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This paper builds on Lucas [Econometrica 68 (2000), 247–274] and on Cysne [Journal of
Money, Credit and Banking 35 (2003), 221–238] to derive and order six alternative
measures of the welfare costs of inflation (five of them already existing in the literature)
for any vector of opportunity costs. We provide examples and closed-form solutions for
each welfare measure based both on log–log and on semilog money demands, whenever
possible in terms of elementary functions. Estimates of the maximum relative error a
researcher can incur when using any of these measures are given. Everything is done for
economies with or without interest-bearing deposits.
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1. INTRODUCTION

Measurement of the welfare cost of inflation, even when restricted to a money-
demand approach [e.g., Bailey (1956), Lucas (2000), Simonsen and Cysne (2001),
Cysne (2003), Jones et al. (2004), and Serletis and Yavari (2004)], presents the
researcher with at least two types of problems.

First is that of choosing among the several welfare measures existing in the
literature and being aware of the size of the resulting bias with regard to the
other measures. For instance, Lucas (2000) derives a measure of the welfare
cost of inflation based on the Sidrauski (1967) model and another one based on
the McCallum–Goodfriend (1987) model. He shows, using numerical simulations,
that both measures are very close to Bailey’s (1956). However, he does not provide,
either analytically or numerically, an ordering among these three functions of the
nominal interest rate. An empirical investigation [like the one carried out in Ireland
(2009), where Bailey’s unidimensional measure is employed] might profit from
knowing how such measures compare to each other (if they can be ordered)
and, moreover, what would be the consequences (the maximum relative error,
for instance) for the welfare figures of using any particular measure vis-à-vis the
others.1
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A second problem the researcher might face is the necessity of taking into
consideration the existence in the economy of interest-bearing deposits performing
monetary functions. This leads us, as conjectured by Lucas (2000, p. 270) and later
shown by Cysne (2003), to welfare measures based on Divisia indices of monetary
services.2 Using the “unidimensional” welfare formulas (i.e., disregarding other
types of monies) in this case can be misleading, particularly because the demand for
non-interest-bearing money can be very sensitive to variations in the opportunity
costs of other assets providing monetary services.

Just as different unidimensional formulas can be defined, different Divisia in-
dices can be used to calculate welfare losses in the multidimensional setting
(dimension here referring to the number of assets performing monetary services
in the economy). Once again, the question of how such welfare measures relate to
each other emerges, but now in a more complicated fashion. Knowing in advance
that some measures always lead to welfare figures that are higher (or lower) than
others, for any vector of opportunity costs, is again valuable information for those
interested in investigating the losses generated by inflation.

Answers to such questions have been provided in the literature by Simonsen
and Cysne (2001) and by Cysne (2003), but only in relation to four measures of the
welfare cost of inflation: Lucas’s (2000) shopping-time measure, two (easier-to-
calculate) approximations of Lucas’s measure introduced by Simonsen and Cysne
(2001), and Bailey’s measure.

This paper extends such contributions, both in the unidimensional and in the
multidimensional case, by reconsidering the previous ordering with respect to two
additional measures: Lucas’s (2000) measure based on Sidrauski’s model, which
he derives taking as a reference the GDP prevailing at the current interest rate;
and a measure that is new in the literature, the one emerging from Sidrauski’s
model when the reference for income compensation is the GDP associated with
an interest rate equal to zero.

The remainder of the paper is organized as follows. In Section 2 our results
concerning the unidimensional case worked out by Lucas (2000) are presented.
Section 3 extends those results to an economy where different assets perform
monetary functions. Section 4 is devoted to analytically and numerically exem-
plifying our results with the bilogarithmic and semilogarithmic money-demand
specifications, as well as presenting the resulting maximum relative error. Section
5 concludes.

2. SIX ALTERNATIVE MEASURES OF THE WELFARE COST
OF INFLATION

In this section the case of an economy with only one type of (non-interest-bearing)
money is analyzed. We present six alternative measures of the welfare cost of
inflation and show how they can be ordered. By this it is meant that all of these
six functions can be pairwise compared, i.e., do not cross each other.
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2.1. The Shopping-Time Measure and Its Approximations

Lucas (2000, p. 265) shows that in McCallum and Goodfriend’s (1987) shopping-
time model the welfare cost of inflation (equivalently, the portion of time dedicated
to shopping) s is given as the solution to the initial value problem⎧⎨

⎩
s ′(r) = − −rη′(r)

1 − s(r)+ rη(r)
(1 − s (r))

s (0) = 0
, (1)

where r ∈ R+ stands for the nominal interest rate and η : R+ → (0,+∞] is the
equilibrium strictly decreasing and differentiable money-demand function.

Since the nonseparable differential equation in (1) does not have any obvious
solution in the general case, it is natural to look for approximations.3 Simonsen
and Cysne (2001) have shown that reasonable approximations to s are the upper
bound A : R+ → [0,+∞] given by

A(r) :=
∫ r

0
− ρη′(ρ)

1 + ρη(ρ)
dρ =

∫ η(0)

η(r)

ψ(µ)

1 + µψ(µ)
dµ, (2)

where ψ := η−1, and the lower bound 1 − e−A.
Let B : R+ → [0,+∞] stand for Bailey’s (1956) measure

B(r) :=
∫ r

0
−ρη′(ρ) dρ =

∫ η(0)

η(r)

ψ(µ) dµ, (3)

the area under the inverted money-demand curve. Simonsen and Cysne (2001) have
also shown that 1 − e−A < s < A < B, where we write “f < g” for “f (r) <
g(r),∀r ∈ R++,” since all these measures coincide only at 0. This notation for the
ordering of unidimensional welfare measures will be used throughout the paper.

2.2. The Sidrauski Model

In the next subsection, two measures of the welfare cost of inflation that emerge
from the Sidrauski (1967) model will be introduced. Both are based on Lucas’s
version of this model, and since one of them is new in the literature, the model is
presented here in detail. Another reason for doing so is that later on we will want
to generalize this model, so that it also accounts for the possibility of existence of
other types of monies in the economy.

We shall assume a forever-living perfectly foresighted representative agent
maximizing a time-separable constant relative risk aversion utility function, the
arguments of which are the flows of real consumption of a single nonmonetary
nonstorable good and the holdings of real cash balances.

For every t ∈ [0,+∞), let Ot ∈ [0,+∞], Mt ∈ [0,+∞], Ht ∈ R, Yt ∈ R++,
andCt ∈ R+ represent the nominal values of, respectively, holdings of government
bonds and of cash, a lump-sum tax (if negative, a transfer from the government to
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the individual), nominal output and consumption at time t . The budget constraint
faced by our representative agent is Ȯt + Ṁt = Yt − Ht − Ct + rtOt , where the
dots mean time derivatives and rt ∈ R+ stands for the nominal interest rate bonds
yield at time t (by definition, cash is a monetary asset always yielding a nominal
interest rate of 0). Let Pt ∈ R++ be the (both expected and realized) price level,
πt := Ṗt /Pt the inflation rate at time t , and γ := ẏt /yt the constant rate of growth
of real output y := Y/P .

Other than y, lowercase variables will represent the real counterparts to the
above nominal variables as fractions of output (that is, o := O/Y , etc.). As in
Lucas (2000), the utility functionU is assumed to be homogeneous of degree 1−σ ,
whenceU (Ct/Pt ,Mt/Pt ) = y1−σ

0 e(1−σ)γ tU (ct , mt ), and our agent’s problem (P)
can be written as

max
c,o,m≥0

∫ +∞

0
e(−ρ+(1−σ)γ )tU(ct , mt ) dt (P)

subject to

ȯt + ṁt = yt − ht − ct + (rt − πt − γ )ot − (πt + γ )mt

o0 > 0 and m0 > 0 given.

Following Lucas (2000), we use an instantaneous utility functionU : (0,+∞]×
[0,+∞] → [−∞,+∞] with the functional form

U(c,m) = 1

1 − σ

(
cϕ

(m
c

))1−σ
,

extended by continuity to the ray {0} × [0,+∞]. Here, σ ∈ (0, 1) ∪ (1,+∞)

and ϕ : [0,+∞] → [0,+∞] is a twice-differentiable function satisfying the
property: there exists m ∈ (0,+∞] such that ϕ |[0,m] is strictly increasing and
strictly concave and ϕ |[m,+∞] is constant.4

Using the budget constraint to substitute for c, one gets a standard problem of
the calculus of variations in the variables o and m. Assuming (P) has an interior
solution, it must satisfy the Euler equation

r = Um

Uc
. (4)

Due to the concavity of U , this condition really corresponds to a maximum.5

In equilibrium, because c is taken as a fraction of output, c = 1. Equation (4)
then becomes

r = ϕ′(m)
ϕ(m)−mϕ′(m)

, (5)

which corresponds to equation 3.7 in Lucas (2000) (there obtained using Bellman’s
Optimality Principle instead). This equation gives r as a nonnegative differentiable
function ofm, for which we write r = ψ(m), where ψ : (0,m] → R+.6 Because,
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for any m ∈ (0,m),

ψ ′(m) = ϕ(m)ϕ′′(m)
(ϕ (m)−mϕ′ (m))2

< 0, (6)

ψ is strictly decreasing, and therefore one-to-one. Since ϕ′ (m+) = 0 and ϕ ∈ C1

(for being twice-differentiable), one has ϕ′ (m) = 0, so that ψ (m) = 0. Let
r := ψ(0+) (possibly r = +∞). We shall call ψ’s inverse function η : [0, r) →
(0,m] a “money-demand function.” This money demand is strictly decreasing
[η′(r) = 1/ψ ′ (η (r)) < 0] and surjective by construction.

As a practical matter, because the economist does not know the function ϕ, he
or she ends up using a money-demand function η estimated by the econometric
practice, implying a specific functional form for ϕ. This can be done by noting
that equation (5) can be rewritten as

ϕ′(m) = ψ(m)

1 +mψ(m)
ϕ(m), (7)

a separable equation yielding the general solution

ϕ(m) = De
∫ m
m∗ ψ(µ)

1+µψ(µ) dµ, (8)

where m∗ is any finite number belonging to the image of η, and D > 0 due to the
nonnegativity and strict increasingness of ϕ over [0,m]. It is interesting to note
that (8) can also be put in terms of A, if this welfare measure does not explode for
finite m:

ϕ(m) = De
∫ η(0)
m∗ ψ(µ)

1+µψ(µ) dµe
∫ η(ψ(m))
η(0)

ψ(µ)

1+µψ(µ) dµ = Ee−A(ψ(m)), (9)

where E := DeA(ψ(m
∗)) is a positive constant. That is, A can also be used in a task

completely different from its original one in Simonsen and Cysne (2001): that
of finding a ϕ in the Sidrauski–Lucas framework that rationalizes a given money
demand.

A final observation is that in steady state (ċ = ṁ = 0) the Euler equation
relative to o gives the modified Fisher equation

r = ρ + π + σγ , (10)

which is what justifies taking the welfare cost of inflation as a function of the
nominal interest rate instead of inflation itself.

2.3. The Welfare Cost of Inflation in the Sidrauski Model:
Two Different Approaches

In Sidrauski’s framework, Lucas (2000, p. 257) “define[s] the welfare cost w(r)
of a nominal rate r to be the percentage income compensation needed to leave
the household indifferent between r and 0.” There are two diametrically distinct
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ways of interpreting this definition. The first, employed by Lucas [see also Serletis
and Yavari (2004)], uses the initial interest rate as a reference and measures the
percentage rise in income necessary to make people as well off as they would be if
the nominal interest rate were to fall to zero. Given the first-degree homogeneity
of U , one can simply write

U (1 + w(r), η(r)) = U(1,m), (11)

provided w(r) ≥ 0.
It may be noted thatw defined in this way will always exist over some maximal

interval closed at 0.7 This interval may be a proper subset of [0, r), as will be
illustrated in Section 4 with the log–log case. All the math below, including
Proposition 1, is done within the domain of existence of w.

Let ϕ := supm>0 ϕ(m) = ϕ(m). In our framework, (11) implies

(1 + w(r))ϕ

(
η(r)

1 + w(r)

)
= ϕ (m) = ϕ.

Differentiating with respect to r , dividing through by ϕ′ (η(r)/ [1 + w(r)]),
and using (7),

w′(r) = −ψ
(

η(r)

1 + w(r)

)
η′(r). (12)

This is equation 3.11 in Lucas’s paper, which, together with the condition w(0) =
0, enables us to find w.

We now turn our attention to another natural way of interpreting Lucas’s defi-
nition for the welfare cost of inflation in Sidrauski’s model: the one that takes as
reference an interest rate equal to zero. That is, the welfare cost of inflation will be
understood as the percentage fall in the representative agent’s income that would
make him or her as well off as he or she would have been, had no increase in the
nominal interest rate taken place:

U (1, η(r)) = U(1 − w(r),m), (13)

provided 0 ≤ w(r) ≤ 1.
As one could guess, the welfare cost of inflation that takes as reference an

interest rate equal to zero (w) is lower than the one that takes as reference the
prevailing (supposedly positive) interest rate (w), with Bailey’s measure lying
somewhere in between.8 This will indeed follow from Proposition 1 below.

In our model, definition (13) implies that

ϕ(η(r))

1 − w(r)
= ϕ

(
m

1 − w(r)

)
. (14)

Since 0 ≤ w(r) ≤ 1 by construction, one has m/[1 − w(r)] ≥ m, so that
ϕ(m/[1 − w(r)]) = ϕ, and (14) ends up yielding the very simple formula for the
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welfare cost of inflation w

w(r) = ϕ − ϕ(η(r))

ϕ
. (15)

From (8),

ϕ(η(r))

ϕ
= De

∫ η(r)
m∗ ψ(µ)

1+µψ(µ) dµ

De
∫ m
m∗ ψ(µ)

1+µψ(µ) dµ
= e

∫ η(r)
m

ψ(µ)

1+µψ(µ) dµ = e−A(r).

Taking (15) into account, one obtains

w(r) = 1 − e−A(r). (16)

In Simonsen and Cysne (2001) and in Cysne (2003), the measure 1 − e−A has
been derived in a completely different context (the shopping-time one) as an easier-
to-calculate approximation to s. Here it has been shown that a different model, the
money-in-the-utility-function model, can provide a sensible explanation for this
measure.

The domain of existence ofw, unlike that ofw, is necessarily the whole range of
interest rates, [0, r), because A is defined over this set, and expression (16) yields
0 ≤ w(r) ≤ 1. Moreover, comparing (16) with (12),w can be seen to have at least
one advantage over w: computational ease. It is no longer necessary to solve a
nonseparable nonlinear differential equation—although one still does need to deal
with a possibly very difficult integral, perhaps one with no elementary primitive
whatsoever.

The reader may suspect that w will always be lower than w, simply because w
can be interpreted as a percentage decrease in income, whereasw, as a compensa-
tion through a percentage increase in income. This indeed follows from Proposition
1, which gives the main result of this section. All the proofs are collected in the
Appendix.

PROPOSITION 1. Let η : [0, r) → (0,m] be a differentiable and strictly
decreasing money-demand function, rationalizable by the Sidrauski and the
shopping-time models, so that it can be used to calculate s, A, B, w, and w
[by simply plugging it into (1), (2), (3), (12), and (16)].9 Then the following
inequality chain is true: w = 1 − e−A < s < A < B < w.

3. THE PRESENCE OF INTEREST-BEARING MONIES
IN THE ECONOMY

The results obtained in the previous section are extended here to a framework
in which n types of monies are available. This is important because, as argued
in the Introduction, welfare formulas based on only one type of money can be
misleading when there are different assets in the economy performing monetary
functions. We begin by fixing some notation.
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Let m = (m1, . . . , mn) ∈ [0,+∞]n represent the vector of real quantities
demanded of all types of money as a fraction of nominal GDP (wherem1 is chosen
to bem, currency per output). Eachmi yields a nominal interest rate of ri ≥ 0, with
r1 = 0 by definition. We shall write u := (r− r1, r− r2, . . . , r − rn) ∈ Rn

+ for the
vector of opportunity costs of holding each type of money instead of government
bonds.10

The reader may note that if u = 0, then r = r − r1 = 0, whereas if r = 0, then
u = − (r1, r2, . . . , rn) ∈ Rn

−, so that necessarily u = 0. That is,

r = 0 ⇔ u = 0. (17)

The steady-state interest rate r in this extended model is determined by (10),
as in the unidimensional case. Expressions (17) and (10) show how each of the
opportunity costs ui relates to the rate of inflation. When the nominal interest
rate is equal to zero, all the opportunity costs are also equal to zero and inflation
generates no welfare loss at all. The converse is also true.

All our results (including (17)) are valid for any given vector of opportunity costs
u, regardless of how u is determined. Here, though, is an optional way of thinking
about how u can be determined and linked to inflation. Think of all interest
rates other than r1 as being determined by a competitive and costless banking
system subject to n − 1 exogenous non-interest-bearing reserve requirements
k2, . . . , kn ∈ (0, 1). In this case, r2 = (1 − k2)r, . . . , rn = (1 − kn)r , and, using
(10), u = (ρ + π + σγ ) (1, k2, . . . , kn).

The first-order conditions of the money-in-the-utility-function model, as well
as of the shopping-time model, will imply a functionψ taking m into u, analogous
to the function ψ from Section 2. But since this ψ is not necessarily invertible
anymore, here the welfare measures will be evaluated at m rather than the more
natural option u. To keep the notation uniform, the same symbols used so far to
denote each of the six welfare measures will be maintained, except for the addition
of the subscript M (for “multidimensional”).

3.1. The Shopping-Time Measure and Its Approximations
in the Multidimensional Case

The multidimensional shopping-time model is introduced and solved in Cysne
(2003). It yields a generalized “inverted money-demand function” ψ :
(0,+∞]n → Rn

+ taking m into u. The multidimensional analog of (1) [Cysne
(2003, eq. 14)] will be

(sM)xi (m) = − ψi(m)
1 − sM(m)+ψ(m) · m

(1 − sM(m)),∀i ∈ {1, . . . , n} , (18)

where the ψi’s are the component functions of ψ and · is the canonical inner
product of Rn.
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Consider a C1 path χ : [0, 1] → (0,+∞]n such that χ (0) ∈ (0,+∞]n \ Rn
++

and χ (1) = m, and the following 1-forms in (0,+∞]n:11

dAM := − 1

1 +ψ (µ) · µψ (µ) · dµ,

dBM := −ψ (µ) · dµ .

The line integrals

AM(m) :=
∫
χ

dAM (19)

and
BM(m) :=

∫
χ

dBM (20)

extend Simonsen and Cysne’s (2001) proxy measureA and Bailey’s measure B to
the present framework.12 In Cysne (2003), it is shown that when ψ arises from the
shopping-time model, these integrals are path-independent, so that AM and BM
are indeed well-defined (Proposition 1 there), and that, as in the unidimensional
case, 1 − e−AM < sM < AM < BM (Remark 2).

As shown in Cysne and Turchick (2009, Lemma 2), eachψi is strictly decreasing
along rays starting at the origin. From this property and (17) it is clear that the
initial condition a welfare-cost functionWM (such as sM ,AM , orBM ) has to satisfy
in this multidimensional framework is WM (d) = 0,∀d ∈ (0,+∞]n \ Rn

++, so
that inequality chains such as the one above necessarily exclude these points. We
present next the model to which measures wM and wM will be associated.

3.2. The Extended Sidrauski Model

Our representative agent’s instantaneous utility will now have the form
UM(c,m) = U (c,G (m)), where U is the same as in Section 2 (to which
a ϕ and an m, with the same properties as before, are attached) and the
money aggregatorG : [0,+∞]n → [0,+∞] is a twice-differentiable first-degree
homogeneous concave function such that Gxi > 0, limmi→0Gxi (m) = +∞,
limmi→+∞Gxi (m) = 0, and Gxixi < 0 for all i ∈ {1, . . . , n}.13 This utility fun-
ction UM , similar to the one used in the money-in-the-utility-function model of
Jones et al. (2004, Sect. 3.1), naturally generalizes the one in the unidimensional
Sidrauski model. The maximization problem will be

max
c,o,m≥0

∫ +∞

0
e(−ρ+(1−σ)γ )tUM(ct ,mt ) dt (PM )

subject to

ȯt + 1 · ṁt = yt − ht − ct + (rt − πt − γ )ot

+ (r1t − πt − γ, . . . , rnt − πt − γ ) · mt

o0 > 0 and m0 > 0 given,
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where all the nonbold letters have the same meaning as in the model of
Section 2.2.

Considering only regular solutions and substituting for c as in the unidimen-
sional setting, (PM ) becomes a standard variational problem. Its Euler equations
with respect to o and each mi yield

r − ri = (UM)xi

(UM)c
= UmGxi

Uc
,∀i ∈ {1, . . . , n}. (21)

This really corresponds to the optimum, by the concavity of UM (which is a
consequence of the concavity of G and of U , as well as of U being increasing in
both of its coordinates).

In equilibrium c = 1, so that (21) gives

ui = ψi(m) = ϕ′(G(m))
ϕ(G(m))−G(m) ϕ′(G (m))

Gxi (m),∀i ∈ {1, . . . , n}, (22)

where now ψ : G−1 ((0,m]) → Rn
+, G−1 denoting G’s inverse image function.

Equation (22) is analogous to (5), giving us a differentiable function ψ taking m
into u. It can be rewritten as

u = ψ(m) = F(G (m))∇G(m), (23)

where F : (0,m] → R+ is a differentiable and strictly decreasing function [as
already calculated in (6)]. As noted in Cysne and Turchick (2009), this general
form of multidimensional money demands also encompasses those originating
from the extended shopping-time model.

In order for the measures AM and BM introduced in the last subsection to apply
to ψ, the path χ should be taken so that χ (0) ∈ G−1 ({m}), and the boundary
condition for a generic welfare measureWM is thatWM (d) = 0,∀d ∈ G−1 ({m}).
It must also be checked that these measures are still well-defined, that is, that the
line integrals in (19) and (20) are path-independent. This is done next.

LEMMA 1. Let WM(m) := ∫
χ J (G (µ))ψ (µ) · dµ, where J : (0,m] → R

is any differentiable function, and χ and ψ are as described above. Then WM is
well-defined. In particular, AM and BM are well-defined.

3.3. The Welfare Cost of Inflation in the Extended Sidrauski Model:
Two Different Approaches

The measures wM and wM of the welfare cost of inflation are defined following
the same ideas as in Section 2.3. For an arbitrary d ∈ G−1 ({m}),

UM (1 + wM(m),m) = UM(1,d), i.e., U (1 + wM(m),G(m)) = U(1,m)

(24)
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and

UM (1,m) = UM(1 − wM(m),d), i.e., U (1,G (m)) = U(1 − wM(m),m),

(25)

provided wM(m) ≥ 0 and 0 ≤ wM(m) ≤ 1. The same observations made in the
last section concerning the issue of existence of w and w obviously extend to wM
and wM .

The next result aims at simplifying the task of calculating the welfare cost of
inflation in an economy with more than one type of money.

PROPOSITION 2. Given a money-demand specification in the form (23),
ψ = (F ◦G)∇G, let W be any of the unidimensional measures s, A, B, w,
or w, evaluated using the inverse money demand F , and WM the corresponding
multidimensional measure [in the Sidrauski framework, comparison between (5)
and (22) shows that this amounts to taking the same ϕ in (P) and in (PM )]. Then
WM = W ◦ F ◦G.

We are now ready to state our main ordering result, extending Proposition 1 to
an economy with many types of monies. It follows immediately from Propositions
1 and 2.

PROPOSITION 3. Let ψ : G−1 ((0,m]) → Rn
+ be a money-demand speci-

fication taking the general form (23), rationalizable by the extended Sidrauski
and the extended shopping-time model, so that it can be used to calculate
sM , AM , BM , wM , and wM . Then the following inequality chain is true:
wM = 1 − e−AM < sM < AM < BM < wM .

4. CALCULATING THE WELFARE COST OF INFLATION

4.1. Formulas for the Unidimensional Measures

Assume that a unidimensional bilogarithmic money demand specification, m =
Kr−α , with K > 0 and α ∈ (0, 1), has been estimated. How can we calculate
the different measures of the welfare cost of inflation associated with a nominal
interest rate of r?

Fortunately, s has already been calculated in the literature [see Cysne (2005)]
for this particular case, being given in implicit form by

(1 − s (r))
[
1 − (1 − s (r))−

1
α

]
+ K

1 − α
r1−α = 0.

Both Bailey’s measure and the proxy measure A are straightforward:

B(r) =
∫ r

0
−ρ(−αKρ−α−1)dρ = αK

1 − α
r1−α ,
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A(r) =
∫ r

0

−ρ(−αKρ−α−1)

1 + ρKρ−α dρ

= α

1 − α

∫ 1+Kr1−α

1

du

u
= α

1 − α
log(1 +Kr1−α).

Regarding w, since ψ(m) = (K/m)
1
α , (12) takes the form

w′(r) = −
[
K(1 + w(r))

Kr−α

] 1
α

(−αKr−α−1) = αK(1 + w(r))
1
α r−α ,

leading to

w(r) = −1 + (1 −Kr1−α)
α
α−1 . (26)

The formula above requires r ∈ [0,K
1
α−1 ].14 As explained in Section 2.3,

this will not be an issue for w, for which one simply has

w(r) = 1 − e−A(r) = 1 − (1 +Kr1−α)
α
α−1 . (27)

The expression for A can also be used to illustrate the point made in Sec-
tion 2.2 regarding the rationalization of a money demand in the Sidrauski–Lucas
framework. For the log–log case, equation (9) gives

ϕ(m) = E[1 +Kψ (m)1−α]−
α

1−α = E
(

1 +K
1
α m1− 1

α

) α
α−1
, (28)

for a positive constant E (so that m = +∞, as expected).
If we had started out with a semilog money demand instead, m = Ke−βr , with

K,β > 0, then no measure other than Bailey’s could be written out, in explicit or
implicit form, through elementary functions. From (3),

B(r) =
∫ r

0
−ρ(−βKe−βρ) dρ

= βK

[
−1 + βρ

β2
e−βρ

∣∣∣∣
r

0

= K[1 − (1 + βr) e−βr ]
β

.

The other four can be evaluated numerically with the help of a mathematics
software.15

All the measures of the welfare cost of inflation considered in Proposition 1
are plotted for the estimated money-demand functions η(r) = 0.05r−0.5 and
η (r) = 0.35e−7r .16 Note how s and A are indistinguishable to the naked eye.17

A question that naturally arises from looking at Figure 1 is, How much greater
can the Sidrauski–Lucas upper bound w be relative to the lower bound w of our
set of welfare measures? For reasonable interest rates, not much greater indeed.
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FIGURE 1. Welfare cost of inflation in the unidimensional case.

For example, for the log–log specification, (26) and (27) yield


(r) := w(r)− w(r)

w(r)
=

⎧⎨
⎩

−1 + (1 −Kr1−α)
α
α−1

1 − (1 +Kr1−α)
α
α−1

− 1 if r > 0

0 if r = 0
.

This 
 is the maximum relative error one can incur when choosing one of
the measures s, A, B, w, or w to work with, instead of any other of these.
Figure 2 shows the behavior of 
 under the bilogarithmic (elasticity α) and the
semilogarithmic (semielasticity β) specifications.

For instance, considering the log–log specification with α = 0.5, one obtains

(0.15) ≈ 3.9%. This value of the nominal interest rate could account for an
inflation rate around 11% plus a long-term real interest rate around 4%. It could
be understood as an upper bound for most industrialized economies. Thus, if one
reports having found a welfare loss of, say, 1% of output associated with a money
demand having a 0.5 elasticity and an 11% inflation rate, our results allow us
to say that, regardless of which particular measure among the six was chosen,
the estimate could vary at most between 0.96% and 1.04%, a very reasonable
confidence interval. So one can feel secure about which measure to take, when
considering low-inflation countries.

However, the preceding calculations tell only one side of the story. Consider
now a country where the annual inflation rate has reached 400% (in Brazil, for
instance, yearly inflation reached 1783% in 1989). For the same parameters, the
relative measuring difference 
 reaches 22.2% (assuming r = 4, since the long-
term real interest rate becomes negligible). For example, estimates of the welfare
costs reported as being 8% of output in high-inflation countries could actually be
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FIGURE 2. Maximum relative error.

as low as 6.5% [0.08/ (1 +
)] or as high as 9.8% [0.08 × (1 +
)], depending
on the formula being used. In such high-inflation cases, therefore, one has to be
careful about which measuring strategy to pursue.18

Alternatively, the numerical computation leading to Figure 2 can be used to infer
the relative error when semilog specifications of the money demand are used. For
instance, using American data relative to the post-1980 period, Ireland (2009)
estimates semielasticities ranging between 1.7944 and 1.9013. Applying Bailey’s
unidimensional formula, he reports welfare costs of inflation around 0.0136%,
0.0370%, and 0.2268% of income for yearly nominal interest rates of 3%, 5%,
and 13%, respectively (corresponding to 0%, 2%, and 10% inflation rates, because
the real interest rate is fixed at 3% there).19

Had Ireland chosen to use any of the other five unidimensional welfare measures
displayed in this work, the maximum relative error he could incur would be negligi-
ble:
(0.03) ≈ 0.50%,
(0.05) ≈ 0.81%, and
(0.13) ≈ 1.96%, thus implying
the ranges [0.0135, 0.0137], [0.0367, 0.0373], and [0.2223, 0.2313] percent of
income for his average welfare cost estimates. This is to say, these estimates
are robust relative to the issue of choosing a particular unidimensional measure
vis-à-vis the others.

It may still be noted that in the log–log case, for all practical purposes, the
approximation
(r) ≈ W (r) /α, whereW is any of the welfare measures studied
here, can be used. In fact, putting z := Kr1−α and defining f , g1, and g2 such that
f (z) = 
(r), g1 (z) = w(r)/α, and g2 (z) = w(r)/α (using (27) and (26)), it is
easy to see that the first two terms in their Maclaurin series coincide (the series
being of the form 0 + (1 − α)−1 z +O(z2)). Then f (z) = gi (z) +O(z2),∀i ∈
{1, 2}, and using Proposition 1 to extend this to all the other welfare measures lying
in betweenw andw, one gets
(r) = W (r) /α+O(r2(1−α)) = W (r) /α+o (1).
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4.2. Formulas for the Multidimensional Measures

We now assume that a multidimensional log–log money demand specification,

⎧⎪⎨
⎪⎩
m1 = L1

∏n
j=1 u

α1j

j

...

mn = Ln
∏n
j=1 u

αnj
j

, (29)

has been estimated. It can be checked that this is the type of demand that
would emerge from taking (28) in (PM ), with G a weighted geometric mean,
G(m1, . . . , mn) = ∏n

i=1m
γi
i (where γi ≥ 0,∀i ∈ {1, . . . , n} and

∑n
i=1 γi = 1).

In fact, from (22) and the discussion in the previous section, we know that to this
ϕ there corresponds a function F in (23) such that F (G) = (K/G)

1
α . Therefore

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψ1(m) = K
1
α γ1

m1

∏n

j=1
m
(1− 1

α )γj
j

...

ψn(m) = K
1
α γn

mn

∏n

j=1
m
(1− 1

α )γj
j

,

which inverted gives (29).20

Proposition 2 makes it possible to obtain expressions for the multidimensional
welfare measures by simply copying the formulae derived in Section 4.1. That is,
at this point there is no need to solve line integrals or systems of partial differential
equations. We get, in turn,

(1 − sM(m))
[
1 − (1 − sM(m))−

1
α

]
+ K

1
α

1 − α
G (m)1− 1

α = 0,

BM(m) = αK
1
α

1 − α
G (m)1− 1

α ,

AM(m) = α

1 − α
log

(
1 +K

1
α G (m)1− 1

α

)
,

wM(m) = −1 +
(

1 −K
1
α G (m)1− 1

α

) α
α−1

if G(m) ≤ K
1

1−α , and

wM(m) = 1 −
(

1 +K
1
α G (m)1− 1

α

) α
α−1

.
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FIGURE 3. Welfare cost of inflation in the multidimensional case.

The maximum relative error in this case is


M(m) := wM(m)− wM(m)
wM(m)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 +
(

1 −K
1
α G (m)1− 1

α

) α
α−1

1 −
(

1 +K
1
α G (m)1− 1

α

) α
α−1

− 1 if m ∈ Rn
++

0 if m ∈ (0,+∞]n \ Rn
++

.

The approximation for the log–log 
 derived in the preceding subsection, to-
gether with Proposition 2, give 
M(m) = 
(F(G (m))) = W(F(G (m))) /α +
O(F (G (m))2(1−α)) = WM (m) /α + o (1), where here the relevant asymptotic
behavior is at m → d ∈ (0,+∞]n \ Rn

++ (whence G(m) → +∞), and the last
equality (or pertinence relation) comes from limG→+∞ F (G) = limG→+∞(K/
G)

1
α = 0.

Had we departed from a generalized semilog specification instead, i.e., one with
F (G) = log (K/G) /β in (23), then

BM(m) =
K

[
1 − G(m)

K

(
1 + log

K

G(m)

)]

β
,

and the other measures, as well as the relative error, could only be evaluated
numerically.

All five measures of the welfare cost of inflation in an economy with n = 2
(withm1 standing for real balances andm2 for interest-bearing bank deposits) are
illustrated in Figure 3. The calculations use a log–log specification withK = 0.05
and α = 0.5 (as in Figure 1), plus the money aggregation parameter γ1 = 0.7

https://doi.org/10.1017/S1365100510000817 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100510000817


748 RUBENS PENHA CYSNE AND DAVID TURCHICK

(and γ2 = 1 − γ1 = 0.3). The ordering of the surfaces is the one implied by
Proposition 3, with wM on top and wM on the bottom. As in the unidimensional
case, AM approximates sM so well that it is practically impossible to visualize
them separately.

5. CONCLUSION

The present work has extended the ordering of measures of the welfare costs
of inflation provided by Cysne (2003) to include two new measures derived
from Sidrauski’s money-in-the-utility-function framework. The first measure is
provided by Lucas (2000) (though only in relation to the unidimensional case),
whereas the second is new in the literature (both for the unidimensional and the
multidimensional case).

The main result of the paper, given in Proposition 3, is the ordering of six
different measures of the welfare cost of inflation, both when there is only one
type of money and when there are several interest-bearing deposits. Our results
have been illustrated with the well-known bilogarithmic and semilogarithmic
money demands, for which we have provided closed-form solutions to all wel-
fare measures (whenever possible in terms of elementary functions), both in the
unidimensional and in the multidimensional settings.

Our calculations for the unidimensional log–log case show that for parameter
values such as those usually found in the literature, the maximum relative error a
researcher can incur by deciding to use a particular welfare measure vis-à-vis the
others is negligible in normal scenarios (only 4% of the measured welfare cost
for annual nominal interest rates as high as 15%), being of relevance only in the
case of hyperinflations (22% if interest rates are around 400%). Regarding the
semilog case, applying our results to the estimates given in Ireland (2009) shows
a maximum relative error around 2% of the measured welfare cost when annual
nominal interest rates are as high as 13%.

NOTES

1. For a consideration of the error arising from the use of unidimensional rather than multidimen-
sional measures of the welfare costs of inflation, see Cysne and Turchick (2010).

2. Barnett (1979, 1980) has applied aggregation theory in the construction of monetary aggregates,
introducing the use of Divisia indices of monetary services in the analysis of monetary policy.

3. Cysne (2005) has provided a solution to it in the case of a log–log money demand. This solution
will be helpful in the calculations to be carried out in this paper.

4. The satiation pointmwill turn out to be the maximum value the money-demand function arising
from ϕ and (P) attains. For example, for the log–log money-demand specification m = Kr−α , we
would have m = +∞, whereas for the semilog specification m = Ke−βr , m = K . Cf., for instance,
the model of Cavalcanti and Villamil (2003), where a finite m is imposed.

5. Let V (c,m) = cϕ (m/c), so that U is a concave monotonic transformation of V , and U ’s
concavity follows from that of V : for any (m, c) ∈ [0,+∞]2, Vmm (c,m) = ϕ′′ (m/c) /c < 0, and
Vcc (c,m) Vmm (c,m)− Vcm (c,m)

2 = 0 from V ’s 1-homogeneity.
6. The fact that ψ is differentiable is a consequence from ϕ’s twice-differentiability, whereas its

nonnegativity results from ϕ’s nonnegativity and strict concavity: for any m ∈ (0,m], −ϕ (m) ≤
ϕ (0)− ϕ (m) < ϕ′ (m) (0 −m), whence ϕ (m)−mϕ′ (m) > 0.
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7. In fact, obviously w(0) = 0 ≥ 0, and if w(r) exists and ρ ∈ (0, r), since U(1 + w(r), η(ρ)) >

U(1 + w(r), η(r)) = U(1, m) > U(1, η(ρ)) (where η’s strict decreasingness and Um > 0 have been
used), the Intermediate Value Theorem guarantees the existence of a w(ρ) ∈ (0, w(r)) (and therefore
nonnegative) such that U(1 + w(ρ), η(ρ)) = U(1, m).

8. Note that the inequalities presented in this paper relate to measures of deadweight loss, rather
than measures of welfare changes (as the consumers’ surplus).

9. About the rationalizability issue, the reader may see Cysne and Turchick (2009).
10. That u is defined as a nonnegative vector is just an equilibrium-argument shortcut: if some ri

were larger than r in this risk-free economy, bonds would just cease to exist.
11. (0,+∞]n \ Rn++ is the set of vectors in [0,+∞]n with strictly positive coordinates, at least one

of which unbounded.
12. These are, in order, the additive inverses of the Divisia indices DE(χ) and DG(χ) presented in

Cysne (2003).
13. If n = 1, the homogeneity of G would imply its linearity, whence G′′ = 0. Therefore, our

analysis in this section is restricted to the case n > 1. Even so, it yields exactly the same results as the
n = 1 framework analyzed in Section 2.

14. This formula is equivalent to formula 6 in Serletis and Yavari (2004) (where the presence of a
typographical error, the A’s in the denominators, should be noted).

15. Even though m = K < +∞ in this case, the semilog money demand is also rationalizable
through the shopping-time model, under a minor adjustment in the model [see Cysne and Turchick
(2009)]. Thus s and its approximations can be sensibly evaluated.

16. These parameters were calibrated to fit the American economy in Lucas (2000).
17. In this figure, the 1 on the x-axis represents a 100% annual nominal interest rate, whereas the

0.01 on the y-axis means a welfare cost of 1%.
18. If one uses instead the value for α found by Serletis and Yavari (2004) for the post–WWII U.S.

economy, 0.21, together with the value for K that can be inferred from their Figure 2, 0.112, then

(0.15) ≈ 3.2% and 
(4) ≈ 54.9%.

19. Such welfare-cost figures correspond to the averages of the numbers displayed in the three last
columns of Table 6 in Ireland (2009).

20. Inversion of this system can be obtained by taking logs on both sides and then applying Cramer’s
rule to solve the resulting linear system in the variables logmi . Proceeding in this way yields the

following expressions for the parameters in (29): αij = fji/ det(q) and Li = ∏n
j=1(K

1
α γj )

−αij ,
where qki := (1−1/α)γi if i �= k and (1−1/α)γi −1 otherwise, and fki is the cofactor of the element
qki in the matrix q.
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APPENDIX

Proof of Proposition 1. The equality is demonstrated in the text. The first, second,
and third inequalities have already been shown in Simonsen and Cysne (2001, Propo-
sition 1), and the reader may note that their proof that 1 − e−A < s < A < B draws
on the strict decreasingness of η alone, and no other property enjoined by money-demand
functions arising from the shopping-time model. As for the fourth inequality, (12) gives, for
ρ ∈ (0, r), w′(ρ) > −ψ(η(ρ))η′(ρ) = −ρη′(ρ) (recalling that ψ is a strictly decreasing
function and η′(ρ) < 0), so all that is left to do is integrate both sides of this inequality
from 0 to r . �

Proof of Lemma 1. In fact, it is well known that, given the simple connectedness of
WM ’s domain G−1((0,m]), it is only necessary to verify that the form dWM =
J (G(µ))ψ(µ) · dµ is closed. Because

(Jψi)xj = J ′Gxj ψi + J (ψi)xj = J ′Gxj FGxi + J (F ′GxjGxi + FGxixj )

is symmetric in (i, j), we are done (in the above calculation,G and its derivatives are being
evaluated at µ, whereas J , F , and their derivatives are being evaluated at G(µ)).

Take J = −1. Then WM = BM , whence BM is well-defined. Now take J such that
J (G) = −1/ [1 +GF (G)]. Applying Euler’s formula for homogeneous functions to (23)
yields ψ(µ) · µ = F(G (µ))∇G(µ) · µ = G(µ) F (G(µ)), so that WM = AM and AM is
also well-defined. �

Proof of Proposition 2. Let m ∈ G−1 ((0,m]) be given. If W = w, then a simple
comparison between (24) and (11), with r = F (G (m)), yields

U(1 + wM(m),G (m)) = U(1,m) = U(1 + w(F (G (m))),G (m)),

and because Uc > 0, wM (m) = w (F(G (m))). If W = w, a similar argument comparing
(25) with (13) yields

U(1 − wM(m),m) = U (1,G (m)) = U(1 − w(F (G (m))),m),

and because Um > 0, wM(m) = w(F (G (m))).
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If W can be written as W (r) = ∫ F−1(r)

m
J (µ) F (µ) dµ, then

WM (m) :=
∫
χ

J (G(µ))ψ (µ) · dµ =
∫
χ

J (G(µ)) F (G (µ))∇G(µ) · dµ

=
∫ G(m)

m

J (G̃)F (G̃)dG̃ = W(F(G (m))),

where the third equality used Lemma 1. Putting J as in the proof of that lemma and
comparing with (2) and (3) shows that both W = A and W = B are special cases of this
argument.

Finally, if s solves (1), then sM := s ◦ F ◦G can be seen to solve (18). In fact,

(sM)xi (m) = s ′ (F (G (m))) F ′ (G (m))Gxi (m)

= −F (G (m)) (F
−1)′(F (G (m)))F ′ (G (m))Gxi (m)

1 − s(F (G (m)))+ F (G (m))G (m)
(1 − s(F (G(m))))

= − F (G (m))Gxi (m)
1 − sM (m)+ F (G (m))G (m)

(1 − sM(m))

= − ψi (m)
1 − sM (m)+ψ (m) · m

(1 − sM(m)),

where in the last equality Euler’s formula for homogeneous functions was applied
to (23). Also, if d ∈ (0,+∞]n \ Rn

++, then sM (d) = s (F (G (d))) = s (F (+∞)) =
s (0) = 0. �
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