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Orbital Free Entropy
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Dedicated to Professor Dan-Virgil Voiculescu on the occasion of his 70th birthday

Abstract. We investigate the concept of orbital free entropy from the viewpoint of the matrix liberation
process. We will show that many basic questions around the definition of orbital free entropy are
reduced to the question of full large deviation principle for the matrix liberation process. We will also
obtain a large deviation upper bound for a certain family of random matrices that is essential to define
the orbital free entropy. The resulting rate function is made up into a new approach to free mutual
information.

1 Introduction

This paper is a sequel to our previous one [29] on the matrix liberation process and
is devoted to explaining how the matrix liberation process is connected to the orbital
free entropy yorp. Here, the negative of orbital free entropy can be regarded as a pos-
sible microstate approach to mutual information in free probability.

The key concept of free probability theory, initiated by Voiculescu in the early
80s, is the so-called free independence, which is a kind of statistical independence.
Voiculescu then discovered around 1990 that the large N limit of independent (suit-
able) random matrices produces freely independent non-commutative random vari-
ables. In the 90s, in order to understand the notion of free independence deeply,
Voiculescu introduced and studied several notions of free entropy (the microstate
and the microstate-free ones), which are both analogs of Shannon’s entropy and ex-
pected to agree. Then these notions of free entropy were further studied by Biane,
Guionnet, Shlyakhtenko, and many others from several viewpoints, including large
deviation theory and optimal transportation theory. (See [31] for early history on free
entropy.)

On the other hand, the information theory suggests that we introduce a free prob-
ability analog of mutual information that should characterize the freely independent
situation as a unique minimizer. The main difficulty in such an attempt is the lack of
free probability analog of relative entropy, and thus a completely new idea was (and
probably still is) necessary. It was also Voiculescu [30] who first attempted to develop
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494 Y. Ueda

the theory of mutual information in free probability. His approach is based upon
the liberation theory that he started to develop with the microstate-free approach to
free entropy. The most important concept in the liberation theory is the liberation
process, a natural non-commutative probabilistic interpolation between given non-
commutative random variables and their freely independent copies. Voiculescu’s idea
of liberation theory is completely non-commutative in nature, and has no origin in
the classical probability theory. Hence, the liberation theory is quite attractive from
the view point of noncommutative analysis.

Almost a decade later, we introduced, in a joint work [15] with Hiai and Miyamoto,
the second candidate for mutual information in free probability, which we call the
orbital free entropy, and its definition involves the adjoint actions of Haar-distributed
unitary random matrices to the matrix space M3/ of N x N self-adjoint matrices and
follows the basic idea of microstate approach to free entropy. (Some considerations
looking for better variants of orbital free entropy were made by Biane and Dabrowski
[5], and a direct generalization dropping the hyperfiniteness for given random multi-
variables was then given by us [27].) The liberation process is exactly the large N limit
of the matrix liberation process introduced in [29], and its “invariant measure” (or its
limit distribution as time goes to oo) exactly arises as the “distribution” of the adjoint
actions of Haar-distributed unitary random matrices. Thus, it is natural to consider
the matrix liberation process for the conjectural unification between Voiculescu’s ap-
proach and our own to mutual information in free probability.

As a very first step, we proved in [29], following the idea of [4], the large devia-
tion upper bound with a good rate function that completely characterizes the corre-
sponding liberation process as a unique minimizer. The next ideal steps on this line
of research should be: (1) proving the large deviation lower bound with the same rate
function, (2) applying the contraction principle to the resulting large deviation up-
per/lower bounds at time T = oo, and (3) identifying the resulting rate function with
Voiculescu’s free mutual information.

In this paper, we will mainly work on item (2). As a consequence, we will clarify
how the matrix liberation process might resolve several technical drawbacks around
the definition of orbital free entropy. As another consequence, we will get a large
deviation upper bound result by applying the established contraction principle at
T = oo to the one for the matrix liberation process in our previous paper [29]. We
will then make the resulting rate function up into a new microstate-free candiadate
for free mutual information. Items (1) and (3) are left as sequels to this paper.

The precise contents of this paper are as follows. Sections 2 and 3 are preliminaries,
and Sections 4, 5, and 6 form the main body of this paper. The subsequent sections
concern related materials.

In Section 2, we will give one of the key technical lemmas. It is about the long time
behavior of the large N limit of the logarithm of the heat kernel on U(N) divided by
N2, This seems to be of independent interest. Then we will give a slightly modified
definition of orbital free entropy in Section 3.

In Section 4, building on the previous work [29], we will prove that any large de-
viation upper or lower bound with speed N? for the matrix liberation process start-
ing at several given deterministic matrices, say &;;(N), with limit joint distribution
implies the corresponding one with the same speed for the corresponding random

https://doi.org/10.4153/50008414X20000048 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X20000048

Matrix Liberation Process. 11 495

matrices Uz(vi 3 i(N) Uz(vi )* with independent Haar-distributed unitary random ma-

trices UI(\; ). This explicitly relates the matrix liberation process to the orbital free en-
tropy. Combining this with the main result of [29], we will obtain a large deviation
upper bound for UI(\Ji) &ii(N) Uz(vi) -

In Section 5, we will investigate the resulting rate function for the random ma-
trices U](Vi )Ei i(N )U](\; )* in some detail; we will prove that it admits a unique min-
imizer, which is precisely given by freely independent copies of the initially given
non-commutative random multi-variables. This fact supports the validity of full large
deviation principle with speed N and the same rate function for UI(\; Vg, (N )Uz(\; ),
because this unique minimizer property also follows from the conjectural full large
deviation principle as well as the fact that the orbital free entropy completely charac-
terizes the free independence (under the assumption of having matricial microstates).
Moreover, this unique minimizer property suggests that the rate function can be re-
garded as a possible microstate-free candidate for free mutual information, and hence,
that the rate function ought have to have a coordinate-free fashion.

In Section 6, we will give such a coordinate-free formulation. The coordinate-free
formulation will be shown to be a quantity for a given finite family of subalgebras
in a tracial W*-probability space that satisfies a desired set of properties (see Sub-
section 6.7) that any kind of free mutual information has to satisify, and, of course,
Voiculescu’s does.

In Section 7, we will explain how the proofs given in the previous paper [29]
also work well for several independent unitary Brownian motions with determin-
istic matrices (which are assumed to have the large N limit joint distribution) and
compare its consequences with the corresponding results on the matrix liberation
process. In Section 8, we will give an explicit description in terms of free cumulants
for the conditional expectation of the (time-dependent) liberation cyclic derivative
Ex(r) (n?(HS(QS(k)P))) (see Section 4 for the notation), which is the most essential
component of the rate function. The description is a complement to a rather ad-hoc
computation made in Section 5. Finally, in the Appendix, we explain some basic facts
on universal free products of unital C*-algebras for the reader’s convenience.

Glossary

* | - | denotes the operator norm.

e My > Mj} denote the N x N complex matrices and the N x N self-adjoint
matrices. For each R > 0, (M37) g denotes the subset of A € M3 with |Af e < R.

o Try denotes the usual (i.e.,, non-normalized) trace on My, and try does its nor-
malized one. We consider the Hilbert-Schmidt norm |A| ys := \/Try(A*A) on
My. It is known that M} equipped with || — | s is naturally identified with the
N?2-dimensional Euclidean space RY *. Thus, My = M58 +/~1M3¢ equipped
with | = || gs is also naturally identified with the 2N*-dimensional Euclidean
space R2V =RV g RN’

» U(N) denotes the N x N unitary matrices equipped with the Haar probabil-
ity measure vy; n.b., the symbol vy differs from the one yy(yy in [15], [27].
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A Haar-distributed N x N random unitary matrix means a random variable
with values in U(N'), whose probability distribution measure is exactly vy.

» TS(A) denotes the tracial states on a unital C*-algebra A. For a given subset
X of a W*-algebra, we denote by X" its closure in the o-weak topology (i.e.,
the weak™ topology induced from the predual). For a unital *-homomorphism
m: A — B between unital C*-algebras, n*: TS(B) - TS(A) denotes the dual
map ¢ € TS(B) » gome TS(A).

» For a random variable X in the usual sense, E[ X] denotes the expectation of X.
Moreover, for a random variable Y with values in a topological space, we write
P(Y € A) = E[14(Y)] for any Borel subset A; this is the distribution measure
of Y. Here, 1, denotes the indicator function of A.

Remark on Part |

We have investigated the matrix liberation process E°(N) starting at deterministic

B(N) = (8:(N))i with £4(N) = (§;(N))1}) € (M32)". Here, we remark that
r(i) = oo is allowable; namely, each E;(N) can be a countably infinite family of N x N
self-adjoint matrices, and all the results given in Part I still hold true in this more
general situation without essential changes. In fact, we only need to change the metric
d on the continuous tracial states TS(Cx(Xeo())) (see Subsection 4.3) as follows.
Let W, be all the words of length not greater than € in indeterminates x;; = x;; with
1<i<n+1,1< j< € (remark this restriction on j, which guarantees that W, is a
finite set), and we define

(L1 d(m,12) =), Z max sup
-~ :1 om+e weW, (te.te)€[0,m]¢

X (|T1(W(t1,. ey tg)) - Tz(W(tl, ey te))| A 1)

for 71,75 € TS*(Cj(xeo(-++))). Here, w(ti,..., ;) is constructed by substituting
iy (tr) for x;,j, in a given word w = x;,j, -~ x;,,j,, with &' < €.

Added in proof We have further investigated the rate functions in this paper after its
submission. As one of its simple consequences, we confirmed that I },‘;’ (1) =1 },‘;’ T)

certainly holds if Ig‘f(‘r) < +oo (see Subsection 4.6 for the notation). We will give
those details elsewhere.

2 The Long Time Behavior of the Large N Limit of the Heat Kernel
on U(N)

In this section, we will investigate the long time behavior of the large N limit of the
logarithm of the heat kernel on U(N) by utilizing a recent work on the Douglas
and Kazakov transition due to Thierry Lévy and Maida [21] (based on Guionnet and
Maida’s work [14]) as well as Li and Yau'’s classical work on parabolic kernels [22]. The
consequence (Lemma 2.1) will play a key role in Section 4 to establish the contraction
principle at time T = oo for large deviation upper/lower bounds with speed N? for
the matrix liberation process E'* (N).
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Consider U(N) as a Riemannian manifold of dimension N by the inner product
on the corresponding Lie algebra u(N) = /-1M3:

(X|Y):=-NTry(XY), X,Yeu(N).

Let Ric be the Ricci curvature associated with this Riemannian structure. It is known,
by e.g., [1, Lemma E.27], that

N
Ric(X, X) = E((X | X) = (X | A/N)V-1Iy)*) 20
for every X e u(N).
Let pn,+(U) be the heat kernel on U(N) with respect to this Riemannian structure
as in [21, section 3.1]. Looking at the Fourier expansion of py ; (see e.g., [21, Eq. (21)]),
we observe that
max U)= I
UeU(N)pN"( ) = pn.e(In)
holds for every t > 0. Recall that py(U) = pn(U, Iy, t/2), where py(U, V, 1),
U,V € U(N), t > 0, is a unique fundamental solution of the heat equation d;u =
Au with the Laplacian A on U(N) equipped with the above Riemannian structure.
See e.g., [10, p. 135] for the notion of fundamental solutions of heat equations. It is
well known (see e.g., [10, Theorem 1 in V.IIL.1]) that py is strictly positive. Since the
Ricci curvature is non-negative, as we saw before, we can apply Li-Yau’s theorem [22,
Theorem 2.3] to u(U, t) := pn(U, Iy, t) and obtain that

dn(Iy, U)z)

In I, et) < pn(U, Iy, )N 2
pn(Ins Ivset) < py (U, Iy, t)e N P exp ( 21— o)t

forevery t > 0,0 < e < land U € U(N), where dy(Iy, U) denotes the Riemannian
distance between Iy and U. Since maxyey(n) dn(In,U) = N7 (see e.g., the proof of
[20, Proposition 4.1]), the above inequality with ¢ = T/2 implies that

N%/2 _ (Nm)?
p.er(In)e¥ exp 2(1—s)T)
2 dn(I ,U)2
N?/2 _ YNUN
<pn,r(In)e exp( 72(1—5)T)
< pn,r(U)

forevery T > 0,0 < ¢ <1and U € U(N). Consequently, we have obtained that

2

Llo (I )+llo P —
Nz OBPNeTUN) TS I08E T T

1 1
< ﬁ lngN)T(U) < ﬁ logpN,T(IN)

forevery t > 0,0 < ¢ <land U € U(N). By [21, Theorem 1.1], it is known that

. 1 . 1
F(T):= dim ﬁlogPN,T(IN) = lim ﬁlog([}gj%)PN,T(U))
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exists and defines a continuous function on (0, +00). Thus, we have

1 m 1
F(eT) + Eloge— AT < AlrI—% ﬁlogPN,T(U)

1
< Al{l_r}lgo ﬁlogpN,T(U) <F(T)

forevery T > 0,0 < ¢ <land U € U(N). In particular, we obtain that

1 n 1
2.1 F(eT) + - loge — — 2 < lim — 1 i U
(2.1) (eT) + Jloge - = yp < lim o Og(Ugljl(IIl\])pN,T( )

< F(T)

forevery T >0and 0 < e <1

Assume that T > 7* in what follows. We need the complete elliptic functions of
the first kind and the second kind:

1 ds
K=K= | (- (1- k)

U [1-k%s
E:E(k) = A ﬁds

With T = 4K (2E - (1 - k*)K), [21, Propositions 4.2, 5.2] show that

KQE-(1-k»)K) 1 1 1 5
F(1) = K¢ (6 ) )+510 (Z(zE_(l_kz)K)z(l—k ))
. 2(1+k*)K . ((1-k*)K)?
32E-(1-k*)K) 12(2E-(1-k?)K)*’
Recall that
K =log 4 +0(1) = §log2— llog(l -k)+0(1)
Vi-k2 2 2

as k > 1-0 (see e.g, [8, p. 11]). This immediately implies that limy_,;_¢(1- k)*K =0
for any « > 0. We also have E = 1 at k = 1. By the well-known formulas dK/dk =
(E-(1-k*>)K)/(k(1-k?)) and dE/dk = (E - K)/k, 0 < k < 1 (see [8, p. 282]),
we have d(2E - (1- k*)K)/dk = (1- k*)dK/dk. Tt is clear that K is increasing in k.
Hence T is an increasing function in k. Then we observe that T — +oco if and only if
k - 1-0. Moreover, we have

_(E 2(1+k?)
F(T) = (5 T 30QE- (1- k)K)
_(E-1DK  2((1-K*)K* - (1-k*)K-2(E -1)K)
R 3(2E - (1- k?)K)

1
)K— %logz *3 log(1-k) +0(1)

3 1
+ (K— Elog2+ Elog(l— k)) +o(1)

_(E-1K  2((1-k*)K* - (1-k*)K-2(E -1)K)
T 3(2E - (1- k?)K) "

o(1)
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ask — 1-0. Since dE/dk = (E - K)/k, 0 < k < 1again, UHospital’s rule (see e.g.,
[26, Theorem 5.13]) enables us to confirm that limy_,,_o(E - 1)/(1 - k)"/? = 0, and
hence

: _ 1/2
lim (E- 1K = hm( 1/2 -(1-k)'*K) = 0.

(1-k )
Consequently, we get lim7_, .o, F(T) = 0.
Taking the limit of (2.1) as T — +o0, we have

1
Elogs< lim lim ng( mi(rzlv)pN’T(U))

T—+00 N—oo

< lim | tim, ﬁ log ( veun PN H(v))=0

for all 0 < ¢ < 1. Since ¢ can arbitrarily be close to 1, we finally obtain the next lemma,
which will play a key role in Section 4.

Lemma 2.1 With

1
L(T) = lim —1 i v)),
(T):= = Iim og ( ml(fllv)PN,T( )

U(T):= llm ﬁlog( max pN r(U)) = F(T),

we have
lim L(T) = hm U(T) =0.

T—+00
3 Orbital Free Entropy Revisited

Let 8 = (E;)74! with E; = (£;(N))nen be a finite family of sequences of (deter-

ministic) multl—matrlces such that each §;(N) = (E,J(N)):(’l), 1<i<n+l,ischo-

sen from ((M3#)g)") with r(i) € N U {oo} for some R > 0. We sometimes write
E = (E(N))neny with B(N) = ((f,](N))r( ))”+1 As in [29], we consider the univer-
sal C*-algebra C (x4 ) generated by x;; = x7;,1 <i < n+1, j > 1, such that | x;j|c <R
for all i, j, into which the universal unital *-algebra C(x.,) generated by the x;; = x};
is faithfully and norm-densely embedded. Similarly, we define C(x;,) — Ci{xis)
by fixing the first suffix i of generators. These universal C*-algebras are constructed
as universal free products of copies of C[-R, R], and each generator x;; is given by
the coordinate function f(t) = ¢ in the (i, j)-th copy of C[-R, R]. The above em-
bedding properties are guaranteed by Proposition A.4. The *-homomorphism given
by x;j = &;;(N) enables us to define tracial states tr*(N) € TS(Cy(xso)) as well as
tr¥5N) € TS(Ci(xio))s 1< i < n+1,by P = P(xe0) = trn(P(Es(N))) (n.b, this
notation differs a little bit from that in [29]). Remark that we can alternatively define
tr% () to be the restriction of tr2(N) to C(xis) (= Cji{xeo) faithfully by [6, The-
orem 3.1] with Lemma A.1). We also assume that each E;,1 < i < n+1, hasa
limit distribution as N — oco; namely, there exists a gp,; € TS(Cx{x;o)) such that
limy oo tr¥ () = g ; in the weak* topology. (This is the minimum requirement
for E to define yor(0 | E) below.) In what follows, we denote by T'Sgg,(Cr{xio))
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all the tracial states that arise in this way for a fixed 1 < i < n + 1. We also define
T Stda(Cg{Xeo)) similarly.

Let us introduce a variant of orbital free entropy, say yorn(0 | E) with o€
TS(Cx(Xeo)), which is essentially the same as the old one in [15, section 4] for
hyperfinite non-commutative random multi-variables.

Define

U= (U, e UN)" — tro™ € TS(Cp (x40 ))

by tri(N) =try oCDi(N), where (DIEJ(N): Ci(%eo) = My(C) is a unique *-homomor-
phism sending x;; (1 < i < n+1) to U;&;;(N)U; with U = (U;), and x4 to
&n+1j(N), respectively. Consider an open neighborhood O,,,5(0), m € N, § > 0, at o
in the weak* topology on TS(Cx(Xe.)) defined to be all the ¢’ € TS(Cx(Xeo)) such
that

0" (xiyj, - xi,5,) = 0 (iyj, - Xi,5,)| < O

whenever 1 < i <n+1,1< jx <m,1<k < p,and 1< p < m. Then we define
Xorv(0 | E(N);N,m, ) = logv?}"({U e U(N)" | tri(N) € Om)(s(O')}),

— 1 -
Xorb(0 | E3m, ) := p}lﬂo ﬁxorb(ala;N,m,é),

Xorb(0 | E) := ,}lj{}o Xorb(0 | Esm, §)
N0
with log0 := —oco. Remark that yom(0 | E) = —oo, if ¢ does not agree with g ; on
Cr{xio) for some 1 < i < n + 1. This is a natural property; see [17, Proposition 3.1] as
well as Remark 6.3.

We could prove in [15, Lemma 4.2] that yo.(0 | E) depends only on the given oy ;,
1< i < n+l,thatis, it is independent of the choice of &, when each tuple (x;; );i'l) pro-
duces a hyperfinite von Neumann algebra via the GNS construction associated with
09,i. However, we suspected that this is not always the case. Hence, in [27], in order to
remove the dependency of E, we took the supremum of xor, (0 | A5 N, m, ) all over
the tuples A of multi-matrices in place of E(N) to define yorb(Xy, . . ., Xp11) (see the
review below). Here, we will examine another simpler way of removing the depen-
dency. So far, we have only assumed that each E; has a limit distribution as N — oo,
that is, limy_co tr=(N) = 09,i. In what follows, we need the stronger assumption that
the whole E has a limit distribution as N — oo, that is, limy_, ., tr=®) = g,.

Letanother gy € TS(Cx(xeo)) be given in such a way that its restriction to Cx{x;o )
is 09,; for every 1 < i < n + 1. Then we define

B Yors(o | 00) :=sup {me(a 8) |8 = (E(V)) g Jim tr*V) = 00}.

We define it to be —oco if gy does not fall into TSt4a(Cx{Xes)). Remark that
Xorb (0 | E) is well defined in the above definition, since limy oo tr®(™) = g implies
that limy_, o, tr% (V) = gy ; for every 1 < i < n + 1. Moreover, taking the supremum all
over the possible approximations E to gy is motivated from the large deviation upper
bound for the matrix liberation process starting at E(N) [29] (see the next section),
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because the rate function that we found there is independent of the choice of approx-
imations E. We will prove two propositions, which suggest that yo.»(0 | 0o) should
be the same for a large class of gy.

We next recall the original orbital free entropy introduced in [27] (with a non-
essential modification [28, Remark 3.3]) in the current setting. Let 715: Cx(Xe0) ~ Hy
be the GNS representation associated with 0. Set X7 := mo(xi;), 1 < i < n+1,

j 2 1, and then write X{ = (Xf]):(ll), 1 < i < n+ 1. Remark that the joint distri-

bution of those X/, ..., X7, with respect to the tracial state on 77,(Cx(Xe0))” in-
duced from o is exactly 6. On the other hand, if we have uniformly norm-bounded

non-commutative self-adjoint random multi-variables X; = (X j);ill), v X =
(X,HU)ZSHI) ina W*-probability space (M, 7), i.e., X}; = X;jand R := sup; ; | Xij] o
< +oo, then we have a unique tracial state o(x,) € TS(Cg(Xeo)) naturally, that is,
a(x y(Xigjy - Xinin) = T(Xij - Xi,j.) for example. For any A = (A;)!] with

(Alj)r(l) € ((MIS\]H)R)r(i), 1< i< n+1, we define
XOrb(Xl)--~)Xn+1;A)Na m)6)

= log v}?}"({U e UN)" | trd € O o (0x))}):
%Orb(xl’ o ’X”“’l; N’ m, 8) = Sup XOrb(Xb e ,Xn+];A, Na m, 6))
A

_ — 1 _
Xorb(Xl)--')Xn+l;m) 6) = 1\}1_1}30 ﬁxorb(xl)--')xn+l;Na m, 8))

Xorb(Xb- .. >Xn+1) = nlllggo Xorb(Xla S STWH 8)>
N0

where trf} is defined in the same manner as the tri(N) above. Note that the above
definition clearly works even when r(i) = oo forevery1<i<n+1.

The next proposition suggests which approximating sequences Z are suitable to
define the orbital free entropy.

Proposition 3.1 We have

Xorb(a | 00) < Xorb(Xf’ X0,

and equality holds when o = 0y.

Proof Let & = (E(N))yen with &;(N) = (£;(N))/{), 1< i < n+1 beasin
definition (3.1). Clearly,

Xorb(0'| E;N’m’a):Xorb(Xi]h.. ZH;E(N),N,m,S)
< Xorb(xﬂ N Xn+1) N,m, 8)
holds for every N, m, and 8. This immediately implies yorb (0 | E) < Yorb (X, - - -, X511)-
Since & has arbitrarily been chosen, we obtain oro(7 | 0) < o (XY, X..).

We next prove the latter assertion. We can and do assume that yor, (X7, ..., X7,,)
> —oo; otherwise, the desired equality trivially holds as —co = —co by the first part.
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We can inductively choose an increasing sequence Ny in such a way that
Xorb(xij"' ﬂ+1’k l/k) k NZXOrb(Xg""’X‘nJJrI;Nk’ k; l/k)

<Aoo XD Xk 1/K) + =
holds for every k; hence

Xorb(Xf,...,XZH)—hm 2)(Orb(X‘T,.. , X513 Nk, k, 1/k).

For each k, one can choose A(Ny) = (A;(Ny))"! with A;(Ny) = (A,](Nk))r( )
((Mf\‘,‘k)R)'(’), 1< i< n+1,in such a way that

—00 < ¥ (XTs o> X0 5 N, k, 1/k) -1
<X0rb(Xf)-- n+1’A(Nk) Ni, k, l/k)

By definition, for each k there exists U(Ny) € U(Ny)" such that trGEN"; € O1/k(0).

With U(N) = (U(Nk))'L, we define B(N) = ((Bi;(Ni))' <)) 1! by

JUi(NQ)AG(N Ui (Ng)* (1<i<n),
i) = {Anﬂj(Nk)J (i=n+1).

Let & = (B(N))nen with B;(N) = (E,-j(N));(l), 1 < i < n+1, be the one cho-

sen at the beginning of this proof. (The existence of such a sequence follows from
Xorb (XY, ..., X%,,) > —o0; see e.g., [17, Lemma 2.1].) Define &’ = (E'(N)) ey by

B(N N = Nyg),
sy [BO0 (V=N
E(N) (otherwise).
Since
trE'(Nk) A(Nk)

U(Ny) € Ok,l/k(g))

it is easy to see that tr® (N) converges to o in the weak* topology on TS(Cx{Xeo))-
Since

S W A(N,

o =y U= (UL € U

for every k and since vy is invariant under right-multiplication, we observe that
Xorb (X, ..., X7, 3 A(Nk), Ni, k,1/k) = o (0 | "5 Ni, k,1/k)

for every k. Thus, for each m € N, § > 0, we have

Xorb(o' | E/;Nk,k,l/k) < Xorb(a | E';Nk,m,(S)
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for all sufficiently large k. Thus, for every m €N, § > 0, we obtain that

K X5) = 0 T (s X N 1
1
= hm ﬁ(xorb(xa"' n+1,Nk,k 1/k) —1)
< leTEO ﬁXorb(U | s N, m, 8)

hm Zxorb(a|u ;N,m, 9)

= Xorb(a | =5 m) 8)
Therefore, by taking the limit as m — oo, § \ 0, we have

Xorb (X7 X741) < Xorb (00 | g") < Xorb(0 | 0).

With the former assertion we are done. ]

Another natural choice of initial tracial state oy is available; the tracial state is de-
termined by making the resulting random multi-variables X{°, 1 < i < n + 1, freely
independent. The yor (0 | g9) with this choice of gy is nothing but an unpublished
variation of orbital free entropy due to Dabrowski, and the proposition below shows
that it turns out to be the same as our original yo. (XY, ...,X?,,) in [27].

Proposition 3.2 When the X{°,1< i < n+1, arefreely independent, then yor, (0 | 0¢)
o (X X5,

Proof By Proposition 3.1, we can and do assume that

Xorb(st .. ,XZH) > —00,
and it suffices to prove
Xorb(a | 00) > )(orb(‘7 | o) (: Xorb(XJ’ e ’XZH))'
Let £=(2(N))3y with E(N) = (£:(N))15, 8:(N) = (§;(N))) e (M3) ),
1< i < n+1, be such that limy_. tr™) = ¢ in the weak* topology. Choose an
independent family of Haar-distributed unitary random matrices VI\(]’), I<i<n It
is known (see i.e., [16, Theorem 4.3.1]) that VI\(,I), e VI\(,"), E(N) are asymptotically

free almost surely as N — oo and, moreover, that the subfamily A VI\(,") con

verges to a freely independent family of Haar unitaries in distribution almost surely
as N — oo too. Thus, thanks to the almost sure convergence, we can choose de-
terministic sequences V;(N), 1 < i < n, from random sequences VA(,'), 1<i<n
such that Vi(N), ..., V,(N), E(N) converge to the same family of non-commutative
random variables in distribution as N — oo. Define ' = (E'(N)){., with E'(N) =

(BH(N))EL EH(N) = (&,(N)) by

/ _JVI(N)&(N)VI(N)* (1<i<n),
ij(N) = {£n+1j(N) (i=n+1).
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Then the E{(N),1 < i < n + 1, are asymptotically free as N — oo. Therefore, we
conclude that limy_,c. tr® ¥) = gy in the weak* topology. Remark that

E'(N)

try E(N)

=Ty,

U= (U))Ly € UNY"

holds for every N. Therefore, thanks to the invariance of vy under right-multiplica-
tion, we conclude, as in the proof of Proposition 3.1, that

)(orb((7 | E) = Xorb(a | E,) < )Corb((7 | 00)-

Since E has been chosen arbitrarily, we are done. [ ]
The above proof suggests that
Xorb (0 [ 90) = Yorb (X7, -, X.1)

holds for a large class of tracial states 0 € T'Stga(Cg{(Xeo))-

4 Orbital Free Entropy and Matrix Liberation Process

Building on our previous work [29], we will clarify how some fundamental questions
concerning the orbital free entropy o are precisely reduced to the conjectural large
deviation principle for the matrix liberation process. Lemma 2.1 will play a key role
in what follows.

4.1 Non-commutative Coordinates

Let
Cr(%eo (1)) € Crlxes () ve())

be the universal unital C*-algebras generated by x;;(t) = x;j(¢)*,1<i<n+1,j>
Lt >0,and v;(t),1 < i < n, t >0, with subject to | x;j(t) [ < Rand v;(t)*vi(t) =
vi(£)vi(t)* =1 = v;(0). These universal C*-algebras are constructed as universal
free products of uncountably many C[-R, R] and C(T), and generators x;;(¢) and
u;(t) are given by coordinate functions f(¢) = tint € [-R,R]or g(z) =zinzeT
of component algebras. Proposition A.3 guarantees the inclusion of two universal
C*-algebras. Recall that j may run over the natural numbers N as we remarked at the
end of Section 1. The universal *-algebras C(xeo(+)) € C{xeo(+), ve(+)) generated by
the same indeterminates x;;(¢) and v;(t) can naturally be regarded as norm-dense
+-subalgebras of C;(xes(-)) € Ci{Xes(-),ve(+)), respectively. Proposition A.4 guar-
antees this fact. For each T > 0, the correspondence x;; = x;j(T),1<i<n+1,j>1,
defines a unique (injective) *-homomorphism 77: Cx{Xeo) = Ck{Xeo ()} with nota-
tion Ck(Xeo) in Section 3.

4.2 Time-dependent Liberation Derivative

We introduce the derivation
88V Clxa0 (1)) = Clxao () V() ®atg Clxao (), va ("))
(1< k < n,s>0), which sends each x;;(¢) to

80,0 (8) (xkj () vie(t = s) @ vie(t = 5)* = vie(t = 5) @ vie(t = ) xk(1)).
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Then we write @S(k) = 0085(k),1 < k < n,s > 0, where 0 denotes the flip-multiplication
mapping a ® b — ba.

4.3 Continuous Tracial States

A tracial state T on Cp(xe(-)) is said to be continuous if t — 7. (x;;(t)) is strongly
continuous for every 1 < i < n+1,j > 1, where 71,: C3(xes(-)) ~ J, is the GNS
representation associated with 7. We denote by T'S°(Cx(xeo(-))) all the continuous
tracial states. The space TS°(Cx(xeo(+))) becomes a complete metric space endowed
with metric d defined by (1.1), which defines the topology of uniform convergence on
finite time intervals.

4.4 Liberation Process 7° Starting at a Given Time

We extend a given 7 € TS(Cx{xeo(+))) to a unique T € TS (Cx(Xes(-),ve(+))) in
such a way that the v;(t) are *-freely independent of Cx(Xeo(+)) and form a *-freely
independent family of left-multiplicative free unitary Brownian motions under this
extension 7. This extension of tracial state can be constructed, via the GNS represen-
tation 71, Cj(Xeo(+)) ~ Hy, by taking a suitable reduced free product. We write

(N(7) € M(7)) := (m7(Cr{xeo ()" € m7(Cr{xeo () va()))")
on Hz, where 717 Cx{Xeo(+), Ve (-)) ~ Hz is the GNS representation associated with
7. Write x7;(t) := m#(x;;(t)) and v/ () := m7(vi()), and the canonical extension of
7to M(7) is still denoted by the same symbol 7 for simplicity. We denote by Ex(y) the
T-preserving conditional expectation from M(7) onto N(7), which is known to exist
and to be unique as a standard fact on von Neumann algebras. Consider an “abstract”
non-commutative process in Cg(Xeo (), ve(+))

vi((t=s)vO)xij(snt)vi((t-s)v0)" (1<i<n),
X1 (1) (i=n+1)
and the corresponding “concrete” non-commutative stochastic process in M( 1)
tr— xf; (£) = 7o (1))
it =s) vOo)xi(sat)vi((t-s)v0)* (1<i<n),
X (1) (i=n+1).
By universality, this process xf; (t) clearly defines a tracial state 7° € TS (Cx{xes(-)}).
By the *-homomorphism I': Cx(Xes(-)) = Ci(Xeo) sending each x;;(t) to x;j,
we obtain I'*(gy) = 09 o T € TS(Ck(xeo(-))) with a given gy € TS(Ck(Xeo)) and
set a® := T*(09)° € TS(Ci{xe0(+))) (I*(09)° is defined in the same way as 7° with

s =0), which we call the liberation process starting at oy (precisely its empirical
distribution).

t— xj(t) = {

4.5 New Description of 7°

By universality, we have a unique unital *-homomorphism IT*: Cx{Xeo(-), ve(-)) =
Cr{*eo(+), va(-)) sending x;;(t) and v;(t) to x;;(¢) and v;(t), respectively. By using
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this *-homomorphism, we obtain a unital *-homomorphism
77 0 I Cr (%o (), v (+)) = M(2),

that is,

s

Cilxeo ()72 ()) 2 Calxao () 7a()) > M(7)
(i (D vi(D) — (x5 (0vi(1)) — (<7 (0, vE(D)).

Then ﬂ?(Hs(i)gk)P)), P € C(xes(+)), becomes the element of M(7) obtained by
substituting (xf](t), vi(t)) for (x;j(t),vi(t)) in D) p. Moreover, we have 7° = T o
IT° on Ci{xeo(-))-

4.6 Rate Function

With 0y € TS(Cx(xeo)), we associate two functionals I.°, Ii° .
TS(Cr{xeo())) = [0,+00] as follows. For any 7 € TS (Cx{xeo(:)), P = P* ¢
C(xe0(-)) and t € [0, co], we first define

(41  I®

0o,t

(1,P) =7'(P) - 0" (P)
- ;ki:[ot | Exoy (T (@0 P))) |2, ds

regarding 7 as 7° (since 7/ (P) = 7(P) when t is large enough). Here, || — |7, denotes
the non-commutative L*-norm on the tracial W*-probability space (M(7),7). We
remark that the integrand in (4.1) agrees with that given in [29] (though their rep-
resentations are different at first glance), and moreover, that the integration above is

well defined even when t = oo, because @Ek)P = 0 when s is large enough. Then we

define
By s B(nD),
P=P*eC{xe0 ("))
>0
L (1) := sup I (1,P).

P=P*eC{xe0("))

Each of the functionals I },i;’, I},il’)oo is shown, in [29, Proposition 5.6, Proposition 5.7(3)]
(n.b., their proofs work well even for the modification I},i(')’)oo without any essential
changes), to be a well-defined, good rate function with unique minimizer. More-
over, the minimizer for both functionals is identified with the liberation process o}®
starting at gy for both functionals. Remark that the proofs of [29, Proposition 5.6,
Proposition 5.7(3)] do not use the assumption that gy falls into TS¢g,(Cx{Xeo)),
and thus the functionals I.°, Ii®  can be considered in the general setting. Remark
that I° (1) < Ii®(7) obviously holds, but it is a question whether equality holds
or not.

Here is a simple lemma, which can be applied to I = I},i:’ orl = Ig:”oo. Recall
that 717: C5{Xes) = Ci(Xeo(:)) is the unique injective *-homomorphism sending
each x;; to x;;(T). In the lemma below, we will use the map 77.: TS®(C* (xe0(-))) —
TS°(C*(xe0)) induced from 7r7; see the glossary in Section 1.
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Lemma 4.1 For any functional I: TS*(C*(xes(-))) = [0,+00], the new one
J: TS(C§{Xeo)) = [0, +00] defined by

J(0) = Jim Tim inf {I(z) | € TS(Ci{xus (), 75 (1) € O a(0))
INO
= sup Jim inf {I(r)| 7€ TS“(Ci{xe0 (), (1) € Oy (0)}

>0

for any 0 € TS(Ci(xes)) (with notation O,, s(0) in the previous section) is a well-
defined rate function, where TS(Cy(xes)) is endowed with the weak™ topology, and
the infimum over the empty set is taken to be +oo. Moreover, replacing O,, s(0) with
the closed neighborhood F,, s(0) in the above definition of ] () does not affect its value,
where F,, 5(0) is all the 0’ € TS(C3(xeo)) such that

|0J(xilfl "'xipjp) - a(xilfl “'x"pjp)| <4
whenever 1< iy <n+L1<jr<m,1<k<pandl<p<m.
Proof If m; <mjandd; > 8, >0, then Oy, 5,(0) 2 Oy, 5,(0) so that
Eoinf{l(r) | 7€ TS (Ci{Xeo(+))), 5(7) € Oy 5,(0) } <
ThEoinf{I(T) | 7€ TS (Cq{Xeo())), 3(T) € Oy 5,(0) }-

Therefore, taking lim,,_, s+ in the definition of J(¢) is actually well defined and
coincides with taking the supremum all over m € Nand § > 0.

We then confirm that ] is lower semicontinuous. Assume that ¢, — ¢ in
TS(Cx(Xeo)) as k = oo. Choose an arbitrary 0 < L < J(o). Then there exist m € N
and &, > 0 such that

Tlijrr:oinf {I(T) | 7€ TS (Cr{xeo(-))), my(7) € Omo,ao(ffk)} > L.

Then there exists ko € N such that if k > ko, then O, 5,/2(0k) S Opy,8,(0), and
hence

J(ok) > 7@oinf{l(f) | 7€ TS (Cr{xec (), 77(7) € Oy 5,12(0%) }
> Tim inf {I(r) | 7 € TS (Ci{eo (), 75(7) € Oy 5,(0)}
>L,

where the first inequality follows from the fact that lim,, 6.0 = sup,, 5 in the defi-
nition of J (o) as remarked before. Therefore, we obtain thatlim, __ J(ox) > L, which
guarantees that ] is lower semicontinuous.

Since O, 6(0) € Fiu.6(0) € O26(0), we have

inf {I(7) | 7 € TS (Ci{xes () ), 75 () € O s (a0) }
> inf {I(T) | 7€ TS (Ch{xeo (-)))s 73(7) € Fm,g(ak)}

> inf {I(T) | 7€ TS (Ch{xeo (-)))s 73(7) € om,za(ak)}

for every m € N and § > 0. This implies the last assertion. [ ]
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The above lemma clearly holds true even if limy-o is replaced with lim,___ in
the definition of J. We also remark that T'S(C5(xs.)) is weak* compact, and hence J
is trivially a good rate function.

4.7 Matrix Liberation Process
LetE(N) = ((E,J(N));Sl) " with &;;(N) € (M) bean approximation to a given
00 € TStaa(Cx(Xeo)). Let UI(Vi)(t), 1< i < n, be independent, left-increment unitary
Brownian motions on U(N'), and we define the matrix liberation process £ (N)(t)

= (8 (N)(1)),, £ 2 0, starting at E(N) by

. JuPmE TP () <i<n),
E'J!D(N)(t) = {anj(N)] (i=n+1).

Then, via the *-homomorphism 7z (y): Cx(Xeo(-)) = My determined by x;;(t) ~
fliijb(N)(t), 1<i<n+1,j>1t>0,weobtain a tracial state Tz () = try © 7gin (),
which falls into TS°(Ci{xes(-))). This tracial state is a random variable in
TS°(Cx{xeo(+))) in the ordinary sense, and hence we can consider the probability
P(7gm(y) € @) of any Borel subset @ € TS (Cx{(xes())). By [29, Theorem 5.8], we
already know that the sequence of probability measures P( gy € - ) satisfies the large
deviation upper bound with speed N* and the above rate function I},i;’.

4.8 Contraction Principle at T = oo

LetUy = (Uz(vl ) )", be an n-tuple of independent N x N unitary random matrices dis-
tributed under the Haar probability measure vy on U(N). The random tracial state

trIEJfVN) € TS(C;(xes)) is defined in the same manner as in Section 3. A well-known,
standard result on the heat kernel measure on U(N) implies that E[77.( 7z yy)(a)]
converges to ]E[trlEJiN) (a)]as T — oo for every a € Cj(xeo ). The usual method to ob-
tain the large deviation upper/lower bound with speed N for P(triqu) € -) from that
for P( 7z (yy € -) in the same speed is to show that (a kind of) the exponential con-
vergence of ﬂ;—v(TEIib(N)) to triiN) as T — oo (seei.e., [13, §4.2.2]). Nevertheless, we

will be able to prove the next proposition by utilizing Lemma 2.1 without establishing
the exponential convergence.

Proposition 4.2  Assume that the sequence of probability measures P(Tziv(yy € -)
satisfies the large deviation upper (lower) bound with speed N* and rate function I*
(resp. I"). Then P(tr;iN) € -) also satisfies the large deviation upper (resp. lower) bound
with speed N* and the following rate function:

J*(0) = lim_ Tim inf{I"(7) | 7€ TS (Calxuo(1))). 75 (7) € Oms(0)}
N0
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resp.

J (0):= hm lim inf{I (1) | 7€ TS (Cx{Xes(-))), m7(7) € Op,5(0)}

5\0 T—o0

for every g € TS(Cx{xeo)), where the infimum over the empty set is taken to be +oo.

In particular, if the sequence of probability measures (g () € -) satisfies the full
large deviation principle with speed N?, that is, the above large deviation upper and
lower bounds with I* =1, then ] := J* =] and

Xorb(a | UO) = Xorb(a | E‘) = _](0)

Wé:(())o N—oo

= lim lim Nilogv "({U e U(N)" |tri(N) € 0,,5(0)})

holds for every o € TS(Cy(xeo)) and any choice of approximating sequence E =
(E‘(N))NGN to oy € TSfda(C;<x.o)).

Proof Set
I7(0) =inf {I*(1) | T € TS*(Cy{Xeo("))), m3(7) = 0}

forany o € TS(C (x.o)). By the contraction principle (see i.e., [13, Theorem 4.2.1]),
P(7}(7am(y)) € -) satisfies the large deviation upper (resp. lower) bound with speed

N? and the rate function I7. (resp. I 7). Write Uy (t) = (U(l)(t) 1, t>0,and define

the random tracial state trU( ()T) in the same manner as trU( ). Let L(T) < U(T) and

vn be as in the previous sections. The probability distribution measure of Uz(\z) (T)
is known to be py,7(U)vn(dU) on U(N). Observe that

B(r (ramv)) € ) = Plirgpy € ) = v ({Ue UN)" g™ e )
as well as
(4.2) P(trE u(N) €)= v ({UeUN)" [uE™ ¢ ),
Since

U < < U ,
( min par(U)vy < vyr < ( max pur(U))v

we observe that

log mm pN r(U) + —log]P’(tr“(N) €)

— IOgP(T[;(TEIib(N)) € )

log max pN r(U) + —log]P)(tr“(N) €).
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Now, we will use the functions L(T), U(T) in T introduced in Lemma 2.1. If we
assume the large deviation upper (resp. lower) bound for P(77.(7zis(y)) € ), then

nL(T) + hm —logP(tr“(N) eA)

< lim —log]P’(rr;i(TEub(N)) eA)
—1nf{I (0)|oeA}
for any closed A ¢ TS(C;({xes)) (resp.

1
nU(T) + lim N—logP(tr“(N) €el) > lim ﬁlogﬂ”(n}(rgm(m) el)

N—oo N—oco

> —inf{I;(0) |0 €T}
for any open I ¢ TS(Cx(xeo))). It follows by Lemma 2.1 that

égxgo I\;l_{n log —P(trU € Opm,5(0))
N O

< —n11_1>120 Thm inf{I;(c") | 0’ € Fp 5(0)}
N

resp.

lim lim log —P(tr ) Om.s(0))

m— oo

SN0 N—oo
>- lim lim inf{I7(¢') | o' € O,.6(0)}
8\ T—oo

for every g € TS(Cx{xeo)). Observe that
inf{I7(0") | 0’ € ®} =inf{I*(7) | T € TS (Cx(Xe0("))), m7(7) € O}
for any ® c TS(Cx{Xeo)). By Lemma 4.1,
Jim 11m inf{I+(c") |0’ € O,6(0)} = Jim. hm inf{I}(0") | 0’ € F, 6(c)}

6 N 0 6 N 0
(resp. the same identity replacing limy_,o. and I} with lim,_ _ and Iy, respectively)
holds and defines a rate function. Since TS(C5(xeo)) is weak* compact, we finally
conclude by [13, Theorem 4.1.11, Lemma 1.2.18] that P(tr“(N)

deviation upper (resp. lower) bound with speed N? and the rate function J* (resp. J7).
For the last assertion, we first point out that

€ -) satisfies the large

(4.3) -] (0) < Jim  lim N—logP(tr“(N) € O 5(0))
6\0 N—voo
< lim lim log]P’(tr“(N) € Ops(0)) < =T (0).

m— 00 N
oo %

Since I'* = I, we have —] (o) > —J*(0) for every 0 € TS(Cf(xXeo)). Therefore, we
conclude that equality holds in (4.3). This together with (4.2) immediately implies the
last assertion. [ ]
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It is plausible that the orbital free entropy Yorb (X1, . - ., Xy+1) can still be defined
independently of the choice of approximating sequence E = (E(N))yen (under the
constraint that tr(Y) converges to the joint distribution of the X;) without assuming
the hyperfiniteness of each random multi-variable X;.

As mentioned before, we have already established that the sequence of probability
measures P(7zm () € -) satisfies the large deviation upper bound with speed N* and

the rate function I.>. Hence, we can prove the next corollary.

Corollary 4.3  The sequence of probability measures ]P’(tril(vN)

deviation upper bound with speed N* and the rate function ]Lif(a) defined to be

€ -) satisfies the large

Jim Tim inf{I5;(7) | 7€ TS*(Ci{xee (), 71(7) € Oma(0)},
80
where the infimum over the empty set is taken to be +co. Moreover, Yorn(0 | 0p) <

~Ti>(g) holds for every o € TS(Cy(Xao)).

Proof The first assertion immediately follows from Lemma 4.1 and Proposition 4.2.
For the second assertion, we first observe that

1 o i
Yo (0 | E) = Jim_ Tim = 10gP(tr(") € 0,,6(0)) < 157 (0)
N0

for every g € TS(Cg(xeo)). Since J 1,‘;’ is independent of the choice of approximation
E to 0y, we conclude that yor, (0 | 09) < —JE° (o) for every o € TS(Cy(Xeo)). ]

Remark 4.4  Several questions on the matrix liberation process toward the comple-
tion of developing the theory of orbital free entropy are in order.

(Q1) Show that Ji®(¢) = 0 implies that the X7 are freely independent. (This is a

question about minimizers of J.)
(Q2) Prove

Jop (o) =i (W* (X)) W*(X7.))

(at least when o = gy or when the X{° are freely independent) if possible.
Here, each W*(X?) denotes the von Neumann subalgebra generated by

X7 = (x)1.
(Q3) Prove a large deviation lower bound with speed N? for the sequence of prob-

ability measures P(7zm(y) € -). It is preferable to identify its rate function

with 110,
The affirmative answer to (Q2) shows yo» < —i*. On the other hand, as we saw in
Proposition 4.2, the affirmative complete answer to (Q3) enables one to define yorp
independently of the choice of approximating sequence at least when ¢ = g or when
0y is the ‘empirical distribution’ of a freely independent family as in (Q2). Also, the
affirmative complete answers to both (Q2) and (Q3) show yo, = —i”. Finally, the
affirmative answer to (Q2) or (Q3) solves (Q1) in the affirmative; hence, (Q1) is a test
for both (Q2) and (Q3).
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5 Minimizer of the Rate Function Ji®

In this section, we will solve (Q1) of Remark 4.4 in the affirmative.
The next lemma is probably known to specialists, but we include its proof for the
sake of completeness.

Lemma 5.1  The limit off = lim7_, o, 75 (04®) exists in TS(Ch{xeo)), and we have:

(i) off agrees with oy on each Crl{xio)i=1...,n+1

fr
(i) theX;*,1<i<n+1, arefreely independent.

Proof By construction, it is clear that 7504 ”) agrees with g on Cj(x;.) for each
1< i< n+1. Hence, (i) trivially holds. Thus, it suffices to prove (ii).

Let (M, 7) be a tracial W*-probability space and let N ¢ M be a W*-subalgebra.
Let {v;(#)}, be a x-freely independent family of free left unitary Brownian motions
in M such that the family is *-freely independent of N. Set v,,41(¢) := 1forallt > 0
for ease of notation. In order to prove (ii), it suffices to prove that

[T(vi,(T)a7vi, (T) vi, (T)x3vi, (T)* i, (T) ¥4, (T) )]
<@ -1)( sup [x%]e)"e T

1<j<m

whenever m > 1, iy # i (1< k <m—1)and x; € N with 7(x7) =0 (1 < k <m).
When m =1, the left-hand side must be 0; thus, the desired fact trivially holds. Thus,
we can assume m > 2.

Recall that 7(v;(t)) = e™"/? for every t > 0 and 1 < i < n. This is a particular case
of Bianes result [3, Lemma1]. Since v;, (T) and v;,, (T') are *-freely independent, we

have

(5.1) 0 < 7(vi (T) Vi, (T)) = 7(vi, (T)) 7(viy,, (T))
~ e T2 (ig OF g4y is n +1),
e T<e T2 (otherwise)

for every 1< k < m — 1. Hence, we obtain that

[7(vi, (T)27viy (T)"vi, (T)%3vi, (T)" -, (T) %54, (T)7)]
<7(vi (T) i, (T)I7(viy (T)x7%3vi, ()" -+ v4,, (T) x4, (T) )]
+1(vi, (T)x7 (viy (T) v, (T)) 55 vi, (T)" -+, (T) 5,4, (T) )]

<( sup Hx;-’Hoo)me‘Tﬁ
1<j<m

+1(vi, (T)x7 (viy (T) v, (T)) 55 vi, (T)" -4, (T) 3,4, (T) )]
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with (vi, (T) v, (T))° :==v;, (T)*v;,(T) = 7(vi, (T)*v;,(T))1. We continue this pro-
cedure for v;, (T)*v;,(T) and so on until v;,_ (T)*v;, (T) inductively, and obtain
|7 (v, (T)27vi, (1) vi, (T)%5vi, (T)" -, (T) %34, (T)7)]
<(1+2+-+2"7)( sup Hx;-’Hoo)me_T/2
1<j<m

+[7(vi, (T)x7 (viy (T) w3, (1)) 5 (v, (T) v, (T))°
= (Vi (T, (1)) %54, (T)7)]s

where we used |(v;,(T)*v,(T))°|e < 2. By the *-free independence between N
and {v; (1)},

(vi, (T)x7 (v, (T)"vi, (T)) 3 (vi, (T) v, (T))°
= Vi (1) 3, (1)) xvi,, (T)7) = 0,
implying the desired estimate. ]

Lemma 5.2 Foranyt € TS (C(xes(-))) withIL> () < +00 and any P € C(xso ),
we have
s k s—
[ (eI (D0 wr(P)))) oo < Clpo, 1y () P2

for some constant C = C(P) > 0 depending only on P.

Proof Iteratively performing the decomposition Q = gp(Q)1 + Q° with Q° = Q -

00(Q)1, we observe that P is a sum of a scalar and several monomials of the form:
Qi’ e an’

where Qf € C(x;,o) with 0o(Qj) = 0 such that m > land ip # ipry (1< €< m—1).

Hence, we can and do assume that P = Q7 - - - Q;, in what follows, since any scalar term

vanishes under @Ek). We also observe that each 8S(k)r[T(Q§), 1< € < m, becomes

mr(Qp)vik(T —=5) @ vi(T =) —=vi(T —s) @ vi (T —s) mr(Qp)

when k = ip, s < T, and otherwise 0. Hence, we can and do restrict our consideration
to the case s < T, and obtain

52 200 = Exo (w1 (P mr (P)) = 22001, (@),

where Zék) (s) is defined to be 0 when i, # k, and otherwise,

En(n) (Wigsiea (Qps1)s ** Wip1,in (Q)s
Xowim>il (Qf)swil;iz e (Q;—l)swie—lgie)
EN(T)(Wie,im(Qm)s"'Wimfl,il (im = i)

X (Q;Qlo)swil,iz”'(Q;—l)swie—b"e) " v

and we write w; ;r := v (T - s)*v (T -s) (1<i# i <n+1). (nb, v, (t):=1forall
t>0)and (Q); := m#(75(Q)) for Q € C(xao). By [29, Proposition 5.7(1),(2)], which
still holds for Ig‘)’)m without any essential changes, IE{P’OO(T) < +oo guarantees that
7((Q)s) = 00(Q) for all Q € C(x;,,) with each fixed i = 1,...,n + 1. Hence, the first
case i,, # i can be treated essentially in the same way as in the proof of Lemma 5.1.

(im # 01),
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Namely, when i, # i (and i, = k), we have, for any y € N(7) (see Subsection 4.4 for
this notation),

7(72{9(s))
= T(WWinien (Qes1)s ** Win1,in (Qu)sWiyin (Q ) sWi i
o (Qe1)sWieyaie)
= ?(Wie»im )7()/(Q§+1)s Wi i (Q;)swim,il HS(QF)WiI,iZ
= (Qpo1)sWigyyie)
+ TP Wigyien) (Qesr)s * Win 1y (Qu)sWi,in (Q) Wiy
2 (Qet)sWieyiie)»

and ng) (s) becomes

T(Wie,ien ) EN() ((Qear)s ** Winyyyin (Qu ) sWii (Q1)sWin iy

< (Qem1)sWieysie)
+ Ex(0) (Wigsien )" (Qex)s = Winr,in (Qu ) s Wi in (Q) s Wi i

< ( Qo) sWieysie)

with (w;,;)° :== w; i» — T(w; ;»)1. Making the same computation for the second term
and iterating this procedure until w;, , ;, ,, we finally arrive at the following formula:
Z;k) (s) is the sum of 7(w;, ;,,, ) times
delete
—
EN(T) ((Wiz,ieﬂ)o(Q;H)S T (Wij—lyij)o(Q]O')S Wijijn (Q;+1)5Wij+1)ij+2
e (Q;—l)swie—hie)

overallj=1,...,m,1,...,¢-2(where weread m+1as1). Therefore, we have obtained
that

k - o m-1 _
1289 £ @™ =D sup Q)" O,
<j<m

since [[(wi,ir)°]leo < 2and 0 < F(wi ;) = T(WI(T - s)*v,(T - 5)) < e©~D/2 with
i + i’ (see (5.1) for a similar computation). Hence, we get

(5.3) 1282 (),(Q9):]lw < Cret PP

with a positive constant C; depending only on P and .
We then consider the case i,, = i; (and s < T). This case is a bit complicated, but

can still be treated similarly as above. In fact, if i,,_; # i, then ng) (s)is

T((QmQD))En(r) Wig,ign (Q111)s+ Wiysiy - (Qpot) Wiy i)
+ En(r) (Wigiea (Qps1)s = Wiyt ((Q QT) ) sWiiy -+ (Qp_y) s Wiy )

since w;, i Wi,,i, = Wi,_,,i,- 1hus, we apply the previous procedure to the first and
the second terms, respectively, and conclude

- - o m—1 _
1281 < {7 =)+ @72 =) sup Q7])" e
<jsm
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Iterating this procedure in the cases i.e., iy = i1, im—1 = i3, and i,_, # i3, we can
estimate | ng) (5) || oo by e©~T)/2 times a positive constant depending only on P except
the case when i, = i1, i1 = i2,...,4p41 = ip-1 (i.e, misodd and £ = (m +1)/2). In
the remaining case, we can easily observe that

Z8(s) = 00(Q5 Q7 )00 (Q5-1Q3) 00 (Qey Q)1 + 289 (5)

with an element ng)(s)N € N(t) whose operator norm Hng)(s)N | is not greater
than e~7)/2 times a positive constant only depending on P. Then we have

(5.4) 10289 (), (Q2)s oo = 11289 ()™, (Q9)<] oo
<2|Z(5) oo | Q¢ oo < €5 e D/2

with a positive constant C, depending only on P and ¢.
Consequently, the expansion (5.2) of Z(¥) (s) together with the above norm esti-
mates (5.3), (5.4) shows the desired norm estimate. ]

A more explicit description on Ex() (7r#(IT¢ (C‘ng)P))) can be obtained based on
the combinatorial techniques introduced by Speicher (see i.e., Nica-Speicher [23] as
a standard textbook). See Section 8.

With the above lemmas, we will prove that the rate function J, },‘;’ admits a unique
minimizer, and moreover, we will explicitly compute the minimizer. Moreover, we
will also prove that the modification /i of J },‘;’ by replacing I},i;’ with I f,i;’)oo, ie.,

0,00

Jopeo(0) = lim lim inf{Igy oo (7) | 7€ TS (Ci{%eo (1)), w7 (7) € On5(0)}
N0 -

admits the same unique minimizer.

Theorem 5.3 For any 0 € TS(Cg(Xeo)), the following are equivalent:
(i) o=oaf.
(ii) ]},f(}’(a) =0.
(i) Ji> (o) =0.
Proof (i) = (ii): Since I°(o¢®) = 0, and moreover, since 5(ay>) — o4 as T —
+00 by Lemma 5.1, we have Ji° (o) = 0.
(ii) = (iii): This is trivial, because 0 < ]}71300 < ]},i;’, which follows from 0 < Il,i;’)oo <
L,

(iii) = (i): ]}};’)w (o) = 0 implies that for every m € N and § > 0, we have

Tlggo inf{Ihbm(T) | 7€ TS (C*(xeo(+))), mp(7) € Om,&(a)} =0.

00,

Thus, we can choose a sequence 0 < Ty < T < --- < T, /# +o0asm # oo and 77, €
TS(C*(xes(+))) for each m € N such that 77, (77,) € Op,1ym(0) and P (rr,) <
1/m for every m € N. For each P = P* € C(x,, ), we have
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|o(P) - ag"(P)|
<|o(P) - n7,, (71,,) (P)]
+|r1,, (71, (P)) = 00" (1, (P))| + |77, (05 ) (P) = a5 (P)|
<|o(P) -, (t1,) (P)| + |77, (06°) (P) - 05" (P)|

\J aib (7, )Zf | Exi(ry (T (D (1, (P))))) |2, ds

by [29, Lemma 5.3], which still holds true for Illb
Now, we use Lemma 5.2 to get

without any essential changes.

,00

n o) s k T -
S [ 1o (@0 (e, () 2ads <€ [ e T
k=1
=Cl-e™)<cC
for all m with a constant C > 0 only depending on P. Consequently, we obtain that

|o(P) = 05" (P)| < |o(P) - m1,, (71, ) (P)|

s, (AP (P) - o (B)] 22,

whose right-hand side converges to 0 as m — oo thanks to 7% (77,,) € Op,1/m(0)
(implying that ¢ = lim,,e0 777, (77,,) in TS(Ci(xe.))) and Lemma 5.1. Hence, we
conclude that o = o{". [ ]

Thanks to the standard Borel-Cantelli argument (see i.e., the proof of [29, Corol-

lary 5.9]), the above proposition together with Corollary 4.3 implies that trU( ) con-

verges to o' almost surely as N — co. This is nothing less than a consequence of the
asymptotic freeness of independent Haar-distributed unitary random matrices. On
the other hand, the corresponding result for the matrix liberation process [29, Corol-
lary 5.9] was not known prior to this.

We would also like to point out that both J;; lib y },i;’,oo can be regarded as a kind of mu-
tual information in free probability, since they characterize the free independence as
a unique minimizer (see the third paragraph of Section 1). Thus, it is natural to refor-
mulate the functionals ], lib 7lib ¢ well as their sources I'°, I in a coordinate-free

09,00 0p ?> " 0p,00

fashion. This will be done in the next section.

6 A Coordinate-free Approach: A New Kind of Free Mutual Infor-
mation

Let (M, 1) be a tracial W*-probability space. We consider unital C*-subalgebras
A; cM,1<i < n+1, and define a kind of free mutual information i**(A;;...;A,
Ans1), without appealing to any kind of (matricial) microstates, whose definition
comes from the rate functions discussed so far.
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6.1 Universal Algebras

Let 2 := v ' A; be the universal free product C*-algebra. Let 2(¢), t > 0, be copies
of 2, and define (R, ) to be the universal free product C*-algebra 1502 (). (Here
we write R, = [0, +00).) We denote by A;: A; — A and pi: A - 2A(t) c A(R,) the
canonical *-homomorphisms, which are known to be injective; see the appendix for
an explicit reference about this fact. Write p;; := p; o 1;:A; - A(R,). By Lemma
AL A(R,) with *-homomorphisms p; ; can naturally be identified with the universal
free product of the copies of A;,1< i < n +1, over R,.

6.2 Time-dependent Liberation Derivatives

Let B be the *-subalgebra of 2 algebraically generated by A;(A;),1 < i < n+1L
Consider the *-subalgebra (R, ) of A(RR, ) algebraically generated by p,(*B), ¢ > 0.
Remark that 1;(A;),1<i<n+1and p;;(A;),1<i<n+1t >0, are algebraically
free families of *-subalgebras, and the resulting B3 and B (R, ) are naturally identified
with the algebraic free products of the 1;(A;), 1 < i < n + 1, and of the p;;(A;),
1<i<n+1,t2>0,respectively. See Proposition A.4.

We extend 2A(R,) to A(R,) by taking its universal free product with the uni-
versal C*-algebra generated by u;(t),1 < i < n, t > 0, subject to u;(#)*u;(t) =
u;(t)u;(¢)* =1and 4;(0) = 1. This procedure is justified by Proposition A.3. Con-
sider the derivation AE“:‘B(RJ,) - A(R,) ®alg 2A(R,), 1 < k < n, sending each
pri(x) withx € A; to

8ik1io, () (prk(x)ur(t —s) @ uk(t =) —uk(t —s) ® ur(t = )" pr(x))

(n.b., the algebraic freeness among the p;;(A;) makes every AY) well-defined).
Therefore, with the flip-multiplication map 0:A(R,) ®a5 A(R,) - A(R,) send-
ing a ® b to ba, we obtain the cyclic derivative Vs(k) =0o Aﬁk):m(&) - A(R,).

6.3 Continuous Tracial States

Differently from the previous sections, we will use symbols ¢, y, etc., instead of 7 for
tracial states on 2((R, ), etc., in order to avoid any confusion of symbols.

A tracial state ¢ € TS(A(R,)) is said to be continuous, if t = m,(p,(x)) is
strongly continuous for every x € 2, where 77,:A(R,) ~ H; denotes the GNS rep-
resentation associated with 7. In what follows, we denote by T'S®(2((R,)) all the
continuous tracial states on 2A(R. ).

Lemma 6.1 Foragiven ¢ € TS(A(R,)), the following are equivalent:

(i) ¢ is continuous;
(ii) for every m e N and every xi, ..., x, € 2, the function

(e ostm) — 9(po (1) - pr,, (X))

is continuous;
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(iii) for every m € N and every xx € A;, 1< iy <n+1,1< k < m, the function

(tl) cee tm) — (P(ptl)il(‘xl) T Plusim (xm))

is continuous;

(iv) foreveryl< i< n+1, there exists a C*-generating set X; consisting of self-adjoint
elements in A; such that for every m € N and every x; € X;;, 1 < i; < n+1,
1< j < m, the function

(t s tm) = @(Po,iy (1) = Pty (¥m)

is continuous.

Proof Since |[pt(x)]e = [x|oo for every x € 2 and since the p;(2) over t > 0
generate 2((R, ) as a C*-algebra, the proof of [29, Lemma 2.1] works for showing
that item (i) < item (ii) without any essential changes. Item (ii) = item (iii) is trivial.
The standard approximation argument using the norm density of the unital *-algebra
algebraically generated by A;(A;) in 2 shows that item (iii) = item (ii). Item (iii) <
item (iv) is also confirmed similarly by using the norm density of the unital *-algebra
algebraically generated by X; in A;. ]

We extend each ¢ € TS (A(R,)) to a unique ¢ € TS(A(R,)) in such a way that
the u;(t)’s are *-freely independent of 2A(R, ) and form a *-freely independent fam-
ily of left-multiplicative free unitary Brownian motions under this extension ¢. It is
not difficult to see that ¢ is “continuous”; that is, both t +> 75(p;(x)) with x € 2 and
t = w5 (u;(t)) are strongly continuous. Denote by nazgl(RJr) ~ Hg the GNS rep-
resentation associated with ¢. We have a unique surjective unital *-homomorphism
A A(R,) - A(R, ) sending each p, ; (x) with x € A;, £ > 0 to

ui((t=s)VO)psnr,i(X)u; ((1-=s)v0)* (1<i<n),

6. s =
(6.1) pt,z(x) {Pt,n+l(x) (i . 1)

and keeping each u; () as it is. Note that each pj ; clearly defines a unital *-homomor-
phism from A; to 2[(R, ) for every1 < i < n + 1, and, moreover, by universality, those
pi.; give rise to a unital *-homomorphism p3: 2 — 2A(R, ). Observe that A% o p, := p$
holds for every s, t > 0. We define ¢° := ¢ o A® on (R, ). Since

9o N (pa,i (¥1) = Pryin (Xm)) = 9P, (1) - 3,1, ()

we observe, by (6.1), that ¢° is a continuous tracial state.

By the *-homomorphism I':2(R,) — 2 sending each p;;(x) with x € A; to
Ai(x), we construct T* (ag) := gpo I € TS(A(R,)) with a given gy € TS(2() and set
o = T*(09)® € TSC(A(R,)).

6.4 The New Free Mutual Information

For a given oy € TS(), let us define two functionals 71,35 - Tg¢(A(R,)) —
[0, +oo] as follows. Let ¢ € TS(2A(R,)) be arbitrarily given. Let Eq(, denote
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the g-preserving conditional expectation from P(¢) := m5(2A(R,))” onto Q(¢) :=
5 (A(R,))"”, where the double commutants are taken on Hg. For any P = P* €
PB(R,) and t € [0, co], we define

7 (9.P) = ¢'(P) - ot (P)

I [ (o) 2
3% [ 1Ba (ra(a* (v P)) I3, ds
k=170

regarding ¢ as ¢ (since ¢’ (P) = ¢(P) when ¢ is large enough). We observe that s
IEa(e) (n—gg(As(ng)P))) H%z is piecewise continuous in s and becomes zero when s

is large enough thanks to P € P(R, ). These two facts guarantee that Ji° (¢, P) is
well defined for every t possibly with t = co. Then we define

To(9)=  sup T3, (¢.P),
P=P*ePB(R,)
t>0
Tooeo(9) = sup 0 (9, P).
P=P*eP(R,)
Clearly, 50 () > 75 _(¢) holds, and it is a question again whether equality holds or
not.

We then introduce two functionals J lail’, J g‘)”w: TS(2A) — [0, +00] as before. To this
end, we have to endow T'S(2() with the weak* topology. Let 0 € TS(2l) be arbitrarily
given. Let O(o) be the open neighborhoods at ¢ in the weak™ topology on T'S(2l).
Then we define

Joo(0) = sup lim inf{J;0(p) | ¢ € TS“(A(R+)). p7(9) € O}

0e0 () T7o°

andalso Ji° _ (o) in the same manner as above replacing Ji° (¢ ) with 0 _(¢). Here,
the infimum over the empty set is taken to be + oo as usual. Remark that the supremum
over O € O(o) coincides with the limit over a neighborhood basis at 0. We also
remark that O(o) can be replaced with the smaller neighborhood basis consisting of

Ow,s(0)={d" e TS(A) | |[6'(W) —a(W)| < forall W e W}

all over the finite collections W of words W like A; (a1)---A;, (a) with a;, € A,
and § > 0, since all the linear combinations of words form a norm dense *-subalgebra
of 2.

Definition 6.2 Thanks to the universality of 2(, we have a unique *-homomorphism
Y:2( > M sending each A;(x) to x with x € A; c M, 1< i < n + 1. Then we define

T (Ass. 5 Ay Apa) = Ta0 (Y (7)),
T (A A Ann) = Joe o (YH(T)).
Moreover, we write

(A5 An  Anin) = 32 (g 00 (A5 3 AR T Ania).
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These quantities will be shown to satisfy the following: (i) characterizing free inde-

pendence, (ii) invariance under taking closure EW and (iii) the monotonicity in A;.
Hence, they can be understood as a kind of mutual information in free probability.
Here is a remark on the choice of 0.

Remark 6.3 1If HE;’ (As;...5An 2 Apyr) is finite, then A} (0p) must agree with 7 on
Ajiforeveryl<i<n+L

Proof Assume that A} (0y) does not agree with 7 for some i. Namely, there is an el-
ement x € A; such that og(1;(x)) # 7(x). Remark that 7(x) = Y*(7)(A;(x)). Then
we can choose an open neighborhood O € O(Y*(7)) in such a way that 6(1;(x)) #
0o(A;(x)) for every g € O. As in the proof of [29, Proposition 5.7], we have

r(p1(9)(Ai(x)) = 00(Ai(x))) = Tgg.00 (92 1,0 (%)) < Tgp 00 (9)

forallr e Rand T > 0. It follows that Ji° _(¢) = +o0 aslongas p%(¢) € O. It follows
that 50 (Ass...3 A, Ap) = 30(Y* (1)) > 35 (Y* (1)) = +o0. n

0gp,00

Consequently, we will assume that A7 (g9 ) agrees with 7 on A; forevery1 < i < n+1
throughout the rest of this section. In particular, the natural two choices of oy are
Y*(7) and the so-called free product state ¥ ='(1;*)* (7).

6.5 Relation to the Matrix Liberation Process

Assume that each A;, 1 < i < n + 1, is generated by a self-adjoint random multi-
variable X; = (X ]);SI) as in Section 3, that is, A; = C*(X;). Assume further that R :=
sup; ; [ Xijlleo < +o00. Then we have two unique surjective unital *-homomorphisms

®:Cilxeo) > A ¥ Cilxao()ova()) > A(R.)

sending x;j, x;;(t) and v;(t) to 1;(Xi;j), pr,i(Xij) = p(Ai(Xi;)) and u;(t), respec-
tively. Clearly, ¥ (Cx(Xeo(-))) = A(R,) and ¥(x;;(t)) = p¢(P(x;;)) hold. In partic-
ular, the latter implies that ¥ o 71y = pg o ©.

For the reader’s convenience, we summarize the notation of algebras and maps that
we have introduced so far. The algebras and the maps between them are:

Citl¥eo) = Ci(¥ao ()= Ci(Xeo () va())

A— S YR~ A(R,)

Ai
pri=piod;

Ai

The liberation cyclic derivatives ’Ds(k) (see Subsection 4.2) and the maps IT° (see Sub-

section 4.5) on the upper line of the above diagram correspond to ng) (see Subsection
6.2) and A°® (see Subsection 6.3) on the lower line, respectively. Moreover, the spaces
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of (continuous) tracial states and the dual maps between them are:

TS(Ch{xes)) <2 TS (Chlxes () — TSE(Cixes (), 70()))

@*T * T\w T\v

TS(A) = TS (A(R.)) > TS (Ci(xeo (), va())-

A:(- * * *
pri=Aiop;

TS(Ai)
Lemma 6.4 Forany ¢ € TS (UA(R,)), we have

V(9) = 9o ¥ e TS(Cr(xec(-))), ¥ (9) =¥ (9)".

Hence, ¥*(¢)* = Y*(¢°) holds for every s > 0. Moreover, for any P € C{xso(-)), we
have

k
|Eay) (m5 (A5 (VR (P)))) 50
k
= | Exce (o)) (T gy~ (T (D PY)) [we ()2

foreveryl<k<mands>0.

Proof Observe that

Y (9) Ceinji (01) i oy () = QP10 (Xiji) = Pt (X))
which implies that ¥*(¢) falls in TS°(Ci(xes(-))) by [29, Lemma 2.1] and

Lemma 6.1. Moreover, we have

V(@) (arvi (0) - amvi, (tn) ™) = 9(¥(a)uiy (2) - ¥ (am )i, (£m)™)

for any ay € Ci(Xeo(-)),1 < ix < m, tx > 0 and ¢, = +1. Since ¥(Cx(Xeo(*))) =
2A(R. ), we conclude that the v;(t) are freely independent of Cx(xe.(-)) and form a
freely independent family of left-multiplicative free unitary Brownian motions under
¥*(@). Therefore, we conclude that ¥* () = ¥*(¢)"~. We observe that

W(IT (x5(1))) = ¥(x;(1))
Y(vi((t=s)A0)xij(sAt)vi((t=s)A0)*)

=u;i((t=5) ANO)psnr,i(Xij)ui((t—s) A0)* (1<i<n),
Y (xn41(£)) = prons1(Xns1 ) (i=n+1)
= p1,i(Xij)
= N (pri(Xij)) = A (¥ (xij(1)))s

implying that ¥ o IT* = A® o ¥ on Cx(Xeo(+)). Therefore, we obtain that

Vi(p7)=9o A oW =goV¥olIl' =¥ (9) o I = ¥ (9)" o II" = ¥ (9)".

https://doi.org/10.4153/50008414X20000048 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X20000048

522 Y. Ueda

Choose an arbitrary word P = x; j, () -+~ Xi,j, (tm) € C(xeo(-)). By definition,
we have W(P) = py,,i,(Xiji) = Ptusim (Xiynjm )- We observe that

(9 p)
= DI ([vi(ts = $) " Xipyjia (F101)

ii=k
t;>s

X (o) v (B = 8), x4, (5)]1))

- .Z:k[vk(tl B 5)*xls'1+1jl+1 (tl+1)
s

o xg o (e ve (= 8), x5, ()]
AV (P)))
= >0 N ([ur(tr = ) prnsivn Kivyjin)

ij=k
t;>s

(6.2)

Pt (Xi i ) 4k (B = 5), psi (X)) 1))
= 2 (L (tr = 9)"P5 i K

i1=k
ty>s

i K ) ur (= 5), pg i, (Xa ) 1))

Since ¥*(¢)~ = ¥*(9) and since W(x;;(t)) = p.i(Xij) and ¥(v; (1)) = u; (1), we
observe that the joint distribution of the x;;(¢) and the v; () under ¥*(¢)~ coincides
with that of the p; ; (X;;) and the u;(t) under ¢. Moreover, N(¥*(¢)) is generated
by the my-« ()~ (xij(t)) and also Q(¢) is by the ng(p;,i(Xi;)). These together with
the definitions of x;;(t) and p; ;(X;;) imply the desired 2-norm equality. [ ]

Proposition 6.5 With ®*(gy) := g 0 © € TS(Cx{xeo)) we have
16 (o) (¥ (9)) = T (9)s I (53,00 (7 (9)) = Tl (9).

forany ¢ € TS*(A(R,)). Moreover, ¥* (TS (2A(R,))) is an essential domain of both

the functionals Il[i)b*( 00)’ Igll( 00),00° that is, the functionals take +oo outside it.

Proof We first remark the following facts:

« ¥ (9)'(P) =¥ (¢")(P) = ¢ (¥(P)) for any P € C(xuo(-)).
e If p5(9) = 0o, then 5 (¥*(¢)) = po¥Yomy = ¢opgo® =D (agp). Thus,
®*(09) " (P) = ol (¥ (P)) for any P € C(x4o(-)).

Thus, (the last equation in) Lemma 6.4 shows that
15% 00y, (Y7 (9), P) = Tg0 (9, ¥(P))

holds for any P € C(x4,(-)). Note that ¥(C(xeo(-))) c PB(R,). Hence, the above
identity at least gives

I 0 (F7(9) S T(9), 100y o (¥ (9)) <92 ().
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To show the reverse inequality in both, it suffices to prove:

(¢) Forany Q = Q* € 2(RR,) there is a sequence Qi = Q;
in ¥(C(x40(-))) such that I1° (7, Q) - I (7, Q)

0ot 0g,t

forall ¢ € [0, o0].
Remark that Q is a finite sum of monomials, say
W= ptl)il('xl) * Plusim (xm)

with x, € A;,. Since the unital *-subalgebra A, , algebraically generated by (X; ]);ill)

is norm-dense in A;, we can choose norm-bounded sequences xép ) in Ai, 0 in such

a way that xgp) — X¢ in norm as p — oo for every 1 < € < m. Since ¥(x;;(t)) =

pei(Xij) and p,; is a unital *-homomorphism, W, := p, ; (xfp))---ptm,im (x,(np))
falls into ¥(C(xes(-))) and converges to W in norm as p — oo. Moreover, us-
ing expression (6.2), we can easily see that both A (v W,) - A (VP W) and
A‘(ng)Wp*) - AS(vY'W*) in norm and uniformly in s as p — oo. Since all the
maps involved are linear, we have proved the desired assertion (¢) by taking, if nec-
essary, the (operator-theoretic) real part of the approaching sequence that we have
obtained. Hence, we complete the proof of the first part of the proposition.

We will then prove the second part of the proposition. Choose y € TS (Cg{Xeo(+)))
with Ig)]i(ao)’oo(l//) < +00. By (the proof of) [29, Proposition 5.7] we have 7} (y) =
®*(09) on C{xi,), the unital C*-subalgebra generated by the x;;, j > 1, with fixing
i, for each 1 < i < n + 1. Denote by @; the restriction of ®: Cy{xeo) — 2 to each
Ci{xio). Since @;: Ci(xi6) — A;(A;) is a surjective *-homomorphism, we obtain
a bijective unital *-homomorphism A;(A;) 2 Cg(xi.)/Ker(®;) sending A;(X;;)
to x;; + Ker(®;) for j > 1. Consider the GNS representation 7,: Cx(Xeo(-)) ~ .
For any y € Ker(®;), we have

Y(m () () =7 (W) (r"y) = ©*(00) (y"y) = 00(Ps(y)* @i(y)) = 0,
and hence m,(m;(y)) =0 thanks to the trace property of y. Therefore, by the
C*-algebraic freeness among the p ; (A;) (2 A;(A;) = Ci(xio)/ Ker(®;) by p.,i (Xij)
< 1i(Xjj) < xij+Ker(®;) as remarked before), we obtain a unique unital *-homo-
morphism from (R ) to B(H(;/) sending each p; ; (X;;) to mry (7, (xi;)) = my (xij(t)).
Then the pull-back of y by this *-homomorphism defines a tracial state ¢ on 2A(R. ),
under which the p; ;(X;;) have the same joint distribution as that of the x;;(t) under
. This means that ¥*(¢) = v and the continuity of ¢ follows thanks to Lemma 6.1.
Hence, we are done. [ ]

Corollary 6.6 In the same setting as in Proposition 6.5, we have
(6.3) 185 00 (©7(0)) = F5 (0)s T (63),00 (@7 (0)) = Ty o (0)
forany o € TS(A). In particular, the following are equivalent:
(i) A, 1<i<n+1, arefreely independent.
(i) W (As... 54, Apr) = 0.
(iii) M o (Ars...3An  Apn) = 0.
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Moreover,

(64) XOrb(le---,X,H,l) < Hllb(Al)-..;An :.An+1)
< g (A Ay A,

at least when ay is either Y* (1) or W1 (A71)* (7).

Proof We will first prove two identities (6.3), which enable us to derive the equiv-
alence of (i)-(iii) from Theorem 5.3 immediately. In the current setting, an open
neighborhood basis at ¢ in T'S(2() should be given as a collection of O,, s(0), where
O,.5(0) is all the ¢’ € TS(2L) such that

0" (i (Xiji) -+ A, (X)) = 0 (i (X )+ A, (X, )] < 0
whenever 1 < iy <n+1,1< jx <m,1<k < p,and1< p < m. Thus, supy.o(,) and

p7(¢) € O can/should be replaced with lim,, 5 and p5(¢) € O, s(0), respectively.
By definition, we observe that

[ (¥ (@) (xiyjy -+ Xiyj, ) = @7 (0) (i, - xi, j, )| =
lp7 (@) (Ai, (Xiyji) - Ay (X j,)) = 0 (Aiy (Xijy) -+ Ai, (X, )
Hence, 75.(¥(7)) € O,,5(®*(0)) if and only if p%(¢) € O, 6(0). Moreover,

W*(TS(Ci(xes)) is an essential domain for the functionals by Proposition 6.5.
Therefore, the main identities in Proposition 6.5 imply two identities (6.3).

Since
O* (Y™ (7)) (xiyjy ++ Xipj) = T(Xij - Xipyj)»
o (‘A'"“()L D (2)) iy = X )
KA (D) A (X)) - Ay (X))
Corollary 4.3 together with Propositions 3.1 and 3.2 imply inequality (6.4). [ ]
Remarks 6.7 (i) The part characterizing free independence with g 2})’ as well as

HE(‘)’,OO in the above corollary can directly be proved by using the same argument as in
Section 5 without appealing to generators of each A,;.

(ii) The last two assertions of the above corollary suggests that Sm’ (Ages Ay,
A1) may be independent of gy, at least under some constraint. However, this ques-
tion is as yet untouched due to the lack of techniques to discuss “minimal paths” of
tracial states under the functionals.

6.6 Invariance Under Weak Closure

Corollary 6.6 suggests that H{,ig’(.ﬁll;.. sAn t Angr) as well as th (A5 Ap:
Aps1) are W*-invariants; that is, they are unchanged if each A; is replaced with its

o-weak closure A; . This is indeed the case, as we will see below. The proof is rather
technical, but the idea behind it is simple.
Let us denote by 9t and M(R,) c M(R,) the C*-algebras corresponding to

2 and A(R,) c A(R,) when each A, is replaced with M; = A;". Observe that
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the original 2 and 2A(R,) c 2A(R,) are naturally embedded into 9t and M(R,) c
97?(]1&). See Proposition A.3. The notations A;, p;,;, pr of morphisms are used si-
multaneously in what follows. To this end, we need several technical, purely operator
algebraic facts (Lemmas 6.8-6.10).

The first lemma is considered folklore among operator algebraists, but we do give
its proof, because it plays a key role in the discussion below.

Lemma 6.8 Let A be a o-weakly dense, unital C*-subalgebra of a W* -algebra M
and ¢ be a normal state on M. Let m: A ~ H be a unital *-representation with a dis-
tinguished vector &y € H such that &, is separating for m(A) and that (n(a)&y|&y) ¢ =
¢(a) holds for every a € A. Then there is a unique normal unital *-representation

M ~ H extending m such that (M) = ﬂ(.A)W.

Proof Let (JH,, 7y, &,) be the GNS triple of (M, ¢). Set X := m(A)&y, a reducing
subspace for m(A). Observe, by the uniqueness of GNS representations, that the re-
striction of 77 to X with & is a realization of (J,, 7y [ 4, &, ). Since & is separating for
n(A), m is quasi-equivalent to 7, by [19, Theorem 10.3.3(ii)]. This means that there

exists a normal unital, bijective *-homomorphism p: 7, (M) = 7, (.A)% - ﬂ(.A)w

sending 77, (a) to 7(a) for every a € A. Thus, 7 := pom, : M — n(fl)w is the desired
*-homomorphism. [ ]

We need the next two state extension properties. The proofs crucially use the pre-
vious lemma with the universality of universal free products.

Lemma 6.9 Any oy € TS(2L) with Af (o) = Ton A, foralll < i < n+1has a unique
extension o € TS(ON) with A} (0o) =Ton M, foralll<i<n+1

Proof Let (Hy,, s, &5, ) be the GNS triple of (A, gy). Since oy is tracial, &;, must
be separating for 74, (). In particular, &,, is separating for each 74, (1;(A;)) too.
Set 7g,,i 1= gy © AitAi ~ Hg,. Then we have (74,,i(a) &5, |€0,)3¢,, = 00 © Ai(a) =
Af(09)(a) = 1(a) for every a € A;. Thus, the previous lemma shows that there
exists a unique normal extension 7, ;: M; := fT,-W ~ H,, such that 7, ;(M;) =
Tlo, (A,»(Ai))w and 7,,,; 1 4,= Ts,,i. By the universality of universal free products,
there exists a unique *-homomorphism 77,,: 90 — B(H,,) such that 7, o A; =
Tgg,it M ~ Hg, is normal for every 1 < i < n + 1. By construction, it is clear that
Toy 1= Tg,- Set O i= (an(-)fgo|fgo)gcno € TS(OM). Trivially, o fy= g9. For each
xr € My, 1 < k < m, by the Kaplansky density theorem, one can choose a net
a,(f) € A; (with a common index set) such that Ha,(f) oo < xk]oo and al(f) - Xk
in the o-strong™ topology on M, . Since each 7,,,; is normal on M;, we observe that

7oy Ay (1) - 13y (aS0)) = 7o, (a0)) -+ 7y 1, (aS2)
= ﬁm),h(al(’()) o 'ﬁdn,im (agnx))

- ﬁﬂo,il(xl) o 'Eﬂo,im (xm)

= ﬁm) (Ail(‘xl) .“/\im (xm))'
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Hence, ao(A;, (x1) -+ Ai,, (%)) = lim, a9 (A, (afk)) A, (a,(f))). Since the A;(M;)
generate 901 as a C*-algebra, we conclude that 7 is a unique extension of gy. More-
over, A7 (09)(x) = 09(Ai(x)) =lim, go(A;(ax)) = lim, A} (09)(ay) = lim, 7(ay) =
7(x) for every x € M; with approximation a, — x as above. ]

Lemma 6.10 Any ¢ € TS (U(R,)) with p; ;(¢) = ton A; forallt >0and1< i<
n + 1 has a unique extension ¢ € TS (M(R,)) with p; ;(¢) = Ton M; forall t > 0
and1<i<n+1

Proof Let (H,, 7y, &, ) be the GNS triple of (A(R. ), ¢). The same argument as in
the previous lemma shows that there is a *-representation 7,: M (R, ) ~ H, such
that 77, 0 p,; : M; - B(J,) is normal as well as that 77, o p; ; ta,= 7y © p,; holds
for every t > 0Oand 1 < i < n + L Define ¢ := (7y(")&[&p)3c, € TS(M(R,)).
Remark that p;;(¢) = 7 on M; holds for every t > 0 and 1 < i < n + 1. By the
uniqueness of GNS representations, the triple (3(,,7,, &, ) is identified with the
GNS triple of (M(R, ), ¢). Namely, we may and do assume that 75 = 7, Hg = I,
and &5 = &,.

Since the given ¢ is continuous, the mapping t ~ m5(psi(a)) = my(psi(a))
is strongly continuous for every a € A;. We claim that this is the case even when
a € A; is replaced with an arbitrary x € M;. By the Kaplansky density theorem,
we can choose a net a, € A; in such a way that |a, ] < [x]e and |a, — x|z =
V7((ax —x)*(ax — x)) - 0. We have

I3 (pei(ax = ))E5l36; = /P71 () ((ax = x)* (a — %))
= V1((ac —x)*(ax = x)) = [ ax = x| 2.

Foranyn € Hgandany e > 0, thereisa Y € ng(9M(R,))" such that |- Y5 [, < &
(n.b., &, is separating for 75(M(R,)), and the existence of such a Y is guaranteed).

Then
I7g(pei(ax = x))nllac, < 2]xl ol = Y &G ¢,
Y oo 75 (pri(ax = x)) &g ac,
<2xfleoe + Y o lax = x]z,2,
and hence

liin (stli%))” g (pr,i(ax - x))WHiHa) =0.

Then we can see that ¢ ~ m5(p;,;(x)) is strongly continuous for every x € M;. It
follows thanks to Lemma 6.1(iii) that ¢ is continuous. ]

Here is an important remark obtained from the above proof.

Remark 6.11 We keep the notation ¢, @, etc., of the previous lemma. If a bounded
net a(®) in A; converges to x € M; in | -||., or equivalently, in the o-strong* topology
on M;, then

liKm (supHﬂa(Pt,i(a(K) —x))fHﬂ-fa) =0
t>0
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for every & e Hg; that is, the convergence 5(py,i(a())) = m5(pr,i(x)) in the strong
operator topology is uniform for ¢ > 0.

Lemma 6.12  For any ¢ € TS (A(R,) with pf;(¢) = Ton A; forallt > 0 as
well as A} (09) = Ton A; forall1 < i < n+1, we have Ji°(¢p) = .’J%iob(@) as well as
gL () = Jlgﬂo’)m(i) with the notations in the previous lemmas.

Proof The same pattern as in the proof of Proposition 6.5 (and Lemma 6.4) works

well by replacing the norm convergence xép )

ot

— x, with a bounded net convergence

— x¢ in the o-strong™ topology with the help of Remark 6.11. [ ]

Here is the desired statement. Namely, the next proposition tells us that taking
the g-weak closure does not affect 3{,‘})’ as well as 3{;};%. This is analogous to [30, Re-
marks 10.2].

Proposition 6.13  With the notation as in the previous lemmas, we have
T (A3 A Anar) = Fo> Mz 5 My M),
HEE,M(-AI;--J-An :'An+l) = Hlib (Ml;"'§Mn : Mn+1)

09,00

aslongas Af(op) =tonA; foralll1<i<n+1

Proof For the ease of notation, we will write 0 := Y*(7) € TS(2() and 7 := Y (1) €
TS(OM), where Y : 2 - M and Y: 90t — M the unital *-homomorphisms sending
each A;(a) with a € A; to a and A;(x) with x € M; to x, respectively. In particular, Y
is an extension of Y, and hence o is an extension of ¢ too.

We denote by W a word whose letters from the A;(A;) and also by W a word
whose letters from the 1;(M;). According to this notation, we will also denote by W
a finite collection of words W and by W a finite collection of words W. These play
parts of parameters to define neighborhood base of the weak* topologies on T'S(2)
and T'S(9M), respectively.

Let T > 0,68 > 0,and y € TS (M(R,)) be arbitrarily chosen. Denote by y the
restriction of y to A(R. ), which clearly falls into TS (A (R, )). By construction, it is
easy to see that JiP (y/) < J%i:(u/) holds in general. Hence,

inf{7°(p) | p € TS (A(R.)), p3(9) € Ow,5(0)}
<inf{T (y) | y € TST(M(R)). p3(y) € Ovos(0)}
<inf{I2 (y) |y € TS (M(R,)), p3(v) € Oro,s(3)),

where we use that p7.(y) € Ow,5(0) < p7(¥) € Ow,5(0), since every W e W falls
into 2 (and hence (W) = o(W) and y(p:(W)) = y(p(W))). Taking the lim7_, o0
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of the above inequality, we get
Tlijlgoinf{ﬂgf(fp) | ¢ € TST(ARL)), p7(9) € Ow,s(0)}
< Tlijngoinf{jgﬁ’(w) |y e TSY(M(R)), p7(¥) € Ow,5(0)}
<sup ﬁoinf{jgﬁ(w) |y e TST(M(R4)), p1(v) € O35 5(0) }

—

W,
= 35,().
Since (W, §) is arbitrary,
32(1,)(-/41; v Ayt Ann) = 3{71(1)3(0) < 3%]0)(5)

The same assertion holds with the same proof even if J L‘})’ and 32(‘)’ are replaced with
HE(')”OO and 3%”0’)00, respectively. We remark that the discussion in this paragraph uses

only inclusion relation A; ¢ M;, 1 < i < n + 1. This remark will be summarized into
the corollary following this proposition.

We will then prove the reverse inequality. To this end, we can assume that
F(Ass.. 3 A0+ Ap) = I (0) < +00; otherwise, the reverse inequality trivially
holds as —oo = —oo by the first part of this proof. Let (W, &) be arbitrarily given. For
each W € W, we can choose a word W in such a way that

o(W) = (W] < . suplpi(p)(W) - pi(@) (W) < 3

whenever ¢ € TS(A(R,)) satisfies that p;;(¢) = Ton A; forallt > 0and1< i <
n+1, where ¢ is in the sense of Lemma 6.12. This fact can be confirmed by the iterative
use of the following observation:

Let X, Y € 901 be given. For any x ¢ M; and a € A;, we have
[9(p:(X)pri(x = a)p:(Y))]

<|(mg(pe(X)) 5 (pri(x = a) ) mg(pe(Y)) S5l 85) 3¢5

< [ Xoo |75 (i (x = a)) Jgmg(p:(Y")) T55  5¢

< [ Xl eo 157G (pe (Y ) Jgmg(pri(x = ) €5l ac;

<[ Xloo 1Y o 75 (pr,i (x = @) &5l 3¢

= [X[loo Y oo % = all.2
for every t > 0, where (g, 15, &) is the GNS triple of (M(R, ), 9), and J5 is the the
so-called modular conjugation, that is, a conjugate-linear isometric map defined by

JoZ& = Z* & for every Z € mz(M(R,))", the double commutant is taken on .
Similarly, we have

[F(X2i(x = a)Y)[ < [ X oo | Y [[oo | = a] 1,2-

We denote by W the collection of W with W ¢ W obtained in this way. Let ¢ €
TS(A(R,)) be arbitrarily chosen in such a way that p7.(¢) € Oy 5/3(0) as well
as J{}f((p) < +oo. The latter requirement guarantees, by the same proof as in [29,
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Proposition 5.7], that p; ;(¢) = Ton A; forall t > 0 and 1 < i < n + 1. By the above
consideration, we observe that ¢ € Oy (7). Therefore, we conclude that

inf {J2° () |y € TS“(M(R,)), p}(v) € Oy 5(7)}
<inf {I1°(F) =3 (p) | g € TS (A(R,)),
Tuw(9) < +00,p3(9) € Oy 53(0) }
=inf {T00(¢) | 9 € TST(AR,)), p3(9) € Ow,g/3(0) }.

Taking limy_ oo of this inequality, we obtain that
Tli_Einf{J?j(w) |y e TSY(M(R,)), p3(¥) € O 5(3)} < Jor (0),

which implies the desired inequality since (W, ) is arbitrary. The discussion so far
in this paragraph also works when g l;;’ and 3%’ are replaced with lib o and lib

00> 09,00

respectively. Hence, we are done. [ ]

As remarked in the above proof, we have essentially proved the next monotonicity
fact as well.

Corollary 6.14 If B; ¢ A; is a unital C*-subalgebra (possibly W*-subalgebra) for
each1<i<n+1, then

where oy on the left-hand side should be understood as the restriction of oy to the uni-
versal C*-algebra obtained from the B;.

6.7 Summary of Basic Properties

We have established the next properties of i** so far.

» We have
(A An tApn) =TT (WA s WH(AR) : WH(Ap)).
o If B; c A;, then we have
(B 3By Buaa) < (Ags- 5 A Angr).

o (A3 An Apn) = 0ifand only if Ay, ..., A, are freely independent.
* We have

Yorb (Xt e+ Xops1) < = (W (X1 os WA (X)) : W (X))

Here, W*(A;) and W*(X;) denote the von Neumann subalgebras generated by A;
and X, respectively. An important question is whether or not i* = i**. It is also an
interesting question whether or not J }T‘l’ and J L‘l’m are independent of the choice of dy.
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7 Unitary Brownian Motions

Let 2(N) and U](\,i) (t),1< i< n,beas in Subsection 4.7; that is, 2(N) is a countable
family of deterministic N x N self-adjoint matrices and the Ul(\,i ) (t) are independent,
left-increment unitary Brownian motions on U(N). For ease of notation, we number
the elements of £(N) as &;(N) rather than &;;(N). In this section, we will explain
how the proofs in [29] work well for the Ul(\,i ) (t) together with E(N) and compare
their consequences on the matrix liberation process £ (N') with the corresponding
results on the Uz(vi ) (t) together with E(N).

7.1 Malliavin Derivatives of Unitary Brownian Motions

We begin with the SDE representation of Ul(\,k)(t). Let Bilﬁ) (t),1<a,B<N,1<i<n,
be the nN? independent Brownian motions on the real line with natural filtration ;.
Consider the system of SDEs in the 2nN2-dimensional Euclidean space (My)":
(71) dx(r) = V1 > Cap XD (1) dBU (1) - %X(i)(t) dt

1<a,B<N
(1 < i < n), where Cyp,1 < «, 8 < N, form an orthonormal basis of the Euclidean
space My/. This system of SDEs is linear, and thus each system admits a unique strong
solution after fixing initial X(")(0). The unitary Brownian motions Ul(\,i ) (1), 1<i<
n, are constructed as a unique strong solution X(V)(¢) of system (71) under initial
condition X(V(0) = I.

Lemma 7.1 Let ng;“’ﬁ) be the Malliavin derivative along the Brownian motion fol;s)'
Then
ksa,B) 7 7(i k SYRTAR k
DU () = 011 (9) (VAU (DU ()" CapJUL ()

1

DO UD (1) = 01110, () (- V1 UI(\,k)(s)*(\/N

k k *
Cap U () U (1))
for almost every t > 0.

Proof We also consider the system of SDEs

N

i - i i | e
(72) ayO(n="— % Y<>(t)caﬁd3g,3(t)-iy<>(t)dt

1<a,f<N
(1 < i < n). For a given X € My, it is easy to see that X()(¢) := Ul(\;)(t)X and
YD (t):=X UI(\; )(t)* satisfy systems (7.1) (7.2) of SDEs, respectively. Thus, the unique
strong solutions of the system of SDEs (7.1), (7.2) with initial condition X(V(0) = X,
Y (0) = X must be U ()X, XU (£)*. Thus, U ()X, XU (£)* are both
linear in the variable X, and hence their gradients (or “Jacobian matrix”) in X be-

come the linear transformations L and R on My, respectively, where

v (1) (1)
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LaX := AX, RpX := XBfor A, B, X € My. By a standard fact on Malliavin derivatives
for strong solutions of SDEs [24, Theorem 2.2.1; Eq.(2.59)], it follows that

e
= Ok 110,01 (8) Ly () (Ly (o)) (\/\/:CaﬁU(k)( ))
VT O e o).

ng;tx,ﬁ) Ul(\;) (t)*

N

VA1) .
:5k,il[o,z](S)RU<k)(t)*(RU<k)(s)*) I(WU}\;)(S) Caﬂ)

= St ()~ VUL () (= T Cu U U (1))

Hence, we are done. ]

ng;‘x’ﬁ)

By the linearity and the Leibniz rule of , we have, for a monomial W in

U (1), UY (1)* and &(N),
73) DO gy (W) =
Y v (m(VAUuP (U )

w=w,UP ()W,
s<t

x (ﬁ Caﬂ)Uz(vk)(S))Wz)

+ > try (W3(—\/—1 UI(\,k)(s)*
w=w U (1)* w,
s<t

x (%Caﬁ)UI(\,k)(s)UI(\Ik)(t)*)W4).

Using these remarks, it is a straightforward task to modify the proof of the large de-
viation upper bound for the matrix liberation process in [29] to the case of unitary
Brownian motions with deterministic matrices. The consequence is as follows.

7.2 Non-commutative Derivations

Assume the norm constraint [{;(N) [« < R for all j > 1, and moreover that Z(N)
has a limit distribution as N — oco. Thus, we consider the universal C*-algebras

Cr(xo) € Crlxo, ta (")) € Cr{xo, ta(-)s ve())

generated by x; = x7, j > 1, and u;(¢),vi(t), 1 < i < n, t > 0, subject to | x;[e <R

and uw; (1) u; (t) = w;(Hu; (1) = vi(t)*vi(t) = vi(t)vi ()" = u;(0) = v;(0) =1,
1< i< mnt>0. Remark that the universal *-algebra C(x,, ue(-)) generated by
the same indeterminates with the same algebraic constraints (and without the norm
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constraint) is naturally embedded into Cj(x,, #e(-)) as a norm-dense *-subalgebra.
By formula (7.3), we introduce derivations

0+ Clxo, e (4)) = Clitay ua (1)) @uatg o, ua ("))
determined by
65(k)ui(t) i= 0,10, (5) (\/—_luk(t)uk(s)* ® uk(s)),
88V u; (1) = 10,1 () (—V T uk(5)* ® ug (s)ui (£)*),
65(k)xj‘ = 0.
(In fact, one can easily check (u(Ss(k)uk(t)) cug()* - ug(t) - (u8s(k)uk(t)*) =0 for

example, and hence the above definition works well.) With the linear mapping 8: a ®
b — ba, we define cyclic derivatives

D5 20068 Clxs, e () > Clxo, ua(-)).

If we denote by P(&{,(N), u® (+)) the specialization of a given P € C{x,, uq(+)) with
xj=&;(N)and u;(t) = UI(\; )(t), then formula (7.3) admits a “compact” expression

D) ey (P(E(N), UL ()

_ (k) )y (-

= try (D P) (E.(N), UL () ( = Cap))
for any P € C(x,,ve(-)). Thus, the Clark-Ocone formula (see e.g, [18, Proposition
6.11] for any dimension and [24, subsection 1.3.4] for 1 dimension) shows that

Eltrn (P(6(N), US())) | 5]

- (PEO.UP O]+ 5 5
[ E [ (@96 00, U )

1

= Cap)) |72 ] B (5).

7.3 Continuous Tracial States

A tracial state ¢ on C{xo, #e(-)) (or Ci{xs,us(-), ve(+))) is said to be continuous if
t > u?(t) := my(u;(t)) is strongly continuous (resp. t — 7y (u;(t)), my(vi(t)) are
strongly continuous) for every 1 < i < n, where

o Cp(Xosta(-)) ~Hy  (resp. my: Cr(Xos ta(-), va(-)) ~ Iyp)

is the GNS representation associated with ¢. We then denote by TS°(Cx(xo, ue(+)))
and TS (Cx{xo,ue(-), ve(+))) all the continuous tracial states on Cx{x,, #e(-)), and
Cir(Xosta(+), va()), respectively. Set x;(t) := xj, t > 0, for each j for ease of no-
tation below. Then the same facts as [29, Lemmas 2.1,2.2] hold, and the metric d on
TS(Cg{xo,tte(-))) can be defined in the exactly same manner as (1.1) by considering
words in x;(t) and u;(t), u;(t)* in place of words of the form x;,;, (t1) -~ xi,, ;. (tm)
to define w(ty, ..., t,). We remark that 7((x;;(s) — x;;(£))*) in [29, Lemma 2.2(2)]
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should be replaced with @ ((u; (s)—u;(#))* (u;(s)-u;(t))) =2(1-Re @ (u; (s)*u;(t)))
in this context.

7.4 Rate Function

By universality, we have the *-homomorphism
1 C (o e () — Ci{xon e ()4 ()
for each s > 0, which sends each u;(t) to u;(t), and keeping each x; as it is, where
u;(t) =vi((t-s)vOu;(snt), 1<i<n, t>0.
Then, each ¢ € TS (Cx{xs, te(-))) canbe extended to a unique ¢ € TS (Cx{xo, ua(-),
ve(+))) in such a way that the v;(t) are freely independent of C5(x,, us(-)) and forma
freely independent family of left-multiplicative free unitary Brownian motions under

@. For each ¢ € TS (Cx(xo,ua(+))), we define ¢° := @ o IT* € TS (Cx(xs, tte(-))),
s > 0, and also write

(N(9) © M(9)) = (n5(Crlxor e ()" € mG(C{xor tia(),va()))")

on Hg, where 75t Cp(Xo, us(+), ve(+)) ~ I is the GNS representation associated
with @. We fix a distribution of the x;, say gy € TS(Cj(xs)). Let i be ¢° with
¢ € TS (Ci(xo,ua)) such that the restriction of ¢ to Cj(x,) is 0g. Such a continuous
tracial state ¢° is uniquely determined; in fact, it is the joint distribution of the x;’s and
the v;(t)’s such that the v;(t) form a freely independent family of left-multiplicative
free unitary Brownian motions and are freely independent of the x;’s, and more-
over, that the distribution of the x;’s is do. For any ¢ € TS(Cy(Xo,ua(+))), P=P* €
C(xs,ue(-)) and ¢ € [0, co], we define

. y 1a )
122 (9, P) = ¢' (P) = 0™ (P) - 52 fo | Encry (g (T (D9 P))) |2, ds
k=1

regarding ¢ as ¢°°. Then we introduce two functionals

()= sup  I7(p,P),
P=P*eC(xs,ue("))
t>0
Lol(p):=  sup  Iol(e,P)

P=P*eC(x0,ue())
for ¢ € TS (Cx (%o, ua(:))).

7.5 Consequences
Here is the main consequence of this section.

Theorem 7.2  Assume that gy € TS(Cg{xo)) is the limit distribution of E(N) as

N — oo, We denote by P € C{xo,ue(-,)) = P(E6(N), Uz(\r.)(')) € My the *-homo-

uBM

morphism sending u;(t) and x; to UI(\,i)(t) and &;(N), respectively. Let Pz(N)

TS (Cx{xo,te(-))) be the random tracial state

P e Ch(xor () — try(P(E,(N), UL () € C.

€
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Then we have the following large deviation upper bound:

Jim L log P(p2! 2(v) € A) < —inf{I;7(9) [ 9 € A}

for every closed A ¢ TS (Cy(xs,ua(-))). Moreover, both I3PM > I3 are good rate

functions and admit the same unique minimizer of™>M,

Proving that the rate functions are good along the line of the proof of [29, Propo-
sition 5.6] needs the formula

Ex(oy (D ((ui (1) — ui(£2))* (ui (1) — ui(t2)))
= 8k,i\/__137%(tlwrs)l(tl/\tz,tlvtz](5)
x (up(tn A t)ur(s) —ur(s)ur(fi A 2)7).

Similarly to [29, Corollary 5.9], the standard Borel-Cantelli argument shows the
next corollary.

Corollary 7.3  Keep the same setting as in Theorem 7.2. Let oi"®™ € TS¢(Cj (x5, tia(+)))
be constructed in such a way that the distribution of the x; is oy under oi™*™ and also
that the u;(t) form a freely independent family of left-multiplicative free unitary Brow-
nian motions and are freely independent of the x; under ay™™. Then d(p3fN,, o5™™™)

— 0 almost surely as N — oo.

This is a precise statement about the almost sure convergence as continuous pro-
cess for an independent family of unitary Brownian motions together with determin-
istic matrices and seems to have been missing so far, even though the almost sure
strong convergence for its time marginals was established by Collins, Dahlqvist, and
Kemp [11].

7.6 Haar-distributed Unitary Random Matrices

As in Section 4, using Lemma 2.1 we can derive a large deviation upper bound for
an independent family of N x N Haar-distributed unitary random matrices uld,
1 < i < n, with deterministic matrices £(N) from Theorem 7.2. The resulting rate
function is given as in Lemma 4.1. Let C5(x.,, 4o} be the universal C*-algebra gener-
ated by xj, j > 1, and u;, 1 < i < n, with subject to ||xj[ec < Rand uju; = u;uf = 1.
We denote by P € Cx{xs, ue) = P(&,(N), Uz(v.)) € My the *-homomorphism send-
ing xj and u; to &;(N) and uld, respectively. Then we have the random tracial state

Uit ¢ TS(Ch(xo, tta)) > C defined by pU1E"(P) i= try (P(&, (N), UY)) for P e
Ci{xo,te). Namely, let mr: Cx(xo, te) = Cr{Xo,te(-)) be the x-homomorphism
sending x; and u; to x; and u;(T), respectively, as before. Then we have the large
deviation upper bound for the probability measures P(go“?ﬁf‘)r € -) with speed N? and

the rate function
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Y € TS(Cilxorua))
Jim Tlijngoinf{fﬂfM(W | @ € TS (Crlta (), %6)), m7(9) € Om,6(y)} € [0, +00],

N0

where, as before, the infimum over the empty set is taken as +o0 and O,, s(v) is the
open neighborhood consisting of all y € TS(Cx(x.,us)) such that|y(w) —y(w)| < 8
for all words w in xj, u;, uj (j < m, 1< i < n) of length not greater than m.

We remark that Cabanal-Duvillard and Guionnet [9, Corollary 4.2] have also ob-
tained a large deviation upper bound for the Uz(\; ) with seemingly different rate func-
tion based on self-adjoint matrix Brownian motions.

7.7 Relation to the Matrix Liberation Process

We will compare Theorem 7.2 with [29, Theorem 5.8]. To this end, we renumber &;(N')
and x; as &;;(N) and x;;, respectively. Let mjjp: Cx{Xeo()) = Cr{Xeo,us(-)) be the
*-homomorphism sending x;;(t) to u;(t)x;ju;(t)*. This induces a continuous map

i TS (Cr(Xeos tte (1)) = TS (Cr{xes(-)))

defined by 7}, (¢) := ¢ o mp. We observe that nﬁb(w‘é?%)) = 7gi(y). lherefore,
the contraction principle in large deviation theory implies the large deviation upper
bound for P(7gis(yy € -) in the same scale with the good rate function:

15" (7) = inf{I;7M (9) | ¢ € TS (Crfua(), x0)), ity (9) = 7}

for any 7 € TS°(Cg{Xeo(-)}), where the infimum over the empty set is taken as +oo.
Therefore, we have two large deviation upper bounds with (seemingly different) rate
functions for P(zgm () € -).

Let 7 € TS (Cx{xeo(-)}) be given. Consider an arbitrary ¢ € TS®(Cx{(Xeo, te(-))})
with 75 (@) = 7. It is not difficult to show that

¢*(min(P)) = 7*(P),  En(p)(TF (D i (P))) = Enyry (T (D P))

for every P € C(x,o(-)) and every s > 0. Therefore, IL" (7, P) = I3*¥ (g, my (P)) for
every P € C{xe(+)) and every ¢ > 0, and hence

Lo (1) <Ig°(7), o oo(7) < Iu (),

= dg,

where

Lo (7) = inf {125 (9) | @ € TS (Cr{uta().-x0)), ity (9) = 7}

Therefore, the current approach using unitary Brownian motions directly gives an
improved large deviation upper bound for the matrix liberation process, though the
description of the resulting rate function is “indirect” Remark that the above in-
equalities between two kinds of rate functions guarantee that I 3‘1)“’ >1 Eéﬂfx, also have a
unique minimizer, which is given by /®. Remark that this fact on the rate functions
1450 > 79I “holds even when gy does not fall into T'Sgga (C*(Xeo ).
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8 Conditional Expectations of Liberation Cyclic Derivatives

We will give a technical result on liberation cyclic derivatives @Ek) ,1 < k < n, for
future work. The most non-trivial component of the rate functions I'®, 1 g

09 ?> ~0p,00
EN(T)(T[?(HS(QEIC) P))), which will be described in terms of free cumulants when
P is a monomial. In what follows, we use the notations in Section 4.

Here is some terminology. Let (A, ¢) be a non-commutative probability space,
and let a;,...,a, € A be arbitrarily chosen. For a block V' = (i} < --- < i5) of
[n] ={1,...,n}, we defineid(V)[ay,...,a,] to be the word a;, - -- a;, (i.e., the word
obtained by arranging a;,, .. ., a;, in order). For a partition 7 = {Vj, ..., V,,,} of [n],

we define
c(<p;n)[a1,...,an]::§( I1 o(Vo)lan....a))id(VO)lan ... a,],

where ¢(V;)[ay,...,a,] is defined as in [23, Lecture 11]; namely, we have
o(Ve)[ars...,an] = o(id(Ve)[ a1, ..., au]).
Proposition 8.1 Write
we = Vi, ((fee1 —9)+) Vi, ((te—$)+), 1<€<m,
with ig == i, and (t —s); := 0V (t —s). Then we have
Ex(n (eI (0 x15, (1) %4, (1))
= > Ka[wie. Wil

neNC(n)
x n;(@ﬁk)C(T;K(n))[x,-ljl(s A1)y Xiyj, (S A t,,)]),

where NC(n) denotes the non-crossing partitions of [n], x, the free cumulant associ-
ated with 7, and K: NC(n) — NC(n) the Kreweras complementation map; see [23,
Lecture 11].

Proof Write P = x;j,(t)---xi,j,(ts) for simplicity. Choose an arbitrary y €
C{%eo(+)). Then we compute

~ s (k ~r1rs ey (K

T(Exo) (711 (D17 P)) )(y) ) = T (D1 P)y),
where we use the same symbol T with a different meaning on each side; see Subsec-
tion 4.4. By a direct computation using the trace property, we have

(1 (@ p)y)

= Z :F( [W€+1xie+1je+1(5 A tl+1)W€+l t xie—lfe—l(s N tl—l)we’ Xigje (S A tl)])’)

o We[ Xigj, (S A o), YIWer1Xip,yjen (S A tes) -+ Waxi,j, (S A L)),
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each of whose terms is the 7-value of the monomial obtained from IT*( P) by replacing
Xigjo (s A te) with [x;,,(s A t¢), y]. By [23, Theorem 14.4], we obtain that

> T(wixiyi (s A t) - we[xigjo (5 A te), yIWenXi je (5 A tesr)
ip=k
s<te

e WnXiy g, (SA L))

Yo Ka[ Wi W] Ty [Xij (s A 1),

ig=k meNC(n)
s<tp

v [Xigj (S Ate)s vl xinj, (S A t)]

Z Kﬂ[wl,...,wn]( Z Tr(m) [Xiji (S A t)s o5 [Xigje (s A te), v,

neNC(n) Ise<:tk
<te

iy (s A tn)])

When K(7) = {V,..., Vy} with £ € V, (1< p < m), we have

o w(wixi g (s A1) - wi[Xiyj, (S A te)s Y IWertXipyy oy (5 A tes1)
iomk
s<tp

e WnXiy g, (SA )

= S ( TT =)l (s A t)s oo [xije (s A 1), ),
ip=k " 1<q<m
s<tp q#p
..,x,-njn(s/\t,,)])

X T(Vp)[Xij (s A t)s oo [Xigjo (S A te)s y]s oo xiyj, (S A tn)]

= Y ((TT 7V Lxiii (s A 1), X (s A ko), %y, (5 A 1)] )

ip=k 1<q<m
<ty q#p

x T(VP)['xiljl(S/\ tl)""’ [xi«?je(s N te),y],.. : ’xinjn (S/\ t")]'
If V, = (51 <--- < s¢) with s, = ¢, then

T(Vp)[xij (s A t)s oo [xij (sAte), y]s oo osxiyj, (s A ty)]

= T([Xisgﬂjsg+1 (s Atog): T Xig e (s Atse ) Xigj, (s A te)]y),
which together with the definition of ot implies that

Y TT V)i (5 A )i (s A te)s s iy, (5 A 1))

ip=k " 1<q<m
s<ty q*p

x T([xisg+1jsg+1 (S A t5g+l) o 'xisg_ljsg_l (S A thfl)’xilje(S A ff)])’)
=F(DF (s K(m)) x4 jy (A 1)y - Xigjo (S A )5 os Xin1u (5 A 1) ])Y)
=T (DP C(r K () [Xiji (s A 1)s s Xigjo (s Ate)s s i, ju (5 A 1)) (D).
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We conclude that
F(Ex(o) (m(TF (D P))) ()
= Z Kn[Wis- s Wh]

neNC(n)
~ k
x T C(1 K(7)) [xijy (A 1), s %4, (5 A 1)) (D).
Hence, we are done. ]
It is interesting to compute k,[wy, ..., w, ] in the above explicitly.

A Universal Free products of Unital C*-algebras

The concept of universal free products in the category of unital C*-algebras has been
studied in detail by several hands, including Blackadar [6], Pedersen [25], and others.
However, almost all existing works deal with only universal free products of two unital
C*-algebras. We have used universal free products of uncountably many unital
C*-algebras crucially (even in [29] without any references). Hence, we will collect a
few facts on universal free products of arbitrary number of unital C*-algebras with ex-
plicit explanations for the reader’s convenience. However, we do not claim any credit
to the materials in this appendix, because they all seem to be known among specialists.

Let A;, i € I, be unital C*-algebras. Consider their universal free product
¥ i1 A; with canonical unital *-homomorphisms A;: A; - Y icrAj, i € I, which is
characterized by the universality asserting that for any family 7;: A; - B of unital
*-homomorphisms into a common unital C*-algebra, there exists a unital *-homo-
morphism 7: ¥ ;cr.A; — B such that wo A; = 7; for all i € I. Note that the injectivity
of each A; was established in [6, Theorem 3.1] (or [25, Theorem 4.2]).

Lemma A.1  For any disjoint decomposition I = |lj¢; I; of I into non-empty subsets,
we consider the universal free product C*-algebras *iteAi, j € J. Then ¥igA; =
X jej (K ic1,A;) naturally; that is, each A;(a) with a € A; is sent to the corresponding
element in the j-th free product component W i1, A; on the right-hand side when i € I;.

Proof This follows from the universality of the involved universal free product
C* -algebras. [ ]

Lemma A.2  For each finite subset F € I, we consider the universal free product
C*-algebra Ar := W icpA; with setting Ay := Cl. Then the following hold true:
(i) IfF c F,, then the canonical unital +-homomorphism Ap, — lel*QlFZ\Fz =Ap,
via Lemma A.l is injective.
(i) s Ai 2 l1_n>1F Ap naturally (seei.e., [19, Proposition 11.4.1(i)] for the latter); that

is, the isomorphism sends each A;(a) with a € A; to the corresponding one in Ap
with i € F.

Proof (i) follows from Blackadar’s result [6, Theorem 3.1]. (ii) follows from [6, The-
orem 3.1] and [19, Proposition 11.4.1(ii)], for example. [ ]
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Proposition A.3  Let B; C A, i € I, be unital C*-subalgebras. Then the universal free
product C*-algebra ¥ ;1B is naturally embedded into ¥ ;A ;. Namely, ¥ ie1B; can
be identified with the C*-subalgebra generated by the A;(B;) and the canonical unital
+-homomorphisms from B; into W ;1B is given by the restriction of A; to B;.

Proof Write Br := YrierB; for each finite subset F € I with By := CIL. By the
iterative use of Pedersen’s result [25, Theorem 4.2] with the help of Lemma A.1, we
can see that By — Ap naturally. Then, by i.e., [19, Proposition 11.4.1(ii)], we have a
natural unital injective *-homomorphism from lim B into h_r)nF A by means of
inductive limits. Thus, the desired assertion follows thanks to Lemma A.2(ii). ]

Proposition A.4  Let 8 A, be the free product of the A;, i € 1, in the category of uni-

iel
tal *-algebras, in which we regard each A; as a unital %- subalgebra Let A: *algfl -
¥ i1 A; be the unique x-homomorphism sendinga € A; c *1eI‘A todi(a) € WicrAi
whose existence is guaranteed by universality. Then A must be injective. Namely, the

*-subalgebra algebraically generated by the A;(A;) in Wi A; can be identified with
* A

Proof We have to show thatifa € *?gﬂi satisfies A(a) = 0, then a = 0. To this end,
we will use the reduced free product construction; see, i.e., [32], following Avitzour’s
idea [2, Proposition 2.3].

Leta ¢ %" ' A; be given. Then a is nothing but a linear combination of words
whose letters are from the A;. For each i € I, we let A;( be the unital C*-subalgebra
of A; generated by the letters from A; (with fixed i) appearing in the words in the
linear combination description of a. Since there are only finitely many letters for each
i € I, Ao must be separable. By Proposition A.3, we can and do regard ¥ ;c;A o as a
unital C*-algebra of ¥ ;c;A; naturally, and 1(a) falls into 9 ;c;A ;0. Hence, we can
and do regard each A; as a separable unital C*-algebra.

We claim that for each i € I, there exists a faithful state w; on A;. Since A; is
separable, it faithfully acts on a separable Hilbert space, say m: A; ~ XK. See [12,
Theorem 1.9.12]. Then we choose a dense sequence of non-zero vectors &, € X and
set w;(a) = X2 5% anHx (n(a)&,|&)x for a € A;. This clearly defines a faithful
state.

Consider the reduced C*-free product (2, w) = ¥ cr(A;, w;) with canonical
*-homomorphisms y;: A; — 2. See ie., [32]. By universality, we have a unique
*-homomorphism y: W ;e;A; — 2 such that y o A; = y; for every i € I. Write

1
KiEA=Cl+ > > A AL
m21 ipEig,
(1<k<m-1)

with A7 := Ker(w; ), where A7 --- A7 denotes all the linear combinations of words
aj -~ a,, with ay € A} . According to this representation, we write

a=al+y > a(in....im),

m>l igFigy
(1€k<m-1)
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where a°(iy, ..., i, ) is an element in A3 --- A7 . We observe that a(ij,...,i,) = 0
for all but finitely many (i, ...,in). We denote by a°(iy,...,i,)® in the spacial
(or minimal) C*-tensor product A; ® --- ® A;,, the corresponding elements obtained
by changing each word a7 ---a;, appearing in a°(ij,...,i,) to a simple tensor
a;®---®a;, € 4;®---®A,; . By universality of algebraic tensor products sitting inside
Ay ® -+ ® A;,, (which is simply confirmed by the iterative use of a well-known fact,
see i.e., [19, Proposition 11.18], or for a more direct statement, see [7, Corollary 3.1]),
we observe that a®(i, ..., 1, )® = 0 implies a° (i1, ..., i) = 0.
Assume that A(a) = 0. Since

T(yM@))Eo=aba+ Y. Y mo(y(M@ (e sim)) s

m>1 ipFigy
(1<k<m-1)
where (H,, 7, &, ) is the GNS triple of (2, w). By the free independence among
the A;(A;), we see that a&,,, and the 7, (y(A(a®(i1,...,im))))&, are mutually or-
thogonal in 3. In particular, « as well as all the 7, (y(A(a°(i1, ..., im)))) &, must
be 0. Let (Hy,, 7w, £, ) be the GNS triple of (A;, w;). Then, the norm of each
7o (p(A(a® (i, ... »im)))) &, is the same as that of

(T, ® - @74, ) (@ (its. s im)®) (8w, ® - ® &y, ),

which must also be 0. Since w; is faithful, so is 7,,, and hence the tensor product
representation 77, ® -+ ® 7y, A, @ ®A;, ~Hy, ®--@FH;, isas well (see i.e.,
(19, Theorem 11.1.3]). We conclude that a®(iy, .. ., iy, )® = 0 so that a® (i, ..., i) = 0.
Consequently, a must be 0. ]
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