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Neural network-based sperm whale click classification

Recordings of a group of foraging sperm whales usually result in a mixture of clicks from different animals. 
To analyse the click sequences of individual whales these clicks need to be separated, and for this an automatic 
classifier would be preferred. Here we study the use of a radial basis function network to perform the 
separation. The neural network’s ability to discriminate between different whales was tested with six data 
sets of individually diving males. The data consisted of five shorter click trains and one complete dive which 
was especially important to evaluate the capacity of the network to generalize. The network was trained with 
characteristics extracted from the six click series with the help of a wavelet packet-based local discriminant basis. 
The selected features were separated in a training set containing 50 clicks of each data set and a validation set 
with the remaining clicks. After the network was trained it could correctly classify around 90% of the short click 
series, while for the entire dive this percentage was around 78%.

INTRODUCTION

There has been a continuous interest in the tracking and 
monitoring of sperm whales (Physeter macrocephalus) through 
passive means (Leaper et al., 1992; Mellinger et al., 2004; 
Thode, 2004). Sperm whales especially make excellent targets 
for passive acoustic observation, because, while foraging, 
they produce continuous series of clicks that can be detected 
at large distances. More recently, the monitoring effort has 
shifted from a mostly scientific interest to more practical 
interests, as for example in the avoidance of collisions with 
shipping traffic (André et al., 1997; André & Potter, 2000; 
Delory et al., 2006).

Acoustic recordings of group dives of sperm whales often 
result in a mixture of signals, making analysis by automated 
tools difficult. In order to track an individual animal it is 
necessary to find unique characteristics in its signals. This 
is complicated by the fact that the frequency content of the 
clicks is influenced by various factors, such as the animal’s 
depth, orientation, and distance to the hydrophone (Thode 
et al., 2002; Møhl et al., 2003). However, for this study we 
were not interested in the unique identification of a whale, 
which would require stable and unique characteristics, but 
in distinguishing between individuals in a small group for 
the duration of a single dive, which merely requires features 
not to overlap.

Some authors have previously looked at the processing of 
sperm whale vocalizations, like click detection and feature 
extraction (Adam et al., 2005; Lopatka et al., 2005; van der 
Schaar et al., 2007). Wavelet-based identification of sperm 
whales was also attempted in Dougherty (1999), where 
the author noted difficulties due to the variability of click 
characteristics during a dive. A neural network solution to 
identify marine mammal sounds was proposed in Huynh et 
al. (1998), where the authors were successful in identifying 

different species. In Murray et al. (1998) the authors used a 
neural network approach to classify killer whale vocalizations. 
Based on the specific distribution of the characteristics 
found in our data sets we chose a different type of neural 
network known as a radial basis function network (Bishop, 
1995). This type of network acts as a non-linear classifier 
with the advantage of a simple structure, which allows fast 
training through the combination of unsupervised and 
(linear) supervised techniques.

MATERIALS AND METHODS
Data collection

The sperm whale data were collected from an inflatable 
boat during four field seasons spanning four to ten weeks 
each (from 1997 to 1999) at Kaikoura, New Zealand (Jaquet 
et al., 2001). Recordings were made of solitary diving 
male sperm whales using an omni-directional hydrophone 
(Sonatech 8178; minimum frequency response 100 Hz to 30 
kHz ±5 dB) lowered to 20 m. Visual identification of the 
whales when they were surfacing allowed the recordings to 
be identified. The hydrophone was first connected to a fixed 
gain amplifier (at response from 0 to 45 kHz), and then to 
one channel of a Sony TCD-D10PROII digital audio tape 
recorder (frequency response 20 Hz to 22 kHz ±1 dB with 
an anti-aliasing filter at 22 kHz). Recordings were digitized 
at 48 kHz and 16 bits.

Since one can rarely hear more than five animals 
simultaneously in the recordings of a group dive (Whitehead 
& Weilgart, 1989), we restricted the number of animals that 
should be recognized to six. The data sets were therefore 
created from the clicks of six different whales. Five sets 
contained a single click train (a consecutive series of clicks) 
each from a specific whale, the smallest set containing 83 

M. van der Schaar*, E. Delory*, A. Català† and M. André*‡

*Laboratori d’Aplicacions Bioacústiques, Universitat Politècnica de Catalunya, Spain. †Departament ESAII, Universitat Politècnica 
de Catalunya, Spain. ‡Corresponding author, e-mail: michel.andre@upc.edu

https://doi.org/10.1017/S0025315407054756 Published online by Cambridge University Press

https://doi.org/10.1017/S0025315407054756


36 M. van der Schaar et al.     Neural network-based click classification

Journal of the Marine Biological Association of the United Kingdom (2007)

clicks and the largest 248. The sixth set contained the clicks 
from an entire dive of another whale, leaving out creak 
sequences, and included well over a thousand clicks. This 
set was especially important to assess the capacity of the 
algorithm to generalize.

Feature selection

In order to classify the clicks, suitable characteristic features 
of the signals had to be found, and we searched for these in 
the lower frequency components. Although on-axis clicks 
can present a peak frequency around 12 kHz (Møhl et al., 
2003), this type of click is rarely found in recordings. More 
importantly, higher frequency components are not expected 
to be suitable since they suffer more from transmission loss 
and directional effects. Research has shown (Goold & Jones, 
1995) that clicks recorded off-axis contain dominant low 
frequencies; specifically for male sperm whales a dominant 
frequency can be found below 2000 Hz. Since lower frequency 
components are more stable, we focused our attention on 
these. In preparation for the classification algorithm, the 
clicks were manually detected and filtered for echoes and 
acceptable noise levels. The clicks were then denoised using a 
standard soft-thresholding algorithm, available from Wavelab 
(Donoho et al., 1999). In soft-thresholding, coefficients below 
a certain threshold are set to zero, while the magnitude of 
the other coefficients is reduced by the threshold to retain a 

smooth signal. After denoising, the clicks were synchronized 
at low frequencies using a typical low-pass filtered click as 
matched filter. After synchronization, all signals were low-
pass filtered at 2000 Hz, and subsequently normalized 
by their energy and downsampled to remove redundant 
information. The result of these operations can be seen 
in Figure 1. A local discriminant basis based on a wavelet 
packet decomposition of the signals (Saito & Coifman, 1994) 
was created for the six classes, and the 15 strongest wavelet 
coefficients (according to Fisher’s discriminant) were selected 
and used for the classification.

Radial basis function networks

A radial basis function network (Bishop, 1995) is a two layer 
neural network (see Figure 2). The activation functions in 
the first (hidden) layer consist of non-linear radial functions, 
which are characterized by having a single global maximum 
(or minimum) and a monotonically decreasing (increasing) 
value away from this point. The most commonly-used 
activation function is the Gaussian given by:

φ µ σµ σ, ( ) exp /x x= - -( )2 22

The Gaussian function has a maximum response of 
1 when x = µ and its value lowers when the distance to µ 
increases. Its width, or locality, can be controlled through σ. 
The second (output) layer of the network may contain non-
linear activation functions as well, but it can be particularly 
advantageous to make it linear, i.e. summing the weighed 
inputs from the hidden layer. This will allow the network 
to be trained without the use of time consuming non-linear 
optimization algorithms. The choice for this type of network 
can be motivated with Figure 3. The left image in this 
Figure shows the two strongest discriminating features for 
four data sets, plotted against each other. A natural way of 
characterizing the classes would be by placing centres in the 
clusters and assigning a point to a class depending on the 
distance to each of the centres. This approach naturally leads 
to the use of a distance based network, like a RBF network.

Figure 1. Synchronization of 50 clicks from Set 3 (left) and Set 4 
(right). The clicks have been low-pass filtered, downsampled and 
normalized by their energy.

Figure 2. Schematic of a RBF-network. A s-dimensional sample x enters on the left. It is first run through the n hidden layer nodes, 
where the distances between x and centres μ are evaluated through Gaussian functions fn(x). The outputs of the n Gaussian functions 
are then weighed with weights wi

j and linearly combined in the second layer nodes (containing one node per class). An additional 
weight ( w j

0 ) is usually added to each second layer node to account for the bias factor. This bias is then represented by an additional con-
stant activation function in the first layer, f0 ≡ 1. Taking the output vector y, the class of the sample x is computed by arg max yi

i

.
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The two layers in the RBF network perform the respective 
roles of clustering and classifying samples. The hidden layer 
covers the data with centres and evaluates the distances of 
an input to the centres through the Gaussian functions. The 
output layer then linearly combines the information from all 
the Gaussian functions to assign a class to the input.

The different roles of the two layers also allow them to 
be trained in two separate steps. The parameters for the 
hidden layer that need to be learned are the number of 
Gaussian functions needed to cover the data, and for every 
function its centre and width. One way to cluster the data, 
and to learn these parameters, is to use k-means clustering. 
This does not directly give the optimal number of clusters 
to use, but since the training of the network goes fast, in 
the order of minutes, different network configurations can 
be tested easily. When the network is trained in two steps 
the learning of the hidden layer can be done unsupervised, 
clustering all training data together ignoring the different 
classes, or the class information can be used by clustering 
the individual classes. The clusters then provide the centres 
for the Gaussian functions, and the cluster variances could 
also be used to define the widths of the Gaussians. However, 

we found better performance when the widths were set to 
a fixed value, ensuring that the functions have sufficient 
overlap.

The number of nodes in the output layer was set equal to 
the number of classes, using binary encoding for the targets 
(in the case of four classes, a sample from class 1 has target 
[1 0 0 0]t, while a class 3 sample has target [0 0 1 0]t). After 
the hidden layer has been trained the weights of the nodes 
in the output layer can be calculated directly and efficiently 
due to its linearity (Bishop, 1995).

In the example of Figure 3, k-means clustering was used to 
place eight centres in the data in the second image, without 
taking into account the class labels. For this example the 
number of centres was set to twice the number of classes 
based on visual inspection of the first image. The third image 
shows the decision regions around these centres as defined 
by the neural network. It should be noted that further away 
from the data samples the classification is less reliable due to 
a lack of information.

RESULTS
The training data were created by taking the 15 

most discriminating coefficients from the local basis 
representations of 50 clicks from the start of the data sets; the 
remaining clicks were used for the validation sets. The hidden 
layer of the RBF network was initialized by clustering the 
classes individually with k-means clustering. Since k-means 
cannot calculate an optimal number of clusters by itself we 
performed the classification using 1 to 7 clusters per class. 
The k-means runs were repeated 30 times in an attempt to 
find an optimal solution. Individual clustering of the classes 
gave better results than clustering all data together with the 
same total number of clusters. This may partly be caused 
by k-means, which had difficulties finding an optimal stable 
solution when the number of clusters was high. Classification 
of the training data was not good when only 1 or 2 clusters 
per class were used, but with more than two clusters the 
results were always 100% correct, with the exception of a 
single sample in Set 3, which was always wrongly classified. 
This single outlier should not significantly affect the results. 
The results of classifying the remaining clicks (validation set) 
in the data sets are shown in Table 1; Sets 1 to 5 contained 
the single click trains, Set 6 contained data from a complete 

Figure 3. Example of classification with a RBF-network. The image on the left shows the two most discriminating characteristics of 
four data sets. In the second image eight centres are placed in the data using k-means (in this case without using class information). The 
third image shows the class regions as defined by the RBF-network. It should be noted that classification in areas further away from the 
centres (as for example in the upper right corner) is not reliable due to missing data.

No. centres
per class 
(total) Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 6* Avg

1(6) 80 94 92 70 56 73 86 78
2(12) 89 96 93 85 50 78 89 82
3(18) 90 94 92 91 91 78 90 89
4(24) 94 96 86 85 100 80 92 90
5(30) 93 96 85 85 100 80 92 90
6(36) 93 96 86 85 100 81 92 90
7(42) 91 96 85 82 100 81 92 90

No. samples 198 69 148 33 54 1207 1013

Table 1. Percentages of correctly classified clicks from the validation 
sets using different numbers of centres per class. In the first column the 
value gives the number of clusters used per class within parentheses the 
total number of clusters used to model the data. The eighth column 
contains the data from the complete dive, with two extraordinary noisy 
segments removed. The last column gives the average of the correct clas-
sification over the six data sets (using Set 6).
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dive. Within this last data set there were two segments that 
classified particularly badly regardless of the number of 
centres used, likely due to a temporary increase in noise. 
Since these small segments had a disproportionate effect on 
the classification outcome, we also show the results with the 
segments removed in the eighth column in Table 1 (Set 6*). 
From the table, using three or four centres per class performs 
best. Adding more centres does not significantly improve the 
results, and may lead to poor generalization.

DISCUSSION
The radial basis function network was capable of 

distinguishing between the six individual animals. Using 
only 50 clicks at the start of the recordings the method was 
able to generalize to the entire dive of Set 6, although the 
limited amount of data available for the other classes does 
not allow making more general conclusions. It also needs 
to be noted that the network was tested with male sperm 
whales, while social groups mainly contain females and 
young calves. Goold & Jones (1995) showed that clicks from 
female sperm whales have somewhat different properties. 
Unfortunately, data of diving female sperm whales, where 
clicks can be assigned with certainty to a specific whale, 
were not available to us for analysis.

One important advantage of the radial basis network is 
that it allows fast training of the parameters. During the 
recording of a group dive some animals may return to the 
surface while other animals start foraging. A change in the 
diving group configuration might be detected automatically, 
either by a large number of clicks that cannot be classified 
because there is no significant maximum node in the output 
layer, or by a disproportionately large number of clicks 
falling in the same class within a short time interval because 
the clicks of the new animal are similar to those of a whale 
known to the network. The network can then be retrained 
quickly including the new animal, although creating the 
training set itself may still have to be done manually.

Occasionally, it may also be necessary to retrain the network 
with a set of recently classified clicks. It is possible that due 
to the variability of the features the click’s characteristics 
are no longer modelled correctly by the cluster centres as 
they were defined by the training set. This can occur, for 
example, when the distance or the recording angle to the 
whales change significantly. When it is detected that the 
maximum network output for clicks is slowly lowering, 
indicating features moving away from the cluster centres, 
the network can be retrained automatically with recent 
clicks. More data from complete dives will be necessary to 
see how well the network will handle changing features and 
animals unknown to the network.

When recordings are made with more than one hydrophone 
the combination of RBF classification and the direction of 
arrival of clicks should make automatic separation of clicks 
from different animals in a small group possible.
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