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Apool design is random if it varies according to a probability distributidrere are

four types of random design proposed in the literatsa@dom incidence design
randomk-set designrandom distinck-set designand randonk-size designRe-
cently Hwang gave an approximation to estimate the number of unresolved posi-
tives for random distindt-set designin this article we give exact formulas for all

four types of random designs for estimating the number of unresolved positfees
also do some numerical comparisons of the four designs

1. INTRODUCTION

A pool desigris used in identifying clones which contain a specific DNA fragment
(referred to as @robe). A pool design can be represented by & n 0—1 matrix
where each column is labeled by a clone and each row by a Adekntry in cell
(i,]) implies that clong is contained in poal. For a given probé&, a clone is called
positiveif it containsF, andnegativeif not. The outcome of probing a pool is also
binary: A negative poomeans that the pool contains no positive ctoapositive
pool means it dogsbut not knowing how many or which ones

Ideally, by knowing the outcomes of th@ools in a pool designve can identify
all positive clones from the negativddowever this may be achieved only with a
very larget. To achieve economyhere is a trade-off between the sizet@ind the
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possible unidentificationThus clones are classified into four categotiessolved
positives unresolved positivesesolved negativesand unresolved negatives
“resolved” means identifiedWe will let P, P, N, and N denote their respective
numbersBarillot et al [2] first proposed to minimiz&(N).

A pool design isdeterministicif the design matrix is fixedandrandomif it
varies according to a probability distributioflthough the best deterministic de-
signs may minimizé, they are hard to findOn the other handandom designs are
usually surprisingly efficientThey also have the advantage of being applicable to
all t andn, whereas good deterministic desigrelying on the availability of com-
binatorial designsexist only for certain pairs dft, n). There are four types of ran-
dom designs proposed in the literat{ite-4]:

1. Random incidence desigiach cell in the design matrix has a predeter-
mined probabilityp of containing a 1-entry

2. Randomk-set designEach column is a randokisubset of the s, ..., t}
(the subset yields the set of rows containing 1-entries for that coglumn

3. Random distinck-set designSame as design 1 except the columns are dis-
tinct k-subsets

4. Randomk-size designEach row is a randork-subset of the sdl,..., n}.

E(N) has been computed for each of the above modétsvever E(P) is a
much harder object to computn approximation oE(P) was given in4] for the
random distinck-set designand the method was suggested to be extendable to the
other modelsin this article we give an exact formula to compuigP) for all four
models We also do some computations to show He¢iN) andE(P) depend on the
choices ofk or p and to compare the four designs

2. EXACT FORMULAS FOR E(P)

For a given pool desigrhe set of negative pools is referred to aslegative set.
Let d denote the number of positive clon&¥e first consider the random distinct
k-set design

Let Kq4(i) denote the probability that a given setigfools is the negative set
and letVy; (j) denote the probability dfl = j given that the negative set is of size
We quote two lemmas frorf¥]. Note that throughout this artigleve follow the
customary definitiorx® = 1, includingx = 0.

LEmMmA 1:

t At d
Ka(i) = 2(—1)h'( . )— for d > 0.
= h—i <t>
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LEMMA 2:

Vd,i(j):

Let Uyg—y1(y) denote the probability that a positive clofeek-subset C has
y indices not covered by the union of the otlier 1 positive clones which yield a
negative set of size We will refer to they indices asuncovered indices.

LEMMA 3:
(/t—i
()
" fory=0
s
Ug-1i(y) = i t—i
(o))
™ fory > 0.
BEE

Proor: y = 0 implies that thek indices ofC can be chosen randomly from the
t — i indices not in the negative setxcept thatC cannot be identical to any of
the otherd — 1 positive clonesy > 0 implies thaty indices ofC must be chosen

from thei indices of the negative sedndk — y indices out of it By noting that

ways of choosing &-subset not identical to the other— 1 positive clones
Lemma 3 follows u

Thereforegif d — 1 positive clones generate a negative set of isitteen adding
another positive clone will generate a negative set of sizey with probability
Ug-1,i ().

Finally, let f (i, y, j) denote the probability that a positive clo@ehas at least
one index not covered by the union of the otlder 1 positive clones and thie
unresolved negatives given that the negative set generated lay-the positive
clones is of size, and the number of uncovered indices®is y.
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( t—i+y—m
()

y y J
(_1)m_1< > i
m=1 t—
m ( i +y> Ly

k

LEMMA 4:

fli,y.j) =

. t—i+y g
=>d+
i K i

\O otherwise

Proor: Consider a given set ah indices from they uncovered indices of. We
compute the probability that thesgindices are also not covered by the union of the

j unresolved negativeblote that the negative set generated bydipesitive clones

is of sizei —y. An unresolved negative cannot contain any index of the negative set
It must also avoid thenindices out of the rest of thie— i + y indices There are

()

such choicesbutd — 1 of them are already taken by tlde— 1 positive clones
Thereforethere are
t—i+y—m
—(d-1)
K @

j
ways of choosing th¢ unresolved negativesdding this over alm=1,2,...,y,
the total number of choices is

t—i+y
( K >_d. )

i
Sq, the ratio of(1) and (2) is the probability we are computing@y noting that

there are
y
m

choices of amtm-subset and using the inclusion—exclusion pringiplemma 4
follows. u
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Summarizingwe have Theorem.5

THEOREM 5:

t
E(P) = d222<i>Kd1(i)Ud1,i(Y)Vd,iy(j)f(i,y,j)-
iy

Note thatE(P) = d — E(P).

LetK* U* V* andf * denote the terms correspondingdoU, V, andf, respec-
tively, except for the randork-set desigrii.e., the columns do not have to be dis-
tinct). We gaveK*, U*, V* andf* without proofs since they are analogous to the
distinctk-set case

THEOREM 6: For random kset design
t
E*(P) = dzzz(i>K;1<i>ucr1,i<y>vd’fiy<j>f*<i,y,j),
! y

i
(Y

where

h=i

(0

Kia() = 3 (- (;:'i>

t—i+y) ]ndi t—i+y j
o )]
Vcifiy(j):< J )1_f N |
(o (o
t—i+y—m\T!
y y ( k
f*(|7y’J):2(_l)m_l<m> - . - N fOka'[—I-i—y

()

LetK’, U’, V', andf’ denote the terms correspondingkpU, V, andf, respec-
tively, except for the random incidence desidwain, we giveK’, U’, V', andf’
without proofs
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THEOREM 7: For the random incidence design

t
E'(P) = d222<i>Ka1<i>ud'1,i<y)va,iy(nf'(y,j),
1 y
where

Ki-a(i) = 1-p @ [1-2-p* ],

[ _
Ud1i(y) = <y> pYl—p'¥

Y y .
fr(y,j) = 2_:1(—1)m1<m>(1— p) ™.

LetK”, U"”, V", andf” denote the terms correspondingkoU, V, andf, re-
spectively except for the randork-size design
THEOREM 8: For the random ksize design
t . . .
E'P)=dX > > i K1 (DUd i (Wi (DT (Y, 1),
ry |

TN (e

W

where

( n—d y n—d iy

i k-1 k-1 .
<y> moarny ||V nmarny | fnodrtEk
UH, i =
diy) K K
1 ify=0
. otherwise
\ |0 otherwise
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n—d—1\T"V
n—d\n-d . n—d—j < k > _
j E(_l) | i Td fn—d=k

i J
Vdi—y(]) = < ) >
1 ifj=n-d i
t :
\ |0 otherwise otherwise
r n—d—j N
Y y k—1
"(y] o™t )| | ifn-d=k-1
f7(y,j) = { m1 m

iy

L0 otherwise

Proor: K{_,(i) was given in4]. Let Y denote the set of uncovered indicésen
arowr is in Y if and only if one of itskth 1-entries is at columg, and the other
k — 1 l-entries are in the columns representing the negative cléimxe the

probability of a row inY is
n—d
k—1

n—d+1\"
k
Because the rows are independéiné probability of a given set gfrows from the
negative set equals tis given byUg’; ;(y). Furthermorethe probability thaj
given negative clonegvhich do not appear in thie— y pools of the negative set

from thed positive clonescan be computed using the inclusion—exclusion formula
to be

e R |
(")

(")
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Ficure 1. Random incidence and randdasize(in solid circleg design

is the probability that a given pool in the- y pools does not contai@. Vy/;_(j) is
obtained by multiplying the above probability by the number of ways of chogsing
clones from then — d negative cloned=inally, out of Y, at least one row not covered
by the union of thg unresolved negatives is given by(y,j). u

E(N) was given correctly ifi4]. However the formula forvy ; ( j ) used there to
corﬂputeP(N = j) was slightly different from the one used in Theoremh8nce
P(N = j) computed there was actually an approximatiderg we give an exact
formula

THEOREM 9: For the random ksize design
_ t ) )
P(N:J):Z i Ka(i)Vai ().
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FicURE 2. Randomk-set and random distingtset(in open circlegdesign

3. NUMERICAL RESULTS

We use the formulas given iri,4] and in the last section to compugN) and
E(P) for some values af, t, d, k, andp for all four designs mentioned in Section 1
We draw the randonk-set design and the random distirkeset design together
for easier eye comparisollVe also draw the random incidence design and the
randomk-size design togethgalthough their semblance is not a priori eviddfar
n=40,t= 20, andd = 4, see Figure 1Forn= 100, t = 30, andd = 5, see Figure 2

It was pointed out if1] thatp = 1/(d + 1) minimizesE(N) for the random
incidence designThis is verified by Figures 1a and 3&he p-value minimizing
E(P) for the first case is about. D46 and for the second casi is about 0123
closer top = 1/(d + 3) than %(d + 1). For the randonk-size designit was pointed
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Ficure 3. Random incidence and randdasize(in solid circleg design

out in[4] that if we setk = n/(d + 1), thenk equals the expected size of a random
(incidence pool design with optimal choice qf for E(N). Therefore we paired
(p, k) with k = npin the horizontal axisindeed the optimal choices ok corre-
spond to that op in both cases and for botE(N) andE(P). The randornk-size
design is better than the random incidence design for BO) andE(P) around
the optimal choices

The random distindt-set design is slightly better than the randkiset design
but the difference is observable only for smaflvhere the minimuni(P) or E(N)
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FiGURE 4. Randomk-set and random distingtset(in open circlegdesign

occurg. The optimalk-values are surprisingly smahlanging from 2 to 4 for both
cases and for botE(N) andE(P) (see Fig4).

Across the boardve note that the curves shown in the figures are oBtype
In particularthese curves have the nice properties of having a unique minimum and
a graceful degradatidn.e., a small slip in thek-value causing a small slip &(N)
orE(P)]. FurthermoretheE(N) curve and th&(P) curve are in general agreement
with respect to optimal choices of design parameters

Comparisons of the different designs with their optimal choiceg of k are
given in Table 11t seems that the random incidence design is uniformly worst and
the randonk-size design is also not good f&(N).
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TaBLE 1. Comparison of Designs with Optimal Choicespodr k

E(N) E(P)
Value ofn 40 100 40 100
Random incidence design ks 1187 216 324
(value ofp) (0.2 (0.167) (0.146) (0.123
Randomk-size design 57 111 191 311
(value ofk) (8) (16 (5) (12
Randomk-set design 312 555 204 287
(value ofk) 3 (4) 3 4)
Random distinck-set design 26 553 20 287
(value ofk) (2 4) 3 (4)
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