'amounts'
Xf = random variable representing the distribution of amounts per pension

policy ceasing through death

such that:
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K= t xu}- (2-1)

The data available for analysis comprise the realisations (nu,ru;au,eu) defined
for the set of cells {u}, while the primary purpose of this analysis is to predict
either the force of mortality or the probability of death based on the
'amounts' experience (au,eu).

2.2 Targeting the Force of Mortality
Focus first on the prediction of the force of mortality and define the

following:

Hu =the force of mortality based on 'lives'
\i* = the force of mortality based on 'amounts'.

For this case, both sets of exposures {/•„} and {eu} are central exposures.
Begin with the prediction of fiu based on the recorded mortality experience

of 'lives' (nu, ru). To facilitate this make:

Assumption la. Model the Nus as independent Poisson response variables
of a generalised linear (or non-linear) model (GLM) with possible
overdispersion so that:

mu = nuru and Var(iVu) = xmu.

The scale parameter, T > 1 , which induces overdispersion in the Poisson
response variable, is needed when the data (nu, ru) are based on the number of
pension policies ceasing through deaths rather than on the number of
pensioners dying, as the same pensioner may have more than one policy. A
more detailed account of this effect is to be found in Renshaw (1992). Here
the scale parameter is assumed constant across all cells, but this assumption
can be relaxed, if deemed necessary, by making T a function of the cells u. It
is also possible to pre-set T = 1.

Focus next on Zj,0, the amount associated with death i and make:

Assumption II. The Xj/'s are modelled as independent, identically
distributed non-negative random variables for all i, fixed u, independent also
of Nu.

Denoting the generic form of the X^s by Xu, the following standard results
from collective risk theory are based on this assumption in combination with
the identity (2.1), namely:
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E(AU) = E(XU)E(NU)

and
Var(.4u) = V<ir(Xu)E(Nu) + {E(XU)}2 Var(ATu). (2.2)

Under Assumption la, Var(iVu) = rE(iVu), so that expression (2.2), giving the
variance of Au, can be rewritten as:

(2.3)
where:

w i2A)

Write E(Xu) = pu and define:

to be the average amount associated with cell u, conditional on knowing the
value nu of Nu. Then make:

Assumption III. Model the cell averages Xu, as independent gamma
response variables of a GLM for which:

E(XU) = Pu and Var(Xu) = ^

with weights nu, scale parameter tp, and variance function V(pu) = pj.

This pre-supposes that, in addition to Assumption II, the individual amounts
X™ have the gamma density:

„ 1 / OCX \ 1

for which:

so that \)t = u.~l. For this distribution the expected value pu is a function of
the cells u, and the scale parameter \j/ is constant across all cells. The
implications of equations (2.5) for the variance of Au follow from equation
(2.3) on adjusting equation (2.4) accordingly. In order to facilitate the
prediction of the fi*s, this leads finally to:
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Assumption IVa. Model the amounts Au as the independent overdispersed
Poisson responses of a GLM such that:

u) = hu = fi*eu and Var(Au) = 4>Jku

where, using equations (2.4) and (2.5):

(2.6)

2.3 Targeting the Probability of Death
Focus next on the prediction of the probability of death. For this case it is

necessary to modify Assumption la and Assumption IVa while retaining
Assumption II and Assumption HI intact. Define:

qx or qxt = the probability that a life, age x, dies before age x + 1 based on
'lives'

q* or q*t = the probability that a life, age x, dies before age x +1 based on
'amounts'

and let u = x or u = x,t as the case may be. In addition, both sets of
exposures {ru} and {eu} are initial exposures.

For the prediction of qu it is necessary to replace Assumption la with:

Assumption Ib. Model the Nus as independent binomial response variables
of a generalised linear (or non-linear) model (GLM) with possible
overdispersion so that:

= mu = quru and

Assumption II and Assumption III are retained, but this time, under
Assumption Ib:

so that expression (2.2), giving the variance of Au, becomes:

This reduces to:
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Var(AJ = (* + T)PUE(AU) - I {E(AJ}2 (2.7)

on using equation (2.5). Thus finally, for the prediction of q*, it becomes
necessary to replace Assumption IVa with:

Assumption IVb. Model the amounts Au as the independent responses of a
GLM with:

= hu = q:eu and M^{Au) = {xi, + x)PuE(Au)-~{E{AU)}2.

3. DISCUSSION OF THE DISTRIBUTION ASSUMPTIONS AND THEIR
IMPLICATIONS

3.1 Graduating 'Lives'
Focus first on Assumptions la and Ib and the prediction of the /ius or qus

as the case may be. When the set of cells {u} is synonymous with a set of
sequential ages {x}, the assumptions are identical to those underpinning
modern actuarial parametric graduation methodology as practised and
developed by the CMI Committee in the U.K. See e.g. FMW for a
comprehensive description of this practice, while Renshaw (1991) has
highlighted the connection with GLMs. When used in conjunction with an
appropriate predictor-link relationship, this process supplies graduated values
for the (ixs or qxs and an estimate for the overdispersion or scale parameter
r. For example, typically when graduating nx, FMW focus on Gompertz-
Makeham graduation formulae of the type:

j=0

for non-negative integers r and s subject to the convention that r = 0 implies
the absence of the polynomial term and s = 0 implies the absence of the
exponentiated polynomial term. For r > 0 and s > 0 the right hand side
nx = GMx(r, s) is a non-linear predictor in the unknown parameters <x; and /?,-,
and is linked to nx by the identity function. When u = x,t the assumption
may be viewed as an extension of current actuarial graduation practice to
encompass trends in mortality. It is relevant to comment on the role played
by the scale parameter in the fitting procedure. Here T is taken to be
constant across all units or ages x, and as such it does not contribute to the
values of the predicted responses and graduated values, only to their
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standard errors. The estimation of x is described within the context of the
two applications discussed in Sections 4 and 5.

3.2 Analysis of 'Amounts'
Focus next on Assumption III which builds on Assumption II. This stage

of the process is needed to provide estimates for the mean response amounts
pu and the scale parameter \ji, for use later under Assumptions IVa and IVb.
It is used in conjunction with predictor-link relationships of the type:

with known covariate structure zuJ, unknown parameters pjt and where
typically the link function g is either the reciprocal function or the log
function. Applications are presented in Sections 4 and 5. As an extreme case,
by selecting the saturated model structure under this assumption so that the
crude rates ajnu estimate the pus and by setting the scale parameter ijj to
zero, it is then possible to bypass this part of the modelling process.

3.3 Graduating 'Amounts'
Turning next to Assumption IVa and the prediction of the /i*s. When u = x

we get the actuarial graduation methodology associated with Assumption la,
but with one notable difference. Here the scale parameters 4>u are functions of
the cells or ages x, and their reciprocals are needed to form the weights in
the model fitting procedure. As such, and unlike the impact of constant scale
parameters, they have a direct bearing on the resulting graduated values. The
(pus are computed using equation (2.6) once the estimates for x, ij/ and the pus
become available through fitting the other two GLMs.

An equivalent situation exists under Assumption IVb for the prediction of
the a*, except that here the variance of Au, given by expression (2.7),
although similar in form, does not partition into that of an overdispersed
binomial variate in general. Assumption IVb is implemented by declaring:

y u = A for which E(7u) = q* and Var (Yu) = — \E( YU) -A for which E(7u) = q and Var (Yu) = \E( YU) 1

as the responses with weights a>u, where:

x(ou

The corresponding expression for the deviance, which is also needed to
implement the model, is:
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where yu = q* denote the fitted or predicted values under the model structure.
Identical predictor-link, and hence graduation, formulae to those applied

under Assumption la and Assumption Ib also apply under Assumption IVa
and Assumption IVb respectively. The predictor structure finally adopted
under each GLM is based on a thorough analysis of the associated residuals
backed up by formal statistical tests of the graduation where appropriate.

3.4 Discussion
It is informative to contrast this methodology of graduating 'amounts'

with that used previously by the CMI Bureau, albeit with certain
reservations, as explained in Section 5 of the CMI (1974) paper. There no
attempt is made to model the distribution of amounts, and, effectively, a
constant scale parameter is applied across all ages for both \ix graduations
and qx graduations. Here it is suggested that the data, as currently available,
can provide some insight into the patterns of the claims amounts involved,
and this has been modelled through the introduction of Assumptions II &
III, leading to the methodology encapsulated in Assumptions IV(a & b). It
transpires that the points at issue involve the second moment properties of
the modelling assumptions and, as such, represent a refinement to the
graduation process; a point which is demonstrated next by the application in
Section 4. There is one further difference between the graduation methods
used in general by the CMI Bureau as described in FMW, and the GLM
formulation of these methods as described in Renshaw (1991, 1992)
concerning such refinements to the graduation process. Under the GLM
formulation, any such refinement is incorporated into the structure of the
model and the raw data are not transformed before graduation proceeds.
Under current CMI practice, the refinement is not built into the structure of
the model, but rather the data are transformed, typically by dividing both
the number of deaths and exposures by so-called variance ratios, before
graduation proceeds.

4. AN APPLICATION

4.1 The Data
An example, drawn from Section 6 of FMW, is presented next to illustrate

the method. A comparison of the results obtained by the two approaches is
also possible. The data relate to the male pensioners, normal or late, 1979-82
experience. The 'lives' data are taken from columns two and four of Table
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16.5 and the 'amounts' data reconstituted on multiplying columns two and
four of Table 16.8 by £324.416, the unit amount used by FMW in their
analysis of these data. The ages range from 19 to 108 years, although the
data are either non-existent or extremely sparse outside the range 56 to 101
years.

4.2 CMI Graduations
Both sets of data are graduated by FMW using the Gompertz-Makeham

formula iix = GMx(\,s) with s = 3, where:

ft (4.1)
J=o )

The right hand side, GMx(l,s), is a non-linear predictor in the unknown
parameters a and the fifi and is linked to fix by the identity function. The
parameters are estimated by maximising the Poisson log-likelihood
expression:

£ (nx log(m x) — mx) + constant

where mx = /xx+1/2rx and nx and rx denote the 'actual' deaths and central
exposures respectively at age x. This is identical to Assumption la with T = 1.
Working within the GLM framework, it is possible to linearise graduation
formulae of the type fix = GMx(l,s) by rewriting equation (4.1) as:

s - l

l o g ( / i x - a ) = »/JC= X PJX'
j=o

comprising a polynomial predictor r\x, which is linear in the unknown
parameters fly, while treating the a as an integral part of a parameterised
log-link function. For fixed s, the optimum value of a is determined by
constructing the deviance profile through the repeated fitting of this formula,
subject to incremental changes in a. Since this involves a parameterised
version of the log-link rather than the log-link, it is not feasible to utilise the
offset facility in GLIM when fitting this model, and it becomes necessary to
rewrite Assumption la in a slightly different form and hence declare:

Yx=—¥, for which E(Yx) = / i x + 1 / 2 and

as the responses with weights rx. The deviance corresponding to the
graduated values fix+1/2 is:
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Figure. 4.1. Deviance profile, parameterised log-link, quadratic predictor in
age effects

where mx = fix+ll2rx.
By way of illustration, we merely reproduce the deviance profile associated

with fitting the 'lives' data in Figure 4.1, which has a minimum at
a=0.00551. This differs slightly from the value a = 0.00557(29) quoted in
Table 16.3 of FMW, a feature which would appear to be inherent in the
different approaches adopted to determine the optimum value of a. In any
event, this issue is of no consequence in the current context. Using the value
a=0.00557(29) it is possible to regraduate the data by this method and verify
the detail of Table 16.5 and Table 16.8 of FMW, while the graduated values
differ slightly from those quoted when based on the value a = 0.00551. For
either value of a, the corresponding optimum value of the deviance is 78.845
on 75 degrees of freedom, providing an estimate f = 1.051 (based on the value
of the optimum deviance divided by the degrees of freedom). Such a value,
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slightly in excess of one, is consistent with the very few known duplicates in
the CMI pensioners' experience.

4.3 Analysis of 'Amounts'
We turn next to the application of Assumption III and the estimation of ij/

and the p^s. Recall that this is a necessary intermediate stage on the way to
graduating 'amounts' under this formulation. Since the data are, at best,
extremely sparse outside the ages 56 to 101 years, it is necessary to confine
the modelling to this age range. The data and the results of the analysis are
presented in Table 4.1. The responses are the average pension amounts (per
annum) presented in the second column of Table 4.1. These are computed by
dividing the reconstituted total amounts of pension for the policies ceasing
(through death of the pensioner) by the number of policies ceasing. The latter
also form the weights in this analysis and are reproduced in column three of
Table 4.1. Because of the irregular pattern in the responses in the early part
of the age range in the vicinity of 56 to 65 years, it was decided to model the
responses with a break-point predictor of the type:

j=0 k=l j=\

with knots xk, where (x — xk)
J
+ = (x — xk)

J if x> xk and (x — xk)
J+ = 0 otherwise.

This is then linked to the mean response px, through the log function:

The fitted, or estimated, values px presented in column four of Table 4.1 are
based on the line segment formula with J = 1 and K = 8 knots, positioned at
ages 60, 61, 63, 65, 70, 75, 82 and 93 years. Details of the fit are presented in
Table 4.2 including the estimated value of the scale parameter \jj. The knots
are positioned by trial and error and the significance of the parameter
estimates may be judged by referring to Table 4.2. The deviance for the
current model under Assumption III is given by:

and the deviance residuals defined by:
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Table 4.1. Analysis of amounts

Age
X

<56
56
57
58
59 i.
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

> 101

Average
<*J"x

1009.6
701.1
402.3
594.1
357.4
1073.7
1231.1
1268.4
672.6
425.4
383.7
339.4
314.1
287.1
280.7
256.1
254.9
229.0
224.4
216.2
194.8
201.2
198.0
197.2
188.3
193.2
196.4
179.2
177.0
189.6
185.3
211.6
175.0
181.4
194.1
191.5
184.3
173.2
144.5
144.4
242.6
230.6
193.0
271.3
103.8
223.0

Weight
»x

6
5
10
11
7
25
51
43
58
99
937
2408
3008
3556
3945
4209
4448
4806
4808
5149
5047
5037
4867
4727
4456
4049
3509
3016
2448
2126
1775
1467
1234
1021
842
627
482
365
233
165
134
76
57
28
25
11
8
13

Fitted
Px

281.2
860.8
692.4
557.0
448.1
360.5
1099.1
1167.2
1239.5
708.8
405.3
374.8
346.5
320.4
296.3
274.0
259.5
245.7
232.7
220.4
208.7
205.5
202.3
199.2
196.1
193.1
190.1
187.1
186.8
186.5
186.2
185.9
185.6
185.3
185.0
184.8
184.5
184.2
183.9
187.2
190.6
194.1
197.6
201.2
204.8
208.6
212.3
151.2

Deviance
residual

0.366
0.039

-1.024
0.783

-0.043
-0.166
0.352
0.176

-0.518
1.497
1.153

-1.135
-1.189
-1.961
1.581

-0.861
2.553

-1.114
1.294
2.508

-3.770
-0.375
-0.409
0.381

-1.567
0.960
2.689

-2.057
-2.405
0.760

-0.139
4.707

-1.813
-0.581
1.247
0.831
0.015

-0.904
-3.186
-3.072
2.020
1.198

-0.217
1.475

-2.073
0.140

Estimated

0.0007735
0.0002527
0.0003141
0.0003904
O.OOO4853
0.0006033
0.0001979
0.0001863
0.0001755
0.0003068
0.0005366
0.0005803
0.0006276
0.0006787
0.0007340
0.0007938
O.OOO8381
O.OOO885O
0.0009345
0.0009868
0.0010420
0.0010584
0.0010750
0.0010919
0.0011090
0.0011265
0.0011442
0.0011622
0.0011640
0.0011659
0.0011677
0.0011696
0.0011715
0.0011734
0.0011752
0.0011771
0.0011790
0.0011809
0.0011828
0.0011617
0.0011410
0.0011206
0.0011006
0.0010810
0.0010617
0.0010428
0.0010242
0.0014381
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Table 4.2. Analysis of amounts, parameter estimates with standard errors
Poo= 18.94(10.37) /?„, =-0.2176(0.1769) /?,, = 1.332(0.5425)
j92, = -1.055(0.5205) p3l = -0.6190(0.2464) J?41 =0.4806(0.1020)
/?51 =0.02389(0.01167) /?61 = 0.03883(0.007712) /?71 =0.01399(0.006914)

0si = 0.01960(0.03047)
Deviance =127.70 on 36 degrees of freedom with scale parameter t/> = 3.547

[ T = 1.051, 0 , = (

The latter, which are reproduced in column five of Table 4.1, form the basis
of the many diagnostic checks conducted on the fit of the model. These
checks are found to be supportive of the model, but are not reproduced here.
Outside the age range 56 to 101 years, estimates for px are provided by the
crude rates based on the grouped data for either all ages less than 56 years
or all ages greater than 101 years, as the case may be.

4.4 Graduation of 'Amounts'
We turn finally to the application of Assumption IVa and the graduation

of n*. The weights 4>~l, based on equation (2.6) and determined by the
foregoing analysis, are given in column six of Table 4.1. It is possible to work
either exclusively in the restricted age range 56 to 101 years, where the great
bulk of the data lies, or in the extended age range 19 to 108 years by
augmenting the weights as described above. Either way, because of the sparse
nature of the data outside the age range 56 to 101 years, the results are
essentially the same. In common with FMW, we focus initially on the
Gompertz-Makeham formula fi* = GMx(l,3) to facilitate a comparison of the
results produced by the two different approaches. The deviance profile based
on the parameterised log-link is similar in shape to that displayed in Figure
4.1, with this time a minimum at a =—0.000867 with a standard error of
0.00483. As such it does not differ significantly from zero, with the
implication that we should set a to zero and focus on the formula
/i* = GMx(0,3) or:

log(/;*)= £ Pjx>.
j = 0

Any modification to Assumption IVa is not necessary when fitting
formulae of this type, since the application of the log-link to E(AX) in
Assumption IVa implies that:

Thus to fit the model, the /lxs are retained as responses and the log(ej
declared as offsets. It is of interest to note that FMW, in their graduation of
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these data, also found a to be a non-significant parameter, in spite of its
retention in their final analysis. One possible strong reason for this concerns
the unsatisfactory results obtained when the graduations are extrapolated
down to age 19 years, where the data are effectively non existent. In order to
compare results, we have decided to present the graduations in the age range
56 to 101 years, based on the formula n* = GMJO, 3) for the two approaches.
The graduations n*' for the approach based on Assumption IVa, together
with the corresponding graduations n*" based on the CMI approach, are
given in columns two and three of Table 4.3 respectively. As anticipated,
both approaches produce graduated values of a similar order of magnitude,
since we are here concerned with second moment refinements to the
modelling distribution underpinning the graduation process. A detailed
comparison between corresponding entries in columns two and three reveals
that the new rates differ by less than 1% from the old rates in the age range
64 to 93 years, increasing to 2.5% at either extremity of the age range
quoted. Also for purposes of comparison, we present two separate
graduations for fix using the corresponding 'lives' data. The first of these,
presented in column four of Table 4.3, is based on the same graduation
formula as the two preceding columns in Table 4.3, namely fi'x = GMx(0,3).
The second graduation, presented in column five, is based on the different
graduation formula /ix = GMx( 1,3) and is therefore identical to the
graduation presented in Table 16.5 of FMW. The comparison of n'x and \i'x'
reveals near identical graduations in the age range 63 to 92 years, say, where
the data are at their thickest. The effect of including the additional parameter
a in the graduation formula (equation (4.1)) is clearly visible by comparing
the tails of the graduations. As already suggested, it has clearly been inserted
by the CMI committee for this very reason. A comparison between either of
/i*' or fi*" and /i'x indicates that the lower mortality rates associated with the
'amounts' based experience compared with the corresponding 'lives' based
experience is not preserved as ages increase into the 90s, for the particular
graduation formula in question.

5. MODELLING RECENT SHORT-TERM TRENDS IN MALE PENSIONER
MORTALITY

5.1 Preliminaries
As a second application of the approach we model recent short-term

mortality trends in the U.K. male pensioner experience, which is of
considerable intrinsic interest in any event. The data, made available by the
CMI Bureau, comprise initial exposures and the associated number of
'deaths' for both 'lives' and 'amounts' for individual ages x ranging from 60
to 95 years inclusive and for individual calendar years t, ranging from 1983
to 1990 inclusive; a total of 36 x 8 = 288 cells u = x,t. We target qxt and q*t of
Section 2.3 respectively.
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Table 4.3. Force of mortality, male pensioners experience 1979-82
For 'amounts'—fi*' = GMx(0,3) using new approach, \i*" = GMX(O,3) using CMI approach.

For 'lives'—n'x = GMJ,0,3) using CMI approach, n'x' = GMx( 1,3) using CMI approach.

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

0.00618
0.00706
O.OO8O5
0.00916
0.01041
0.01181
0.01338
0.01514
0.01709
0.01926
0.02167
0.02435
0.02730
0.03057
0.03416
0.03812
0.04246
0.04722
0.05242
0.05809
0.06428
0.07100
0.07829
0.08619
0.09472
0.10392
0.11383
0.12447
0.13587
0.14807
0.16110
0.17497
0.18973
0.20538
0.22194
0.23944
0.25789
0.27729
0.29765
0.31896
0.34123
0.36443
0.38856
0.41360
0.43950
0.46624

0.00634
0.00722
0.00822
0.00934
0.01059
0.01199
0.01356
0.01531
0.01725
0.01941
0.02181
0.02447
0.02741
0.03065
0.03422
0.03815
0.04246
0.04719
0.05236
0.05800
0.06415
0.07085
0.07811
0.08599
0.09452
0.10372
0.11364
0.12432
0.13579
0.14808
0.16123
0.17527
0.19024
0.20616
0.22306
0.24096
0.25990
0.27988
0.30092
0.32304
0.34624
0.37052
0.39589
0.42232
0.44981
0.47834

0.00829
0.00941
0.01067
0.01208
0.01364
0.01538
0.01732
0.01946
0.02182
0.02443
0.02730
0.03046
0.03392
0.03770
0.04183
0.04632
0.05121
0.05651
0.06225
0.06845
0.07513
0.08231
0.09002
0.09827
0.10708
0.11648
0.12647
0.13707
0.14892
0.16014
0.17262
0.18575
0.19951
0.21391
0.22893
0.24457
0.26080
0.27761
0.29597
0.31286
0.33123
0.35004
0.36927
0.38884
0.40871
0.42883

0.01091
0.01179
0.01281
0.01397
0.01528
0.01677
0.01846
0.02037
0.02250
0.02490
0.02757
0.03055
0.03386
0.03752
0.04156
0.04600
0.05086
0.05618
0.06196
0.06825
0.07504
0.08237
0.09025
0.09868
0.10768
0.11726
0.12740
0.13811
0.14838
0.16120
0.17353
0.18635
0.19964
0.21335
0.22743
0.24184
0.25651
0.27138
0.28638
0.30144
0.31647
0.33139
0.34612
0.36057
0.37465
0.38825
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5.2 Modelling based on 'Lives'
We begin with the analysis of the data based on 'lives'. The binomial

modelling distribution is selected, since we are dealing here with initial
exposures. We use Assumption Ib in conjunction with the complementary
log-log link function:

logi-log/ 1 - 77)Hlog{-log( 1 -qxt)} = r\xt

and polynomial predictor formulae of the type:

n»=/?<>+£ PMxf) + Z *i*" + Z Z y^W (5.i)

in which some of the parameters may be pre-set to zero. Here both the age
and calendar year ranges have been mapped onto the interval [—1,1] by
translating the origin to the centre of the range concerned and then using the
semi-range for scaling. We write:

v ' -* Cx i t C,

O)x CO,

to denote the transformed ages and transformed calendar years respectively,
where:

-^min ' -*max , - -^max -**min

c x - 2 , c o x - 2

with equivalent expressions for c, and a>, in terms of the maximum and
minimum calendar years. The Legendre polynomials L,{x), of degree j , are
generated by:

L0(x) = l L1(x) = x, (n+l)Ln+1(x)=(2n + l)xLn(x)-nLn_l(x) (integer n>l)

so that:

3x2 —1 . . 5x3-3x

Similar predictor based formulae have been used by Renshaw, Haberman &
Hatzopoulos (1996) to investigate mortality trends in the U.K. male assured
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Table 5.1. Predictions based on 'lives', parameter estimates with standard
errors

0o= -2.657 (0.006440)
/?,= 1.642(0.01432) P2= -0.1665 (0.01396) /?3= -0.03783 (0.01624)'
a, = -0.04721 (0.01268) a 2 = -0.03314 (0.009019) a 3 = -0.03846 (0.01622)

y,, =-0.02405 (0.01394)
Deviance = 442.28 on 280 degrees of freedom with scale parameter T = 1.580

lives experience. If the <x,s and y,7s are pre-set to zero so that the model
excludes trend effects, the combined formulae reduce to Gompertz 'law' on
setting s= l , and represent a generalisation of Gompertz 'law' otherwise.
Writing equation (5.1) as:

J=0

the second batch of terms may be interpreted as trend adjustment terms
which are age specific, provided not all the y,7s are pre-set to zero.

An examination of the deviance profile induced by changes in the structure
of the linear predictor formula (5.1), coupled with copious graphical tests of
the corresponding deviance residuals, leads to the adoption of the model
formula:

log{-log(l-«„

The left hand side coupled with the first four terms of the right hand side
may be interpreted as a natural extension to Gompertz 'law' as suggested by
Renshaw (1991), while the four remaining terms on the right hand side, the
last of which is age specific, may be collectively interpreted as a trend
perturbation effect. Specific details of the fit are presented in Table 5.1, but
details of the copious tests, which are highly supportive of the model
structure, are withheld to save space. The resulting predicted values of qxt are
presented in Table 5.2. It is of particular interest to monitor the percentage
improvement per year in mortality predicted by the model as a function of
age. This is done for the period 1983 to 1990 by computing values of the
statistic:

1x, 1983)

Such values, based on the appropriate entries taken from Table 5.2, for
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Table 5.2. Predicted qxt probabilities based on 'lives' (x = age, t = calendar
year)

Age 1983 1984 1985 1986 1987 1988 1989 1990
60 0.01280 0.01245 0.01219 0.01198 0.01174 0.01141 0.01094 0.01029
61 0.01426 0.01386 0.01359 0.01335 0.01309 0.01273 0.01221 0.01150
62 0.01587 0.01544 0.01514 0.01489 0.01460 0.01420 0.01363 0.01284
63 0.01767 0.01720 0.01687 0.01660 0.01628 0.01584 0.01521 0.01433
64 0.01967 0.01915 0.01880 0.01850 0.01815 0.01767 0.01697 0.01600
65 0.02189 0.02132 0.02093 0.02061 0.02023 0.01970 0.01893 0.01786
66 0.02435 0.02373 0.02330 0.02295 0.02254 0.02196 0.02111 0.01992
67 0.02707 0.02639 0.02593 0.02554 0.02510 0.02446 0.02353 0.02221
68 O.O3OO7 0.02933 0.02883 0.02841 0.02793 0.02723 0.02620 0.02475
69 0.03338 0.03257 0.03203 0.03158 0.03105 0.03029 0.02916 0.02756
70 0.03702 0.03613 0.03555 0.03507 0.03450 0.03367 0.03243 0.03065
71 0.04101 0.04005 0.03942 0.03890 0.03828 0.03738 0.03602 0.03407
72 0.04539 0.04434 0.04366 0.04310 0.04244 0.04146 0.03996 0.03782
73 0.05016 0.04903 0.04830 0.04770 0.04699 0.04592 0.04428 0.04193
74 0.05537 0.05414 0.05335 0.05272 0.05195 0.05079 0.04900 0.04642
75 0.06102 0.05969 0.05885 0.05817 0.05735 0.05609 0.05415 0.05132
76 0.06713 0.06570 0.06481 0.06408 0.06320 0.06185 0.05973 0.05664
77 0.07374 0.07220 0.07124 0.07048 0.06954 0.06808 0.06578 0.06241
78 0.08084 0.07919 0.07817 0.07736 0.07637 0.07479 0.07231 0.06864
79 0.08844 0.08668 0.08560 0.08475 0.08370 0.08201 0.07933 0.07535
80 0.09656 0.09468 0.09355 0.09266 0.09154 0.08974 0.08685 0.08254
81 0.10520 0.10319 0.10200 0.10108 0.09990 0.09798 0.09487 0.09022
82 0.11434 0.11221 0.11096 0.11000 0.10877 0.10673 0.10340 0.09839
83 0.12397 0.12172 0.12042 0.11943 0.11814 0.11598 0.11242 0.10704
84 0.13408 0.13171 0.13035 0.12933 0.12799 0.12571 0.12192 0.11616
85 0.14462 0.14214 0.14073 0.13969 0.13830 0.13590 0.13187 0.12572
86 0.15558 0.15298 0.15153 0.15047 0.14904 0.14652 0.14225 0.13571
87 0.16689 0.16418 0.16270 0.16162 0.16015 0.15752 0.15302 0.14607
88 0.17851 0.17569 0.17418 0.17310 0.17160 0.16886 0.16412 0.15678
89 0.19038 0.18746 0.18592 0.18484 0.18331 0.18047 0.17551 0.16777
90 0.20241 0.19940 0.19785 0.19678 0.19523 0.19230 0.18712 0.17898
91 0.21454 0.21145 0.20989 0.20883 0.20728 0.20426 0.19887 0.19035
92 0.22668 0.22352 0.22196 0.22093 0.21937 0.21627 0.21068 0.20180
93 0.23874 0.23552 0.23397 0.23297 0.23142 0.22826 0.22248 0.21324
94 0.25062 0.24735 0.24582 0.24486 0.24333 0.24011 0.23416 0.22459
95 0.26223 0.25892 0.25742 0.25651 0.25500 0.25174 0.24564 0.23575

Table 5.3. Measure of percentage improvement per year in mortality by age
(ix—for 'lives', i*—for 'amounts', x—age)

Age
60
65
70
75
80
85
90
95

3.07
2.86
2.66
2.44
2.22
1.98
1.86
1.51

i?
2.83
2.83
2.81
2.78
2.73
2.66
2.56
2.41
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Table 5.4. Predicted pxt values (x = age, t = calendar year) with $ = 6,134

Age 1983 1984 1985 1986 1987 1988 1989 1990

60 630 5293 3849 2895 956 2962 1066 4164
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

904
1297
1860
1030
570
524
482
443
407
374
344
316
290
267
245
232
246
262
279
261
244
229
223
217
212
207
201
196
191
187
192
198
203
209
215

3868
2826
2065
1280
794
714
642
577
519
467
420
378
340
306
275
295
271
248
228
231
233
236
233
230
228
225
222
220
217
215
217
220
223
225
228

3064
2438
1941
1298
869
788
714
648
588
533
483
438
398
361
327
287
279
271
263
256
250
244
238
233
227
222
217
211
207
202
214
226
239
253
268

3955
5403
7380
2578
900
825
755
692
633
580
531
487
446
408
373
360
349
338
327
301
278
256
249
243
236
230
223
217
212
206
209
212
215
218
221

1258
1655
2178
1436
947
879
816
758
704
653
606
563
523
485
450
396
378
359
342
319
297
111
272
267
262
257
252
248
243
239
231
223
215
208
201

3188
3431
3693
2171
1276
1151
1039
938
847
764
690
623
562
507
458
432
416
401
386
350
318
288
287
286
284
283
282
280
279
278
250
226
203
183
165

1741
2844
4646
2694
1562
1419
1289
1171
1065
968
879
799
726
660
600
537
493
453
416
396
377
359
342
327
312
298
284
271
259
247
262
278
295
313
332

4998
5999
7201
3232
1451
1389
1330
1274
1220
1168
1119
1071
1026
982
941
638
600
564
530
460
399
346
336
327
319
310
302
294
286
279
262
247
232
219
206

values of x at five yearly intervals, are reported in the second column of
Table 5.3. It is of interest to note that the pattern of these values with age is
consistent with external evidence to the effect that the rates of improvement
in mortality decrease monotonically with age.

5.3 Modelling based on the 'Amounts'
We turn next to Assumption III and the prediction of the scale parameter

I/J and average claim amounts pxt. Again, because of the characteristic pattern
in the responses similar to those encountered in Section 4, we resort to using
the same spline predictor in conjunction with the log-link. The fitted or
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Table 5.5. Predicted q*, probabilities based on 'amounts' (x = age, t = calendar
year)

Age
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

1983
0.00919
0.01040
0.01176
0.01328
0.01497
0.01687
0.01898
0.02132
0.02393
0.02681
0.03001
0.03354
0.03744
0.04174
0.04646
0.05165
0.05733
0.06355
0.07033
0.07773
0.08577
0.09450
0.10395
0.11416
0.12517
0.13700
0.14970
0.16329
0.17779
0.19323
0.20962
0.22695
0.24525
0.26449
0.28466
0.30574

1984
0.00893
0.01010
0.01142
0.01290
0.01455
0.01639
0.01844
0.02072
0.02325
0.02606
0.02917
0.03260
0.03640
0.04057
0.04517
0.05021
0.05574
0.06180
0.06840
0.07560
0.08343
0.09194
0.10114
0.11110
0.12183
0.13337
0.14577
0.15903
0.17320
0.18828
0.20430
0.22126
0.23918
0.25803
0.27781
0.29849

1985
0.00867
0.00981
0.01110
0.01254
0.01414
0.01593
0.01792
0.02014
0.02260
0.02533
0.02835
0.03169
0.03538
0.03944
0.04391
0.04882
0.05420
0.06009
0.06652
0.07353
0.08116
0.08944
0.09841
0.10811
0.11857
0.12983
0.14193
0.15487
0.15871
0.18345
0.19911
0.21570
0.23323
0.25170
0.27108
0.29137

1986
0.00843
0.00954
0.01079
0.01218
0.01374
0.01548
0.01742
0.01957
0.02196
0.02462
0.02755
0.03080
0.03439
0.03834
0.04269
0.04746
0.05270
0.05843
0.06469
0.07151
0.07894
0.08700
0.09575
0.10520
0.11540
0.12638
0.13818
0.15082
0.16432
0.17872
0.19403
0.21026
0.22741
0.24550
0.26449
0.28439

1987
0.00819
0.00927
0.01048
0.01184
0.01335
0.01504
0.01692
0.01902
0.02134
0.02392
0.02678
0.02994
0.03343
0.03727
0.04150
0.04614
0.05124
0.05681
0.06291
0.06955
0.07678
0.08464
0.09315
0.10236
0.11231
0.12302
0.13452
0.14686
0.16004
0.17411
0.18906
0.20493
0.22172
0.23942
0.25803
0.27754

1988
0.00796
0.00901
0.01018
0.01150
0.01297
0.01462
0.01645
0.01848
0.02074
0.02325
0.02603
0.02910
0.03249
0.03623
0.04034
0.04486
0.04982
0.05524
0.06117
0.06763
0.07468
0.08233
0.09062
0.09960
0.10929
0.11973
0.13095
0.14299
0.15586
0.16959
0.18421
0.19972
0.21614
0.23347
0.25170
0.27082

1989
0.00773
0.00875
0.00990
0.01118
0.01261
0.01420
0.01598
0.01796
0.02016
0.02260
0.02530
0.02828
0.03158
0.03522
0.03922
0.04361
0.04843
0.05371
0.05948
0.06578
0.07263
0.08008
0.08816
0.09691
0.10635
0.11653
0.12747
0.13921
0.15178
0.16519
0.17947
0.19463
0.21069
0.22764
0.24550
0.26423

1990
0.00751
0.00850
0.00962
0.01086
0.01225
0.01380
0.01553
0.01745
0.01959
0.02196
0.02458
0.02749
0.03069
0.03423
0.03812
0.04240
0.04709
0.05222
0.05784
0.06397
0.07064
0.07789
0.08576
0.09428
0.10348
0.11341
0.12408
0.13553
0.14779
0.16089
0.17483
0.18965
0.20535
0.22194
0.23942
0.25778

Table 5.6. Predictions based on 'amounts', parameter estimates with standard
errors

0 O = - 2.830 (0.01136) /?,= 1.839(0.01992)
a, = -0.1011 (0.01144)

p2 = -0 .1174 (0.02918)

predicted values, \ji and pxt, presented in Table 5.4, were determined by
fitting this formula with knots positioned at ages 63, 65, 75, 76, 79, 82 and 90
years for each calendar year separately.

Turning finally to the application of Assumption IVb and the prediction of
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q*t. The results presented in Table 5.5 are based on the relatively simple
formula:

log{-log(l - «£)} = /?0 + plL1(x') + p2L2(x') + a /

which is supported by the data, subject to a few outliers, and the parameter
estimates associated with the fit are presented in Table 5.6. Unlike the
previous fit based on 'lives', these data are not supportive of higher order
terms in calendar year effects. The corresponding values in the mortality
improvement factors are recorded in the third column of Table 5.3.

6. SUMMARY

The approach developed here for the graduation of 'amounts' pays more
attention to the intrinsic structure of the data than the approach used
previously by the CMI Bureau. The methodology is strongly connected with
earlier work by Renshaw (1992) on duplicate policies, whose effects on the
graduation approach are modelled through over-dispersion. Thus, here a
person with a multiple unit of amount of benefit b say, is equivalent to a
person with b sets of 1 unit benefit amount, and the multiple stage modelling
develops naturally from earlier work. The essential difference between the
two approaches centres on the different specification of the second moment
properties of the modelling distribution.
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