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We consider the resonant coupling of mode-1 and mode-2 internal solitary waves by
topography. Mode-2 waves are generated by a mode-1 wave encountering variable
topography, modelled by a coupled Korteweg–de Vries (KdV) system. Three cases,
namely (A) weak resonant coupling, (B) moderate resonant coupling and (C) strong
resonant coupling, are examined in detail using a three-layer density-stratified fluid system
with different stratification and topographic settings. The strength of the resonant coupling
is determined by the range of values taken by the ratio of linear long-wave phase speeds
(c2/c1, where c1 is the mode-1 speed and c2 the mode-2 speed) while the waves are above
the slope. In case A the range is from 0.42 (ocean edge) to 0.48 (shelf edge), in case B from
0.58 (ocean) to 0.72 (shelf) and in case C from 0.44 (ocean) to 0.92 (shelf). The feedback
from mode-2 to mode-1 is estimated by comparing the coupled KdV system with a KdV
model. In case A, a small-amplitude convex mode-2 wave is generated by a depression
mode-1 wave and the feedback on the mode-1 wave is negligible. In case B, a concave
mode-2 wave of comparable amplitude to that of the depression incident mode-1 wave
is formed; strong feedback enhances the polarity change process of the mode-1 wave. In
case C, a large-amplitude concave mode-2 wave is produced by an elevation mode-1 wave;
strong feedback suppresses the fission of the mode-1 wave. Simulations for a wider range
of topographic slopes and three-layer stratifications are then classified in terms of these
responses.

Key words: internal waves, topographic effects, solitary waves

1. Introduction

Internal waves that propagate along sharp density gradients (analogous to surface waves
where the density gradient is from water to air) are commonly observed in the coastal
ocean, lakes and fjords. Theoretically, horizontally propagating internal waves can be
decomposed into an infinite set of vertical modes whose linear long-wave phase speeds
decrease with an increase in the mode number, as the vertical structure increases in
complexity. Most studies have focussed on mode-1 internal solitary waves as they are
the most frequently observed in the ocean (Liu et al. 1998; Klymak & Moum 2003; Moum
& Smyth 2006; Zhao & Alford 2006). However, recently there has been more interest
in mode-2 internal solitary waves with several observations (Farmer & Smith 1980;
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Yang et al. 2009, 2010; Shroyer, Moum & Nash 2010; Ramp et al. 2012; Liu et al. 2013;
Magalhaes & Da Silva 2018; Rayson, Jones & Ivey 2019). Mode-1 and mode-2 waves
are defined by their linear long-wave phase speeds c1 and c2, respectively, with c2 < c1.
They are also distinguished from their shapes, as mode-1 waves displace isopycnals in one
direction only, while mode-2 waves displace the upper and lower isopycnals in opposite
directions, which can be convex or concave. In general, as lower mode waves travel faster
than higher mode waves, from a localised initial condition the modes spread out and each
mode develops into solitary waves. However, in some special circumstances when c2 ≈ c1
(although always c2 < c1), the mode-2 waves will interact resonantly with mode-1 waves
over a long time scale. This scenario is the topic of this paper.

As for the many studies of mode-1 internal solitary waves, generation mechanisms and
the evolution of mode-2 internal solitary waves over topography are now receiving more
attention. Helfrich & Melville (1986) found that the instability of a shoaling mode-1 wave
may lead to the generation of a mode-2 wave. Vlasenko & Hutter (2001) demonstrated
experimentally and theoretically that a reflected and transmitted mode-2 wave may emerge
when a mode-1 wave interacts with a localised sill. A detailed study of shoaling internal
solitary waves under different background environments in the South China Sea was
reported by Lamb & Warn-Varnas (2015), showing that a mode-2 wave could be generated
at small-scale features in the bathymetry. Recently we examined the interaction of a
mode-1 internal solitary wave with slope–shelf topography generating mode-2 waves, with
an amplitude sensitive to the stratification layer thicknesses and topographic slope (Liu,
Grimshaw & Johnson 2019a). Another mechanism for the generation of mode-2 waves is
local generation; that is, the release of a density front into a pycnocline which is often used
in laboratory and numerical studies (Maxworthy 1980; Mehta, Sutherland & Kyba 2002;
Deepwell & Stastna 2016; Carr et al. 2019; Rayson et al. 2019). There are several studies
of the transformation of a mode-2 solitary wave over bottom topography, for example, a
step (Terletska et al. 2016; Liu, Grimshaw & Johnson 2019b), a narrow ridge (Deepwell
et al. 2017), a broad ridge (Deepwell et al. 2019), a uniform slope (Carr et al. 2019) and a
slope–shelf (Cheng et al. 2017; Yuan, Grimshaw & Johnson 2018).

Mode-2 waves will interact with other wave modes, such as mode-1 waves, through
nonlinearity in the underlying fluid system. Propagating mode-2 solitary waves with an
accompanying tail of mode-1 waves have been observed in field experiments (Farmer
& Smith 1980; Shroyer et al. 2010), and examined theoretically by Akylas & Grimshaw
(1992) and numerically by Vanden-Broeck & Turner (1992). Gear & Grimshaw (1984)
studied the interaction between internal solitary wave modes using coupled Korteweg–de
Vries (KdV) equations, finding that weak or strong interactions happen when the wave
phase speeds are unequal or nearly equal, respectively. A numerical investigation was
presented by Stastna et al. (2015) on the strong mode–mode coupling between mode-1
and mode-2 internal solitary waves with both head-on and overtaking collisions, showing
that the mode-2 wave structure can be significantly deformed by the mode-1 wave during
the collision. Maderich et al. (2017) investigated the head-on collision of three types of
internal solitary waves with trapped cores numerically based on the framework of the
Navier–Stokes equation for a stratified fluid.

In this paper, we consider the generation of mode-2 waves as a mode-1 wave propagates
shoreward from deep water, over the continental slope into shallow water, and in particular
the resonant coupling by topography of the generated mode-2 wave and the incident
mode-1 wave. In Liu et al. (2019a) we adapted the linear long-wave theory developed
by Griffiths & Grimshaw (2007) which describes the topographic coupling of a full set of
linear long-wave modes. We took an incident mode-1 solitary wave which then generated
a mode-2 wave when it encountered the variable topography of the continental slope.
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Resonant coupling of internal waves 908 A2-3

Once the mode-2 wave is formed, we used a KdV equation (equation (2.1)) to follow its
evolution over the continental slope and shelf. This approach is valid when the linear phase
speeds are quite distinct. Here we extend that study to the case when instead the mode-1
and mode-2 linear phase speeds are close, that is, c2 ≈ c1, noting that always c2 < c1. This
gives resonant coupling and leads to coupled KdV equations, incorporating feedback from
the generated mode-2 wave on the incident mode-1 wave.

In § 2, we introduce the theoretical methods, the KdV equation for internal solitary
waves, and coupled modes in both a linearised system and in a system of coupled KdV
equations to describe the generation of mode-2 internal solitary waves and the resonant
coupling with the incident mode-1 wave by slope–shelf topography. We have introduced
the noted KdV equation and linear long-wave theory with mode coupling in Liu et al.
(2019a) on which the coupled KdV system is based. For convenience we show the details
in this paper again using the same notations and expressions. In § 3, we apply this theory to
a three-layer density-stratified fluid system, for different layer thicknesses and topographic
slopes that determine the mode-1 and mode-2 linear phase speeds, and hence the range
over the slope of the ratio of the speed c2/c1, which is one of the key parameters in the
coupling term. In general, since mode-2 waves are slower in speed, typically one-third
of the speed of mode-1 waves, we vary the set-up of background stratification and/or
topographic gradient to increase the range of the ratio of c2/c1 and ∂h/∂T and hence
get strong resonant coupling. Three examples (A,B and C in § 3) are considered in detail
with the speeds c2 and c1 becoming closer, while in each case two different topographic
slopes are examined, gentle and steep. Simulations over wider ranges of stratification and
topography are then summarised in terms of these three cases. In § 4 we discuss the results
and we summarise in § 5.

2. Theoretical formulation

2.1. Korteweg–de Vries equation
The usual KdV equation for propagation of weakly nonlinear long internal waves over
variable topography with depth h(x) is, in standard notation,

∂A
∂t

+ c
∂A
∂x

+ 1
2Q

∂Q
∂x

cA + μA
∂A
∂x

+ δ
∂3A
∂x3

= 0 (2.1)

(see Grimshaw (1981), and the reviews by Helfrich & Melville (2006), Grimshaw (2007)
and Grimshaw et al. (2010)). Here ζ = A(x, t)φ(z; h) is the leading-order expression for
the vertical particle displacement. The modal function φ(z; h) is determined, using the
Boussinesq approximation, by a rigid upper lid approximation, and in the absence of a
background shear flow,

∂2φ

∂z2
+ N2

c2
φ = 0; φ = 0, z = 0,−h(x). (2.2)

Here N2 = −(g/ρ0)(dρ0/dz) is the background density field. This modal equation
determines the modal function φ(z; h) and the linear long-wave speed c(h) where the
h-dependence is parametric, since it is assumed that the depth h(x) is slowly varying.
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908 A2-4 Z. Liu, R. Grimshaw and E. Johnson

The coefficients in (2.1) are given by, in the same approximation used in (2.2),

Iμ = 3c2
∫ 0

−h
ρ0

(
∂φ

∂z

)3

dz, (2.3)

Iδ = c2
∫ 0

−h
ρ0φ

2 dz, (2.4)

I = 2c
∫ 0

−h
ρ0

(
∂φ

∂z

)2

dz, Q = c2I. (2.5)

In general, the modal equation (2.2) determines an infinite set of modes φn , n = 1, 2, . . .,
ordered so that c1 > c2 > · · · . Usually only mode-1, φ1, with the fastest linear phase speed
c1 is considered. Then the KdV equation (2.1) describes the evolution of the amplitude of
this mode. But importantly we note that the same KdV equation (2.1) can be used for a
mode-2 wave, with coefficients determined by (2.3), (2.4), (2.5) using the mode-2 modal
function φ2 and speed c2 < c1.

2.2. Coupled modes: linearised system
The theory of Griffiths & Grimshaw (2007) uses linear long-wave theory to decompose the
wave field into a sum of vertical modes, noting that the full set of modal functions defined
by (2.2) are complete. This was used by Liu et al. (2019a) to examine the generation of a
mode-2 wave by a mode-1 wave incident on the topography. As in Liu et al. (2019a), the
theory of Griffiths & Grimshaw (2007) is restricted to just two modes, so that the wave
field is given by

ζ =
n=2∑
n=1

An(x, t)φn(z; h),

u =
n=2∑
n=1

An(x, t)cn(h)
∂φn(z; h)
∂z

,

p = ρ0

n=2∑
n=1

An(x, t)c2
n(h)

∂φn(z; h)
∂z

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

Here ζ , u and p are the vertical particle displacement, the horizontal velocity and
the dynamic pressure, respectively. The vertical velocity is w = ∂ζ/∂t and the density
perturbation is ρ = N2ζ/g. From Griffiths & Grimshaw (2007) (see (24)) the linear
long-wave coupling between mode-1 and mode-2 with linear long-wave speeds c1,2 is
given, for slowly varying h(x), by

1
c2

1

∂2U1

∂t2
− ∂2U1

∂x2
= −γ ∂h

∂x

∂U2

∂x
, (2.7)

1
c2

2

∂2U2

∂t2
− ∂2U2

∂x2
= γ

∂h
∂x

∂U1

∂x
, (2.8)
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Resonant coupling of internal waves 908 A2-5

γ = 2

λ̃1 − λ̃2

(
∂ λ̃1

∂h
∂ λ̃2

∂h

)1/2

= 4
c2

2 − c2
1

(
c1c2

∂c1

∂h
∂c2

∂h

)1/2

, λ̃1 = 1
c2

1
, λ̃2 = 1

c2
2
.

(2.9)

As noted above, this is a reduction from the full set in (24) of Griffiths & Grimshaw
(2007) by restriction to just two modes, and retention of only the leading-order topographic
coupling terms when h(x) is slowly varying; that is, terms such as ∂2h/∂x2 or (∂h/∂x)2

are omitted. However, the theory of Griffiths & Grimshaw (2007) was developed for the
horizontal velocity field in the form u = U(∂ψ(z; h)/∂z), whereas in the usual KdV theory
described above by (2.6) the theory is developed for the vertical particle displacement
Aφ(z; h), where the modal function ψ ∝ φ. In the absence of a background shear flow,
these are related by, temporarily omitting the modal index,

u = U
∂ψ

∂z
= cA

∂φ

∂z
, ψ(z) = Kφ(z), K2 = 1

Ic
= c

Q
. (2.10a–c)

Hence we find that
U = c1/2B, B = Q1/2A, (2.11a,b)

where Q and I are the linear magnification and normalisation factors in the usual KdV
theory; see (2.5).

Since h(x) is slowly varying, we use the change of variables

T =
∫ x

0

dx

c1
, X = T − t, (2.12)

∂U
∂x

= 1
c1

(
∂U
∂X

+ ∂U
∂T

)
,

∂2U
∂t2

= ∂2U
∂X2

,

∂2U
∂x2

= 1
c2

1

(
∂2U
∂X2

+ 2
∂2U
∂X∂T

+ ∂2U
∂T2

)
− 1

c3
1

∂c1

∂T

(
∂U
∂X

+ ∂U
∂T

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.13)

In Liu et al. (2019a) we used (2.12) for mode-1 and an analogous change of variable for
mode-2 with c1 replaced with c2. Here we assume that c1 ≈ c2, and so we can use (2.12)
for both modes. Then in each modal equation, the operator on the left-hand side becomes

1
c2

1

∂2U
∂t2

− ∂2U
∂x2

= − 2
c2

1

∂2U
∂X∂T

− 1
c2

1

∂2U
∂T2

+ 1
c3

1

∂c1

∂T

(
∂U
∂X

+ ∂U
∂T

)
. (2.14)

Next we use the transformation (2.11a,b) and assume that the T-derivatives vary slowly
relative to X-derivatives. Thus we can neglect slowly varying terms such as ∂2U/∂T2 and
(∂c1/∂T)(∂U/∂T), and the coupled system ((2.7), (2.8)) becomes

∂B1

∂T
= γ c1/2

2

2c1/2
1

∂h
∂T

B2, (2.15)

∂B2

∂T
−Δ

∂B2

∂X
= −γ c1/2

1

2c1/2
2

∂h
∂T

B1, Δ =
{

1
c2

2
− 1

c2
1

}
c2

1

2
≈ (c1 − c2)/c2. (2.16a,b)

In the original x , t variable there is a choice of either an initial condition, when B1,B2
are specified at t = 0, or a boundary condition when B1,B2 are at x = 0. Here, we choose
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908 A2-6 Z. Liu, R. Grimshaw and E. Johnson

B1 to be a mode-1 solitary wave, either located in x < 0 at t = 0 or specified at x = 0,
and in both cases B2 = 0. In the initial-value problem, these initial conditions are located
at X = T , or as boundary conditions at T = 0. These can be shown to be asymptotically
equivalent with respect to the small long-wave parameter used to derive ((2.7), (2.8)),
and also the KdV equation (2.1) (see the next subsection). But, nevertheless they produce
different solutions in general. Here we choose the boundary condition formulation, inter
alia being more convenient for numerical simulations. Thus the ‘initial’ condition at T = 0
is a mode-1 solitary wave, defined in T < 0 by B1 = B1sol(X − VT) in T < 0 where h = hb,
and a zero mode-2 wave, B2 = 0. Here V is the solitary wave speed (see (2.25)), and in the
linear long-wave limit we set V = 0. Importantly, note that Δ > 0 since c1 > c2, and we
have used the approximation that c2 ≈ c1 to simplify Δ.

2.3. The linear response
The coupled system ((2.15), (2.16a,b)) forms the bases of the investigation here. An
estimate of the size of a typical solution of this system can be found using the method
in Liu et al. (2019a) to solve the linear system approximately when Δ is of order unity.
Since the coupling term γ (∂h/∂T) is slowly varying and hence small, it can be neglected
in (2.15) when the incident wave is a mode-1 wave. It then follows that to leading order
B1 = B1sol(X) is independent of T and determined from the initial condition of a mode-1
solitary wave a priori. The second equation (2.16a,b) can then be solved for the mode-2
wave:

B2 ≈ −
∫ τ

0
C(τ ′)B1sol(X + τ − τ ′) dτ ′,

τ (T) =
∫ T

0
Δ(T ′) dT ′, C(τ ) = γ c1/2

1

2c1/2
2 Δ

∂h
∂T
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.17)

Note that the evolution variable T is replaced with τ and the ‘initial’ condition that
B2 = 0,T = 0, that is B2 = 0, τ = 0 has been imposed. This can be written in the
alternative form, putting Y = X + τ − τ ′, so that X < Y < X + τ when τ > τ ′ > 0:

B2 ≈ −
∫ X+τ

X
C(X + τ − Y)B1sol(Y) dY. (2.18)

This form indicates that this approximate solution is a combination of a slaved mode-2
wave depending on X and a free mode-2 wave depending on X + τ . Note that because
C(τ ) ≥ 0, B2 has the opposite sign to B1sol.

Since C is slowly varying compared to B1sol, B1sol(X) can be regarded as localised
around X = 0, and then the expression (2.18) for B2 is effectively confined to the region
−τ < X < 0, where the two boundaries correspond to a free wave and a slaved wave,
respectively. For instance if we approximate B1(X) with a δ-function, B1(X) = a δ(KX)
with mass a/K, then (2.18) becomes

B2 ≈ − a
K

C(X + τ){H(X + τ)− H(X)}, (2.19)

where H(·) is the Heaviside function. For each fixed τ > 0, as X increases over the range
−τ < X < 0, X + τ increases from 0 to τ , and this approximate solution (2.19) is non-zero
only for −τ < X < 0. The maximum amplitude of B2 is CMa/K, where CM = max[C].
Further from (2.17), C(τ (T)) is non-zero only on the slope, that is, 0 < τ(T) < τ(L).
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Resonant coupling of internal waves 908 A2-7

Hence (2.19) is non-zero only for −τ(T) < X < 0, and for −τ(T) < X < τ(T)− τ(L).
In these combined regions, (2.19) is a function of X + τ and so is a free wave. On the
other hand, if C is rapidly varying relative to B, as would be the case if h(T) is close to
being a step, then we might approximate C with a δ-function C(τ ) = CMδ(L(τ − τ0)).
Then the solution (2.17) becomes

B2 ≈ −CM

L
B1sol(X + τ − τ0). (2.20)

This is a free wave and importantly note that compared to (2.19) the amplitude varies as
aCM/L rather than aCM/K.

These approximate solutions of ((2.15), (2.16a,b)) can be compared with those presented
in Liu et al. (2019a) where it was assumed that Δ is of order unity, and the T-derivative
in (2.16a,b) was omitted on the basis that the forcing term B1sol(X) depended only on
X. Also, crucially, in Liu et al. (2019a) the initial condition that B2 = 0 was imposed
at t = 0, X = T instead of at T = 0. As already noted, although these initial conditions
are asymptotically equivalent, they lead in practice to different outcomes. In the present
notation the solution found by Liu et al. (2019a) is

B1 ≈ B1sol(X), B2 ≈ B2P(X, τ )+ B2F(X + τ),

B2P = −C(τ )
∫ ∞

X
B1sol(X′) dX′,

B2F(Z) = −B2P(X, τ (X)), Z(X) = X + τ(X).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.21)

Here in the expression τ = τ(T) in (2.17), we put X = T , and then an inversion is needed
to get X = X(Z), so that the functional form of B2F(Z) can be determined. Although there
is an obvious similarity between (2.18) and (2.21) they are not the same. However, the
underlying assumption here is that the T-scale is slowly varying compared to the X-scale,
and in that limit the two expressions agree. Indeed, if C(τ ) is taken to be a constant,
then they are identical, indicating that if C(τ ) is sufficiently slowly varying, then the two
expression are close. The linear response of the present solution when Δ is not small thus
merges smoothly with the linear results of Liu et al. (2019a).

2.4. Coupled modes: Korteweg–de Vries system
The present study concerns the behaviour when c2 ≈ c1 so that Δ � 1, and also then
γ ∝ Δ−1 becomes large; see (2.9). In this limit the coupled system ((2.15), (2.16a,b))
yields high-frequency oscillations with a frequency proportional toΔ−1 and a wavenumber
proportional to Δ−2. This resonance leads to the requirement that weakly nonlinear terms
need to be invoked, together with weak linear dispersion, requiring the KdV extension of
the coupled system, examined here.

In the absence of topographic coupling we can add a KdV extension for each mode, that
is

∂B
∂T

→ ∂B
∂T

+ νB
∂B
∂X

+ λ∂
3B
∂X3

, ν = μ

cQ1/2
, λ = δ

c3
, (2.22)

after applying the transformations (2.12) to the KdV equation, and (2.1), and μ, λ are
defined by ((2.3), (2.4)) for each mode. Hence we propose that the coupled KdV system
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908 A2-8 Z. Liu, R. Grimshaw and E. Johnson

for this resonance will be

∂B1

∂T
+ ν1B1

∂B1

∂X
+ λ1

∂3B1

∂X3
= γ c1/2

2

2c1/2
1

∂h
∂T

B2, (2.23)

∂B2

∂T
−Δ

∂B2

∂X
+ ν2B2

∂B2

∂X
+ λ2

∂3B2

∂X3
= −γ c1/2

1

2c1/2
2

∂h
∂T

B1. (2.24)

The usual KdV scaling requires that B1,2 ∼ ε2, ∂/∂X ∼ ε and ∂/∂T ∼ ε3. Here in
addition we require a resonance so that Δ ∼ ε2 and so then γ (∂h/∂T) ∼ ε3. From (2.9)
γ ∝ Δ−1, it follows that formally ∂h/∂T ∼ ε5. Note that although we are assuming that
c2 ≈ c1, the modal functions φ1 and φ2 remain distinct. It is consistent asymptotically to
replaceΔ in (2.16a,b) withΔ ≈ (c1 − c2)/c2, and also put c2/c1 ≈ 1 in the coupling terms
on the right-hand side. Also it is useful to note that in this X–T reference frame, the linear
phase speeds for the mode-1 and mode-2 waves are 0 and −Δ, respectively.

The ‘initial’ condition at T = 0 is that the mode-2 is zero, B2 = 0, and there is only a
mode-1 solitary wave in T ≤ 0, that is,

B1 = a sech2(K(X − VT)), V = aν1b

3
= 4K2λ1b, B2 = 0. (2.25)

3. Typical behaviours

We consider a density-stratified three-layer fluid model as in Liu et al. (2019a), where
we found that the generated mode-2 wave amplitude is quite sensitive to the pycnocline
thickness and the topographic slope. With this same three-layer fluid model, we choose
suitable expressions for the depth profile h(x) and the layer depths h1 and h2. Two depth
profiles are set with distinct topographic gradients:

h(x)gentle = 425 − 75 tanh (5 × 10−4x) (m) (3.1)

and
h(x)steep = 425 − 75 tanh (2 × 10−3x) (m). (3.2)

Each represents a smooth transition from a deep water depth of 500 m to a shallow water
depth of 350 m, with either a gentle (3.1) or a steep (3.2) slope, respectively. Note that the
origin of x is at mid-slope here. We have found that the combination of a near-surface and
a near-bottom pycnocline is a scenario favouring the generation of mode-2 waves (see Liu
et al. 2019a). Three cases of the top and middle layer thicknesses are chosen for each of
the gentle (3.1) and steep (3.2) slope cases (see table 1). The densities in each layer are
ρ0 −Δρ, ρ0 and ρ0 +Δρ, respectively. The density stratifications are chosen to be close
to common oceanic conditions and to capture the complete range of responses expected
from an incident mode-1 wave.

Figure 1 shows the set-up of this three-layer fluid model with different depth profiles and
pycnocline thicknesses. For cases A and B, initially there is a mode-1 depression solitary
wave, with a polarity change for case B, while for case C, initially there is a mode-1
elevation solitary wave. In the following subsections we present the wave evolution results
for both the coupled KdV system (§ 2.4) and for comparison the KdV evolution for the
mode-1 wave alone with no topographic coupling (§ 2.1), in each of these six different
situations. The magnitude of the initial mode-1 solitary wave amplitude is 5 m, either
depression or elevation. Resonant coupling is expected to be significant when the range
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Case h1 h2 h3 h3 hgentle hsteep
off-shelf on-shelf slope width slope width

A 120 80 300 150 8000 2000
B 84 180 236 86 8000 2000
C 24 300 176 26 8000 2000

TABLE 1. The layer depths (in metres) of the three-layer flow for the depth profiles hgentle and
hsteep of (3.1) and (3.2). The slope width is defined as the position where the argument of tanh in
(3.1) and (3.2) is 4.
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( f )

(c)

(d ) (e)

FIGURE 1. Set-up of the three-layer fluid model with depth profiles given by ((3.1), (3.2)).
(a–c) Gentle slope and (d–f ) steep slope. For layer thicknesses: (a,d) A; (b,e) B; (c, f ) C.

over the topography of the speed ratio c2/c1 remains close to unity for a significant portion
of the slope. The examples below show progressively stronger coupling since the distance
above the topography over which the speed ratio lies near to unity increases from each
case to the next.

3.1. Case A: weak resonant coupling (initial depression wave)
In case A the middle layer thickness (h2) is thin and the lower layer (h3) is thicker
than half of the middle layer (h2/2) in the whole slope–shelf region. The incident
mode-1 wave is thus a depression solitary wave. Figure 2 shows the coefficients of the
coupled KdV ((2.23), (2.24)) model, with the upper and lower rows corresponding to the
set-up hgentle and hsteep (figure 1a,d), respectively. The ratio c2/c1 is consistently small
(covering the range from 0.42 (ocean edge) to 0.48 (shelf edge)). All the parameters
are in the same range except for hT , which is 4 times larger in the steep slope set-up
so the forced terms in ((2.23), (2.24)) are proportionally strengthened as in Liu et al.
(2019a).

Figures 3 and 4 show the wave evolution under the gentle and steep slope set-ups,
respectively, using the coupled KdV system for both mode-1 and mode-2 and the KdV
model for mode-1 alone. When the incident mode-1 wave encounters the slope, a mode-2
wave is generated propagating with a speed approximately c2 that is much smaller than
the mode-1 linear wave speed c1, and so in the mode-1 coordinate system this generated

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

82
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.829


908 A2-10 Z. Liu, R. Grimshaw and E. Johnson

–2 2

(×104)

(×10–3) (×10–3)

(×104)x (m) x (m)
0

0

0

0

0
–0.01

0.01
0.02
0.03

0.5

1.0

1.5
c1

c2

ν1

ν2

ν1

ν2

c1

c2

–0.02

–1

–2

2.0

1.5

2.5

5000

10 000

–0.04
–0.06h

T
 (m

 s
–1

)
Δ

 (
m

 s
–1

)
λ

 (m
3 

s–1
)

ν
 (

s–1
)

γ
 (

m
–1

)
c

 (m
 s

–1
)

0

0

0

0
–0.01

0.01
0.02
0.03

0.5

1.0

1.5

–0.1

–1

–2

2.0

1.5

2.5

5000

10 000

–0.2

–2 20

–2 20 –2 20

–2 20 –2 20

–2 20 –2 20

–2 20 –2 20

–2 20 –2 20

(b)(a)

(d)(c)

( f )(e)

(h)(g)

( j)(i)

(l)(k)

λ1 λ1

λ2 λ2

FIGURE 2. Case A. Coefficients of the coupled KdV ((2.23), (2.24)) model: (a,c,e,g,i,k)
gentle slope and (b,d, f ,h,j,l) steep slope.

mode-2 wave travels to the left. Figures 3(d) and 4(d) show the final state in this simulation
where both the waves arrive at the shallow-water region. For the mode-1 wave, wave
fission is starting to occur. There is no significant distinction between the two different
topographic gradients. The feedback of the generated mode-2 wave on the incident mode-1
wave is too small to be seen. The generated mode-2 waves are convex, with an amplitude
of 0.3 m in the gentle case and 1.2 m in the steep case, directly proportional to the change
in the slope gradient.

3.2. Case B: moderate resonant coupling (polarity change for mode-1 wave)
In case B (see figure 1b,e), the middle layer thickness is larger, and the upper and lower
pycnoclines are much closer to the surface and bottom. The lower layer (h3) before the
slope is thicker than a half of the middle layer (h2/2), but thinner after the slope, and so
a polarity change occurs for the incident mode-1 wave that is initially a depression wave.
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FIGURE 3. Case A. Wave evolution under the KdV (2.1) and coupled KdV ((2.23), (2.24))
model for gentle slope gradient with an initial depression mode-1 solitary wave. (a,c) Mode-1
and mode-2 wave evolution under the coupled KdV system. (b) Mode-1 wave evolution under
the KdV equation. (d) The final state under simulation for these waves.
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FIGURE 4. Case A. As in figure 3 except that the topographic slope is steeper.
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FIGURE 5. Case B. Coefficients of coupled KdV ((2.23), (2.24)) model: (a,c,e,g,i,k) gentle
slope and (b,d, f ,h,j,l) steep slope.

Figure 5 show the parameters and coefficients of the coupled KdV system. For this thicker
middle layer the range of the speed ratio c2/c1 is from 0.58 (ocean) to 0.72 (shelf). The
nonlinear coefficient ν1 of the mode-1 wave passes through the critical value 0 at x = 0
on the slope, and ν2 is now negative in contrast to case A. The relative mode-2 wave speed
Δ is smaller, so the distance between the incident mode-1 wave and the generated mode-2
wave is less over the same time interval. The coupling parameter γ increases around
10 times while ∂h/∂T remains almost the same as in case A, and so coupling is
considerably enhanced in this case B.

Figures 6 and 7 show the wave evolution for the gentle and steep slope set-ups
(figure 1b,e), respectively. The incident mode-1 changes polarity on the slope region,
and in the KdV model we see an emerging rarefaction wave in the front followed by
an undular bore (see figures 6b,d and 7b,d). However, in the coupled KdV system, the
mode-1 wave evolution is now significantly affected by the generated mode-2 wave. It
changes polarity much faster with an elevation wave in the front and a depression wave
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FIGURE 6. Case B. As in figure 3 except that the layer thicknesses are different.

at the back. The generated mode-2 wave is now a concave shape, because of the opposite
sigh of ν2 compared to case A. When the topographic gradient increases, the amplitude of
the generated mode-2 wave increases, which leads to a greater influence on the mode-1
wave. We see that the elevated (depressed) part in figure 7 is much smaller (larger) than
in figure 6. Here, the mode-2 wave propagates faster, so it takes longer to reach the same
distance from the mode-1 wave compared to case A.

3.3. Case C: strong resonant coupling (initial elevation wave)
In case C (figure 1c, f ), the middle layer thickness increases further, so the upper and lower
pycnoclines are very close to the surface and bottom, with the lower layer thickness (h3)
thinner than a half of the middle layer (h2/2) all through. The incident mode-1 solitary
wave is now an elevation wave. Figure 8 shows the parameters and coefficients of the
coupled KdV equations ((2.23), (2.24)). The mode-2 and mode-1 linear phase speeds
are very close after the slope, the shelf edge value of the ratio is greater than 0.9 and
so c2 ≈ c1. The nonlinear coefficients ν1 and ν2 stay positive and negative, respectively,
indicating an elevation mode-1 wave and a concave mode-2 wave. The relative speed Δ
of the generated mode-2 wave is approximately 0 after the slope, so the gap between
mode-1 and mode-2 remains almost unchanged after crossing the slope region. The value
of γ grows significantly by 100 times compared to case A, while ∂h/∂T does not change
significantly, and so the coupling term is much stronger giving strong resonant coupling.

Figures 9 and 10 show the corresponding wave evolution under these gentle (3.1) and
steep (3.2) set-ups with now a very thick middle layer. The incident elevation mode-1 wave
fissions in the KdV model (see figures 9b,d and 10b,d) and the number of the generated
solitary waves in the steep slope case are fewer than in the gentle slope case. For resonant
coupling, amplitudes of the generated mode-2 wave are much larger, comparable to the
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FIGURE 7. Case B. As in figure 6 except that the topographic slope is steeper.

incident mode-1 wave or even larger (see figures 9c,d and 10c,d), while the mode-1 wave
evolution is suppressed by the generated mode-2 wave with a much smaller leading wave
followed by a downward wave tail (see figures 9a,d and 10a,d).

4. The general qualitative behaviour

The three cases of § 3 establish the range of behaviours that occur when resonant
interactions become significant. To assess the prevalence of these behaviours, further
simulations over a wider range of topographic slopes and layer thicknesses were
performed. These simulations can be placed into one of three qualitative classes,
‘depression’, ‘polarity change’ and ‘elevation’, based on the closeness of the mode-1
evolution to that in cases A, B and C, shown in figures 11 and 12 as blue for ‘depression’,
red for ‘polarity change’ and green for ‘elevation’.

In figure 11 the topographic slope varies but the background stratification profiles (layer
thicknesses) are the same as in cases A, B and C. The flow evolution is the same as in
the respective cases and the behaviours agree with those from the three detailed cases:
with the layer thicknesses fixed the mode-2 wave amplitude grows when the slope width
decreases, i.e. the gradient increases, and the rate of growth increases with decreasing
slope width. The maximum mode-2 wave amplitude is inversely proportional to the slope
width entering through the topographic slope ∂h/∂T in the coupling term. For fixed slope
width, the mode-2 wave amplitude changes significantly due to the changes in stratification
as in § 3. The evolutions of § 3 show also that the amplitude of the transmitted mode-1
waves is relatively insensitive to the width of the slope region.

Figure 12 shows the connection between mode-2 wave amplitude and stratification.
The slope is either gentle (3.1) or steep (3.2) and only the layer thicknesses are altered.
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FIGURE 8. Case C. Coefficients of coupled KdV ((2.23), (2.24)) model: (a,c,e,g,i,k) gentle
slope and (b,d, f ,h,j,l) steep slope.

For the layer thicknesses in the on-shelf region, since h3 is marginally greater than h1
(by 2 m), the evolution of the incident mode-1 wave depends on the value of the ratio
h2/h3. If h2/h3 < 1 (blue in figure 12) then the lower layer is uniformly thicker than
the middle layer and so the mode-1 wave remains a wave of depression, as in case A.
If 1 < h2/h3 < 3.25 (red in figure 12) then the lower layer is thicker than the middle
layer off-shelf but thinner on-shelf and so the mode-1 polarity changes, as in case B.
If h2/h3 > 3.25 then the lower layer is uniformly thinner than the middle layer and the
mode-1 wave remains a wave of elevation, as in case C. The mode-2 wave generation
and mode coupling in any given simulation depend on the cumulative effect on the ratio
c2/c1 of the whole range of layer thicknesses over the slope, but for definiteness the
results are plotted as a function of the ratio h2/h1 ≈ h2/h3, the layer thicknesses in the
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FIGURE 9. Case C. As in figure 3 except that the layer thicknesses are different.
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FIGURE 10. Case C. As in figure 9 except that the topographic slope is steeper.
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FIGURE 11. The maximum mode-2 amplitude (B2) for different topographic gradients for the
stratification (layer thicknesses) of cases A, B and C. The points with white crosses represent the
cases with the same slope width and stratification in § 3.
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FIGURE 12. The maximum mode-2 amplitude (B2) for different stratifications for gentle (3.1)
and steep (3.2) slopes. The top layer thickness (h1) is close to that of the bottom (h3) on the shelf
so the ratios (h2/h1, h2/h3) can be treated as equal. The descriptions ‘depression’, ‘polarity
change’ and ‘elevation’ refer to the evolution of the incident mode-1 wave.

on-shelf region. The maximum mode-2 wave amplitude increases as the layer thickness
ratios h2/h1 and h2/h3 grow. As the middle layer thickness increases, the behaviour moves
from that of case A to that of case B and then that of case C. The growth rate increases
rapidly with increasing h2/h1 for case A and B behaviour as both the lower and upper
limits of the range of c2/c1 increase. For case C flows, the lower limit decreases as h2/h1
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increases, while the upper limit increases. The combined effect of γ , speed ratio c2/c1
and slope gradient ∂h/∂T means that the forcing, although stronger than in case A and
B flows, does not increase with h2/h1. More importantly, for these flows the relative
speed Δ, which decreases as h2/h1 increases, is small. Linear generation, as described
in § 2.3, would continue the trend of the case A and B flows and the generated wave
would be arbitrarily large. In the coupled KdV system nonlinearity limits the size of
this near-resonant response. As noted in the discussion of case C, dispersive effects then
lead to fission of the generated larger-amplitude mode-2 wave. The amplitude plotted in
figure 12 is that of the leading mode-2 after fission and so does not capture all the incident
energy transferred into mode-2 disturbances. This can be seen in the neighbourhood of
h2/h1 ≈ 4 in figure 12. More energy is transferred to mode-2 than for smaller values
of h2/h1 but nonlinearity and dispersion split the disturbance into separate waves with
the leading wave having smaller amplitude than the single wave generated for smaller
h2/h1.

The largest amplitude generated mode-2 waves from resonant interactions are concave
waves generated by incident elevation mode-1 waves: the combination of a near-surface
and near-bottom pycnocline gives both a large range for the ratio c2/c1 over the slope and
values of c2/c1 near unity. In agreement with figure 11, for a given value of the ratio h2/h1
the mode-2 amplitude over a steep slope is greater than that over a gentler slope.

5. Summary and discussion

In this paper we have extended the study of Liu et al. (2019a) for the generation
of mode-2 internal waves when a mode-1 internal solitary wave encounters variable
topography to the case when there is resonant coupling of the two modes, defined as when
the speed ratio c2 ≈ c1. In this resonant regime the linearised theory of Liu et al. (2019a),
in which the mode-1 wave forces a mode-2 wave, is replaced by coupled KdV equations
((2.23), (2.24)) which allow for feedback from the generated mode-2 wave to the incident
mode-1 wave. Three representative cases (A, B and C) have been examined in detail using
a three-layer fluid system with different layer thicknesses with each case containing two
subcases of gentle and steep topographic slopes. Subsequent simulations could then be
classified according to their closeness to these three typical cases. Table 1 and figure 1
show the profiles of the three-layer set-up; total depth before and after the slope is fixed;
the layer thicknesses (h1, h2, h3) are varied, so that the pycnoclines become closer to the
top and bottom, which leads to c2 ≈ c1 (Liu et al. 2019b).

The response is determined by the range over the topography of the ratio c2/c1 which
is from 0.42 at the ocean edge of the slope to 0.48 at the shelf edge for case A, from 0.58
(ocean) to 0.72 (shelf) for case B and from 0.44 (ocean) to 0.92 (shelf) for case C. The
coupling parameter γ in the coupled KdV system consequently increases around tenfold
from case A to case B and then again to case C, while the speed Δ of mode-2 relative to
mode-1 approaches 0 as the speed ratio c2/c1 increases. In all cases we set the amplitude
of the incident mode-1 wave to be 5 m. In cases A and B, initially it is a depression
wave, while in case B, polarity change happens when the mode-1 wave encounters the
topographic slope, and in case C, initially it is an elevation wave. This can be seen from
the variation of the nonlinear coefficients in the coupled KdV equations. (i) In figure 2
(case A), for the mode-1 wave, ν1 is negative throughout, and the nonlinear coefficient of
the mode-2 wave ν2 has the opposite sign. Hence we have a depression mode-1 wave with
a convex mode-2 wave. (ii) In case B (figure 5), ν2 is negative, but ν1 changes sign from
negative to positive, indicating that polarity conversion occurs for the mode-1 wave, and
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the mode-2 wave is concave, although a convex mode-2 wave appears momentarily when
the mode-1 wave first comes up against the slope. (iii) The last case is quite different from
case A: ν1 is positive and ν2 is negative, so the initial incident mode-1 wave is an elevation
wave and then generates a concave mode-2 wave after interaction with the continental
slope.

The magnitudes of the amplitudes of the generated mode-2 waves increase (from 0.3
to 10 m) when the range of the ratio c2/c1 and/or the topographic slope grow, which is
consistent with Liu et al. (2019a). The mode-2 wave amplitude is proportional to the slope
gradient (∂h/∂T) with a fixed range of speed ratio (the layer thicknesses are fixed). As
the generated mode-2 wave amplitude becomes larger, its effect on the incident mode-1
wave is enhanced, either promoting or suppressing the evolution of the mode-1 wave; see
cases B and C. This can be clearly seen when comparing the resonant coupling mode-1
wave profile with the wave shape under the KdV model where there is no coupling; see
figures 3(b,d), 4(b,d), 6(b,d), 7(b,d), 9(b,d) and 10(b,d). Also when c2 ≈ c1, the relative
speedΔ ≈ 0, so the distance between the generated mode-2 wave and the incident mode-1
wave is very close, enhancing the feedback.

The discussion in § 4 of the maximum mode-2 wave amplitude for a wide range of slopes
and stratifications reveals the dependence on topographic slope ∂h/∂T and the parameter
γ in addition to the importance of the range of values over the slope of the ratio c2/c1. The
most conducive conditions for resonant mode-2 wave generation are a near-surface and
near-bottom pycnocline and steep topography, giving concave mode-2 waves. To date most
observed mode-2 waves are convex as the background stratifications for the observations
tend to be those on which mode-1 waves of depression are more common than those of
elevation. Further, most oceanic pycnoclines are thin and so are more likely to support a
convex rather than a concave mode-2 wave. Another possibility, beyond the scope of the
current analysis, is that the larger concave mode-2 waves are unstable and thus difficult to
observe. The mode-2 convex waves in the present analysis that appear when h2/h1 ≈ h2/h3
is small are of negligible amplitude due to the middle layer being too thin to be treated as
a fully three-layer fluid and so not providing the background for a mode-2 wave.

The circumstances when resonant interactions occur are not commonly observed, and in
most cases the non-resonant theory of Liu et al. (2019a) applies and only small-amplitude
mode-2 waves will be found. The results here show nevertheless that it is not necessary
to be precisely at resonance to generate significant mode-2 wave amplitudes and feedback
onto mode-1. Although the results here are for a three-layer model, the key parameter is
the range over the slope of the speed ratio c2/c1 which can be readily found for any density
stratification. Mode-2 wave amplitudes are larger when the topographic slope is steeper,
indicating that a combination of near resonance and steep topographic slope should lead
to significant mode-2 generation.

The general results indicate that resonant coupling of two modes by topography
tends to generate large concave mode-2 waves from either an incident elevation mode-1
wave or a depression mode-1 wave through polarity change, and convex waves with
considerable amplitude compared to an incident depression mode-1 wave. However, many
other unrelated mechanisms, like tidal forcing and frontal intrusions, are candidates for
generating these waves and, in particular for convex mode-2 waves, will certainly be
more relevant in some locations. Yang et al. (2009) summarised five potential generation
mechanisms for mode-2 waves, three of which involved mode-1 waves through breaking
instability, reflection and interaction with topography (a sill), while two were a gravity
current intrusion and flow over negative topography. Their observations of mode-2 internal
solitary waves on the continental slope of the northern South China Sea also indicated that
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mode-2 waves showed notable seasonal variations: in summer, 90 % of observed mode-2
waves appeared after mode-1 waves, but only 28 % in winter. They noted that mode-2
waves in summer may be related to the shoaling process of a mode-1 internal solitary wave
or internal tide (an internal wave with tidal frequency), while mode-2 wave generation
in winter could be due to density variations. Even at the same location, the generation
mechanism for mode-2 waves can have seasonal differences.
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