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Apool design is random if it varies according to a probability distribution+There are
four types of random design proposed in the literature: random incidence design,
randomk-set design, random distinctk-set design, and randomk-size design+ Re-
cently Hwang gave an approximation to estimate the number of unresolved posi-
tives for random distinctk-set design+ In this article, we give exact formulas for all
four types of random designs for estimating the number of unresolved positives+We
also do some numerical comparisons of the four designs+

1. INTRODUCTION

A pool designis used in identifying clones which contain a specific DNA fragment
~referred to as aprobe!+ A pool design can be represented by at 3 n 0–1 matrix
where each column is labeled by a clone and each row by a pool+ A 1-entry in cell
~i, j ! implies that clonej is contained in pooli+ For a given probeF, a clone is called
positiveif it containsF, andnegativeif not+ The outcome of probing a pool is also
binary: A negative poolmeans that the pool contains no positive clone; a positive
pool means it does, but not knowing how many or which ones+

Ideally, by knowing the outcomes of thet pools in a pool design,we can identify
all positive clones from the negatives+ However, this may be achieved only with a
very larget+ To achieve economy, there is a trade-off between the size oft and the
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possible unidentification+ Thus, clones are classified into four categories: resolved
positives, unresolved positives, resolved negatives, and unresolved negatives;
“resolved” means identified+ We will let P, OP, N, and PN denote their respective
numbers+ Barillot et al+ @2# first proposed to minimizeE~ PN!+

A pool design isdeterministicif the design matrix is fixed, and randomif it
varies according to a probability distribution+ Although the best deterministic de-
signs may minimizet, they are hard to find+ On the other hand, random designs are
usually surprisingly efficient+ They also have the advantage of being applicable to
all t andn, whereas good deterministic designs, relying on the availability of com-
binatorial designs, exist only for certain pairs of~t, n!+ There are four types of ran-
dom designs proposed in the literature@1–4#:

1+ Random incidence design+ Each cell in the design matrix has a predeter-
mined probabilityp of containing a 1-entry+

2+ Randomk-set design+ Each column is a randomk-subset of the set$1, + + + , t %
~ the subset yields the set of rows containing 1-entries for that column!+

3+ Random distinctk-set design+ Same as design 1 except the columns are dis-
tinct k-subsets+

4+ Randomk-size design+ Each row is a randomk-subset of the set$1, + + + , n%+

E~ PN! has been computed for each of the above models+ However, E~ OP! is a
much harder object to compute+An approximation ofE~ OP! was given in@4# for the
random distinctk-set design, and the method was suggested to be extendable to the
other models+ In this article, we give an exact formula to computeE~ OP! for all four
models+We also do some computations to show howE~ PN! andE~ OP! depend on the
choices ofk or p and to compare the four designs+

2. EXACT FORMULAS FOR E ( OP )

For a given pool design, the set of negative pools is referred to as thenegative set.
Let d denote the number of positive clones+ We first consider the random distinct
k-set design+

Let Kd~i ! denote the probability that a given set ofi pools is the negative set,
and letVd, i ~ j ! denote the probability ofPN5 j given that the negative set is of sizei+
We quote two lemmas from@4# + Note that throughout this article, we follow the
customary definitionx0 5 1, includingx 5 0+

Lemma 1:

Kd~i ! 5 (
h5i

t

~21!h2iS t 2 i

h 2 i D
1S

t 2 h

k D
d

2
1S

t

kD
d
2

for d . 0+
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Lemma 2:

Vd, i ~ j ! 5

1S
t 2 i

k D2 d

j
2 1S

t

kD2St 2 i

k D
n 2 d 2 j

2
1S

t

kD2 d

n 2 d
2

+

Let Ud21, i ~ y! denote the probability that a positive clone~a k-subset! C has
y indices not covered by the union of the otherd 2 1 positive clones which yield a
negative set of sizei+We will refer to they indices asuncovered indices.

Lemma 3:

Ud21, i ~ y! 5 5
St 2 i

k D2 ~d 2 1!

S t

kD2 ~d 2 1!

for y 5 0

S i

yDS t 2 i

k 2 yD
S t

kD2 ~d 2 1!

for y . 0+

Proof: y 5 0 implies that thek indices ofC can be chosen randomly from the
t 2 i indices not in the negative set, except thatC cannot be identical to any of
the otherd 2 1 positive clones+ y . 0 implies thaty indices ofC must be chosen
from the i indices of the negative set, andk 2 y indices out of it+ By noting that
there are

S t

kD2 ~d 2 1!

ways of choosing ak-subset not identical to the otherd 2 1 positive clones,
Lemma 3 follows+ n

Therefore, if d21 positive clones generate a negative set of sizei, then adding
another positive clone will generate a negative set of sizei 2 y with probability
Ud21, i ~ y!+

Finally, let f ~i, y, j ! denote the probability that a positive cloneC has at least
one index not covered by the union of the otherd 2 1 positive clones and thej
unresolved negatives given that the negative set generated by thed 2 1 positive
clones is of sizei, and the number of uncovered indices ofC is y+
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Lemma 4:

f ~i, y, j ! 5 5 (
m51

y

~21!m21S y

mD
1S

t 2 i 1 y 2 m

k D2 ~d 2 1!

j
2

1S
t 2 i 1 y

k D2 d

j
2

if St 2 i 1 y

k D $ d 1 j

0 otherwise+

Proof: Consider a given set ofm indices from they uncovered indices ofC+ We
compute the probability that thesem indices are also not covered by the union of the
j unresolved negatives+ Note that the negative set generated by thed positive clones
is of sizei 2 y+ An unresolved negative cannot contain any index of the negative set+
It must also avoid them indices out of the rest of thet 2 i 1 y indices+ There are

St 2 i 1 y 2 m

k D
such choices, but d 2 1 of them are already taken by thed 2 1 positive clones+
Therefore, there are

1S
t 2 i 1 y 2 m

k D2 ~d 2 1!

j
2 (1)

ways of choosing thej unresolved negatives+ Adding this over allm 5 1,2, + + + , y,
the total number of choices is

1S
t 2 i 1 y

k D2 d

j
2 + (2)

So, the ratio of ~1! and ~2! is the probability we are computing+ By noting that
there are

S y

mD
choices of anm-subset and using the inclusion–exclusion principle, Lemma 4
follows+ n
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Summarizing, we have Theorem 5+

Theorem 5:

E~P! 5 d(
i
(
y

(
j
S t

iDKd21~i !Ud21, i ~ y!Vd, i2y~ j ! f ~i, y, j !+

Note thatE~ OP! 5 d 2 E~P!+
Let K *, U *, V *, andf * denote the terms corresponding toK, U, V, andf, respec-

tively, except for the randomk-set design~i+e+, the columns do not have to be dis-
tinct!+ We gaveK *, U *, V *, andf * without proofs since they are analogous to the
distinctk-set case+

Theorem 6: For random k-set design,

E*~P! 5 d(
i
(
y

(
j
S t

iDKd21
* ~i !Ud21, i

* ~ y!Vd, i2y
* ~ j ! f *~i, y, j !,

where

Kd21
* ~i ! 5 (

h5i

t

~21!h2iS t 2 i

h 2 iD3 S
t 2 h

k D
S t

kD 4
d21

,

Ud21, i
* ~ y! 5

S i

yDS t 2 i

k 2 yD
S t

kD
,

Vd, i2y
* ~ j ! 5 Sn 2 d

j D312

St 2 i 1 y

k D
S t

kD 4
n2d2j

3 S
t 2 i 1 y

k D
S t

kD 4
j

,

f *~i, y, j ! 5 (
m51

y

~21!m21S y

mD3 S
t 2 i 1 y 2 m

k D
St 2 i 1 y

k D 4
j

for k $ t 2 i 1 y+

Let K ', U ', V ', andf ' denote the terms corresponding toK, U, V, andf, respec-
tively, except for the random incidence design+ Again, we giveK ', U ', V ', and f '

without proofs+

RANDOM POOL DESIGNS 61

https://doi.org/10.1017/S0269964801151041 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964801151041


Theorem 7: For the random incidence design,

E '~P! 5 d(
i
(
y

(
j
S t

iDKd21
' ~i !Ud21, i

' ~ y!Vd, i2y
' ~ j ! f '~ y, j !,

where

Kd21
' ~i ! 5 ~12 p! ~d21! i @12 ~12 p!d21# t2i,

Ud21, i
' ~ y! 5 S i

yDpy~12 p! i2y,

Vd, i2y
' ~ j ! 5 Sn 2 d

j D~12 p! ~i2y! j @12 ~12 p! i2y# n2d2j,

f '~ y, j ! 5 (
m51

y

~21!m21S y

mD~12 p! jm+

Let K '', U '', V '', and f '' denote the terms corresponding toK, U, V, and f, re-
spectively, except for the randomk-size design+

Theorem 8: For the random k-size design,

E ''~P! 5 d(
i
(
y

(
j
S t

iDKd21
'' ~i !Ud21, i

'' ~ y!Vd, i2y
'' ~ j ! f ''~ y, j !,

where

Kd21
'' ~i ! 5 1 S

n 2 d 1 1

k D
Sn

kD 2
i

112

Sn 2 d 1 1

k D
Sn

kD 2
t2i

,

Ud21, i
'' ~ y! 5 5S i

yD1 Sn 2 d

k 2 1D
Sn 2 d 1 1

k D 2
y

112

Sn 2 d

k 2 1D
Sn 2 d 1 1

k D 2
i2y

if n 2 d 1 1 $ k

H1 if y 5 0

0 otherwise
otherwise,
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Vd, i2y
'' ~ j ! 5 5Sn 2 d

j D(
l5j

n2d

~21! l2jSn 2 d 2 j

l 2 j D3 S
n 2 d 2 l

k D
Sn 2 d

k D 4
i2y

if n 2 d $ k

H1 if j 5 n 2 d

0 otherwise
otherwise,

f ''~ y, j ! 5 5 (
m51

y

~21!m21S y

mD3 S
n 2 d 2 j

k 2 1 D
Sn 2 d

k 2 1D 4
m

if n 2 d $ k 2 1

0 otherwise+

Proof: Kd21
'' ~i ! was given in@4# + Let Y denote the set of uncovered indices, then

a row r is in Y if and only if one of itskth 1-entries is at columnC, and the other
k 2 1 1-entries are in the columns representing the negative clones+ Hence, the
probability of a row inY is

Sn 2 d

k 2 1D
Sn 2 d 1 1

k D +
Because the rows are independent, the probability of a given set ofy rows from the
negative set equals toY is given byUd21, i

'' ~ y!+ Furthermore, the probability thatj
given negative clones~which do not appear in thei 2 y pools of the negative set
from thed positive clones! can be computed using the inclusion–exclusion formula
to be

(
l5j

n2d

~21! l2jSn 2 d 2 j

l 2 j D3 S
n 2 d 2 l

k D
Sn 2 d

k D 4
i2y

,

where

Sn 2 d 2 l

k D
Sn 2 d

k D
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is the probability that a given pool in thei 2 y pools does not containC+ Vd, i2y
'' ~ j ! is

obtained by multiplying the above probability by the number of ways of choosingj
clones from then2 d negative clones+ Finally, out ofY, at least one row not covered
by the union of thej unresolved negatives is given byf ''~ y, j !+ n

E~ PN! was given correctly in@4# +However, the formula forVd, i ~ j ! used there to
computeP~ PN 5 j ! was slightly different from the one used in Theorem 8; hence,
P~ PN 5 j ! computed there was actually an approximation+ Here, we give an exact
formula+

Theorem 9: For the random k-size design,

P~ PN 5 j ! 5 (
i
S t

iDKd~i !Vd, i ~ j !+

Figure 1. Random incidence and randomk-size~in solid circles! design+
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3. NUMERICAL RESULTS

We use the formulas given in@1,4# and in the last section to computeE~ PN! and
E~ OP! for some values ofn, t, d, k, andp for all four designs mentioned in Section 1+
We draw the randomk-set design and the random distinctk-set design together
for easier eye comparison+ We also draw the random incidence design and the
randomk-size design together, although their semblance is not a priori evident+ For
n5 40, t 5 20, andd5 4, see Figure 1+ Forn5100, t 5 30, andd5 5, see Figure 2+

It was pointed out in@1# that p 5 10~d 1 1! minimizesE~ PN! for the random
incidence design+ This is verified by Figures 1a and 3a+ The p-value minimizing
E~ OP! for the first case is about 0+146, and for the second case, it is about 0+123,
closer top510~d1 3! than 10~d11!+ For the randomk-size design, it was pointed

Figure 2. Randomk-set and random distinctk-set~in open circles! design+
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out in @4# that if we setk 5 n0~d 1 1!, thenk equals the expected size of a random
~incidence! pool design with optimal choice ofp for E~ PN!+ Therefore, we paired
~ p, k! with k 5 np in the horizontal axis+ Indeed, the optimal choices ofk corre-
spond to that ofp in both cases and for bothE~ PN! andE~ OP!+ The randomk-size
design is better than the random incidence design for bothE~ PN! andE~ OP! around
the optimal choices+

The random distinctk-set design is slightly better than the randomk-set design,
but the difference is observable only for smallk ~where the minimumE~ OP! or E~ PN!

Figure 3. Random incidence and randomk-size~in solid circles! design+
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occurs!+ The optimalk-values are surprisingly small, ranging from 2 to 4 for both
cases and for bothE~ PN! andE~ OP! ~see Fig+ 4!+

Across the board, we note that the curves shown in the figures are of theStype+
In particular, these curves have the nice properties of having a unique minimum and
a graceful degradation@i+e+, a small slip in thek-value causing a small slip inE~ PN!
orE~ OP!#+Furthermore, theE~ PN! curve and theE~ OP! curve are in general agreement
with respect to optimal choices of design parameters+

Comparisons of the different designs with their optimal choices ofp or k are
given in Table 1+ It seems that the random incidence design is uniformly worst and
the randomk-size design is also not good forE~ PN!+

Figure 4. Randomk-set and random distinctk-set~in open circles! design+
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Table 1. Comparison of Designs with Optimal Choices ofp or k

E~ PN! E~ OP!
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