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LOGICALITY AND MODEL CLASSES

JULIETTE KENNEDY AND JOUKO VÄÄNÄNEN

Abstract. We ask, when is a property of a model a logical property? According to the so-
called Tarski–Sher criterion this is the case when the property is preserved by isomorphisms.
We relate this to model-theoretic characteristics of abstract logics in which the model class
is definable. This results in a graded concept of logicality in the terminology of Sagi [46].
We investigate which characteristics of logics, such as variants of the Löwenheim–Skolem
theorem, Completeness theorem, and absoluteness, are relevant from the logicality point of
view, continuing earlier work by Bonnay, Feferman, and Sagi. We suggest that a logic is the
more logical the closer it is to first order logic. We also offer a refinement of the result of McGee
that logical properties of models can be expressed in L∞∞ if the expression is allowed to
depend on the cardinality of the model, based on replacing L∞∞ by a “tamer” logic.

§1. Introduction. To say that the syllogism

All A′s are B ′s .
Some C ′s are A′s .
Some C ′s are B ′s .

is a valid argument form is to say that the conclusion follows from the
premises no matter which predicates are substituted for the nonlogical terms
A, B, C, whether ‘men’, ‘mortal’, ‘Greek’ or ‘tulips’, ‘bridges’ and ‘pious’, or
whatnot, as long as the substitution is done uniformly. That the conclusion
follows from the premises is a matter of logic—“is obviously true in a purely
logical way,” to quote Carnap.1

But what is it that makes a concept distinctively logical, as opposed to,
say, mathematical? How to circumscribe the logical? The question is an
urgent one for the logician, as the model-theoretic notion of consequence
is parasitic on the distinction between logical and nonlogical expressions.
For on this account of logical consequence, a sentence φ is held to be a
semantic consequence of a sentence �, if for every uniform substitution of
the nonlogical expressions in φ and �, if � is true, then so is φ.

In 1968 in a (posthumously published) lecture called “What are logical
notions?” [52] Tarski proposed a definition of “logical notion,” or alter-
natively of “logical constant,” modelled on the Erlanger program due to
Felix Klein. The core observation is the following: for a given subject area,
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386 J. KENNEDY AND J. VÄÄNÄNEN

the number of concepts classified as invariant are inversely related to the
number of transformations—the more transformations there are, the fewer
invariant notions there are. If one thinks of logic as the most general of all
the mathematical sciences, why not then declare “logical” notions to be the
limiting cases? Thus a notion is to be thought of as logical if it is invariant
under all permutations of the relevant domain.

As expected, the standard logical constants, namely conjunction, disjunc-
tion, negation and quantification, together with the equality relation, are all
judged to be logical operations under this criterion, being all isomorphism
invariant. This has the consequence that first order definability is classified
as logical, tout court, being generated by these constants.2

As was clear to Tarski, the criterion overgenerates, in the sense that
concepts one does not immediately assimilate to logic turn out to be
included, such as the cardinality of the underlying domain, which is clearly
isomorphism invariant. A second problem has to do with domain relativity:
Tarski’s criterion identifies the logical operations on a fixed domain, but that
a domain consists of this or that type of object should not have anything to
do with logicality—shouldn’t a logical concept be domain independent? Sher
[48] repaired this problem by extending Tarski’s criterion to cover notions
invariant across isomorphic structures, and accordingly the criterion is now
known as the Tarski-Sher invariance criterion.

The Tarski–Sher criterion has generated a substantial literature, both for
and against. Feferman’s [22], based on his earlier [21], proposes a notion
of homomorphism invariance. His critique of the Tarski–Sher thesis is the
following:

I critiqued the Tarski–Sher thesis in [21] on three grounds, the first
of which is that it assimilates logic to mathematics, the second that
the notions involved are not set-theoretically robust, i.e., not absolute,
and the third that no natural explanation is given by the thesis of what
constitutes the same logical operation over arbitrary basic domains.3

Feferman’s suggestion that Tarski assimilates logic to mathematics, in
particular to set theory, sets aside Tarski’s lifelong program to carry
out exactly what Feferman criticizes Tarski of here, namely expressing
metamathematical concepts in mathematical and set-theoretical terms.4

Feferman’s second objection has to do with overgeneration, in particular

2We argue for this below. McGee [41] extends the observation to L∞∞:

Since the primitive connectives ofL∞∞ are all intuitively clearly logical connectives,
and since, intuitively, anything definable from logical connectives is again a logical
connective, this will show that every operation invariant under permutations is
describable by a logical connective, so every operation invariant under permutations
is a logical operation.

3[22], p. 1.
4The first author has argued this point in [31].
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he resists the idea that a canonically mathematical but non-absolute notion
such as cardinality is rendered logical under the criterion.5

One way of thinking about topic neutrality is in terms of absoluteness, by
which we mean general independence from the background set theory. As is
well-known, a set may have one cardinality in one model of set theory but
another cardinality in another model.6 This shows that cardinality is not an
absolute notion. On the other hand, whether a given set is empty or not,
whether it is included in another given set, and whether it is the cartesian
product of two given sets are all independent of the (transitive) model
in which such questions are evaluated. Thus those notions are considered
absolute. A possible reason to consider absoluteness a necessary quality of
logical notions is that whatever depends on set theory could be considered
a mathematical rather than logical notion.

Quine has extensively argued against taking set-theoretic notions as
logical,7 and in his seminal paper [52] Tarski raises the question whether
mathematical notions are logical. According to Tarski, if we construe
mathematical notions in the framework of higher order logic, they are
logical, while if we use the set-theoretical framework, based on a single binary
relation x ∈ y, mathematical notions are not logical. Tarski concludes that
the question of logicality of mathematical notions is unresolved and depends
on how we construe mathematics. In this paper we take the set-theoretical
approach to mathematics. However, we operate with model classes, namely
classes of structures of the same similarity type, but possibly of different
cardinality, that are closed under isomorphism,8 which are part of the higher
order logic framework. For example, according to Tarski the notion of
a binary relation R being a well-order is non-logical, as it is defined by
reference to the ∈-relation of set theory, but the notion of a structure (M,<)
being a well-order is logical, as it is second order definable. This example
shows how delicate the question of logicality of mathematical notions is.

Feferman proposes restricting the Tarski–Sher invariance criterion to
operations that are absolute with respect to set theories making no

5The fact that cardinality is construed as logical under his criterion seemed to pose no
problem for Tarski:

That a class consists of three elements, or four elements ...that it is finite, or infinite—
these are logical notions, and are essentially the only logical notions on this level.
[52], p. 151.

6Cardinality also emerges as an artifact in the context of ramsification and Newman’s
objection to epistemic structural realism. See Ainsworth [1].

7See for example [45].
8If we work in set theory, classes are objects of the form {a : φ(a)}. Ordinary set theory

does not have objects of this kind, so classes are simply identified with their defining formulas,
in this case φ(x). The defining formula is allowed to have set parameters. Thus when we refer
to the class of all ordinals, the class of all structures, etc, we mean to refer to the defining
formula, which defines when a set is an ordinal, the formula which defines when a set is
structure, etc. If we worked in class theory, such as the Mostowski–Kelley–Morse class
theory, we would not need to assume that classes are definable.
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assumptions about the size of the given domain. Feferman cites [2],9 in
which it is shown that operations on relational structures that are definable
in an absolute way relative to KPU-Inf, i.e., Kripke–Platek set theory with
urelements and without the Axiom of Infinity, are exactly those expressible in
ordinary first-order predicate calculus with equality—another endorsement
of the idea that first order logic captures the notion of “logical concept.”

Feferman’s solution solves the overgeneration problem, while giving a
nice characterisation of first order logic along the way. But this comes at the
expense of a strong absoluteness assumption, and for restricted classes of
structures.

Setting overgeneration aside for the moment, and considering Feferman’s
third objection, namely the problem of domain relativity, it would seem that
following Feferman’s line we should consider model classes in general. How
then to formulate the concept of logicality for a model class? Originally
the question of logicality arises in connection with operations such as
connectives, quantifiers and their generalisations. As McGee explains in
[41], the question can be restated as a question about model classes, as the
question whether the property of a given model being in a given model class
is a logical property of the model.10 In other words, any relevant operation
O can be (re)formulated as a property P of models (see §2.1) and then the
logicality of O translates into the question whether the property P is a logical
property of models. Typical examples of logical properties of a unary model
(M,A), where A ⊆M , would be the non-emptiness of A, and the property
of A of being equal to M. On the side of operators these example would
correspond to the existential and the universal quantifiers.

Let’s back up and ask when would we call a property of an individual
structure M logical. With Sher, certainly we should consider the elements
of M irrelevant as long as the arrangement of the elements remains the
same, as was mentioned. It would then be natural to call a property of M
logical only if the property is closed under permutations of the elements of
M in the sense that if f is a permutation of M then the image of M as
a structure under f has the property. But then it is a short step to require
closure under isomorphisms.

A theorem due to McGee [41] characterises logicality for an arbitrary
model class, provided the cardinality of the models in the class is fixed in
advance. It is a weakness of this characterisation that it depends on the
cardinality of the models in the class. One might then ask, whether there
is a sentence in a logic L∗, perhaps other than L∞∞, which characterises
the logical property, not just in one cardinality, but in many cardinalities.
This leads to an analysis of spectra, as we call them,11 and Löwenheim–
Skolem style properties of logics as expressed in their Löwenheim and Hanf
numbers, which we now define:

9Feferman also cites an unpublished result of Manders.
10This property is essentially the same as deeming the associated generalised quantifier,

together with everything first definable from it, as logical. See §2.
11See also [46].
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Definition 1. Suppose C and D are classes of cardinal numbers. A logic
L∗ satisfies the Löwenheim–Skolem property LS(C,D) if every sentence inL∗

which has a model of some cardinality in C has a model of some cardinality
in D. The smallest κ such that L∗ satisfies LS([1,∞), [1, κ]) is called the
Löwenheim number of L∗ and denoted �(L∗). The smallest κ such that L∗

satisfies LS([κ,∞), [�,∞)) for all � is called the Hanf number of L∗ and
denoted h(L∗).

As Sagi notes in her [46], the Löwenheim number of a logic encodes the
degree to which the logic is indifferent to cardinality. This is due to the fact
that if a sentence satisfied by a model is also satisfied by a model of size
less than or equal to a given cardinality κ, then all the validities12 which
are captured in the full range of models are captured already on an initial
segment (of V). In the case of first order logic the Löwenheim–Skolem
theorem tells us that κ can be taken to be ℵ0, so in this sense first order logic
is indifferent to cardinalities above ℵ0. First order logic is already classified
as logical because its logical constants are permutation invariant; this is now
witnessed by the Löwenheim–Skolem theorem.

The strength of the Löwenheim–Skolem property of a given logic—or if
you like, the degree of its indifference to cardinality—is measured, then, by
its Löwenheim number. As an example, the quantifier Qα associated with
the logic L(Qα), having Löwenheim number ℵα, is in a sense indifferent to
cardinalities greater than ℵα.13 First order logic and L(Q0) are maximally
logical under the criterion assigning logicality according to Löwenheim
number, and the degree of logicality decreases as α increases. Thus if α ≤ � ,
then Qα is more logical than Q� .14

The criterion for logicality presented in Sagi’s paper is based on a
particular philosophical position, to wit: a metaphysical view of the
cumulative hierarchy of sets, as well as a view about how the meaning
of the terms of a logic are fixed.

...the higher set-theoretic infinite is metaphysically loaded...The lower
the cardinalities to which the meaning15 of a term may be sensitive,
the more logical it is. ...[We] view Löwenheim numbers as telling us
how much structure a term [in this case the quantifiers Qα JK/JV]
requires in order to be fixed in the context of a logic.”16

In short, the smaller the Löwenheim number of the logic, the less
metaphysically involved e.g. the quantifier Qα is.

12Or for Sagi, the meaning, see [46].
13This is a central example of [46].
14L(Q) denotes first order logic with the generalised quantifier Q appended. The expression

“Qαxφ(x)” means that “there are at least ℵα many x such that φ(x).” By the Löwenheim–
Skolem theorem, the Löwenheim number of first order logic is ℵ0, as was noted; for each α,
the Löwenheim number of the logic L(Qα) is ℵα .

15emphasis ours.
16[46].
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Sagi’s criterion partitions logical space in ways that differ from ours. In this
paper we will not take account of the possible metaphysical commitments of
set theory; and while her analysis of meaning is one we potentially endorse,
we will not take a stand on the meanings of the terms of a logic in this
paper. Our basic thesis is simply this: if first order logic is taken to be the
fundamental exemplar of logicality, then logics that resemble, to a degree, first
order logic in their model theoretic properties should be graded as logical to
that degree.

Why do we take first order logic to be the fundamental exemplar of
logicality? Considerations of space do not allow us to argue for this contested
point here.17 Indeed those opposed to the thesis that first order logic is
maximally logical can perhaps find this paper useful as a test of that very
thesis, given the complexity of the landscape of higher order logics laid out
here, with respect to their (graded) degrees of logicality. For example, we
suggest in this paper that logics such asL(Q1) have, arguably, a higher degree
of logicality than L(Q0), on the basis of the completeness of the former with
respect to the Keisler axioms (see (1) in §7).

As is well known, Quine was a forceful advocate for the thesis that logic
is first order logic on various grounds, including: First, the fact that first
order logic has a complete proof system. Second, first order logic is the
basis of the distinction between logic and set theory, as we mentioned above.
Finally, there is Quine’s view of semantics, in particular his view that first
order quantification is the optimal instrument for reading off the ontological
commitments of a given theory, being itself ontologically minimal.18

Apart from completeness, we do not take a stand on these stalwarts
of Quinean logical theory here,19 rather referring to what seems to be a
consensus among writers on the topic that the connectives (∧,∨,¬,→, etc.)
as well as the quantifiers (∃, ∀) are logical operations, being closed under
bijections, and also on the basis of what seems to be a strong intuition
that they have the same meaning across domains of even different sizes. In
fact, in many cases these operations are where the discussion on logicality
starts. First order logic consists of iterations of these operations. Why would
logicality disappear in this iteration? When we go beyond first order logic,
e.g., to infinitary connectives and generalized quantifiers, we recognise the
emerging problem whether we remain in the realm of logicality.

Thus while taking up Sagi’s suggestion that logicality may be calibrated
by Löwenheim numbers, we also give weight to the other model theoretic
properties of a logic, such as whether they have a Completeness Theorem

17Those who have contested the view that logic is first order logic include Sher [48] and
Barwise [8]. Many others have argued for the value of nonclassical and higher order logics
on grounds other than logicality such as Boolos [13]. See also Sher’s 2016 [49].

18See e.g., [45].
19More recent advocates for the thesis that first order logic is logic include Bonnay [9] and

Feferman [22].
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or not.20 As we will point out below, logics that have, for example, a
Completeness Theorem do not seem to be tied to the ℵ-hierarchy in any
obvious way.

Another drawback of McGee’s theorem which we address in this paper
has to do with the model-theoretic properties of the logicL∞∞, namely that
it is highly non-absolute (see Definition 17), that it fails to have a strong
Löwenheim–Skolem theorem, and also that it is unbounded21 in the sense
that it can define the concept of well-ordering leading to very large Hanf
numbers.22 This leads us to ask whether L∞∞ can be replaced by a “tamer”
logic, one closer to being first order in its model-theoretic properties. If such
were to exist, then even with the problem of dependence on the cardinality
of the models in the class unsolved, the relevant logicality claim would be
strengthened by virtue of its proximity to first order logic.

In sum: in this paper we develop further this aspect of logicality identified
by Sagi, namely that it is graded, albeit with a different philosophical agenda
than is laid out in [46]. We especially point out problems in the Löwenheim–
Skolem properties of L∞∞, along with other ways in which it diverges from
first order logic. As was mentioned above, we take first order definability as a
particularly strong form of logicality. Accordingly, our suggestion here is that
definability in a logic which resembles with its model theoretic properties first
order logic should represent an intermediate form of logicality. We calibrate
these intermediate forms according to the model theoretic properties of
these logics, considering mainly absoluteness, having a Löwenheim–Skolem
theorem, and having a completeness theorem.

While L∞∞ is sufficient for McGee’s theorem, there is a weaker logic,
namely the so-called Δ-extension of L∞	 which does the job as well. We
shall explain in which way this weaker logic is better than L∞∞ as a test of
logicality, and also point out in which respects it may be lacking. Looking
ahead, our refinement of McGee’s theorem replaces L∞∞ by a logic which
is absolute and which has a good Löwenheim–Skolem theorem, along with
a number of other desirable properties. The improvement here is partial in
the sense that it is still the case that the definition is given relative to the size
of the models in the class. In §6 below we give a theorem which does not
rely on this assumption, namely we present a logic in which any model class
is definable irrespective of the cardinality of the models in the class.

In spite of the seemingly clear intuition behind the syllogistic example
with which we opened this paper, logicality is an elusive concept. It is by
no means obvious what it should mean, even informally. But then, without
such a clear informal intuition of its meaning it is difficult to judge whether
this or that improvement of Tarski’s original definition hits the mark or not,
or even whether it is a step in the right direction. The only thing there seems

20Quine emphasises the Completeness Theorem as primary evidence of the logicality of
first order logic, asserting it as proof of the existence of “an integrated domain [i.e., first order
logic JK/JV] of logical theory with bold and significant boundaries.” See p. 90–91 of [45].

21as it is defined in [6].
22See discussion following (1).
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to be a consensus on in the wake of Tarski’s suggestion to identify logicality
with isomorphism invariance is that Tarski’s criterion, extended by Sher, is
a necessary but not sufficient one.23

In this paper we create a base map of the landscape relevant for logicality.
Following Tarski’s, ours is a semantic approach. Beginning with McGee’s
Theorem [41] to the effect that logical operations in the sense of Tarski–Sher
can be described in each cardinality separately in L∞∞, the landscape that
opens in front of us is the world of different logics and the question, do the
model-theoretic properties of these logics shed any light on the logicality
problem?

§2. McGee’s theorem. To describe McGee’s result and to put it into a
more general framework we define what we mean by a “logic”: A logic
(a.k.a. abstract logic) in the sense of [33] is a pair L∗ = (Σ, T ), where Σ is
an arbitrary set (sometimes also a class) and T is a binary relation between
members of Σ on the one hand and structures on the other. Members of Σ
are called L∗-sentences. Classes of the form

Mod(φ) = {M : T (φ,M)},
where φ is an L∗-sentence, are called L∗-characterizable, or L∗-definable,
classes. Abstract logics are assumed to satisfy five axioms expressed in
terms of L∗-characterizable classes, corresponding to being closed under
isomorphism, conjunction, negation, permutation of symbols, and “free”
expansions.24 A class K of models is said to be definable in a logic L∗ if there
is a sentence φ in L∗ such that

K = Mod(φ).

Every model class is definable in some logic because we can take the model
class as a generalized quantifier in the sense of [32]: Suppose K is a model
class with vocabulary L. For simplicity we assume L = {R} where R is a
binary predicate symbol. We can associate with K the generalized quantifier
QK with the semantics

M |= QKxyφ(x, y, �a) ⇐⇒ (M, {(b, c) ∈M 2 : M |= φ(b, c, �a)}) ∈ K.
Now K is trivially definable in the extension L		(QK) of first order logic by
the quantifier QK by the sentence

QKxyR(x, y).

23As Bonnay and Westerståhl put it in their [12]: “And topic-neutrality, in the precise
form of invariance under permutations of the universe, is almost universally agreed to be a
necessary condition for logicality. It guarantees that the logical core of a language is general
enough to carve out content in any conceivable situation of language use, irrespective of what
objects are being talked about.”

24The free expansion to vocabulary L of a model class K of a smaller vocabulary is the
class of all expansions of elements of K to the vocabulary L.

https://doi.org/10.1017/bsl.2021.42 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2021.42


LOGICALITY AND MODEL CLASSES 393

Conversely, every class of models definable in L		(QK), or indeed in any
abstract logic, is a model class i.e. is closed under isomorphisms. We obtain
the following simple and at the same time basic characterization:

Theorem 2 [32]. If K is a class of models of the same vocabulary, then the
following conditions are equivalent:

1. K is closed under isomorphisms i.e. K is a model class.
2. K is definable in some extension of first order logic by a generalized

quantifier.
3. K is definable in some logic.

2.1. Operations vs. model classes. In the literature, logical operations and
model classes are considered to be carriers of logicality. Our paper focuses
on model classes and on the extent to which they can be called logical, but
here we take a moment to establish the connection between model classes
and logical operations. McGee [41] defines an abstract concept of what he
calls a logical operation. He goes on to define what it means for a logical
operation to be described by a formula of a logic. We review these definitions
and establish a close connection between model classes and connectives as
well as between definability of a model class and describability of a logical
operation.

Suppose M is a non-empty set. By the semantic value (on M) of a formula
(of any logic) we mean the set of assignments into M that satisfy the formula.
Abstractly, these are just subsets A ofMn for some n. A (local ) operation f
on M maps sequences 〈Aα : α < �〉 of sets Aα ⊆Mnα to sets f(〈Aα : α <
�〉) ⊆Mn. Such a local operation is a logical operation, if it is closed under
permutations of M, i.e., if for all permutations 
 of M

f(〈
′′Aα : α < �〉) = 
′′f(〈Aα : α < �〉),

where for any s = (a1, ... , an) ∈ A ⊆Mn we define
(s) = (
(a1), ... , 
(an)).

Example 3. Suppose A0, A1 ⊆Mn. Conjunction is the logical operation
fn∧(〈A0, A1〉) = A0 ∩ A1. Disjunction is the logical operationfn∨(〈A0, A1〉) =
A0 ∪A1. Suppose A ⊆Mn+1. The existential quantifier with respect to n is
the logical operation fn∃(〈A〉) = {s � {0, ... , n – 1} : s ∈ A}.

For the existential second (and higher) order quantifiers to be logical
operations would require an extension of the approach to include more
general assignments, which we however disregard in this paper. Still, every
formula of second (or higher) order logic gives rise (separately) to a logical
operation in the above sense. The situation is the same with the so-called
team semantics [56] where semantic values are sets of sets of assignments,
rather than sets of assignments as above.

More generally we have an operation fM for every non-empty set M.
Here we assume that fM is always an operation on M. We call the (class)
mapping M �→ fM a global operation and denote it f̄. We call the global
operation f̄ a logical operation if it is closed under bijections, i.e., if for all
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bijections 
 :M → N
fN (〈
′′Aα : α < �〉) = 
′′fM (〈Aα : α < �〉),

A formula φ( �x) with an nα-ary predicate symbol Pα for each α < � is
said to describe a local operation f on M if in any model M with domain M
and PM

α = Aα ⊆Mnα the semantic value of φ( �x) is f(〈Aα : α < �〉). The
concept of a formula describing a global operation is defined similarly.

Example 4. The formula P0( �x) ∧ P1( �x) describes the operation fn∧.
The formula P0( �x) ∨ P1( �x) describes the operation fn∨. The formula
∃xnP0( �x, xn) describes the operation fn∃.

If φ( �x) is a formula of a logic L∗ in the above sense, then the operation
described by φ( �x) is a logical operation, since we assume that truth in every
logic L∗ that we consider is closed under isomorphisms (cf. [33]).

An operation f̄ can be represented alternatively as the model class in the
vocabulary L which has in addition to the predicate symbols Pα, α < � , a
new predicate symbol P:

Kf̄ = {M : M is an L-structure and PM = fM (〈PM
α : α < �〉))}.

It is easy to see that the class Kf̄ is closed under isomorphisms if and only

if the operation f̄ is preserved by bijections.
On the other hand, any model classK can be turned into a logical operation
f̄K as follows. Let for any non-empty set M and relations �R on M of the
right arity:

fK
M ( �R) =

{
M if (M, �R) ∈ K,
∅ otherwise.

It is easy to see that the class K is closed under isomorphisms if and only if
the operation f̄K is preserved by bijections.

2.2. Cardinal dependent definability. The theorem of McGee improves
“some logic” of Theorem 2 to a very specific logic, namely L∞∞, but at a
price: we obtain a different definition for each cardinality separately.25

Note that Theorem 2 has some uniformity in the sense that the defining
sentence does not depend on the cardinality of the model in question, but it
is also lacking in uniformity in the sense that we do not have one single logic
but possibly a different logic for each model class.

We now isolate this property of cardinality dependence. For any cardinal
� let K� be the class of elements of K with a domain of size �.

Definition 5. A model class K is cardinal dependently definable, or CD-
definable, in a logic L∗, or cardinal dependently L∗-definable, if K� is L∗-
definable for every �.

25We point out other weaknesses in §2.3 involving the model-theoretic properties ofL∞∞,
e.g., its non-absoluteness.
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Note that a model class can be CD-definable even in first order logic
without being definable even in L∞∞: Consider the class Klim of models
(M,P), where either |M | is a limit cardinal and P = ∅ or else |M | is a
successor cardinal andP �= ∅. It is a consequence of the Löwenheim–Skolem
Theorem of L∞∞ (see Proposition 14 and the proof of Theorem 15) that
this model class cannot be definable in it. The following theorem relates
isomorphism closure to CD-definability in the case of classes of models:

Theorem 6 [41]. If K is a class of models of the same vocabulary, then the
following conditions are equivalent:

1. K is closed under isomorphisms.
2. K is CD-definable in L∞∞.

Proof. Let us fix an infinite cardinal �. Let Mα, α < 2�, list all elements
of K with domain �. Let �α ∈ L�+�+ characterize up to isomorphism the
model Mα. The sentence

∨
α<2� �α defines the model class K�. �

The fact that McGee’s theorem depends on the cardinality of the models
in the class means that the sentence of φ� of L∞∞ defining the model class
K� may very well depend on �, as in the above example Klim. That is, the class
size mapping � �→ φ� may encode information that has to be analysed as to
its logicality. In the above example, when we ask whether the property of a
model of belonging to the model class Klim is logical or not, we essentially
ask whether the property of a model of having a limit cardinality is logical
or not. According to the Tarski–Sher criterion it undoubtedly is logical. On
the other hand, it is fair to say that it is a mathematical property rather
than a logical one. As we will see below, the logicality of membership in Klim

manifests in our below analysis a rather low degree of logicality.
As we pointed out earlier, McGee [41] considers describability of logical

operations rather than definability of model classes. Let us now draw a
further connection, using the Δ-operation on logics, between describability
of logical operations and definability of model classes.

Suppose K is a class of models of vocabulary L andL′ ⊆ L. We use K � L′

to denote the class of reducts M � L′ of models M ∈ K. We call K � L′ a
projection of K.

Definition 7. A model class K is Σ(L∗)-definable, or in Σ(L∗), if it is a
projection of an L∗-definable model class. A model class is Δ-definable in
L∗, or definable in Δ(L∗), if both K and the complement of K are Σ(L∗).

It should be noted that Δ(L		) = L		 [19], Δ(L	1	) = L	1	 [34] and
Δ(L∞	) ⊆ L∞∞ [40].

Lemma 8. Suppose f is a logical operation on M and L∗ is a logic. Then (1)
→ (2) → (3), where:

(1) f is describable in L∗.
(2) The model class Kf is definable in L∗.
(3) f is describable in Δ(L∗).
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Proof. Suppose f is described on M by the formula �( �x) ∈ L∗. Kf
is defined by the sentence ∀ �x(P( �x) ↔ �( �x, �R)). This proves the first
implication. Suppose then Kf is defined by the sentence φ ∈ L∗ with
vocabulary {Pα : α < �} ∪ {P}. Consider the formula �( �x) ≡ ∃P(φ ∧
P( �x)) with the second order quantifier “∃P.” This clearly describes f but is
not, a priori, in L∗. However �( �x) ≡ ∀P(φ → P( �x)) and therefore �( �x) is
in Δ(L∗). �

Lemma 9. Suppose K is a model class. Then K� is definable inL∗ if and only
if the logical operation fK

� is describable in L∗.

Proof. Suppose K� is defined in cardinality � by the sentence φ ∈ L∗.
fK
� is defined by the formula φ (without free variables). Suppose then fK

�
is defined by the formula �(x) ∈ L∗. Then K� is defined by the sentence
∃x�(x). �

The above two lemmas demonstrate the close relationship between
logicality of operations on semantic values and logicality of properties of
models. The next lemma, based on the method of [33, Theorem 5], shows
that the relationship is not perfect.

Lemma 10. There is a logical operation f̄ such that Kf̄ is definable inL(Q0)
but f̄ is not describable in L(Q0).

Bonnay [9] suggests that the concept of potential isomorphism is a better
criterion for logicality than isomorphism itself. For potential isomorphism
closure there is the following version of McGee’s theorem:

Theorem 11 [5]. If K is a class of models of the same vocabulary, then the
following conditions are equivalent:

1. K is closed under potential isomorphisms.
2. K is CD-definable in L∞	.

A problem with closure under potential isomorphism is that well-ordered
structures (α,∈, P1, ... , Pn) and (�,∈, P′

1, ... , P
′
n) are never potentially

isomorphic if α �= � . Just as an isomorphism closed model class can
have models with domains of different cardinalities and the isomorphism
closure gives no information across the domains, a potential isomorphism
closed model class can have models (α,∈, P1, ... , Pn) with different α and
the potential isomorphism closure also gives no information across such
domains.

2.3. The model-theoretic properties of L∞∞. We now note the different
respects in which L∞∞ deviates from first order logic. First of all, L∞∞ is
badly nonabsolute.26 For example, the sentence

∀x∀y(∀z(E(z, x) ↔ E(z, y)) → x = y)∧
∀x0∀x1 ... ∃y∀z(E(z, y) ↔

∨
n<	 z = xn)

(1)

26For the technical definition of absoluteness see §5.
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of L∞∞ which has models exactly in cardinalities � such that �	 = �, is
highly non-absolute.27 Other failures of absoluteness can be generated by
replacing 	 here by any regular cardinal.

A second important model-theoretic property of first order logic is its
downward Löwenheim–Skolem theorem. Consider (1). Such a � cannot
have cofinality 	 and thus L∞∞ does not have a Löwenheim–Skolem
theorem in the same strong sense as first order logic, or even in the sense
of, e.g., L∞	 (see Theorem 13). That is, L∞∞ can “omit” cardinals of
cofinality 	 in this special sense given by the Löwenheim–Skolem theorem.
In contrast, a typical consequence of a Löwenheim–Skolem theorem ofLκ+	

is that if a definable model class has a model of cardinality � > κ then it has
models of all cardinalities � such that κ ≤ � ≤ � (Theorem 13), whatever
their cofinality.

The logic behind Theorem 7, Lκ+κ+, fails in a strong sense to have a
Completeness Theorem. By a result of Dana Scott (published in [29]) the set
of valid sentences ofLκ+κ+ is notLκ+κ+-definable overH (κ+), the set of sets
of hereditary cardinality ≤ κ. In contrast, the set of valid sentences of Lκ+	

is Σ1-definable over H (κ+) [29], reminiscent of the Completeness Theorem
of first order logic which implies that the set of (Gödel numbers of) valid
sentences of first order logic is recursively enumerable i.e., Σ1 over HF , the
set of hereditarily finite sets. In fact, Karp gives a complete axiomatization
for Lκ+	 in [29].

In §5 we replace L∞∞ by a logic which is almost absolute and which
has a strong Löwenheim–Skolem theorem, together with other desirable
properties, though it is still the case that the definition is given relative to the
size of the models in the class.

§3. Löwenheim–Skolem theorems viewed through the spectra of model
classes. The fact that the class of all models of cardinality κ, for example,
satisfies the Tarski–Sher criterion, irrespective of what κ is, raises the
question, is cardinality a logical property? We saw that in the more subtle case
of Klim the property of a model of being of a limit cardinality is, according
to this criterion, logical; by modifying Klim one can generate many other
cases. For example, if A is a property of natural numbers, we can consider
the class K of models of cardinality ℵn, such that n has property A. The
property of a model of belonging to K is a logical property of the model by
the Tarski–Sher criterion, even though to judge whether a particular model
is in K one has to first determine whether the size of the universe is some
ℵn, and after that one has to determine whether n has property A. This
stretches the concept of logicality and entangles it with the concept of what
is mathematical. Earlier writers have observed this, so we are not saying
essentially anything new here.

Of Feferman’s three objections to the Tarski–Sher criterion of logicality,
the third is that it leaves unexplained how logicality is to be understood

27By König’s theorem [26, Theorem 5.10] such a � cannot have cofinality 	 and cofinality
is not absolute in set theory.
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across domains of different sizes. The existential quantifier, for example, is,
in a sense, the same on any domain of any cardinality, but this is not true
of many properties which satisfy the Tarski–Sher criterion, for example Klim.
We suggest that in order that a property of models manifests a greater degree
of logicality than is provided by the Tarski–Sher criterion, it should have a
definition by a sentence inL∞∞ or in some other logic in such a way that the
same sentence defines the model class in as many cardinalities as possible.28

We explore this suggestion below via the concept of a spectrum. Our second
suggestion is that a higher grade of logicality would be assigned to the
degree to which the logic in question had “first-order-like” model-theoretic
properties: absoluteness, a Löwenheim–Skolem theorem, and completeness.
L∞∞ would thus be given a low grade on the logicality scale, being non-
absolute, having a limited Löwenheim–Skolem theorem and failing to have
a Completeness Theorem. We explore this suggestion in §729.

3.1. Spectra. In analysing the structure of a model class, in order to
determine whether it is in some sense logical or not or to find out whether it
is definable in some interesting logic, it is useful to investigate the cardinalities
of models in the class. One might think that mere cardinalities are too rough a
measure of any form of logicality but this is, in fact, surprisingly informative.
This leads naturally to the concept of a spectrum30:

Definition 12. If K is a model class, the spectrum of K is the class sp(K)
of cardinalities of models in K i.e.,

sp(K) = {|M | : M ∈ K}.
Depending on K, the spectrum can be a singleton, an interval of cardinals,

an initial (or final) segment of the class of all cardinals, or something more
complicated, such as the class of all limit cardinals, or all limit cardinals of
cofinality 	 (see Figure 1). Even the patterns of finite numbers in spectra
of first order sentences is highly interesting [3, 27]. However, we are here
concerned with infinite cardinals in a spectrum.

The property of a logic which reflects regularity patterns in its spectra is
captured by the Löwenheim–Skolem theorem. The spectrum gives indirect
information of the possibility that the model class is definable in some logic.
Roughly speaking, if the logic has a strong Löwenheim–Skolem property,
then the spectra of definable model classes reflect this. If every sentence in
the logic which has an infinite model has also a countably infinite model, the
most famous case of a Löwenheim–Skolem property, then every spectrum
with an infinite cardinal in it has also ℵ0 in it.

Skolem proved that first order logic satisfies LS([ℵ0,∞), {ℵ0}) (see
Definition 1) giving rise to the so-called Skolem Paradox: countable first
order theories such as set theory have countable models if they have models

28Note that Klim has the same first order definition on the (closed unbounded) class of all
limit cardinals.

29For a different analysis of domain relativity, see [58].
30See also [46].
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ω

Figure 1. Spectra of some model classes.

at all. Now, 100 years after Skolem’s discovery, the indifference of first order
logic to the infinite cardinality of its models is often considered a positive
rather than negative aspect. Indifference to cardinality is of course closely
related to set-theoretical absoluteness and thereby to a desirable quality of
logicality. In consequence, the stronger form of LS(C,D) a logic satisfies the
more appropriate the logic is for expressing logical properties.

If a logic satisfies LS(C,D), there are consequences for the spectra of
definable model classes. Suppose K is definable in a logic with LS(C,D).
Then we can make the following conclusions: If there is M ∈ K with |M | ∈
C , then there is N ∈ K with |N | ∈ D. On the other hand, if K contains a
model of cardinality κ but no models of cardinality �, then K cannot be
definable in a logic with LS(C,D) such that κ ∈ C and � /∈ D. The point
is that by looking at the spectrum of K we can make inferences about its
definability in different logics. Thus, if we are given a model class K but no
logic in which it would be definable (apart from the trivial L(QK)), and we
can discern regular patterns in sp(K), we may take it as an indirect indication
(albeit not a proof) that K is definable in a logic with LS(C,D) for some
C and D explaining the found patterns. On the other hand, if sp(K) does
not seem to have regular patterns, we may take it as an indication that no
such logic can be found. Thus sp(K) gives implicit information about the
possibility of finding a syntax for K.

Let us look at the Löwenheim–Skolem properties of the logics L∞	 and
L∞∞.31 We first recall a basic construction in infinitary logic, based on a
class of important formulas due to Scott [47]. For any ordinal α let the
formula �α(x) with one free variable x and a binary relation symbol < be
defined, by transfinite recursion, as follows:

�α(x) ↔ ∀y(y < x →
∨
�<α

��(y)) ∧
∧
�<α

∃y(y < x ∧ ��(y)). (2)

31Recall that L∞	 =
⋃
κ Lκ+	 and L∞∞ =

⋃
κ Lκ+κ+ .
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Then for a linear order (A,<) and a ∈ A we have

(A,<) |= �α(a) ⇐⇒ ({b ∈ A : b < a}, <) ∼= (α,<). (3)

Let

�′α ↔ ∀y
∨
�<α

��(y) ∧
∧
�<α

∃y ��(y). (4)

For a linear order (A,<) we have

(A,<) |= �′α ⇐⇒ (A,<) ∼= (α,<). (5)

Now �′α is inLκ	 wheneverα < κ. It follows that by combining the sentences
�′α, the logic Lκ	 can manifest totally arbitrary patterns of spectra in
cardinalities below κ, roughly for the same reason that any finite set of
finite numbers can be the spectrum of a first order sentence. More exactly,
if X is an arbitrary set of cardinal numbers below κ, then∨

�∈X
�′� ∈ Lκ+	 and X = sp(

∨
�∈X
�′�).

This shows that when dealing with extensions ofLκ	 it makes sense to focus
on cardinals ≥ κ.

The basic facts about the LS(C,D) type properties of infinitary languages
are the following:

Theorem 13 [20]. Suppose κ ≤ � are cardinals and κ is regular.

1. Lκ+	 satisfies LS([�,∞)}, {�}) for all � such that κ ≤ � ≤ �.
2. Lκ+κ+ satisfies LS([�,∞), {�}) for all � such that κ≤�≤� and �κ=�.
3. Lκ+	 satisfies LS([�(2κ)+ ,∞), [�,∞)) for all �.
4. L	1	1 does not satisfy “For all �LS([�,∞), [�,∞))” for any � below the

first inaccessible cardinal (assuming there are inaccessible cardinals).

For a class size logic such as L∞	 or L∞∞ the LS(C,D) properties hold
via their connection to Lκ	 or Lκ�: If φ ∈ L∞∞, then φ ∈ Lκ� for some
(least) κ and � and then Theorem 13 applies.

The above theorem shows that the spectra of L∞∞ are much more
complicated than the spectra of L∞	. For example, let � be the sentence
(1) of L	1	1 which has a model of cardinality � if and only if �	 = �. Thus
sp(�) (i.e., sp(Mod(�))) is full of “holes” as it misses all cardinals, such as
e.g., each ℵα+	, that are 	-cofinal. Whereas the spectra of sentences of Lκ	
cannot have such holes above κ. (See Figure 2.)

What does it reveal about logicality if the spectrum is full of ‘holes’? It
suggests that we are very far from the situation in which we can claim we
have the same logical operation independently of the domain. In the case of
Lκ+	 the spectrum is (above κ) a homogeneous segment of cardinals, either
bounded by �(2κ)+ or unbounded, and we are closer to having the same
logical operation independently of the domain. Thus we judge a model class
definable in L∞	 as having a greater degree of logicality than a model class
definable in L∞∞.
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Two typical spectra of Lκω Two typical spectra of Lκκ

κ

�(2κ)+

Compact
cardinals

Figure 2. A difference between L∞	 and L∞∞.

In Definition 1 we defined the Löwenheim the Hanf number of an arbitrary
logic. These numbers always exist if the class of formulas of the logic is a set.
Thus they exist for Lκ� for any κ and � but not for L∞	 and L∞∞.

The Hanf-number and Löwenheim number of L∗ can be easily defined
in terms of spectra. Below a spectrum is called bounded if it is a set (rather
than a proper class).

�(L∗) = sup{min(sp(φ)) : φ ∈ L∗, sp(φ) �= ∅}
h(L∗) = sup{sup(sp(φ)) : φ ∈ L∗ and sp(φ) �= ∅ is bounded}. (6)

We saw that Sagi employs Löwenheim numbers as a measure of logicality:
the smaller the Löwenheim number the greater the degree of logicality. Thus
model classes definable in L(Qα) have a stronger degree of logicality than
those definable in L(Q�), for � > α.

The logic L(Qα) satisfies for trivial reasons the Löwenheim–Skolem
property LS([	,ℵα), {�}) for all � < ℵα and the rather strong Löwenheim–
Skolem property LS([ℵα,∞)), {�}) for all � ≥ ℵα. Thus the spectra have
no holes and �(L(Qα)) = ℵα. It should be noted that the class size logic
L(Qα)α∈On is a sublogic of L∞∞. Its spectra have a greater degree of
regularity than those of L∞∞, and thus in that respect it resembles more
L∞	. In sum, these two logics, namely L∞	 and L(Qα)α∈On, both manifest
a greater degree of logicality than L∞∞, if regularity in spectrum patterns is
used as a criterion.

§4. Is every model class definable in L∞∞ irrespective of the cardinality?
Why is it that we cannot replace condition (2) of Theorem 7 with the
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apparently better condition

K is definable in L∞∞? (7)

This would solve the problems of cardinality and domain-relativity—the
logical concept would have the same definition in terms of a formal language
independently of the cardinality of the domain. However, there is a very
simple reason why condition (2) of Theorem 7 cannot be improved to (1):
Not every model class is definable in L∞∞.

Recall the definition ofKlim above in §2. It is, strictly speaking, a generalized
quantifier in the sense of [43] but a rather curious one. It is the existential
quantifier in models of successor cardinality and the quantifier “for no x”
in models of limit cardinality.

Proposition 14. The model class Klim is not definable in L∞∞.

Proof. Similar to the proof of Proposition 15. �

A different kind of generalized quantifier is the class

W2 = {(A,<) : (A,<) ∼= (α + α,∈) for an ordinal α}.

This is potential isomorphism closed and not definable even in L∞∞ [40].
Note that this model class is clearly second order definable. The model class
W2 has a particularly nice spectrum, its infinite part being simply the class of
all infinite cardinals. This model class is also set-theoretically absolute (see
below §5). In the light of the spectrum criterion, a model being an element
ofW2 is a logical property of the model of a very high degree of logicality.
Looking at a model, can we say that its being a well-order, let alone of a
well-order of type α + α for some α, is a logical property? Undoubtedly
some would say it is a mathematical rather than a logical property. But
it is logical in the Tarski–Sher sense and it has a second order definition
which is the same definition in each cardinality. However much it feels like
a genuinely mathematical concept, it fulfils the Tarski–Sher criterion of
logicality, escapes two of Feferman’s criticisms, and fulfils Sagi’s as well as
Bonnay’s criteria. So we may conclude that it is logical of a very high degree.

A third example of a model class undefinable in L∞∞ is particularly
interesting, namely the Härtig quantifier.

4.1. The Härtig quantifier. The Härtig quantifier is defined as follows:

Ixyφ(x)�(y) ⇐⇒ there are as many x satisfying φ(x)
as there are y satisfying �(y).

Proposition 15 [25]. The class of models (M,A,B), whereA,B ⊆M and
|A| = |B |, is not definable in L∞∞. Equivalently, the Härtig quantifier is not
definable in L∞∞.

Proof. Two sentences of the logic L		(I ) are useful here: the sentence
φlim which has the class of limit cardinals as its spectrum, and the sentence
φsuc which has the class of infinite successor cardinals as its spectrum. The
sentence φlim says that the universe is totally ordered by a linear order
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in which every element determines an initial segment which has smaller
cardinality than the initial segment determined by some bigger element.
The sentence φsuc says that the universe is totally ordered by a linear order
in which some element determines an initial segment which has the same
cardinality as the initial segment determined by any bigger element, but
smaller cardinality than the entire universe. Suppose the Härtig quantifier
was definable inLκ+κ+, where κ is regular. Let � = 2κ. If � is a limit cardinal,
we can use φlim to derive a contradiction as follows: Let M be a model of
φsuc of cardinality �+. By Theorem 13 there is a model N of cardinality �
such that N |= φsuc, a contradiction. The case that � is a successor cardinal
is similar, but using φlim instead of φsuc. �

While the logic L(I ) with the Härtig quantifier is not a sublogic of L∞∞
it has some of the properties of the latter that we associate with being very
far from first order logic (see §7). For example, it is highly non-absolute.
It is also unbounded i.e., capable of defining well-ordering with additional
predicates [32].

Note that the equicardinality concept, built around the existence of a
bijection, lies at the very heart of the definition of logicality in the sense
of Tarski! It is almost paradoxical then, that equicardinality itself, or
more precisely the logic built on the equicardinality quantifier, represents a
particularly weak degree of logicality.

4.2. Vopěnka’s principle. While it is not true that every model class is
definable in L∞∞, there is a weaker result which depends on large cardinals.
Tarski proved that a model class K is definable by a universal first order
sentence if and only if K is closed under substructures and any model all of
whose finite substructures are inK, is itself inK. The following result removes
the assumption on finite substructures but lifts the result to an infinitary level.
Recall that Vopěnka’s principle is the axiom schema stating that if {Aα : α ∈
On} is a (definable) proper class of structures of the same vocabulary, there
are α �= � such that Aα can be embedded into A� . Despite its formulation,
which suggests no connection to large cardinals, this principle is actually
a large cardinal axiom schema. It implies the existence of extendible (and
hence supercompact) cardinals [36], and its consistency follows from the
existence of an almost huge cardinal (see e.g., [28, p. 338]). Magidor has
proved the following characterisation of Vopěnka’s principle:32

Theorem 16 [37]. The following are equivalent:

1. Every model class which is closed under substructures is L∞∞-definable
by a universal sentence.

2. Vopěnka’s principle.

Proof. (2) implies (1): Suppose K is a model class which is closed under
substructures. By Vopěnka’s Principle there is a K-supercompact cardinal κ
(see [51]). For any M of cardinality ≤ κ, let �M ∈ Lκ+κ+ be an existential

32We present the proof with Professor Magidor’s kind permission.
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sentence such that �M is true exactly in models which have an isomorphic
copy of M as a substructure. We show that for all N , N /∈ K if and only if
N |= �, where � is

∨
{�M :M ⊆ κ,M /∈ K}. Suppose first N /∈ K. By the

K-supercompactness of κ there is an L		(QK)-elementary substructure M
of N of cardinality ≤ κ. Now N /∈ K implies M /∈ K. Trivially, N |= �M.
Hence N |= �. Conversely, suppose N |= �M for some M /∈ K such that
M ⊆ κ. W.l.o.g. M ⊆ N . By closure under substructures, N /∈ K.

(1) implies (2): Suppose Vopěnka’s principles fails as witnessed by the
class C = {Mα : α ∈ On}. Let K be the class of structures N of the same
vocabulary as each Mα such that N is isomorphic to an substructure of Mα

for arbitrarily large α. By (1) we may choose κ such that K is definable in
Lκ+κ+. By our choice of C, every Mα satisfies Mα /∈ K. By Theorem 13 there
is for each α an Lκ+κ+-elementary substructure Nα of Mα of cardinality
≤ 2κ such that Nα /∈ K. There are only a set of non-isomorphic structures
of cardinality ≤ 2κ. Hence Nα ∼= N� for a proper class of α and � . Let α be
one of those. Then Nα ∈ K, a contradiction. �

The moral of the story here is that we can obtain the McGee style
characterization of logicality independently of the cardinality of the model
if we restrict to model classes closed under substructures, but we have to
make a strong set theoretical assumption, namely Vopěnka’s principle. This
is not to suggest that we propose closure under substructures as a criterion
for logicality.

§5. Defining an arbitrary model class in an absolute logic, but still cardinal
dependently. We shall now offer a refinement of McGee’s result (Theorem
7), by replacing L∞∞ by a substantially weaker infinitary logic33. Let us
first note that we cannot replace L∞∞ by L∞	 because the quantifier Q1

is not CD-definable in the latter.34 For another example, the well-ordering
quantifier

M |=Wxyφ(x, y, �a) ⇐⇒ {(c, d ) : M |= φ(c, d, �a)} well-ordersM

is definable in L	1	1 (see (1)) but not in L∞	 [35].
An important quality of L∞	 is its absoluteness. Let us recall:

Definition 17 ([4]). A logic (Σ, T ) is called an absolute logic if the
predicate Σ(φ) is Σ1 in φ, and the predicate T (φ,M) is Δ1 in φ and M.
A logic is absolute with respect to a set theory S if the predicates Σ and T
are ΣS1 and ΔS1 , respectively.

For example, L∞	 and L(W ) are absolute logics but L∞∞ is not.
We defined the Δ-operation in Definition 8. As argued for in [39], Δ(L∗)

can be considered a logic in itself. There is a many-sorted version and a

33McGee alludes to such a possibility on p. 574 of [41].
34Suppose M is a model of cardinality ℵ1 with one unary predicate P and P is countable.

Suppose N is another model of cardinality ℵ1 for the same vocabulary but now both P and
its complement are uncountable. Clearly M and N are partially (potentially) isomorphic
and hence satisfy the same L∞	-sentences. But Q1xP(x) is true in one but not in the other.
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single-sorted version of the Δ-extension. In the many-sorted version the
model class K may have a many-sorted vocabulary. If L∗ is the logic L∞	,
or Lκ+	, for regular κ, there is no difference between the two versions i.e.,
they coincide [44]. Therefore we continue with the single-sorted version.

Some of the nice properties of the Δ-operation are:

• Exactly the same classes of cardinals are spectra of Δ(L∗) as are of L∗.
• Δ(L∗) satisfies LS(C,D) iff L∗ does.
• Δ(L∗) satisfies the Compactness Theorem iff L∗ does.
• Δ(L∗) satisfies the (abstract) Completeness Theorem35 iff L∗ does.
• If L∗ satisfies the Craig Interpolation Theorem, then Δ(L∗) and L∗ are

equivalent logics.
• �(Δ(L∗)) = �(L∗).
• h(Δ(L∗)) = h(L∗).36

If L∗ is an absolute logic in the sense of [4], then Δ(L∗) is still absolute in
the weaker sense that every definable model class is Δ1-definable in set theory
(with the defining sentence as a parameter). This is a direct consequence of
the definition of Δ(L∗). However, Δ(L∗) has a complication which prevents
us from concluding that the Δ-operation preserves absoluteness. Namely,
there may be an absolute logic L∗ and model classes K0 and K1 such that
both K0 and K1 are in Σ(L∗), K0 ∩ K1 = ∅ but the proposition that every
model (of the right type) is in K0 or K1 is not absolute.37 Thus we may not
have a Σ1-definition for the set of sentences of Δ(L∗) even if we have for L∗.
Despite this shortcoming of the Δ-operation, we do have a Σ1-definition for
the set of sentences of Σ(L∗) when L∗ is absolute because with Σ(L∗) the
above problem (K0 and K1) does not arise.

Theorem 18 [31]. If K is a class of models of the same vocabulary, then the
following conditions are equivalent:

1. K is closed under isomorphisms.
2. K is CD-definable in Δ(L∞	).

Proof. The proof is similar to the proof of Theorem 7 in [41]. Recall the
formulas �′α and �′α defined in (1) and (3), with the properties (2) and (4).
Suppose A is a model of the vocabulary L and |A| = �. Let fA : �→ A be
a bijection and a <A b ⇐⇒ f–1

A (a) < f–1
A (b). For α, � < � let

�α,�(x, y) =
{
R(x, y) if A |= R(fA(α), fB(�)),
¬R(x, y) if A �|= R(fA(α), fB(�)).

35I.e., the set of Gödel numbers of valid sentences is r.e. This is only meaningful for L∗

where formulas are finite objects so that Gödel numbering makes sense.
36This may fail in the many-sorted version [55].
37For example, we may take K0 to be the class of trees of height and size 	1 with an

uncountable branch, and K1 to be the class of trees of height and size 	1 with a strict order
preserving mapping into the rational numbers. It is a consequence of Martin’s Axiom that
every such tree is in K0 ∪ K1. However, if V = L, then there are Souslin trees which are not
in K0 ∪ K1.
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Let

ΦA ↔ ∀x∀y
∧
α,�<�

((�α(x) ∧ ��(y)) → �α,�(x, y)).

Now (A, <A) |= �′� and (A, <A) |= �α(a) ⇐⇒ a = fA(α). Hence (A, <)
|= �′� ∧ ΦA. On the other hand, (A′, <′) |= �′� ∧ ΦA implies A′ ∼= A, for if
(A′, <′) |= �′� ∧ ΦA and g : (A′, <′) ∼= (A,<A), then g : A′ ∼= A. Let

ΘK ↔
∨

{ΦA : A ∈ K, A = �}.

Now by the above,

A ∈ K� ⇐⇒ (A, <) |= �′� ∧ ΘK for some <
⇐⇒ (A, <) |= �′� → ΘK for all < .

Since �′�,ΘK ∈ L(2�)+	, we are done. �
Why is this an improvement? Δ(L∞	) is a sublogic ofL∞∞, a consequence

of the result of Malitz [40] to the effect that for regular κ a valid implication
in Lκ	 can be interpolated in L2(<κ)+κ . It is a proper sublogic because well-
ordering is definable in the latter but not in the former. Secondly, the logic
L∞	 is an absolute logic [4] and Δ(L∞	) inherits much of the absoluteness
of L∞	 (see above) while L∞∞ is badly non-absolute.

The improvement that Theorem 18 represents over Theorem 7 is also
based on the fact that L∞	, and thereby also Δ(L∞	), is a much “tamer”
logic than L∞∞. In particular:

• Δ(L∞	), even Σ(L∞	), has a strong Löwenheim–Skolem theorem.
This is in contrast to L∞∞, which does not have a Löwenheim–Skolem
theorem in the same strong form (see Theorem 13).

• The class of well-orderings is not definable in Δ(L∞	), while it is
definable in L	1	1 (see (1)). This is a kind of threshold difference.
In general, logics in which the concept of well-order is not definable are
much better behaved (in many different respects) than those in which
it is. If well-order is definable, the logic can talk about well-founded
models of set theory, and thereby about transitive models of set theory.
In this way the logic can break through the object theory/metatheory
barrier and have access to the background set theory. For a concrete
example, consider a sentence φ which is the conjunction of a sufficiently
large finite part T0 of the ZFC axioms, the first order set-theoretical
statement φ0 that there are no inaccessible cardinals, and the L	1	1-
sentence

∀x0∀x1 ...
∨
n<	

¬xn+1 ∈ xn. (8)

Suppose κ is the smallest inaccessible cardinal. Then φ has a model of
cardinality κ, namely Vκ, but none of bigger cardinality. For suppose
M is a model of φ of cardinality > κ. By Mostowski’s Collapsing
Lemma [42] we may assume M is a transitive model of T0. Since the
cardinality of M is bigger than κ, the ordinal κ is in M and is therefore

https://doi.org/10.1017/bsl.2021.42 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2021.42


LOGICALITY AND MODEL CLASSES 407

inaccessible in M by the downward persistency of inaccessibility. But
this contradicts the fact that M is a model of φ0. This argument, due
to Silver [50], demonstrates the power of (1) to penetrate the object
theory/metatheory barrier, which sentences of Δ(L∞	) are unable to
do [35].

• The Hanf number of Δ(Lκ+	) is only moderately large, namely
< �(2κ)+, while the Hanf number of L	1	1 is bigger than the first
weakly inaccessible cardinal38 (and consistently bigger than the first
measurable cardinal). The smallness of the Hanf number is another
indication of regularity of patterns in spectra (see (5)).

A weakness of Δ(L∞	) as compared to L∞∞ is that the former does not
have as explicit a syntax as the latter, although we can overcome this by
replacing Δ(L∞	) by Σ(L∞	). A strength is that its spectra are as regular
as those of L∞	, it is equally completely axiomatizable as L∞	, and it is
absolute in the sense that its definable model classes are absolute in set
theory. Thus it avoids Feferman’s second and third criticisms.

§6. Sort logic. We can ask, is there a logic in which every model class
whatsoever is definable, irrespective of the cardinality of the domain? That
is, not just cardinal dependently? We know already L∞∞ is not that kind of
a logic (§4). McGee points out that we could take a class size disjunction of
L∞∞ sentences and obtain a single ‘sentence’ which works in all cardinalities.
As he points out, if we accept class size formulas we should also accept class
size logical operations and then we are back in the starting point: to account
for class size logical operations we need classes of classes and we start
climbing up the type hierarchy beyond first order set theory. If we stick to
set size logical operations we can operate within first order set theory.

We could, of course, take every model class as a generalized quantifier39

but there is a more canonical logic for this task.
In [57] a logic Ls called sort logic was introduced. It is a kind of many-

sorted version of second order logicL2, which allows quantification not only
over subsets and relations on the domain of the model but also over subsets
and relations on new domains outside the current one. Such quantification
happens, for example, when we ask of a given group, whether it is the
multiplicative group of a field? We have to “guess” the addition of the field
but also the neutral element 0 and those are both outside the multiplicative
group.

More exactly, sort logic arises from L2 by repeated applications of
operation L∗ �→ Σ(L∗) (see Definition 8) and negation. Let us define
Δ0 = L2. If Δn has been defined, let Δn+1 consist of model classes K such
that both K and the complement of K are Σ(Δn(L2))-definable. We get an

38See argument in the previous bullet.
39In the sense of §2 and of [32].
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increasing hierarchy of logics

Δ1 ≤ Δ2 ≤ Δ3 ≤ ···
the union of which is sort logic. A fine point is that every level Δn of sort
logic is definable in set theory but there is no single formula that defines the
entire sort logic.

Theorem 19 [57]. If K is a class of models of the same finite vocabulary,
definable in set theory without parameters,40 then the following conditions are
equivalent:

1. K is closed under isomorphisms.
2. K is definable in sort logic.

The above characterization of isomorphism closure is not as elegant as
McGee’s theorem 7 simply because the definition of sort logic is more
complicated than that of L∞∞. However, this theorem has the remarkable
advantage over Theorem 7 that the definition of the model class in sort logic
holds for models of all cardinalities. As McGee points out, if he wanted
to obtain the same level of generality with his method, he would have to
take a disjunction of a proper class of L∞∞-formulas. Sort logic may be
complicated but at least its formulas are sets and not proper classes. In
McGee’s case we may need a formula which is not even a set. In the case
of sort logic each formula is a set, but the whole logic is not definable, only
each level Δn separately is.

§7. Is having a Completeness theorem a marker of logicality? We saw that
first order logic and L(Q0) are maximally logical under Sagi’s criterion,
grading the logicality of these logics by their Löwenheim numbers. We also
saw that the degree of logicality of the logics L(Qα) decreases as α increases:
if α ≤ � , then Q� is less logical than Qα.

As for other kinds of quantifiers, the quantifiers “more” or Rescher
quantifier

Jxyφ(x)�(y) ⇐⇒ there are at least as many x satisfying φ(x)
as there are y satisfying �(y)

and the equicardinality or Härtig quantifier (see §4.1) both have the same
(very high) Löwenheim number, and are thus less logical than Qα at least
for α below the first α such that α = ℵα.41 We suggested earlier that the
Härtig quantifier is a singular case, in seeming to express the core concept
of isomorphism invariance, which is defined in terms of the concept of
equicardinality. Under our criteria, the Härtig quantifier is classified as

40We may allow parameters if we extend sort logic so that it includes L∞	 .
41If �I is the Löwenheim number of the Härtig quantifier, then �I is always bigger than the

first fixed point of the ℵ-hierarchy [23]. If V = L, then �I is bigger than the first inaccessible
(if any exist) [54]. If V = L�, then �I is bigger than the first measurable cardinal [53]. If
Con(“there is a super compact cardinal”), then Con(�I < the first weakly inaccessible) [38].
If Con(ZFC), then Con(�I < 2	) [54].
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(only) weakly logical even so, not only due to its high Löwenheim number
but also because it lacks very seriously a complete axiomatization [54].

We remarked earlier that Sagi’s demarcation of logicality for a fixed class of
logical constants, which is based on Löwenheim numbers, partitions logical
space differently than ours. As we observed, logics that have a completeness
theorem do not seem to be tied to the ℵ-hierarchy in any obvious way. For
example, Keisler’s axioms⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Axiom0 Axiom schemes for L		
Axiom1 ¬Qx(x = y ∨ x = z)
Axiom2 ∀x(φ → �) → (Qxφ → Qx�)
Axiom3 Qxφ(x) → Qyφ(y)
Axiom4 Qy∃xφ → (∃xQyφ ∨Qx∃yφ)

(9)

are complete for L(Q1), and if GCH is assumed, then they are complete
for all ℵα+1 for which ℵα is regular (hence for ℵn for all n > 0). Whereas
while L(Q0) satisfies the Keisler Axioms, these (or any other recursive set of
axioms) are not a complete axiomatisation of L(Q0).42

The suggestion here is that having a complete axiomatisation should be a
marker of logicality on the simple ground that logics of this kind resemble
first order logic in one of its essential, if not most essential property, namely
completeness. Except for Q0, one would then classify “there are very (i.e.,
uncountably) many” as logical, as dictated by Keisler’s axioms; in particular,
the quantifier Q1 would be graded as having a higher degree of logicality
than Q0, as L(Q1) is complete with respect to the Keisler Axioms whereas
L(Q0) is not complete in this respect.43 In short, our criterion of logicality,
which turns on the degree to which a logic resembles first order logic in its
model theoretic properties, comes apart from Sagi’s already at the level of
the logics L(Q0) and L(Q1).

A possible objection might come from the fact that Keisler’s axioms are
satisfied by many different quantifiers, in fact by every Qα, where ℵα is
regular. On the other hand, we may consider Q1 logical admitting that
from the point of view of logicality it cannot be separated from some other
similar quantifiers. What is logical, according to this view, is not so much
the cardinality ℵ1, as, simply, uncountable cardinality—or “very many”—
in general, while the failure of Q0 to permit a recursive axiomatization
is an indication that there is something mathematical, as against logical,
in Q0. The permutation invariance characterization of logicality does not
differentiate between Q1 and Q0, as the Completeness Theorem criterion
does. By the invariance criterion every Qα is logical, which may seem
unintuitive. By further applying the Completeness theorem criterion we
can make finer distinctions and see a difference: Q1 is “more logical”
than Q0.

42See [43].
43However, L(Q0) is the only one among the logics L(Qα) which satisfies the same logical

consequences as L(Q0). See [59].
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For singular strong limit ℵα Keisler [30] proved a Completeness theorem,
but with different axioms (no simple set of axioms is currently known). Thus
there are (at least) two different “logical” concepts of “very many,” one forℵα
the successor of regular and one for the singular case. (Successor of singular
is open.) The two concepts have different logical content: Keisler’s Axioms
for Qα are valid for all regular ℵα, and in some cardinalities (successor
of regular) they have a Completeness theorem, modulo the GCH , as was
noted above. In some other cardinalities (singular) different axioms have to
be employed in order to get a completeness theorem. In the base case α = 0
no effectively given additional axioms can be added to give a completeness
theorem.

According to Sagi, “We should distinguish between a logic L(Q) used
to measure the logicality of Q and the logic we ultimately use for validity
and logical consequence.”44 But if metaphysical involvement is inversely
related to logicality, then having a completeness theorem should possibly
be considered as a marker of logicality also under the Sagi criterion. This
is because what the completeness theorem precisely does is to enable the
conversion of semantic content, which is metaphysically involved (from the
Sagi point of view, presumably), into syntactic content which, presumably,
is not. In this connection, the following caveat is important: As Carnap
observed [16] the rules do not fix the interpretation of the logical constants,
they have non-standard interpretations. In their [12] Bonnay and Westerståhl
present a way to sidestep the problem:

Our take on Carnap’s Problem is that it is made artificially difficult
by considering all possible interpretations, no matter how bizarre. As
speakers, we know that our language is going to be compositional,
that it will have some true and some false sentences, and that its
logical constituents will be topic-neutral. Therefore attention may be
restricted to interpretations which satisfy these principles. Following
Church’s advice, this amounts to explicitly factoring out the role
of semantic principles and the role of inference rules in fixing the
interpretation of logical constants, rather than covertly using semantic
notions to make sense of extended inference rules. This strategy proves
successful both for propositional connectives and for quantifiers.

There is also the issue of expressive power, with respect to which the logics
built on the quantifiers “most,” “more” and the Härtig quantifier differ. In
certain models with an equivalence relation the Härtig quantifier can be seen
to be eliminable while the Rescher quantifier is not [24]. Thus the Rescher
quantifier is strictly stronger than the Härtig quantifier from the point of
view of expressive power. The point here is that expressive power should be
inversely related to logicality.

Bonnay also ties logicality to syntax via a Completeness theorem, as is
spelled out in some detail in [10].45 Here Bonnay proposes a modification

44ibid, p. 22.
45See also the recent [11].
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of the program of Carnap’s Aufbau [18], calling for logical expressions to
be defined syntactically. It is a feature of his treatment that the absoluteness
of a logic plays a crucial role in guaranteeing the robustness of the syntactic
definition. Thus L(Q0) is an absolute logic because it has a recursive syntax,
just like first order logic, and its semantics is absolute in transitive models
of (even weak) set theory.46 On the other hand, L(Q1) is not absolute, even
though it has a recursive syntax.47

Burgess’s [14] forges a link between absoluteness and the idea of having a
proof procedure. He exhibits a quasi-constructive complete proof procedure
involving rules with ℵ1 premisses for the hereditary countable part of any
absolute logic.

In sum, if one classifies the first order existential quantifier “there is at
least one,” as inherently logical, and if as such this quantifier is thought of
as having minimal or no semantic content, then is there a principled way to
determine when and how higher quantification acquires semantic content,
e.g., at what level in the cumulative hierarchy? Sagi’s answer is that logicality
diminishes the higher up we are in cumulative hierarchy; while we suggest
that logicality kicks in arbitrarily high up, e.g., for all ℵα+1 for which ℵα is
regular, with the ℵ0 case an anomaly, again because of completeness. The
intuition here is that logics which have a completeness theorem are close to
first order logic in this special sense. This is because completeness enables the
conversion of semantic consequence into syntactic consequence via the two
Keisler axiomatisations—albeit conditioned on the continuum hypothesis
in certain important cases.48

§8. Conclusions. McGee’s theorem translates the Tarski–Sher criterion
into definability in a logic, obtaining cardinal dependent definability in
L∞∞. The cardinal dependency aspect of the theorem leads to criticism
of logicality across domains (Feferman’s third critique), to criticism of
entanglement with mathematics (Feferman’s first critique) and of non-
absoluteness (Feferman’s second critique). Maintaining cardinal depen-
dency we lowered L∞∞ to Δ(L∞	) which is more palatable from the point
of view of model theoretic properties. A stronger degree of logicality is
obtained by abandoning cardinal dependency and investigating logics in
which a candidate for logicality is definable. Since every class of models
which is closed under isomorphisms is definable in some logic, this seems
reasonable. Following and expanding on Sagi’s suggestion to delineate
degrees of logicality according to their Löwenheim numbers, we delineate
logicality according to their Löwenheim numbers but also according to a
wider spectrum of model theoretic properties of logics, such as Completeness

46This is essentially because finiteness is absolute, i.e., Δ1-definable. See Barwise
“Admissible sets and Structures” [7], p. 38.

47This is due to the well-known fact that countability is not absolute: a set can be
uncountable in a model of set theory and countable in a transitive extension. On the relevance
of absoluteness in this context see also Bonnay’s [9].

48See [31] for a similar treatment of the relation between logicality and completeness.
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Theorems and absoluteness properties, together with Löwenheim-Skolem
properties, all considered from a logicality point of view.
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[58] D. Westerståhl, Sameness, Feferman on Foundations (G. Jaeger and W. Sieg,
editors), Springer, New York, 2017.

[59] ———, Fixing Q0. Unpublished manuscript, 2021.

DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF HELSINKI

HELSINKI, FINLAND
E-mail: juliette.kennedy@helsinki.fi

DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF HELSINKI

HELSINKI, FINLAND
and
ILLC, UNIVERSITY OF AMSTERDAM

AMSTERDAM, NETHERLANDS
E-mail: jouko.vaananen@helsinki.fi

https://doi.org/10.1017/bsl.2021.42 Published online by Cambridge University Press

mailto:juliette.kennedy@helsinki.fi
mailto:jouko.vaananen@helsinki.fi
https://doi.org/10.1017/bsl.2021.42

	1 Introduction
	2 McGee's theorem
	2.1 Operations vs. model classes
	2.2 Cardinal dependent definability
	2.3 The model-theoretic properties of L∞∞

	3 Löwenheim–Skolem theorems viewed through the spectra of model classes
	3.1 Spectra

	4 Is every model class definable in L∞∞ irrespective of the cardinality?
	4.1 The Härtig quantifier
	4.2 Vopěnka's principle

	5 Defining an arbitrary model class in an absolute logic, but still cardinal dependently
	6 Sort logic
	7 Is having a Completeness theorem a marker of logicality?
	8 Conclusions
	REFERENCES

