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Matrix Liberation Process II: Relation to
Orbital Free Entropy

Yoshimichi Ueda

Dedicated to Professor Dan-Virgil Voiculescu on the occasion of his 70th birthday

Abstract. We investigate the concept of orbital free entropy from the viewpoint of thematrix liberation
process. We will show that many basic questions around the deûnition of orbital free entropy are
reduced to the question of full large deviation principle for the matrix liberation process. We will also
obtain a large deviation upper bound for a certain family of randommatrices that is essential to deûne
the orbital free entropy. he resulting rate function is made up into a new approach to free mutual
information.

1 Introduction

his paper is a sequel to our previous one [29] on the matrix liberation process and
is devoted to explaining how the matrix liberation process is connected to the orbital
free entropy χorb. Here, the negative of orbital free entropy can be regarded as a pos-
sible microstate approach to mutual information in free probability.

he key concept of free probability theory, initiated by Voiculescu in the early
80s, is the so-called free independence, which is a kind of statistical independence.
Voiculescu then discovered around 1990 that the large N limit of independent (suit-
able) random matrices produces freely independent non-commutative random vari-
ables. In the 90s, in order to understand the notion of free independence deeply,
Voiculescu introduced and studied several notions of free entropy (the microstate
and the microstate-free ones), which are both analogs of Shannon’s entropy and ex-
pected to agree. hen these notions of free entropy were further studied by Biane,
Guionnet, Shlyakhtenko, and many others from several viewpoints, including large
deviation theory and optimal transportation theory. (See [31] for early history on free
entropy.)

On the other hand, the information theory suggests that we introduce a free prob-
ability analog of mutual information that should characterize the freely independent
situation as a unique minimizer. he main diõculty in such an attempt is the lack of
free probability analog of relative entropy, and thus a completely new idea was (and
probably still is) necessary. It was also Voiculescu [30] who ûrst attempted to develop
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the theory of mutual information in free probability. His approach is based upon
the liberation theory that he started to develop with the microstate-free approach to
free entropy. he most important concept in the liberation theory is the liberation
process, a natural non-commutative probabilistic interpolation between given non-
commutative random variables and their freely independent copies. Voiculescu’s idea
of liberation theory is completely non-commutative in nature, and has no origin in
the classical probability theory. Hence, the liberation theory is quite attractive from
the view point of noncommutative analysis.
Almost a decade later, we introduced, in a joint work [15] withHiai andMiyamoto,

the second candidate for mutual information in free probability, which we call the
orbital free entropy, and its deûnition involves the adjoint actions of Haar-distributed
unitary random matrices to the matrix spaceM sa

N
of N ×N self-adjoint matrices and

follows the basic idea of microstate approach to free entropy. (Some considerations
looking for better variants of orbital free entropy were made by Biane and Dabrowski
[5], and a direct generalization dropping the hyperûniteness for given random multi-
variables was then given by us [27].) he liberation process is exactly the large N limit
of the matrix liberation process introduced in [29], and its “invariant measure” (or its
limit distribution as time goes to∞) exactly arises as the “distribution” of the adjoint
actions of Haar-distributed unitary random matrices. hus, it is natural to consider
the matrix liberation process for the conjectural uniûcation between Voiculescu’s ap-
proach and our own to mutual information in free probability.
As a very ûrst step, we proved in [29], following the idea of [4], the large devia-

tion upper bound with a good rate function that completely characterizes the corre-
sponding liberation process as a unique minimizer. he next ideal steps on this line
of research should be: (1) proving the large deviation lower bound with the same rate
function, (2) applying the contraction principle to the resulting large deviation up-
per/lower bounds at time T = ∞, and (3) identifying the resulting rate function with
Voiculescu’s free mutual information.

In this paper, we will mainly work on item (2). As a consequence, we will clarify
how the matrix liberation process might resolve several technical drawbacks around
the deûnition of orbital free entropy. As another consequence, we will get a large
deviation upper bound result by applying the established contraction principle at
T = ∞ to the one for the matrix liberation process in our previous paper [29]. We
will then make the resulting rate function up into a new microstate-free candiadate
for free mutual information. Items (1) and (3) are le� as sequels to this paper.

he precise contents of this paper are as follows. Sections 2 and 3 are preliminaries,
and Sections 4, 5, and 6 form the main body of this paper. he subsequent sections
concern related materials.

In Section 2, we will give one of the key technical lemmas. It is about the long time
behavior of the large N limit of the logarithm of the heat kernel on U(N) divided by
N2. his seems to be of independent interest. hen we will give a slightly modiûed
deûnition of orbital free entropy in Section 3.

In Section 4, building on the previous work [29], we will prove that any large de-
viation upper or lower bound with speed N2 for the matrix liberation process start-
ing at several given deterministic matrices, say ξ i j(N), with limit joint distribution
implies the corresponding one with the same speed for the corresponding random
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matrices U
(i)

N
ξ i j(N)U(i)

N

∗ with independent Haar-distributed unitary random ma-
trices U

(i)

N
. his explicitly relates the matrix liberation process to the orbital free en-

tropy. Combining this with the main result of [29], we will obtain a large deviation
upper bound for U

(i)

N
ξ i j(N)U(i)

N

∗.
In Section 5, we will investigate the resulting rate function for the random ma-

trices U
(i)

N
ξ i j(N)U(i)

N

∗ in some detail; we will prove that it admits a unique min-
imizer, which is precisely given by freely independent copies of the initially given
non-commutative randommulti-variables. his fact supports the validity of full large
deviation principle with speed N2 and the same rate function for U

(i)

N
ξ i j(N)U(i)

N

∗,
because this unique minimizer property also follows from the conjectural full large
deviation principle as well as the fact that the orbital free entropy completely charac-
terizes the free independence (under the assumption of havingmatricial microstates).
Moreover, this unique minimizer property suggests that the rate function can be re-
garded as a possiblemicrostate-free candidate for freemutual information, and hence,
that the rate function ought have to have a coordinate-free fashion.

In Section 6, we will give such a coordinate-free formulation. he coordinate-free
formulation will be shown to be a quantity for a given ûnite family of subalgebras
in a tracial W∗-probability space that satisûes a desired set of properties (see Sub-
section 6.7) that any kind of free mutual information has to satisify, and, of course,
Voiculescu’s does.

In Section 7, we will explain how the proofs given in the previous paper [29]
also work well for several independent unitary Brownian motions with determin-
istic matrices (which are assumed to have the large N limit joint distribution) and
compare its consequences with the corresponding results on the matrix liberation
process. In Section 8, we will give an explicit description in terms of free cumulants
for the conditional expectation of the (time-dependent) liberation cyclic derivative
EN(τ)(π τ̃(Πs(D(k)

s P))) (see Section 4 for the notation), which is the most essential
component of the rate function. he description is a complement to a rather ad-hoc
computation made in Section 5. Finally, in the Appendix, we explain some basic facts
on universal free products of unital C∗-algebras for the reader’s convenience.

Glossary

● ∥ − ∥∞ denotes the operator norm.
● MN ⊃ M sa

N
denote the N × N complex matrices and the N × N self-adjoint

matrices. For each R > 0, (M sa
N
)R denotes the subset of A ∈ M sa

N
with ∥A∥∞ ≤ R.

● TrN denotes the usual (i.e., non-normalized) trace on MN , and trN does its nor-
malized one. We consider theHilbert–Schmidt norm ∥A∥HS ∶=

√
TrN(A∗A) on

MN . It is known that M sa
N
equipped with ∥ − ∥HS is naturally identiûed with the

N2-dimensional Euclidean space RN
2
. hus, MN = M sa

N
+
√
−1M sa

N
equipped

with ∥ − ∥HS is also naturally identiûed with the 2N2-dimensional Euclidean
space R2N2 = RN

2 ⊕RN
2
.

● U(N) denotes the N × N unitary matrices equipped with the Haar probabil-
ity measure νN ; n.b., the symbol νN diòers from the one γU(N) in [15], [27].
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A Haar-distributed N × N random unitary matrix means a random variable
with values in U(N), whose probability distribution measure is exactly νN .

● TS(A) denotes the tracial states on a unital C∗-algebra A. For a given subset
X of a W∗-algebra, we denote by X

w

its closure in the σ-weak topology (i.e.,
the weak∗ topology induced from the predual). For a unital ∗-homomorphism
π∶A → B between unital C∗-algebras, π∗∶TS(B) → TS(A) denotes the dual
map φ ∈ TS(B) ↦ φ ○ π ∈ TS(A).

● For a random variable X in the usual sense, E[X] denotes the expectation of X.
Moreover, for a random variable Y with values in a topological space, we write
P(Y ∈ A) = E[1A(Y)] for any Borel subset A; this is the distribution measure
of Y . Here, 1A denotes the indicator function of A.

Remark on Part I

We have investigated the matrix liberation process Ξlib(N) starting at deterministic
Ξ(N) = (Ξ i(N))n+1

i=1 with Ξ i(N) = (ξ i j(N))r(i)

j=1 ∈ (M sa
N
)r(i). Here, we remark that

r(i) = ∞ is allowable; namely, each Ξ i(N) can be a countably inûnite family of N×N

self-adjoint matrices, and all the results given in Part I still hold true in this more
general situation without essential changes. In fact, we only need to change themetric
d on the continuous tracial states TSc(C∗

R
⟨x●◇(⋅)⟩) (see Subsection 4.3) as follows.

Let W≤ℓ be all the words of length not greater than ℓ in indeterminates x i j = x∗
i j
with

1 ≤ i ≤ n + 1, 1 ≤ j ≤ ℓ (remark this restriction on j, which guarantees that W≤ℓ is a
ûnite set), and we deûne

d(τ1 , τ2) =
∞

∑
m=1

∞

∑
ℓ=1

1
2m+ℓ

max
w∈W≤ℓ

sup
(t1 , . . . ,tℓ)∈[0,m]ℓ

(1.1)

× (∣τ1(w(t1 , . . . , tℓ)) − τ2(w(t1 , . . . , tℓ))∣ ∧ 1)

for τ1 , τ2 ∈ TSc(C∗
R
⟨x●◇(⋅ ⋅ ⋅)⟩). Here, w(t1 , . . . , tℓ) is constructed by substituting

x ik jk(tk) for x ik jk in a given word w = x i1 j1 ⋅ ⋅ ⋅ x iℓ′ jℓ′ with ℓ′ ≤ ℓ.

Added in proof Wehave further investigated the rate functions in this paper a�er its
submission. As one of its simple consequences, we conûrmed that I libσ0 ,∞(τ) = I libσ0 (τ)
certainly holds if I libσ0 (τ) < +∞ (see Subsection 4.6 for the notation). We will give
those details elsewhere.

2 The Long Time Behavior of the Large N Limit of the Heat Kernel
on U(N)
In this section, we will investigate the long time behavior of the large N limit of the
logarithm of the heat kernel on U(N) by utilizing a recent work on the Douglas
and Kazakov transition due to hierry Lévy and Maïda [21] (based on Guionnet and
Maïda’s work [14]) as well as Li and Yau’s classical work on parabolic kernels [22]. he
consequence (Lemma 2.1) will play a key role in Section 4 to establish the contraction
principle at time T = ∞ for large deviation upper/lower bounds with speed N2 for
the matrix liberation process Ξlib(N).
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Consider U(N) as a Riemannian manifold of dimension N2 by the inner product
on the corresponding Lie algebra u(N) =

√
−1M sa

N
:

⟨X ∣ Y⟩ ∶= −NTrN(XY), X ,Y ∈ u(N).

Let Ric be the Ricci curvature associated with this Riemannian structure. It is known,
by e.g., [1, Lemma F.27], that

Ric(X , X) = N

2
(⟨X ∣ X⟩ − ⟨X ∣ (1/N)

√
−1IN⟩2) ≥ 0

for every X ∈ u(N).
Let pN ,t(U) be the heat kernel onU(N)with respect to this Riemannian structure

as in [21, section 3.1]. Looking at the Fourier expansion of pN ,t (see e.g., [21, Eq. (21)]),
we observe that

max
U∈U(N)

pN ,t(U) = pN ,t(IN)

holds for every t > 0. Recall that pN ,t(U) = pN(U , IN , t/2), where pN(U ,V , t),
U ,V ∈ U(N), t > 0, is a unique fundamental solution of the heat equation ∂tu =
∆u with the Laplacian ∆ on U(N) equipped with the above Riemannian structure.
See e.g., [10, p. 135] for the notion of fundamental solutions of heat equations. It is
well known (see e.g., [10, heorem 1 in V.III.1]) that pN is strictly positive. Since the
Ricci curvature is non-negative, as we saw before, we can apply Li–Yau’s theorem [22,
heorem 2.3] to u(U , t) ∶= pN(U , IN , t) and obtain that

pN(IN , IN , εt) ≤ pN(U , IN , t)ε−N
2
/2 exp (dN(IN ,U)2

4(1 − ε)t )

for every t > 0, 0 < ε < 1 and U ∈ U(N), where dN(IN ,U) denotes the Riemannian
distance between IN and U . Since maxU∈U(N) dN(IN ,U) = Nπ (see e.g., the proof of
[20, Proposition 4.1]), the above inequality with t = T/2 implies that

pN ,εT(IN)εN
2
/2 exp ( − (Nπ)2

2(1 − ε)T )

≤ pN ,T(IN)εN
2
/2 exp ( − dN(IN ,U)2

2(1 − ε)T )

≤ pN ,T(U)

for every T > 0, 0 < ε < 1 and U ∈ U(N). Consequently, we have obtained that

1
N2 log pN ,εT(IN) +

1
2
log ε − π2

2(1 − ε)T

≤ 1
N2 log pN ,T(U) ≤ 1

N2 log pN ,T(IN)

for every t > 0, 0 < ε < 1 and U ∈ U(N). By [21, heorem 1.1], it is known that

F(T) ∶= lim
N→∞

1
N2 log pN ,T(IN) = lim

N→∞

1
N2 log ( max

U∈U(N)
pN ,T(U))
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exists and deûnes a continuous function on (0,+∞). hus, we have

F(εT) + 1
2
log ε − π2

2(1 − ε)T ≤ lim
N→∞

1
N2 log pN ,T(U)

≤ lim
N→∞

1
N2 log pN ,T(U) ≤ F(T)

for every T > 0, 0 < ε < 1 and U ∈ U(N). In particular, we obtain that

F(εT) + 1
2
log ε − π2

2(1 − ε)T ≤ lim
N→∞

1
N2 log ( min

U∈U(N)
pN ,T(U))

≤ F(T)

(2.1)

for every T > 0 and 0 < ε < 1.
Assume that T > π2 in what follows. We need the complete elliptic functions of

the ûrst kind and the second kind:

K = K(k) ∶= ∫
1

0

ds√
(1 − s2)(1 − k2s2)

E = E(k) ∶= ∫
1

0

√
1 − k2s

1 − s2
ds.

With T = 4K(2E − (1 − k2)K), [21, Propositions 4.2, 5.2] show that

F(T) = K(2E − (1 − k2)K)
6

+ 1
2
log ( 1

4
1

(2E − (1 − k2)K)2 (1 − k
2))

+ 2(1 + k2)K
3(2E − (1 − k2)K) +

((1 − k2)K)2

12(2E − (1 − k2)K)2 .

Recall that

K = log 4√
1 − k2

+ o(1) = 3
2
log 2 − 1

2
log(1 − k) + o(1)

as k → 1 − 0 (see e.g., [8, p. 11]). his immediately implies that limk→1−0(1 − k)αK = 0
for any α > 0. We also have E = 1 at k = 1. By the well-known formulas dK/dk =
(E − (1 − k2)K)/(k(1 − k2)) and dE/dk = (E − K)/k, 0 < k < 1 (see [8, p. 282]),
we have d(2E − (1 − k2)K)/dk = (1 − k2)dK/dk. It is clear that K is increasing in k.
Hence T is an increasing function in k. hen we observe that T → +∞ if and only if
k → 1 − 0. Moreover, we have

F(T) = (E
3
+ 2(1 + k2)

3(2E − (1 − k2)K))K − 3
2
log 2 + 1

2
log(1 − k) + o(1)

= (E − 1)K
3

+ 2((1 − k2)K2 − (1 − k2)K − 2(E − 1)K)
3(2E − (1 − k2)K)

+ (K − 3
2
log 2 + 1

2
log(1 − k)) + o(1)

= (E − 1)K
3

+ 2((1 − k2)K2 − (1 − k2)K − 2(E − 1)K)
3(2E − (1 − k2)K) + o(1)
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as k → 1 − 0. Since dE/dk = (E − K)/k, 0 < k < 1 again, L’Hospital’s rule (see e.g.,
[26, heorem 5.13]) enables us to conûrm that limk→1−0(E − 1)/(1 − k)1/2 = 0, and
hence

lim
k→1−0

(E − 1)K = lim
k→1−0

( E − 1
(1 − k)1/2 ⋅ (1 − k)1/2

K) = 0.

Consequently, we get limT→+∞ F(T) = 0.
Taking the limit of (2.1) as T → +∞, we have

1
2
log ε ≤ lim

T→+∞

lim
N→∞

1
N2 log ( min

U∈U(N)
pN ,T(U))

≤ lim
T→+∞

lim
N→∞

1
N2 log ( max

U∈U(N)
pN ,T(U)) = 0

for all 0 < ε < 1. Since ε can arbitrarily be close to 1, we ûnally obtain the next lemma,
which will play a key role in Section 4.

Lemma 2.1 With

L(T) ∶= lim
N→∞

1
N2 log ( min

U∈U(N)
pN ,T(U)),

U(T) ∶= lim
N→∞

1
N2 log ( max

U∈U(N)
pN ,T(U)) = F(T),

we have

lim
T→+∞

L(T) = lim
T→+∞

U(T) = 0.

3 Orbital Free Entropy Revisited

Let Ξ = (Ξ i)n+1
i=1 with Ξ i = (Ξ i(N))N∈N be a ûnite family of sequences of (deter-

ministic) multi-matrices such that each Ξ i(N) = (ξ i j(N))r(i)

j=1 , 1 ≤ i ≤ n + 1, is cho-
sen from ((M sa

N
)R)r(i) with r(i) ∈ N ∪ {∞} for some R > 0. We sometimes write

Ξ = (Ξ(N))N∈N with Ξ(N) = ((ξ i j(N))r(i)

j=1 )n+1
i=1 . As in [29], we consider the univer-

salC∗-algebraC∗
R
⟨x●◇⟩ generated by x i j = x∗

i j
, 1 ≤ i ≤ n+1, j ≥ 1, such that ∥x i j∥∞ ≤ R

for all i , j, into which the universal unital ∗-algebraC⟨x●◇⟩ generated by the x i j = x∗
i j

is faithfully and norm-densely embedded. Similarly, we deûne C⟨x i◇⟩ ↪ C∗
R
⟨x i◇⟩

by ûxing the ûrst suõx i of generators. hese universal C∗-algebras are constructed
as universal free products of copies of C[−R, R], and each generator x i j is given by
the coordinate function f (t) = t in the (i , j)-th copy of C[−R, R]. he above em-
bedding properties are guaranteed by Proposition A.4. he ∗-homomorphism given
by x i j ↦ ξ i j(N) enables us to deûne tracial states trΞ(N) ∈ TS(C∗

R
⟨x●◇⟩) as well as

trΞ i(N) ∈ TS(C∗
R
⟨x i◇⟩), 1 ≤ i ≤ n + 1, by P = P(x●◇) ↦ trN(P(ξ●◇(N))) (n.b., this

notation diòers a little bit from that in [29]). Remark that we can alternatively deûne
trΞ i(N) to be the restriction of trΞ(N) to C∗

R
⟨x i◇⟩ (↪ C∗

R
⟨x●◇⟩ faithfully by [6, he-

orem 3.1] with Lemma A.1). We also assume that each Ξ i , 1 ≤ i ≤ n + 1, has a
limit distribution as N → ∞; namely, there exists a σ0, i ∈ TS(C∗

R
⟨x i◇⟩) such that

limN→∞ trΞ i(N) = σ0, i in the weak∗ topology. (his is the minimum requirement
for Ξ to deûne χorb(σ ∣ Ξ) below.) In what follows, we denote by TSfda(C∗R⟨x i◇⟩)
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all the tracial states that arise in this way for a ûxed 1 ≤ i ≤ n + 1. We also deûne
TSfda(C∗R⟨x●◇⟩) similarly.

Let us introduce a variant of orbital free entropy, say χorb(σ ∣ Ξ) with σ ∈
TS(C∗

R
⟨x●◇⟩), which is essentially the same as the old one in [15, section 4] for

hyperûnite non-commutative random multi-variables.
Deûne

U = (U i)n
i=1 ∈ U(N)n z→ trΞ(N)

U ∈ TS(C∗R⟨x●◇⟩)

by trΞ(N)

U ∶= trN ○ΦΞ(N)

U , where ΦΞ(N)

U ∶C∗
R
⟨x●◇⟩ → MN(C) is a unique ∗-homomor-

phism sending x i j (1 ≤ i ≤ n + 1) to U i ξ i j(N)U∗
i with U = (U i)n

i=1 and xn+1 j to
ξn+1 j(N), respectively. Consider an open neighborhood Om ,δ(σ), m ∈ N, δ > 0, at σ
in the weak∗ topology on TS(C∗

R
⟨x●◇⟩) deûned to be all the σ ′ ∈ TS(C∗

R
⟨x●◇⟩) such

that
∣σ ′(x i1 j1 ⋅ ⋅ ⋅ x ip jp) − σ(x i1 j1 ⋅ ⋅ ⋅ x ip jp)∣ < δ

whenever 1 ≤ ik ≤ n + 1, 1 ≤ jk ≤ m, 1 ≤ k ≤ p, and 1 ≤ p ≤ m. hen we deûne

χorb(σ ∣ Ξ(N) ;N ,m, δ) ∶= log ν
⊗n

N ({U ∈ U(N)n ∣ trΞ(N)

U ∈ Om ,δ(σ)}),

χorb(σ ∣ Ξ ;m, δ) ∶= lim
N→∞

1
N2 χorb(σ ∣ Ξ ;N ,m, δ),

χorb(σ ∣ Ξ) ∶= lim
m→∞
δ↘0

χorb(σ ∣ Ξ;m, δ)

with log 0 ∶= −∞. Remark that χorb(σ ∣ Ξ) = −∞, if σ does not agree with σ0, i on
C∗

R
⟨x i◇⟩ for some 1 ≤ i ≤ n + 1. his is a natural property; see [17, Proposition 3.1] as

well as Remark 6.3.
We could prove in [15, Lemma 4.2] that χorb(σ ∣ Ξ) depends only on the given σ0, i ,

1 ≤ i ≤ n+1, that is, it is independent of the choice of Ξ, when each tuple (x i j)r(i)

j=1 pro-
duces a hyperûnite von Neumann algebra via the GNS construction associated with
σ0, i . However, we suspected that this is not always the case. Hence, in [27], in order to
remove the dependency of Ξ, we took the supremum of χorb(σ ∣ A ;N ,m, δ) all over
the tuples A of multi-matrices in place of Ξ(N) to deûne χorb(X1 , . . . ,Xn+1) (see the
review below). Here, we will examine another simpler way of removing the depen-
dency. So far, we have only assumed that each Ξ i has a limit distribution as N →∞,
that is, limN→∞ trΞ i(N) = σ0, i . In what follows, we need the stronger assumption that
the whole Ξ has a limit distribution as N →∞, that is, limN→∞ trΞ(N) = σ0.

Let another σ0 ∈ TS(C∗
R
⟨x●◇⟩) be given in such away that its restriction toC∗

R
⟨x i◇⟩

is σ0, i for every 1 ≤ i ≤ n + 1. hen we deûne

(3.1) χorb(σ ∣ σ0) ∶= sup{χorb(σ ∣ Ξ) ∣ Ξ = (Ξ(N))
N∈N; lim

N→∞
trΞ(N) = σ0}.

We deûne it to be −∞ if σ0 does not fall into TSfda(C∗R⟨x●◇⟩). Remark that
χorb(σ ∣ Ξ) is well deûned in the above deûnition, since limN→∞ trΞ(N) = σ0 implies
that limN→∞ trΞ i(N) = σ0, i for every 1 ≤ i ≤ n + 1. Moreover, taking the supremum all
over the possible approximations Ξ to σ0 is motivated from the large deviation upper
bound for the matrix liberation process starting at Ξ(N) [29] (see the next section),
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because the rate function that we found there is independent of the choice of approx-
imations Ξ. We will prove two propositions, which suggest that χorb(σ ∣ σ0) should
be the same for a large class of σ0.

We next recall the original orbital free entropy introduced in [27] (with a non-
essential modiûcation [28, Remark 3.3]) in the current setting. Let πσ ∶C∗R⟨x●◇⟩ ↷Hσ

be the GNS representation associated with σ . Set Xσ
i j
∶= πσ(x i j), 1 ≤ i ≤ n + 1,

j ≥ 1, and then write Xσ
i = (Xσ

i j
)r(i)

j=1 , 1 ≤ i ≤ n + 1. Remark that the joint distri-
bution of those Xσ

1 , . . . ,Xσ
n+1 with respect to the tracial state on πσ(C∗R⟨x●◇⟩)′′ in-

duced from σ is exactly σ . On the other hand, if we have uniformly norm-bounded
non-commutative self-adjoint random multi-variables X1 = (X1 j)r(1)

j=1 , . . . ,Xn+1 =
(Xn+1 j)r(n+1)

j=1 in aW∗-probability space (M, τ), i.e., X∗
i j
= X i j and R ∶= sup

i , j ∥X i j∥∞
< +∞, then we have a unique tracial state σ(X i) ∈ TS(C∗

R
⟨x●◇⟩) naturally, that is,

σ(X i)(x i1 j1 ⋅ ⋅ ⋅ x im jm) ∶= τ(X i1 j1 ⋅ ⋅ ⋅X im jm) for example. For any A = (Ai)n+1
i=1 with

Ai = (A i j)r(i)

j=1 ∈ ((M sa
N
)R)r(i), 1 ≤ i ≤ n + 1, we deûne

χorb(X1 , . . . ,Xn+1;A,N ,m, δ)

∶= log ν
⊗n

N ({U ∈ U(N)n ∣ trAU ∈ Om ,δ(σ(X i))}),
χorb(X1 , . . . ,Xn+1;N ,m, δ) ∶= sup

A
χorb(X1 , . . . ,Xn+1;A,N ,m, δ),

χorb(X1 , . . . ,Xn+1;m, δ) ∶= lim
N→∞

1
N2 χorb(X1 , . . . ,Xn+1;N ,m, δ),

χorb(X1 , . . . ,Xn+1) ∶= lim
m→∞
δ↘0

χorb(X1 , . . . ,Xn+1;m, δ),

where trAU is deûned in the same manner as the trΞ(N)

U above. Note that the above
deûnition clearly works even when r(i) = ∞ for every 1 ≤ i ≤ n + 1.

he next proposition suggests which approximating sequences Ξ are suitable to
deûne the orbital free entropy.

Proposition 3.1 We have

χorb(σ ∣ σ0) ≤ χorb(Xσ
1 , . . . ,X

σ
n+1),

and equality holds when σ = σ0.

Proof Let Ξ = (Ξ(N))N∈N with Ξ i(N) = (ξ i j(N))r(i)

j=1 , 1 ≤ i ≤ n + 1, be as in
deûnition (3.1). Clearly,

χorb(σ ∣ Ξ;N ,m, δ) = χorb(Xσ
1 , . . . ,X

σ
n+1; Ξ(N),N ,m, δ)

≤ χorb(X
σ
1 , . . . ,X

σ
n+1;N ,m, δ)

holds for everyN ,m, and δ. his immediately implies χorb(σ ∣Ξ)≤ χorb(Xσ
1 , . . . ,Xσ

n+1).
Since Ξ has arbitrarily been chosen, we obtain χorb(σ ∣ σ0) ≤ χorb(Xσ

1 , . . . ,Xσ
n+1).

We next prove the latter assertion. We can and do assume that χorb(Xσ
1 , . . . ,Xσ

n+1)
> −∞; otherwise, the desired equality trivially holds as −∞ = −∞ by the ûrst part.
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We can inductively choose an increasing sequence Nk in such a way that

χorb(X
σ
1 , . . . ,X

σ
n+1; k, 1/k) −

1
k
< 1

N2
k

χorb(X
σ
1 , . . . ,X

σ
n+1;Nk , k, 1/k)

< χorb(X
σ
1 , . . . ,X

σ
n+1; k, 1/k) +

1
k

holds for every k; hence

χorb(Xσ
1 , . . . ,X

σ
n+1) = lim

k→∞

1
N2

k

χorb(X
σ
1 , . . . ,X

σ
n+1;Nk , k, 1/k).

For each k, one can choose A(Nk) = (Ai(Nk))n+1
i=1 with Ai(Nk) = (A i j(Nk))r(i)

j=1 ∈
((M sa

Nk
)R)r(i), 1 ≤ i ≤ n + 1, in such a way that

−∞ < χorb(X
σ
1 , . . . ,X

σ
n+1;Nk , k, 1/k) − 1

< χorb(Xσ
1 , . . . ,X

σ
n+1;A(Nk),Nk , k, 1/k).

By deûnition, for each k there exists U(Nk) ∈ U(Nk)n such that trA(Nk)

U(Nk)
∈ Ok ,1/k(σ).

With U(Nk) = (U i(Nk))n
i=1, we deûne B(Nk) = ((B i j(Nk))r(i)

j=1 )n+1
i=1 by

B i j(Nk) ∶=
⎧⎪⎪⎨⎪⎪⎩

U i(Nk)A i j(Nk)U i(Nk)∗ (1 ≤ i ≤ n),
An+1 j(Nk) (i = n + 1).

Let Ξ = (Ξ(N))N∈N with Ξ i(N) = (ξ i j(N))r(i)

j=1 , 1 ≤ i ≤ n + 1, be the one cho-
sen at the beginning of this proof. (he existence of such a sequence follows from
χorb(Xσ

1 , . . . ,Xσ
n+1) > −∞; see e.g., [17, Lemma 2.1].) Deûne Ξ′ = (Ξ′(N))N∈N by

Ξ′(N) ∶=
⎧⎪⎪⎨⎪⎪⎩

B(Nk) (N = Nk),
Ξ(N) (otherwise).

Since

trΞ
′
(Nk) = trA(Nk)

U(Nk)
∈ Ok ,1/k(σ),

it is easy to see that trΞ
′
(N) converges to σ in the weak∗ topology on TS(C∗

R
⟨x●◇⟩).

Since

trΞ
′
(Nk)

U = trA(Nk)

(U iU i(Nk))
n
i=1
, U = (U i)n

i=1 ∈ U(Nk)n

for every k and since νN is invariant under right-multiplication, we observe that

χorb(Xσ
1 , . . . ,X

σ
n+1;A(Nk),Nk , k, 1/k) = χorb(σ ∣ Ξ′ ;Nk , k, 1/k)

for every k. hus, for each m ∈ N, δ > 0, we have

χorb(σ ∣ Ξ′ ;Nk , k, 1/k) ≤ χorb(σ ∣ Ξ′ ;Nk ,m, δ)
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for all suõciently large k. hus, for every m ∈ N, δ > 0, we obtain that

χorb(Xσ
1 , . . . ,X

σ
n+1) = lim

k→∞

1
N2

k

χorb(X
σ
1 , . . . ,X

σ
n+1;Nk , k, 1/k)

= lim
k→∞

1
N2

k

(χorb(X
σ
1 , . . . ,X

σ
n+1;Nk , k, 1/k) − 1)

≤ lim
k→∞

1
N2

k

χorb(σ ∣ Ξ′ ;Nk ,m, δ)

≤ lim
N→∞

1
N2 χorb(σ ∣ Ξ′ ;N ,m, δ)

= χorb(σ ∣ Ξ′;m, δ).
herefore, by taking the limit as m →∞, δ ↘ 0, we have

χorb(Xσ
1 , . . . ,X

σ
n+1) ≤ χorb(σ0 ∣ Ξ′) ≤ χorb(σ ∣ σ).

With the former assertion we are done. ∎

Another natural choice of initial tracial state σ0 is available; the tracial state is de-
termined by making the resulting random multi-variables Xσ0

i
, 1 ≤ i ≤ n + 1, freely

independent. he χorb(σ ∣ σ0) with this choice of σ0 is nothing but an unpublished
variation of orbital free entropy due to Dabrowski, and the proposition below shows
that it turns out to be the same as our original χorb(Xσ

1 , . . . ,Xσ
n+1) in [27].

Proposition 3.2 When theXσ0
i
, 1 ≤ i ≤ n+1, are freely independent, then χorb(σ ∣ σ0)

= χorb(Xσ
1 , . . . ,Xσ

n+1).

Proof By Proposition 3.1, we can and do assume that
χorb(Xσ

1 , . . . ,X
σ
n+1) > −∞,

and it suõces to prove

χorb(σ ∣ σ0) ≥ χorb(σ ∣ σ) (= χorb(Xσ
1 , . . . ,X

σ
n+1)).

Let Ξ =(Ξ(N))∞
N=1 with Ξ(N)= (Ξ i(N))n+1

i=1 , Ξ i(N)= (ξ i j(N))r(i)

j=1 ∈ ((M sa
N
)R)r(i),

1 ≤ i ≤ n + 1, be such that limN→∞ trΞ(N) = σ in the weak∗ topology. Choose an
independent family of Haar-distributed unitary random matrices V (i)

N
, 1 ≤ i ≤ n. It

is known (see i.e., [16, heorem 4.3.1]) that V (1)
N
, . . . ,V (n)

N
, Ξ(N) are asymptotically

free almost surely as N → ∞ and, moreover, that the subfamily V (1)
N
, . . . ,V (n)

N
con-

verges to a freely independent family of Haar unitaries in distribution almost surely
as N → ∞ too. hus, thanks to the almost sure convergence, we can choose de-
terministic sequences Vi(N), 1 ≤ i ≤ n, from random sequences V (i)

N
, 1 ≤ i ≤ n

such thatV1(N), . . . ,Vn(N), Ξ(N) converge to the same family of non-commutative
random variables in distribution as N → ∞. Deûne Ξ′ = (Ξ′(N))∞

N=1 with Ξ′(N) =
(Ξ′i(N))n+1

i=1 , Ξ′i(N) = (ξ′
i j
(N))r(i)

j=1 by

ξ
′
i j(N) ∶=

⎧⎪⎪⎨⎪⎪⎩

Vi(N)ξ i j(N)Vi(N)∗ (1 ≤ i ≤ n),
ξn+1 j(N) (i = n + 1).
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hen the Ξ′i(N), 1 ≤ i ≤ n + 1, are asymptotically free as N → ∞. herefore, we
conclude that limN→∞ trΞ

′
(N) = σ0 in the weak∗ topology. Remark that

trΞ
′
(N)

U = trΞ(N)

(U iVi(N))n
i=1
, U = (U i)n

i=1 ∈ U(N)n

holds for every N . herefore, thanks to the invariance of νN under right-multiplica-
tion, we conclude, as in the proof of Proposition 3.1, that

χorb(σ ∣ Ξ) = χorb(σ ∣ Ξ′) ≤ χorb(σ ∣ σ0).
Since Ξ has been chosen arbitrarily, we are done. ∎

he above proof suggests that

χorb(σ ∣ σ0) = χorb(Xσ
1 , . . . ,X

σ
n+1)

holds for a large class of tracial states σ0 ∈ TSfda(C∗R⟨x●◇⟩).

4 Orbital Free Entropy and Matrix Liberation Process

Building on our previous work [29], we will clarify how some fundamental questions
concerning the orbital free entropy χorb are precisely reduced to the conjectural large
deviation principle for the matrix liberation process. Lemma 2.1 will play a key role
in what follows.

4.1 Non-commutative Coordinates

Let
C
∗
R⟨x●◇(⋅)⟩ ⊂ C∗R⟨x●◇(⋅), v●(⋅)⟩

be the universal unital C∗-algebras generated by x i j(t) = x i j(t)∗, 1 ≤ i ≤ n + 1, j ≥
1, t ≥ 0, and v i(t), 1 ≤ i ≤ n, t ≥ 0, with subject to ∥x i j(t)∥∞ ≤ R and v i(t)∗v i(t) =
v i(t)v i(t)∗ = 1 = v i(0). hese universal C∗-algebras are constructed as universal
free products of uncountably many C[−R, R] and C(T), and generators x i j(t) and
u i(t) are given by coordinate functions f (t) = t in t ∈ [−R, R] or g(z) = z in z ∈ T
of component algebras. Proposition A.3 guarantees the inclusion of two universal
C∗-algebras. Recall that j may run over the natural numbersN as we remarked at the
end of Section 1. he universal ∗-algebras C⟨x●◇(⋅)⟩ ⊂ C⟨x●◇(⋅), v●(⋅)⟩ generated by
the same indeterminates x i j(t) and v i(t) can naturally be regarded as norm-dense
∗-subalgebras of C∗

R
⟨x●◇(⋅)⟩ ⊂ C∗R⟨x●◇(⋅), v●(⋅)⟩, respectively. Proposition A.4 guar-

antees this fact. For each T ≥ 0, the correspondence x i j ↦ x i j(T), 1 ≤ i ≤ n + 1, j ≥ 1,
deûnes a unique (injective) ∗-homomorphism πT ∶C∗R⟨x●◇⟩ → C∗R⟨x●◇(⋅)⟩ with nota-
tion C∗

R
⟨x●◇⟩ in Section 3.

4.2 Time-dependent Liberation Derivative

We introduce the derivation

δ
(k)
s ∶C⟨x●◇(⋅)⟩ Ð→ C⟨x●◇(⋅), v●(⋅)⟩ ⊗alg C⟨x●◇(⋅), v●(⋅)⟩

(1 ≤ k ≤ n, s ≥ 0), which sends each x i j(t) to

δ i ,k1[0,t](s)(xk j(t)vk(t − s) ⊗ vk(t − s)∗ − vk(t − s) ⊗ vk(t − s)∗xk j(t)).
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henwewriteD(k)
s ∶= θ○δ(k)s , 1 ≤ k ≤ n, s ≥ 0, where θ denotes the �ip-multiplication

mapping a ⊗ b ↦ ba.

4.3 Continuous Tracial States

A tracial state τ on C∗
R
⟨x●◇(⋅)⟩ is said to be continuous if t ↦ πτ(x i j(t)) is strongly

continuous for every 1 ≤ i ≤ n + 1, j ≥ 1, where πτ ∶C∗R⟨x●◇(⋅)⟩ ↷ Hτ is the GNS
representation associated with τ. We denote by TSc(C∗

R
⟨x●◇(⋅)⟩) all the continuous

tracial states. he space TSc(C∗
R
⟨x●◇(⋅)⟩) becomes a complete metric space endowed

with metric d deûned by (1.1), which deûnes the topology of uniform convergence on
ûnite time intervals.

4.4 Liberation Process τs Starting at a Given Time

We extend a given τ ∈ TSc(C∗
R
⟨x●◇(⋅)⟩) to a unique τ̃ ∈ TSc(C∗

R
⟨x●◇(⋅), v●(⋅)⟩) in

such a way that the v i(t) are ∗-freely independent of C∗
R
⟨x●◇(⋅)⟩ and form a ∗-freely

independent family of le�-multiplicative free unitary Brownian motions under this
extension τ̃. his extension of tracial state can be constructed, via the GNS represen-
tation πτ ∶C∗R⟨x●◇(⋅)⟩ ↷Hτ , by taking a suitable reduced free product. We write

(N(τ) ⊂M(τ)) ∶= (π τ̃(C∗R⟨x●◇(⋅)⟩)′′ ⊂ π τ̃(C∗R⟨x●◇(⋅), v●(⋅)⟩)′′)
on Hτ̃ , where π τ̃ ∶C∗R⟨x●◇(⋅), v●(⋅)⟩ ↷ Hτ̃ is the GNS representation associated with
τ̃. Write xτ

i j
(t) ∶= π τ̃(x i j(t)) and vτ

i (t) ∶= π τ̃(v i(t)), and the canonical extension of
τ̃ toM(τ) is still denoted by the same symbol τ̃ for simplicity. We denote by EN(τ) the
τ̃-preserving conditional expectation fromM(τ) ontoN(τ), which is known to exist
and to be unique as a standard fact on von Neumann algebras. Consider an “abstract”
non-commutative process in C∗

R
⟨x●◇(⋅), v●(⋅)⟩

t z→ x
s
i j(t) ∶=

⎧⎪⎪⎨⎪⎪⎩

v i((t − s) ∨ 0)x i j(s ∧ t)v i((t − s) ∨ 0)∗ (1 ≤ i ≤ n),
xn+1 j(t) (i = n + 1)

and the corresponding “concrete” non-commutative stochastic process in M(τ)
t z→ x

τ
s

i j (t) ∶= π τ̃(x s
i j(t))

=
⎧⎪⎪⎨⎪⎪⎩

vτ
i ((t − s) ∨ 0)xτ

i j
(s ∧ t)vτ

i ((t − s) ∨ 0)∗ (1 ≤ i ≤ n),
xτ
n+1 j

(t) (i = n + 1).

By universality, this process xτ
s

i j
(t) clearly deûnes a tracial state τs ∈ TSc(C∗

R
⟨x●◇(⋅)⟩).

By the ∗-homomorphism Γ∶C∗
R
⟨x●◇(⋅)⟩ → C∗

R
⟨x●◇⟩ sending each x i j(t) to x i j ,

we obtain Γ∗(σ0) ∶= σ0 ○ Γ ∈ TS(C∗
R
⟨x●◇(⋅)⟩) with a given σ0 ∈ TS(C∗

R
⟨x●◇⟩) and

set σ lib
0 ∶= Γ∗(σ0)0 ∈ TS(C∗

R
⟨x●◇(⋅)⟩) (Γ∗(σ0)0 is deûned in the same way as τs with

s = 0), which we call the liberation process starting at σ0 (precisely its empirical
distribution).

4.5 New Description of τs

By universality, we have a unique unital ∗-homomorphism Πs ∶C∗
R
⟨x●◇(⋅), v●(⋅)⟩ →

C∗
R
⟨x●◇(⋅), v●(⋅)⟩ sending x i j(t) and v i(t) to x s

i j
(t) and v i(t), respectively. By using
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this ∗-homomorphism, we obtain a unital ∗-homomorphism

π τ̃ ○Πs ∶C∗R⟨x●◇(⋅), v●(⋅)⟩ →M(τ),

that is,

C∗
R
⟨x●◇(⋅), v●(⋅)⟩

Πs

Ð→ C∗
R
⟨x●◇(⋅), v●(⋅)⟩

π τ̃Ð→ M(τ)
(x i j(t), v i(t)) z→ (x s

i j
(t), v i(t)) z→ (xτ

s

i j
(t), vτ

i (t)).

hen π τ̃(Πs(D(k)
s P)), P ∈ C⟨x●◇(⋅)⟩, becomes the element of M(τ) obtained by

substituting (xτ
s

i j
(t), vτ

i (t)) for (x i j(t), v i(t)) in D
(k)
s P. Moreover, we have τs = τ̃ ○

Πs on C∗
R
⟨x●◇(⋅)⟩.

4.6 Rate Function

With σ0 ∈ TS(C∗
R
⟨x●◇⟩), we associate two functionals I libσ0 , I libσ0 ,∞∶

TSc(C∗
R
⟨x●◇(⋅)⟩) → [0,+∞] as follows. For any τ ∈ TSc(C∗

R
⟨x●◇(⋅)⟩, P = P∗ ∈

C⟨x●◇(⋅)⟩ and t ∈ [0,∞], we ûrst deûne

I
lib
σ0 ,t(τ, P) ∶= τ

t(P) − σ
lib
0 (P)(4.1)

− 1
2

n

∑
k=1
∫

t

0
∥EN(τ)(π τ̃(Πs(D(k)

s P)))∥2
τ̃ ,2 ds

regarding τ as τ∞ (since τ t(P) = τ(P)when t is large enough). Here, ∥−∥τ̃ ,2 denotes
the non-commutative L2-norm on the tracial W∗-probability space (M(τ), τ̃ ). We
remark that the integrand in (4.1) agrees with that given in [29] (though their rep-
resentations are diòerent at ûrst glance), and moreover, that the integration above is
well deûned even when t = ∞, because D(k)

s P = 0 when s is large enough. hen we
deûne

I
lib
σ0

(τ) ∶= sup
P=P

∗
∈C⟨x●◇(⋅)⟩
t>0

I
lib
σ0 ,t(τ, P),

I
lib
σ0 ,∞(τ) ∶= sup

P=P∗∈C⟨x●◇(⋅)⟩
I
lib
σ0 ,∞(τ, P).

Each of the functionals I libσ0 , I
lib
σ0 ,∞ is shown, in [29, Proposition 5.6, Proposition 5.7(3)]

(n.b., their proofs work well even for the modiûcation I libσ0 ,∞ without any essential
changes), to be a well-deûned, good rate function with unique minimizer. More-
over, the minimizer for both functionals is identiûed with the liberation process σ lib

0
starting at σ0 for both functionals. Remark that the proofs of [29, Proposition 5.6,
Proposition 5.7(3)] do not use the assumption that σ0 falls into TSfda(C∗R⟨x●◇⟩),
and thus the functionals I libσ0 , I

lib
σ0 ,∞ can be considered in the general setting. Remark

that I libσ0 ,∞(τ) ≤ I libσ0 (τ) obviously holds, but it is a question whether equality holds
or not.

Here is a simple lemma, which can be applied to I = I libσ0 or I = I libσ0 ,∞. Recall
that πT ∶C∗R⟨x●◇⟩ → C∗

R
⟨x●◇(⋅)⟩ is the unique injective ∗-homomorphism sending

each x i j to x i j(T). In the lemma below, we will use the map π∗
T
∶TSc(C∗⟨x●◇(⋅)⟩) →

TSc(C∗⟨x●◇⟩) induced from πT ; see the glossary in Section 1.
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Lemma 4.1 For any functional I∶TSc(C∗⟨x●◇(⋅)⟩) → [0,+∞], the new one

J∶TS(C∗
R
⟨x●◇⟩) → [0,+∞] deûned by

J(σ) ∶ = lim
m→∞
δ↘0

lim
T→∞

inf {I(τ) ∣ τ ∈ TS
c(C∗R⟨x●◇(⋅)⟩), π∗T(τ) ∈ Om ,δ(σ)}

= sup
m∈N
δ>0

lim
T→∞

inf {I(τ) ∣ τ ∈ TS
c(C∗R⟨x●◇(⋅)⟩), π∗T(τ) ∈ Om ,δ(σ)}

for any σ ∈ TS(C∗
R
⟨x●◇⟩) (with notation Om ,δ(σ) in the previous section) is a well-

deûned rate function, where TS(C∗
R
⟨x●◇⟩) is endowed with the weak∗ topology, and

the inûmum over the empty set is taken to be +∞. Moreover, replacing Om ,δ(σ) with

the closed neighborhood Fm ,δ(σ) in the above deûnition of J(σ) does not aòect its value,
where Fm ,δ(σ) is all the σ ′ ∈ TS(C∗

R
⟨x●◇⟩) such that

∣σ ′(x i1 j1 ⋅ ⋅ ⋅ x ip jp) − σ(x i1 j1 ⋅ ⋅ ⋅ x ip jp)∣ ≤ δ
whenever 1 ≤ ik ≤ n + 1, 1 ≤ jk ≤ m, 1 ≤ k ≤ p and 1 ≤ p ≤ m.

Proof If m1 ≤ m2 and δ1 ≥ δ2 > 0, then Om1 ,δ1(σ) ⊇ Om2 ,δ2(σ) so that

lim
T→∞

inf {I(τ) ∣ τ ∈ TS
c(C∗R⟨x●◇(⋅)⟩), π∗T(τ) ∈ Om1 ,δ1(σ)} ≤

lim
T→∞

inf {I(τ) ∣ τ ∈ TS
c(C∗R⟨x●◇(⋅)⟩), π∗T(τ) ∈ Om2 ,δ2(σ)}.

herefore, taking limm→∞,δ↘0 in the deûnition of J(σ) is actually well deûned and
coincides with taking the supremum all over m ∈ N and δ > 0.

We then conûrm that J is lower semicontinuous. Assume that σk → σ in
TS(C∗

R
⟨x●◇⟩) as k → ∞. Choose an arbitrary 0 ≤ L < J(σ). hen there exist m0 ∈ N

and δ0 > 0 such that
lim
T→∞

inf {I(τ) ∣ τ ∈ TS
c(C∗R⟨x●◇(⋅)⟩), π∗T(τ) ∈ Om0 ,δ0(σk)} > L.

hen there exists k0 ∈ N such that if k ≥ k0, then Om0 ,δ0/2(σk) ⊆ Om0 ,δ0(σ), and
hence

J(σk) ≥ lim
T→∞

inf {I(τ) ∣ τ ∈ TS
c(C∗R⟨x●◇(⋅)⟩), π∗T(τ) ∈ Om0 ,δ0/2(σk)}

≥ lim
T→∞

inf {I(τ) ∣ τ ∈ TS
c(C∗R⟨x●◇(⋅)⟩), π∗T(τ) ∈ Om0 ,δ0(σ)}

> L,

where the ûrst inequality follows from the fact that limm→∞,δ↘0 = sup
m ,δ in the deû-

nition of J(σ) as remarked before. herefore, we obtain that lim
k→∞ J(σk) ≥ L, which

guarantees that J is lower semicontinuous.
Since Om ,δ(σ) ⊆ Fm ,δ(σ) ⊆ Om ,2δ(σ), we have

inf {I(τ) ∣ τ ∈ TS
c(C∗R⟨x●◇(⋅)⟩)), π∗T(τ) ∈ Om ,δ(σk)}

≥ inf {I(τ) ∣ τ ∈ TS
c(C∗R⟨x●◇(⋅)⟩), π∗T(τ) ∈ Fm ,δ(σk)}

≥ inf {I(τ) ∣ τ ∈ TS
c(C∗R⟨x●◇(⋅)⟩), π∗T(τ) ∈ Om ,2δ(σk)}

for every m ∈ N and δ > 0. his implies the last assertion. ∎
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he above lemma clearly holds true even if limT→∞ is replaced with lim
T→∞ in

the deûnition of J. We also remark that TS(C∗
R
⟨x●◇⟩) is weak∗ compact, and hence J

is trivially a good rate function.

4.7 Matrix Liberation Process

Let Ξ(N) = ((ξ i j(N))r(i)

j=1 )n+1
i=1 with ξ i j(N) ∈ (M sa

N
)R be an approximation to a given

σ0 ∈ TSfda(C∗R⟨x●◇⟩). Let U
(i)

N
(t), 1 ≤ i ≤ n, be independent, le�-increment unitary

Brownian motions on U(N), and we deûne the matrix liberation process Ξlib(N)(t)
= ((ξlib

i j
(N)(t))r(i)

j=1 )n
i=1, t ≥ 0, starting at Ξ(N) by

ξ
lib
i j (N)(t) ∶=

⎧⎪⎪⎨⎪⎪⎩

U
(i)

N
(t)ξ i j(N)U(i)

N
(t)∗ (1 ≤ i ≤ n),

ξn+1 j(N) (i = n + 1).

hen, via the ∗-homomorphism πΞlib(N)∶C∗R⟨x●◇(⋅)⟩ → MN determined by x i j(t) ↦
ξlib
i j
(N)(t), 1 ≤ i ≤ n + 1, j ≥ 1, t ≥ 0, we obtain a tracial state τΞlib(N) ∶= trN ○ πΞlib(N),

which falls into TSc(C∗
R
⟨x●◇(⋅)⟩). his tracial state is a random variable in

TSc(C∗
R
⟨x●◇(⋅)⟩) in the ordinary sense, and hence we can consider the probability

P(τΞlib(N) ∈ Θ) of any Borel subset Θ ⊆ TSc(C∗
R
⟨x●◇(⋅)⟩). By [29, heorem 5.8], we

already know that the sequence of probability measuresP(τΞlib(N) ∈ ⋅ ) satisûes the large

deviation upper bound with speed N2 and the above rate function I libσ0 .

4.8 Contraction Principle at T = ∞

LetUN = (U(i)

N
)n
i=1 be an n-tuple of independent N×N unitary randommatrices dis-

tributed under the Haar probability measure νN on U(N). he random tracial state
trΞ(N)

UN
∈ TS(C∗

R
⟨x●◇⟩) is deûned in the same manner as in Section 3. A well-known,

standard result on the heat kernel measure on U(N) implies that E[π∗
T
(τΞlib(N))(a)]

converges toE[trΞ(N)

UN
(a)] as T →∞ for every a ∈ C∗

R
⟨x●◇⟩. he usual method to ob-

tain the large deviation upper/lower bound with speed N2 for P(trΞ(N)

UN
∈ ⋅) from that

for P(τΞlib(N) ∈ ⋅) in the same speed is to show that (a kind of) the exponential con-
vergence of π∗

T
(τΞlib(N)) to trΞ(N)

UN
as T → ∞ (see i.e., [13, §4.2.2]). Nevertheless, we

will be able to prove the next proposition by utilizing Lemma 2.1 without establishing
the exponential convergence.

Proposition 4.2 Assume that the sequence of probability measures P(τΞlib(N) ∈ ⋅)
satisûes the large deviation upper (lower) bound with speed N2 and rate function I+

(resp. I−). hen P(trΞ(N)

UN
∈ ⋅) also satisûes the large deviation upper (resp. lower) bound

with speed N2 and the following rate function:

J
+(σ) ∶= lim

m→∞
δ↘0

lim
T→∞

inf{I+(τ) ∣ τ ∈ TS
c(C∗R⟨x●◇(⋅)⟩), π∗T(τ) ∈ Om ,δ(σ)}
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resp.

J
−(σ) ∶= lim

m→∞
δ↘0

lim
T→∞

inf{I−(τ) ∣ τ ∈ TS
c(C∗R⟨x●◇(⋅)⟩), π∗T(τ) ∈ Om ,δ(σ)}

for every σ ∈ TS(C∗
R
⟨x●◇⟩), where the inûmum over the empty set is taken to be +∞.

In particular, if the sequence of probability measures P(τΞlib(N) ∈ ⋅) satisûes the full

large deviation principle with speed N2, that is, the above large deviation upper and

lower bounds with I+ = I−, then J ∶= J+ = J− and

χorb(σ ∣ σ0) = χorb(σ ∣ Ξ) = −J(σ)

= lim
m→∞
δ↘0

lim
N→∞

1
N2 log ν

⊗n

N
({U ∈ U(N)n ∣ trΞ(N)

U ∈ Om ,δ(σ)})

holds for every σ ∈ TS(C∗
R
⟨x●◇⟩) and any choice of approximating sequence Ξ =

(Ξ(N))N∈N to σ0 ∈ TSfda(C∗R⟨x●◇⟩).

Proof Set

I
±
T(σ) ∶= inf {I±(τ) ∣ τ ∈ TS

c(C∗R⟨x●◇(⋅)⟩), π∗T(τ) = σ}

for any σ ∈ TS(C∗
R
⟨x●◇⟩). By the contraction principle (see i.e., [13, heorem 4.2.1]),

P(π∗
T
(τΞlib(N)) ∈ ⋅) satisûes the large deviation upper (resp. lower) bound with speed

N2 and the rate function I+
T
(resp. I−

T
). Write UN(t) = (U(i)

N
(t))n

i=1, t ≥ 0, and deûne
the random tracial state trΞ(N)

UN(T)
in the same manner as trΞ(N)

UN
. Let L(T) ≤ U(T) and

νN be as in the previous sections. he probability distribution measure of U(i)

N
(T)

is known to be pN ,T(U)νN(dU) on U(N). Observe that

P(π∗T(τΞlib(N)) ∈ ⋅) = P(trΞ(N)

UN(T)
∈ ⋅) = ν

⊗n

N ,T({U ∈ U(N)n ∣ trΞ(N)

U ∈ ⋅})

as well as

(4.2) P(trΞ(N)

UN
∈ ⋅) = ν

⊗n

N
({U ∈ U(N)n ∣ trΞ(N)

U ∈ ⋅}).

Since

( min
U∈U(N)

pN ,T(U))νN ≤ νN ,T ≤ ( max
U∈U(N)

pN ,T(U))νN ,

we observe that

n

N2 log min
U∈U(N)

pN ,T(U) + 1
N2 logP(trΞ(N)

UN
∈ ⋅)

≤ 1
N2 logP(π∗T(τΞlib(N)) ∈ ⋅)

≤ n

N2 log max
U∈U(N)

pN ,T(U) + 1
N2 logP(trΞ(N)

UN
∈ ⋅).
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Now, we will use the functions L(T),U(T) in T introduced in Lemma 2.1. If we
assume the large deviation upper (resp. lower) bound for P(π∗

T
(τΞlib(N)) ∈ ⋅), then

nL(T) + lim
N→∞

1
N2 logP(trΞ(N)

UN
∈ Λ)

≤ lim
N→∞

1
N2 logP(π∗T(τΞlib(N)) ∈ Λ)

≤ − inf{I+T(σ) ∣ σ ∈ Λ}
for any closed Λ ⊂ TS(C∗

R
⟨x●◇⟩) (resp.

nU(T) + lim
N→∞

1
N2 logP(trΞ(N)

UN
∈ Γ) ≥ lim

N→∞

1
N2 logP(π∗T(τΞlib(N)) ∈ Γ)

≥ − inf{I−T(σ) ∣ σ ∈ Γ}
for any open Γ ⊂ TS(C∗

R
⟨x●◇⟩)). It follows by Lemma 2.1 that

lim
m→∞
δ↘0

lim
N→∞

log 1
N2 P(tr

Ξ(N)

UN
∈ Om ,δ(σ))

≤ − lim
m→∞
δ↘0

lim
T→∞

inf{I+T(σ ′) ∣ σ ′ ∈ Fm ,δ(σ)}

resp.

lim
m→∞
δ↘0

lim
N→∞

log 1
N2 P(tr

Ξ(N)

UN
∈ Om ,δ(σ))

≥ − lim
m→∞
δ↘0

lim
T→∞

inf{I−T(σ ′) ∣ σ ′ ∈ Om ,δ(σ)}

for every σ ∈ TS(C∗
R
⟨x●◇⟩). Observe that

inf{I±T(σ ′) ∣ σ ′ ∈ Θ} = inf{I±(τ) ∣ τ ∈ TS
c(C∗R⟨x●◇(⋅)⟩), π∗T(τ) ∈ Θ}

for any Θ ⊂ TS(C∗
R
⟨x●◇⟩). By Lemma 4.1,

lim
m→∞
δ↘0

lim
T→∞

inf{I+T(σ ′) ∣ σ ′ ∈ Om ,δ(σ)} = lim
m→∞
δ↘0

lim
T→∞

inf{I+T(σ ′) ∣ σ ′ ∈ Fm ,δ(σ)}

(resp. the same identity replacing limT→∞ and I+
T
with lim

T→∞ and I−
T
, respectively)

holds and deûnes a rate function. Since TS(C∗
R
⟨x●◇⟩) is weak∗ compact, we ûnally

conclude by [13, heorem 4.1.11, Lemma 1.2.18] that P(trΞ(N)

UN
∈ ⋅) satisûes the large

deviation upper (resp. lower) boundwith speedN2 and the rate function J+ (resp. J−).
For the last assertion, we ûrst point out that

−J−(σ) ≤ lim
m→∞
δ↘0

lim
N→∞

1
N2 logP(trΞ(N)

UN
∈ Om ,δ(σ))(4.3)

≤ lim
m→∞
δ↘0

lim
N→∞

1
N2 logP(trΞ(N)

UN
∈ Om ,δ(σ)) ≤ −J+(σ).

Since I+ = I−, we have −J−(σ) ≥ −J+(σ) for every σ ∈ TS(C∗
R
⟨x●◇⟩). herefore, we

conclude that equality holds in (4.3). his together with (4.2) immediately implies the
last assertion. ∎
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It is plausible that the orbital free entropy χorb(X1 , . . . ,Xn+1) can still be deûned
independently of the choice of approximating sequence Ξ = (Ξ(N))N∈N (under the
constraint that trΞ(N) converges to the joint distribution of the Xi) without assuming
the hyperûniteness of each random multi-variable Xi .
As mentioned before, we have already established that the sequence of probability

measures P(τΞlib(N) ∈ ⋅) satisûes the large deviation upper bound with speed N2 and
the rate function I libσ0 . Hence, we can prove the next corollary.

Corollary 4.3 he sequence of probability measures P(trΞ(N)

UN
∈ ⋅) satisûes the large

deviation upper bound with speed N2 and the rate function J libσ0 (σ) deûned to be

lim
m→∞
δ↘0

lim
T→∞

inf{I libσ0 (τ) ∣ τ ∈ TS
c(C∗R⟨x●◇(⋅)⟩), π∗T(τ) ∈ Om ,δ(σ)},

where the inûmum over the empty set is taken to be +∞. Moreover, χorb(σ ∣ σ0) ≤
−J libσ0 (σ) holds for every σ ∈ TS(C∗

R
⟨x●◇⟩).

Proof he ûrst assertion immediately follows from Lemma 4.1 and Proposition 4.2.
For the second assertion, we ûrst observe that

χorb(σ ∣ Ξ) = lim
m→∞
δ↘0

lim
N→∞

1
N2 logP(trΞ(N)

UN
∈ Om ,δ(σ)) ≤ −J libσ0 (σ)

for every σ ∈ TS(C∗
R
⟨x●◇⟩). Since J libσ0 is independent of the choice of approximation

Ξ to σ0, we conclude that χorb(σ ∣ σ0) ≤ −J libσ0 (σ) for every σ ∈ TS(C∗
R
⟨x●◇⟩). ∎

Remark 4.4 Several questions on the matrix liberation process toward the comple-
tion of developing the theory of orbital free entropy are in order.
(Q1) Show that J libσ0 (σ) = 0 implies that the Xσ

i are freely independent. (his is a
question about minimizers of J libσ0 .)

(Q2) Prove
J
lib
σ0

(σ) = i
∗(W∗(Xσ

1 ); . . . ;W∗(Xσ
n+1))

(at least when σ = σ0 or when the Xσ0
i
are freely independent) if possible.

Here, each W∗(Xσ
i ) denotes the von Neumann subalgebra generated by

Xσ
i = (Xσ

i j
)r(i)

j=1 .
(Q3) Prove a large deviation lower bound with speed N2 for the sequence of prob-

ability measures P(τΞlib(N) ∈ ⋅). It is preferable to identify its rate function
with I libσ0 .

he aõrmative answer to (Q2) shows χorb ≤ −i∗. On the other hand, as we saw in
Proposition 4.2, the aõrmative complete answer to (Q3) enables one to deûne χorb
independently of the choice of approximating sequence at least when σ = σ0 or when
σ0 is the ‘empirical distribution’ of a freely independent family as in (Q2). Also, the
aõrmative complete answers to both (Q2) and (Q3) show χorb = −i∗. Finally, the
aõrmative answer to (Q2) or (Q3) solves (Q1) in the aõrmative; hence, (Q1) is a test
for both (Q2) and (Q3).
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5 Minimizer of the Rate Function J libσ0

In this section, we will solve (Q1) of Remark 4.4 in the aõrmative.
he next lemma is probably known to specialists, but we include its proof for the

sake of completeness.

Lemma 5.1 he limit σ fr0 ∶= limT→∞ π∗
T
(σ lib

0 ) exists in TS(C∗
R
⟨x●◇⟩), and we have:

(i) σ fr0 agrees with σ0 on each C∗
R
⟨x i◇⟩, i = 1, . . . , n + 1;

(ii) the Xσ
fr
0

i
, 1 ≤ i ≤ n + 1, are freely independent.

Proof By construction, it is clear that π∗
T
(σ lib

0 ) agrees with σ0 on C∗
R
⟨x i◇⟩ for each

1 ≤ i ≤ n + 1. Hence, (i) trivially holds. hus, it suõces to prove (ii).
Let (M, τ) be a tracial W∗-probability space and let N ⊂ M be aW∗-subalgebra.

Let {v i(t)}n
i=1 be a ∗-freely independent family of free le� unitary Brownian motions

in M such that the family is ∗-freely independent of N. Set vn+1(t) ∶= 1 for all t ≥ 0
for ease of notation. In order to prove (ii), it suõces to prove that

∣τ(v i1(T)x○1 v i1(T)∗v i2(T)x○2v i2(T)∗ ⋅ ⋅ ⋅ v im(T)x○mv im(T)∗)∣
≤ (2m−1 − 1)( sup

1≤ j≤m

∥x○j ∥∞)m
e
−T/2

whenever m ≥ 1, ik ≠ ik+1 (1 ≤ k ≤ m − 1) and x○
k
∈ N with τ(x○

k
) = 0 (1 ≤ k ≤ m).

When m = 1, the le�-hand side must be 0; thus, the desired fact trivially holds. hus,
we can assume m ≥ 2.

Recall that τ(v i(t)) = e−t/2 for every t ≥ 0 and 1 ≤ i ≤ n. his is a particular case
of Biane’s result [3, Lemma 1]. Since v ik(T) and v ik+1(T) are ∗-freely independent, we
have

0 ≤ τ(v ik(T)∗v ik+1(T)) = τ(v ik(T))τ(v ik+1(T))

=
⎧⎪⎪⎨⎪⎪⎩

e−T/2 (ik or ik+1 is n + 1),
e−T ≤ e−T/2 (otherwise)

(5.1)

for every 1 ≤ k ≤ m − 1. Hence, we obtain that

∣τ(v i1(T)x○1 v i1(T)∗v i2(T)x○2v i2(T)∗ ⋅ ⋅ ⋅ v im(T)x○mv im(T)∗)∣
≤ τ(v i1(T)∗v i2(T))∣τ(v i1(T)x○1 x○2v i2(T)∗ ⋅ ⋅ ⋅ v im(T)x○mv im(T)∗)∣
+ ∣τ(v i1(T)x○1 (v i1(T)∗v i2(T))○x○2v i2(T)∗ ⋅ ⋅ ⋅ v im(T)x○mv im(T)∗)∣

≤ ( sup
1≤ j≤m

∥x○j ∥∞)m
e
−T/2

+ ∣τ(v i1(T)x○1 (v i1(T)∗v i2(T))○x○2v i2(T)∗ ⋅ ⋅ ⋅ v im(T)x○mv im(T)∗)∣
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with (v i1(T)∗v i2(T))○ ∶= v i1(T)∗v i2(T)− τ(v i1(T)∗v i2(T))1. We continue this pro-
cedure for v i2(T)∗v i3(T) and so on until v im−1(T)∗v im(T) inductively, and obtain

∣τ(v i1(T)x○1 v i1(T)∗v i2(T)x○2v i2(T)∗ ⋅ ⋅ ⋅ v im(T)x○mv im(T)∗)∣
≤ (1 + 2 + ⋅ ⋅ ⋅ + 2m−2)( sup

1≤ j≤m

∥x○j ∥∞)m
e
−T/2

+ ∣τ(v i1(T)x○1 (v i1(T)∗v i2(T))○x○2(v i2(T)∗v i3(T))○

⋅ ⋅ ⋅ (v im−1(T)v im(T))○x○mv im(T)∗)∣,
where we used ∥(v i1(T)∗v i2(T))○∥∞ ≤ 2. By the ∗-free independence between N

and {v i(t)}n
i=1,

τ(v i1(T)x○1 (v i1(T)∗v i2(T))○x○2(v i2(T)∗v i3(T))○

⋅ ⋅ ⋅ (v im−1(T)∗v im(T))○x○mv im(T)∗) = 0,
implying the desired estimate. ∎

Lemma 5.2 For any τ ∈ TSc(C∗
R
⟨x●◇(⋅)⟩)with I libσ0 ,∞(τ) < +∞ and any P ∈ C⟨x●◇⟩,

we have

∥EN(τ)(π τ̃(Πs(D(k)
s πT(P))))∥∞ ≤ C 1[0,T](s) e(s−T)/2

for some constant C = C(P) > 0 depending only on P.

Proof Iteratively performing the decomposition Q = σ0(Q)1 + Q○ with Q○ = Q −
σ0(Q)1, we observe that P is a sum of a scalar and several monomials of the form:

Q
○
1 ⋅ ⋅ ⋅Q○

m ,
where Q○

ℓ
∈ C⟨x iℓ◇⟩ with σ0(Q○

ℓ
) = 0 such that m ≥ 1 and iℓ ≠ iℓ+1 (1 ≤ ℓ ≤ m − 1).

Hence, we can and do assume that P = Q○
1 ⋅ ⋅ ⋅Q○

m inwhat follows, since any scalar term
vanishes under D(k)

s . We also observe that each δ(k)s πT(Q○
ℓ
), 1 ≤ ℓ ≤ m, becomes

πT(Q○
ℓ )vk(T − s) ⊗ vk(T − s)∗ − vk(T − s) ⊗ vk(T − s)∗πT(Q○

ℓ )
when k = iℓ , s ≤ T , and otherwise 0. Hence, we can and do restrict our consideration
to the case s ≤ T , and obtain

(5.2) Z
(k)(s) ∶= EN(τ)(π τ̃(Πs(D(k)

s πT(P)))) =
m

∑
ℓ=1

[Z(k)

ℓ
(s), (Q○

ℓ )s],

where Z(k)

ℓ
(s) is deûned to be 0 when iℓ ≠ k, and otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

EN(τ)(w iℓ , iℓ+1(Q○
ℓ+1)s ⋅ ⋅ ⋅w im−1 , im(Q○

m)s

×w im , i1(Q○
1 )sw i1 , i2 ⋅ ⋅ ⋅ (Q○

ℓ−1)sw iℓ−1 , iℓ)
(im ≠ i1),

EN(τ)(w iℓ , iℓ+1(Q○
ℓ+1)s ⋅ ⋅ ⋅w im−1 , i1

× (Q○
mQ

○
1 )sw i1 , i2 ⋅ ⋅ ⋅ (Q○

ℓ−1)sw iℓ−1 , iℓ)
(im = i1),

and we write w i , i′ ∶= vτ
i (T − s)∗vτ

i′(T − s) (1 ≤ i ≠ i′ ≤ n + 1). (n.b., vτ
n+1(t) ∶= 1 for all

t ≥ 0) and (Q)s ∶= π τ̃(πs(Q)) for Q ∈ C⟨x●◇⟩. By [29, Proposition 5.7(1),(2)], which
still holds for I libσ0 ,∞ without any essential changes, I libσ0 ,∞(τ) < +∞ guarantees that
τ̃((Q)s) = σ0(Q) for all Q ∈ C⟨x i◇⟩ with each ûxed i = 1, . . . , n + 1. Hence, the ûrst
case im ≠ i1 can be treated essentially in the same way as in the proof of Lemma 5.1.
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Namely, when im ≠ i1 (and iℓ = k), we have, for any y ∈ N(τ) (see Subsection 4.4 for
this notation),

τ(yZ(k)

ℓ
(s))

= τ̃(yw iℓ , iℓ+1(Q○
ℓ+1)s ⋅ ⋅ ⋅w im−1 , im(Q○

m)sw im , i1(Q○
1 )sw i1 , i2

⋅ ⋅ ⋅ (Q○
ℓ−1)sw iℓ−1 , iℓ)

= τ̃(w iℓ , iℓ+1)τ̃(y(Q○
ℓ+1)s ⋅ ⋅ ⋅w im−1 , im(Q○

m)sw im , i1πs(Q○
1 )w i1 , i2

⋅ ⋅ ⋅ (Q○
ℓ−1)sw iℓ−1 , iℓ)

+ τ̃(y(w iℓ , iℓ+1)○(Q○
ℓ+1)s ⋅ ⋅ ⋅w im−1 , im(Q○

m)sw im , i1(Q○
1 )sw i1 , i2

⋅ ⋅ ⋅ (Q○
ℓ−1)sw iℓ−1 , iℓ),

and Z
(k)

ℓ
(s) becomes
τ̃(w iℓ , iℓ+1)EN(τ)((Q○

ℓ+1)s ⋅ ⋅ ⋅w im−1 , im(Q○
m)sw im , i1(Q○

1 )sw i1 , i2

⋅ ⋅ ⋅ (Q○
ℓ−1)sw iℓ−1 , iℓ)

+ EN(τ)((w iℓ , iℓ+1)○(Q○
ℓ+1)s ⋅ ⋅ ⋅w im−1 , im(Q○

m)sw im , i1(Q○
1 )sw i1 , i2

⋅ ⋅ ⋅ (Q○
ℓ−1)sw iℓ−1 , iℓ)

with (w i , i′)○ ∶= w i , i′ − τ̃(w i , i′)1. Making the same computation for the second term
and iterating this procedure until w iℓ−2 , iℓ−1 , we ûnally arrive at the following formula:
Z
(k)

ℓ
(s) is the sum of τ̃(w i j , i j+1) times

EN(τ)((w iℓ , iℓ+1)○(Q○
ℓ+1)s ⋅ ⋅ ⋅ (w i j−1 , i j)○(Q○

j )s

delete
³¹¹¹¹¹·¹¹¹¹µ
w i j , i j+1(Q○

j+1)sw i j+1 , i j+2

⋅ ⋅ ⋅ (Q○
ℓ−1)sw iℓ−1 , iℓ)

over all j = l , . . . ,m, 1, . . . , ℓ−2 (wherewe readm+1 as 1). herefore, we have obtained
that

∥Z(k)

ℓ
(s)∥∞ ≤ (2m−1 − 1)( sup

1≤ j≤m

∥Q○
j ∥∞)m−1

e
(s−T)/2 ,

since ∥(w i , i′)○∥∞ ≤ 2 and 0 ≤ τ̃(w i , i′) = τ̃(vτ
i (T − s)∗vτ

i′(T − s)) ≤ e(s−T)/2 with
i ≠ i′ (see (5.1) for a similar computation). Hence, we get

(5.3) ∥[Z(k)

ℓ
(s), (Q○

ℓ )s]∥∞ ≤ C1 e
(s−T)/2

with a positive constant C1 depending only on P and ℓ.
We then consider the case im = i1 (and s ≤ T). his case is a bit complicated, but

can still be treated similarly as above. In fact, if im−1 ≠ i2, then Z
(k)

ℓ
(s) is

τ̃((Q○
mQ

○
1 )s)EN(τ)(w iℓ , iℓ+1(Q○

l+1)s ⋅ ⋅ ⋅w im−1 , i2 ⋅ ⋅ ⋅ (Q○
ℓ−1)sw iℓ−1 , iℓ)

+ EN(τ)(w iℓ , iℓ+1(Q○
ℓ+1)s ⋅ ⋅ ⋅w im−1 , i1((Q○

mQ
○
1 )○)sw i1 , i2 ⋅ ⋅ ⋅ (Q○

ℓ−1)sw iℓ−1 , iℓ),

since w im−1 , i1w i1 , i2 = w im−1 , i2 . hus, we apply the previous procedure to the ûrst and
the second terms, respectively, and conclude

∥Z(k)

ℓ
(s)∥∞ ≤ {(2m−3 − 1) + (2m−2 − 1)}( sup

1≤ j≤m

∥Q○
j ∥∞)m−1

e
(s−T)/2 .
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Iterating this procedure in the cases i.e., im = i1, im−1 = i2, and im−2 ≠ i3, we can
estimate ∥Z(k)

ℓ
(s)∥∞ by e(s−T)/2 times a positive constant depending only on P except

the case when im = i1 , im−1 = i2 , . . . , iℓ+1 = iℓ−1 (i.e, m is odd and ℓ = (m + 1)/2). In
the remaining case, we can easily observe that

Z
(k)

ℓ
(s) = σ0(Q○

mQ
○
1 )σ0(Q○

m−1Q
○
2) ⋅ ⋅ ⋅ σ0(Q○

ℓ+1Q
○
ℓ−1)1 + Z

(k)

ℓ
(s)∼

with an element Z(k)

ℓ
(s)∼ ∈ N(τ) whose operator norm ∥Z(k)

ℓ
(s)∼∥∞ is not greater

than e(s−T)/2 times a positive constant only depending on P. hen we have

∥[Z(k)

ℓ
(s), (Q○

ℓ )s]∥∞ = ∥[Z(k)

ℓ
(s)∼ , (Q○

ℓ )s]∥∞
≤ 2∥Z(k)

ℓ
(s)∼∥∞∥Q○

ℓ ∥∞ ≤ C2 e
(s−T)/2

(5.4)

with a positive constant C2 depending only on P and ℓ.
Consequently, the expansion (5.2) of Z(k)(s) together with the above norm esti-

mates (5.3), (5.4) shows the desired norm estimate. ∎

Amore explicit description on EN(τ)(π τ̃(Πs(D(k)
s P))) can be obtained based on

the combinatorial techniques introduced by Speicher (see i.e., Nica–Speicher [23] as
a standard textbook). See Section 8.

With the above lemmas, we will prove that the rate function J libσ0 admits a unique
minimizer, and moreover, we will explicitly compute the minimizer. Moreover, we
will also prove that the modiûcation J libσ0 ,∞ of J libσ0 by replacing I libσ0 with I libσ0 ,∞, i.e.,

J
lib
σ0 ,∞(σ) ∶= lim

m→∞
δ↘0

lim
T→∞

inf{I libσ0 ,∞(τ) ∣ τ ∈ TS
c(C∗R⟨x●◇(⋅)⟩), π∗T(τ) ∈ Om ,δ(σ)}

admits the same unique minimizer.

heorem 5.3 For any σ ∈ TS(C∗
R
⟨x●◇⟩), the following are equivalent:

(i) σ = σ fr0 .

(ii) J libσ0 (σ) = 0.
(iii) J libσ0 ,∞(σ) = 0.

Proof (i)⇒ (ii): Since I libσ0 (σ
lib
0 ) = 0, and moreover, since π∗

T
(σ lib

0 ) → σ fr0 as T →
+∞ by Lemma 5.1, we have J libσ0 (σ

fr
0 ) = 0.

(ii)⇒ (iii): his is trivial, because 0 ≤ J libσ0 ,∞ ≤ J libσ0 , which follows from 0 ≤ I libσ0 ,∞ ≤
I libσ0 .

(iii)⇒ (i): J libσ0 ,∞(σ) = 0 implies that for every m ∈ N and δ > 0, we have

lim
T→∞

inf {I libσ0 ,∞(τ) ∣ τ ∈ TS
c(C∗⟨x●◇(⋅)⟩), π∗T(τ) ∈ Om ,δ(σ)} = 0.

hus, we can choose a sequence 0 < T1 < T2 < ⋅ ⋅ ⋅ < Tm ↗ +∞ as m ↗ ∞ and τTm ∈
TSc(C∗⟨x●◇(⋅)⟩) for each m ∈ N such that π∗

Tm
(τTm) ∈ Om ,1/m(σ) and I libσ0 ,∞(τTm) <

1/m for every m ∈ N. For each P = P∗ ∈ C⟨x●◇⟩, we have
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∣σ(P) − σ
fr
0 (P)∣

≤ ∣σ(P) − π
∗
Tm

(τTm)(P)∣
+ ∣τTm(πTm(P)) − σ

lib
0 (πTm(P))∣ + ∣π∗Tm

(σ lib
0 )(P) − σ

fr
0 (P)∣

≤ ∣σ(P) − π
∗
Tm

(τTm)(P)∣ + ∣π∗Tm
(σ lib

0 )(P) − σ
fr
0 (P)∣

+
¿
ÁÁÀ2I libσ0 ,∞(τTm)

n

∑
k=1
∫

∞

0
∥EN(τ)(π τ̃(Πs(D(k)

s (πTm(P)))))∥2
τ̃ ,2 ds

by [29, Lemma 5.3], which still holds true for I libσ0 ,∞ without any essential changes.
Now, we use Lemma 5.2 to get

n

∑
k=1
∫

∞

0
∥EN(τ)(π τ̃(Πs(D(k)

s (πTm(P)))))∥2
τ̃ ,2 ds ≤ C ∫

Tm

0
e
s−Tm ds

= C(1 − e−Tm) ≤ C

for all m with a constant C > 0 only depending on P. Consequently, we obtain that

∣σ(P) − σ
fr
0 (P)∣ ≤ ∣σ(P) − π

∗
Tm

(τTm)(P)∣

+ ∣π∗Tm
(σ lib

0 )(P) − σ
fr
0 (P)∣ +

√
2C
m
,

whose right-hand side converges to 0 as m → ∞ thanks to π∗
Tm

(τTm) ∈ Om ,1/m(σ)
(implying that σ = limm→∞ π∗

Tm
(τTm) in TS(C∗

R
⟨x●◇⟩)) and Lemma 5.1. Hence, we

conclude that σ = σ fr0 . ∎

hanks to the standard Borel–Cantelli argument (see i.e., the proof of [29, Corol-
lary 5.9]), the above proposition together with Corollary 4.3 implies that trΞ(N)

UN
con-

verges to σ fr0 almost surely as N →∞. his is nothing less than a consequence of the
asymptotic freeness of independent Haar-distributed unitary random matrices. On
the other hand, the corresponding result for the matrix liberation process [29, Corol-
lary 5.9] was not known prior to this.

Wewould also like to point out that both J libσ0 , J
lib
σ0 ,∞ can be regarded as a kind ofmu-

tual information in free probability, since they characterize the free independence as
a unique minimizer (see the third paragraph of Section 1). hus, it is natural to refor-
mulate the functionals J libσ0 , J

lib
σ0 ,∞ as well as their sources I libσ0 , I

lib
σ0 ,∞ in a coordinate-free

fashion. his will be done in the next section.

6 A Coordinate-free Approach: A New Kind of Free Mutual Infor-
mation

Let (M, τ) be a tracial W∗-probability space. We consider unital C∗-subalgebras
Ai ⊂ M, 1 ≤ i ≤ n + 1, and deûne a kind of free mutual information i∗∗(A1; . . . ;An ∶
An+1), without appealing to any kind of (matricial) microstates, whose deûnition
comes from the rate functions discussed so far.
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6.1 Universal Algebras

LetA ∶= ☀n+1
i=1 Ai be the universal free product C∗-algebra. LetA(t), t ≥ 0, be copies

ofA, and deûneA(R+) to be the universal free product C∗-algebra☀t≥0A(t). (Here
we write R+ = [0,+∞).) We denote by λ i ∶Ai → A and ρt ∶A ↠ A(t) ⊂ A(R+) the
canonical ∗-homomorphisms, which are known to be injective; see the appendix for
an explicit reference about this fact. Write ρt , i ∶= ρt ○ λ i ∶Ai → A(R+). By Lemma
A.1,A(R+)with ∗-homomorphisms ρt , i can naturally be identiûedwith the universal
free product of the copies ofAi , 1 ≤ i ≤ n + 1, over R+.

6.2 Time-dependent Liberation Derivatives

Let P be the ∗-subalgebra of A algebraically generated by λ i(Ai), 1 ≤ i ≤ n + 1.
Consider the ∗-subalgebraP(R+) ofA(R+) algebraically generated by ρt(P), t ≥ 0.
Remark that λ i(Ai), 1 ≤ i ≤ n + 1, and ρt , i(Ai), 1 ≤ i ≤ n + 1, t ≥ 0, are algebraically
free families of ∗-subalgebras, and the resultingP andP(R+) are naturally identiûed
with the algebraic free products of the λ i(Ai), 1 ≤ i ≤ n + 1, and of the ρt , i(Ai),
1 ≤ i ≤ n + 1, t ≥ 0, respectively. See Proposition A.4.

We extend A(R+) to Ã(R+) by taking its universal free product with the uni-
versal C∗-algebra generated by u i(t), 1 ≤ i ≤ n, t ≥ 0, subject to u i(t)∗u i(t) =
u i(t)u i(t)∗ = 1 and u i(0) = 1. his procedure is justiûed by Proposition A.3. Con-
sider the derivation ∆(k)

s ∶P(R+) → Ã(R+) ⊗alg Ã(R+), 1 ≤ k ≤ n, sending each
ρt , i(x) with x ∈ Ai to

δ i ,k1[0,t](s) (ρt ,k(x)uk(t − s) ⊗ uk(t − s)∗ − uk(t − s) ⊗ uk(t − s)∗ρt ,k(x))

(n.b., the algebraic freeness among the ρt , i(Ai) makes every ∆(k)
s well-deûned).

herefore, with the �ip-multiplication map θ∶ Ã(R+) ⊗alg Ã(R+) → Ã(R+) send-
ing a ⊗ b to ba, we obtain the cyclic derivative ∇(k)

s ∶= θ ○ ∆(k)
s ∶P(R+) → Ã(R+).

6.3 Continuous Tracial States

Diòerently from the previous sections, we will use symbols φ,ψ, etc., instead of τ for
tracial states on A(R+), etc., in order to avoid any confusion of symbols.
A tracial state φ ∈ TS(A(R+)) is said to be continuous, if t ↦ πφ(ρt(x)) is

strongly continuous for every x ∈ A, where πφ ∶A(R+) ↷ Hτ denotes the GNS rep-
resentation associated with τ. In what follows, we denote by TSc(A(R+)) all the
continuous tracial states on A(R+).

Lemma 6.1 For a given φ ∈ TS(A(R+)), the following are equivalent:

(i) φ is continuous;

(ii) for every m ∈ N and every x1 , . . . , xm ∈ A, the function

(t1 , . . . , tm) z→ φ(ρt1(x1) ⋅ ⋅ ⋅ ρtm(xm))

is continuous;
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(iii) for every m ∈ N and every xk ∈ Ai j , 1 ≤ ik ≤ n + 1, 1 ≤ k ≤ m, the function

(t1 , . . . , tm) z→ φ(ρt1 , i1(x1) ⋅ ⋅ ⋅ ρtm , im(xm))

is continuous;

(iv) for every 1 ≤ i ≤ n+ 1, there exists a C∗-generating setXi consisting of self-adjoint

elements in Ai such that for every m ∈ N and every x j ∈ Xi j , 1 ≤ i j ≤ n + 1,
1 ≤ j ≤ m, the function

(t1 , . . . , tm) z→ φ(ρt1 , i1(x1) ⋅ ⋅ ⋅ ρtm , im(xm))

is continuous.

Proof Since ∥ρt(x)∥∞ = ∥x∥∞ for every x ∈ A and since the ρt(A) over t ≥ 0
generate A(R+) as a C∗-algebra, the proof of [29, Lemma 2.1] works for showing
that item (i)⇔ item (ii) without any essential changes. Item (ii)⇒ item (iii) is trivial.
he standard approximation argument using the norm density of the unital ∗-algebra
algebraically generated by λ i(Ai) in A shows that item (iii)⇒ item (ii). Item (iii)⇔
item (iv) is also conûrmed similarly by using the norm density of the unital ∗-algebra
algebraically generated by Xi in Ai . ∎

We extend each φ ∈ TSc(A(R+)) to a unique φ̃ ∈ TS(Ã(R+)) in such a way that
the u i(t)’s are ∗-freely independent of A(R+) and form a ∗-freely independent fam-
ily of le�-multiplicative free unitary Brownian motions under this extension φ̃. It is
not diõcult to see that φ̃ is “continuous”; that is, both t ↦ πφ̃(ρt(x)) with x ∈ A and
t ↦ πφ̃(u i(t)) are strongly continuous. Denote by πφ̃ ∶ Ã(R+) ↷ Hφ̃ the GNS rep-
resentation associated with φ̃. We have a unique surjective unital ∗-homomorphism
Λs ∶ Ã(R+) → Ã(R+) sending each ρt , i(x) with x ∈ Ai , t ≥ 0 to

(6.1) ρ
s
t , i(x) ∶=

⎧⎪⎪⎨⎪⎪⎩

u i((t − s) ∨ 0)ρs∧t , i(x)u i((t − s) ∨ 0)∗ (1 ≤ i ≤ n),
ρt ,n+1(x) (i = n + 1)

and keeping each u i(t) as it is. Note that each ρs
t , i clearly deûnes a unital∗-homomor-

phism fromAi to Ã(R+) for every 1 ≤ i ≤ n+ 1, and, moreover, by universality, those
ρs
t , i give rise to a unital ∗-homomorphism ρs

t ∶A→ Ã(R+). Observe that Λs ○ ρt ∶= ρs
t

holds for every s, t ≥ 0. We deûne φs ∶= φ̃ ○ Λs on A(R+). Since

φ̃ ○ Λs(ρt1 , i1(x1) ⋅ ⋅ ⋅ ρtm , im(xm)) = φ̃(ρs
t1 , i1(x1) ⋅ ⋅ ⋅ ρs

tm , im(xm)),

we observe, by (6.1), that φs is a continuous tracial state.
By the ∗-homomorphism Γ∶A(R+) → A sending each ρt , i(x) with x ∈ Ai to

λ i(x), we construct Γ∗(σ0) ∶= σ0 ○ Γ ∈ TSc(A(R+))with a given σ0 ∈ TS(A) and set
σ lib
0 ∶= Γ∗(σ0)0 ∈ TSc(A(R+)).

6.4 The New Free Mutual Information

For a given σ0 ∈ TS(A), let us deûne two functionals Ilibσ0 , I
lib
σ0 ,∞∶TSc(A(R+)) →

[0,+∞] as follows. Let φ ∈ TSc(A(R+)) be arbitrarily given. Let EQ(φ) denote
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the φ̃-preserving conditional expectation from P(φ) ∶= πφ̃(Ã(R+))′′ onto Q(φ) ∶=
πφ̃(A(R+))′′, where the double commutants are taken on Hφ̃ . For any P = P∗ ∈
P(R+) and t ∈ [0,∞], we deûne

Ilibσ0 ,t(φ, P) = φ
t(P) − σ

lib
0 (P)

− 1
2

n

∑
k=1
∫

t

0
∥EQ(φ)(πφ̃(Λs(∇(k)

s P)))∥2
φ̃ ,2 ds

regarding φ as φ∞ (since φt(P) = φ(P)when t is large enough). We observe that s ↦
∥EQ(φ)(πφ̃(Λs(∇(k)

s P)))∥2
φ̃ ,2 is piecewise continuous in s and becomes zero when s

is large enough thanks to P ∈ P(R+). hese two facts guarantee that Ilibσ0 ,t(φ, P) is
well deûned for every t possibly with t = ∞. hen we deûne

Ilibσ0 (φ) = sup
P=P

∗
∈P(R+)
t≥0

Ilibσ0 ,t(φ, P),

Ilibσ0 ,∞(φ) = sup
P=P∗∈P(R+)

Ilibσ0 ,∞(φ, P).

Clearly, Ilibσ0 (φ) ≥ Ilibσ0 ,∞(φ) holds, and it is a question again whether equality holds or
not.

We then introduce two functionals Jlib
σ0
, Jlib

σ0 ,∞∶TS(A) → [0,+∞] as before. To this
end, we have to endow TS(A)with the weak∗ topology. Let σ ∈ TS(A) be arbitrarily
given. Let O(σ) be the open neighborhoods at σ in the weak∗ topology on TS(A).
hen we deûne

Jlib
σ0
(σ) ∶= sup

O∈O(σ)

lim
T→∞

inf{Ilibσ0 (φ) ∣ φ ∈ TS
c(A(R+)), ρ∗T(φ) ∈ O}

and also Jlib
σ0 ,∞(σ) in the samemanner as above replacing Ilibσ0 (φ)with Ilibσ0 ,∞(φ). Here,

the inûmumover the empty set is taken to be+∞ as usual. Remark that the supremum
over O ∈ O(σ) coincides with the limit over a neighborhood basis at σ . We also
remark that O(σ) can be replaced with the smaller neighborhood basis consisting of

OW,δ(σ) ∶= {σ ′ ∈ TS(A) ∣ ∣σ ′(W) − σ(W)∣ < δ for all W ∈W}

all over the ûnite collections W of words W like λ i1(a1) ⋅ ⋅ ⋅ λ im(am) with a ik ∈ Aik

and δ > 0, since all the linear combinations of words form a norm dense ∗-subalgebra
of A.

Deûnition 6.2 hanks to the universality ofA, we have a unique ∗-homomorphism
Υ∶A→M sending each λ i(x) to x with x ∈ Ai ⊂M, 1 ≤ i ≤ n + 1. hen we deûne

Jlib
σ0
(A1; . . . ;An ∶ An+1) ∶= Jlib

σ0
(Υ∗(τ)),

Jlib
σ0 ,∞(A1; . . . ;An ∶ An+1) ∶= Jlib

σ0 ,∞(Υ∗(τ)).

Moreover, we write

i
∗∗(A1; . . . ;An ∶ An+1) ∶= Jlib

Υ∗(τ),∞(A1; . . . ;An ∶ An+1).
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hese quantities will be shown to satisfy the following: (i) characterizing free inde-
pendence, (ii) invariance under taking closure Ai

w

and (iii) the monotonicity in Ai .
Hence, they can be understood as a kind of mutual information in free probability.
Here is a remark on the choice of σ0.

Remark 6.3 If Jlib
σ0
(A1; . . . ;An ∶ An+1) is ûnite, then λ∗i (σ0) must agree with τ on

Ai for every 1 ≤ i ≤ n + 1.

Proof Assume that λ∗i (σ0) does not agree with τ for some i. Namely, there is an el-
ement x ∈ Ai such that σ0(λ i(x)) ≠ τ(x). Remark that τ(x) = Υ∗(τ)(λ i(x)). hen
we can choose an open neighborhood O ∈ O(Υ∗(τ)) in such a way that σ(λ i(x)) ≠
σ0(λ i(x)) for every σ ∈ O. As in the proof of [29, Proposition 5.7], we have

r(ρ∗T(φ)(λ i(x)) − σ0(λ i(x))) = Ilibσ0 ,∞(φ, ρT , i(x)) ≤ Ilibσ0 ,∞(φ)

for all r ∈ R and T ≥ 0. It follows that Ilibσ0 ,∞(φ) = +∞ as long as ρ∗
T
(φ) ∈ O. It follows

that Jlib
σ0
(A1; . . . ;An ∶ An+1) = Jlib

σ0
(Υ∗(τ)) ≥ Jlib

σ0 ,∞(Υ∗(τ)) = +∞. ∎

Consequently, wewill assume that λ∗i (σ0) agrees with τ onAi for every 1 ≤ i ≤ n+1
throughout the rest of this section. In particular, the natural two choices of σ0 are
Υ∗(τ) and the so-called free product state☀n+1

i=1 (λ−1
i )∗(τ).

6.5 Relation to the Matrix Liberation Process

Assume that each Ai , 1 ≤ i ≤ n + 1, is generated by a self-adjoint random multi-
variableXi = (X i j)r(i)

j=1 as in Section 3, that is,Ai = C∗(Xi). Assume further that R ∶=
sup

i , j ∥X i j∥∞ < +∞. hen we have two unique surjective unital ∗-homomorphisms

Φ∶C∗R⟨x●◇⟩ → A, Ψ∶C∗R⟨x●◇(⋅), v●(⋅)⟩ → Ã(R+)

sending x i j , x i j(t) and v i(t) to λ i(X i j), ρt , i(X i j) = ρt(λ i(X i j)) and u i(t), respec-
tively. Clearly, Ψ(C∗

R
⟨x●◇(⋅)⟩) = A(R+) and Ψ(x i j(t)) = ρt(Φ(x i j)) hold. In partic-

ular, the latter implies that Ψ ○ π0 = ρ0 ○Φ.
For the reader’s convenience, we summarize the notation of algebras andmaps that

we have introduced so far. he algebras and the maps between them are:

C∗
R
⟨x●◇⟩

π t //

Φ
��

C∗
R
⟨x●◇(⋅)⟩ �

� /

Ψ
��

C∗
R
⟨x●◇(⋅), v●(⋅)⟩

Ψ
��

A
ρ t // A(R+) �

� / Ã(R+)

Ai

λ i

OO

ρ t , i=ρ t○λ i

88

he liberation cyclic derivativesD(k)
s (see Subsection 4.2) and the maps Πs (see Sub-

section 4.5) on the upper line of the above diagramcorrespond to∇(k)
s (see Subsection

6.2) and Λs (see Subsection 6.3) on the lower line, respectively. Moreover, the spaces
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of (continuous) tracial states and the dual maps between them are:

TS(C∗
R
⟨x●◇⟩) TSc(C∗

R
⟨x●◇(⋅)⟩)

π
∗
too τ↦τ̃ // TSc(C∗

R
⟨x●◇(⋅), v●(⋅)⟩)

TS(A)

λ
∗
i
��

Φ∗

OO

TSc(A(R+))
ρ
∗
too

Ψ∗

OO

ρ
∗
t , i=λ

∗
i ○ρ

∗
tvv

φ↦φ̃

// TSc(C∗
R
⟨x●◇(⋅), v●(⋅)⟩).

Ψ∗

OO

TS(Ai)

Lemma 6.4 For any φ ∈ TSc(A(R+)), we have

Ψ∗(φ) ∶= φ ○Ψ ∈ TS
c(C∗R⟨x●◇(⋅)⟩), Ψ∗(φ̃) = Ψ∗(φ)∼ .

Hence, Ψ∗(φ)s = Ψ∗(φs) holds for every s ≥ 0. Moreover, for any P ∈ C⟨x●◇(⋅)⟩, we
have

∥EQ(φ)(πφ̃(Λs(∇(k)
s Ψ(P))))∥φ̃ ,2

= ∥EN(Ψ∗(φ))(πΨ∗(φ)∼(Πs(D(k)
s P)))∥Ψ∗(φ)∼ ,2

for every 1 ≤ k ≤ n and s ≥ 0.

Proof Observe that

Ψ∗(φ)(x i1 j1(t1) ⋅ ⋅ ⋅ x im jm(tm)) = φ(ρt1 , i1(X i1 j1) ⋅ ⋅ ⋅ ρtm , im(X im jm)),

which implies that Ψ∗(φ) falls in TSc(C∗
R
⟨x●◇(⋅)⟩) by [29, Lemma 2.1] and

Lemma 6.1. Moreover, we have

Ψ∗(φ̃)(a1v i1(t1)є1 ⋅ ⋅ ⋅ amv im(tm)єm) = φ̃(Ψ(a1)u i1(t1)є1 ⋅ ⋅ ⋅Ψ(am)u im(tm)єm)

for any ak ∈ C∗
R
⟨x●◇(⋅)⟩, 1 ≤ ik ≤ n, tk ≥ 0 and єk = ±1. Since Ψ(C∗

R
⟨x●◇(⋅)⟩) =

A(R+), we conclude that the v i(t) are freely independent of C∗
R
⟨x●◇(⋅)⟩ and form a

freely independent family of le�-multiplicative free unitary Brownian motions under
Ψ∗(φ̃). herefore, we conclude that Ψ∗(φ̃) = Ψ∗(φ)∼. We observe that

Ψ(Πs(x i j(t))) = Ψ(x s
i j(t))

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ψ(v i((t − s) ∧ 0)x i j(s ∧ t)v i((t − s) ∧ 0)∗)
= u i((t − s) ∧ 0)ρs∧t , i(X i j)u i((t − s) ∧ 0)∗ (1 ≤ i ≤ n),

Ψ(xn+1 j(t)) = ρt ,n+1(Xn+1 j) (i = n + 1)
= ρ

s
t , i(X i j)

= Λs(ρt , i(X i j)) = Λs(Ψ(x i j(t))),

implying that Ψ ○Πs = Λs ○Ψ on C∗
R
⟨x●◇(⋅)⟩. herefore, we obtain that

Ψ∗(φs) = φ̃ ○ Λs ○Ψ = φ̃ ○Ψ ○Πs = Ψ∗(φ̃) ○Πs = Ψ∗(φ)∼ ○Πs = Ψ∗(φ)s .
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Choose an arbitrary word P = x i1 j1(t1) ⋅ ⋅ ⋅ x im jm(tm) ∈ C⟨x●◇(⋅)⟩. By deûnition,
we have Ψ(P) = ρt1 , i1(X i1 j1) ⋅ ⋅ ⋅ ρtm , im(X im jm). We observe that

(6.2)

Πs(D(k)
s P)

= ∑
i l=k
t l≥s

Πs([vk(t l − s)∗x i l+1 j l+1(t l+1)

⋅ ⋅ ⋅ x i l−1 j l−1(t l−1)vk(t l − s), x i l j l (s)]))
= ∑

i l=k
t l≥s

[vk(t l − s)∗x s
i l+1 j l+1

(t l+1)

⋅ ⋅ ⋅ x s
i l−1 j l−1

(t l−1)vk(t l − s), x s
i l j l

(s)],

Λs(∇(k)
s (Ψ(P)))

= ∑
i l=k
t l≥s

Λs([uk(t l − s)∗ρt l+1 , i l+1(X i l+1 j l+1)

⋅ ⋅ ⋅ ρt l−1 , i l−1(X i l−1 j l−1)uk(t l − s), ρs , i l (X i l j l )]))
= ∑

i l=k
t l≥s

([uk(t l − s)∗ρs
t l+1 , i l+1

(X i l+1 j l+1)

⋅ ⋅ ⋅ ρs
t l−1 , i l−1

(X i l−1 j l−1)uk(t l − s), ρs
s , i l (X i l j l )])).

Since Ψ∗(φ)∼ = Ψ∗(φ̃) and since Ψ(x i j(t)) = ρt , i(X i j) and Ψ(v i(t)) = u i(t), we
observe that the joint distribution of the x i j(t) and the v i(t) under Ψ∗(φ)∼ coincides
with that of the ρt , i(X i j) and the u i(t) under φ̃. Moreover, N(Ψ∗(φ)) is generated
by the πΨ∗(φ)∼(x i j(t)) and also Q(φ) is by the πφ̃(ρt , i(X i j)). hese together with
the deûnitions of x s

i j
(t) and ρs

t , i(X i j) imply the desired 2-norm equality. ∎

Proposition 6.5 With Φ∗(σ0) ∶= σ0 ○Φ ∈ TS(C∗
R
⟨x●◇⟩) we have

I
lib
Φ∗(σ0)(Ψ

∗(φ)) = Ilibσ0 (φ), I
lib
Φ∗(σ0),∞(Ψ∗(φ)) = Ilibσ0 (φ).

for any φ ∈ TSc(A(R+)). Moreover, Ψ∗(TSc(A(R+))) is an essential domain of both

the functionals I libΦ∗(σ0) , I
lib
Φ∗(σ0),∞, that is, the functionals take +∞ outside it.

Proof We ûrst remark the following facts:
● Ψ∗(φ)t(P) = Ψ∗(φt)(P) = φt(Ψ(P)) for any P ∈ C⟨x●◇(⋅)⟩.
● If ρ∗0(φ) = σ0, then π∗0 (Ψ∗(φ)) = φ ○ Ψ ○ π0 = φ ○ ρ0 ○ Φ = Φ∗(σ0). hus,

Φ∗(σ0)lib(P) = σ lib
0 (Ψ(P)) for any P ∈ C⟨x●◇(⋅)⟩.

hus, (the last equation in) Lemma 6.4 shows that

I
lib
Φ∗(σ0),t(Ψ

∗(φ), P) = Ilibσ0 ,t(φ, Ψ(P))

holds for any P ∈ C⟨x●◇(⋅)⟩. Note that Ψ(C⟨x●◇(⋅)⟩) ⊂ P(R+). Hence, the above
identity at least gives

I
lib
Φ∗(σ0)(Ψ

∗(φ)) ≤ Ilibσ0 (φ), I
lib
Φ∗(σ0),∞(Ψ∗(φ)) ≤ Ilibσ0 ,∞(φ).
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To show the reverse inequality in both, it suõces to prove:

(♢) For any Q = Q∗ ∈ A(R+) there is a sequence Qk = Q∗
k

in Ψ(C⟨x●◇(⋅)⟩) such that Ilibσ0 ,t(τ,Qk) → Ilibσ0 ,t(τ,Q)
for all t ∈ [0,∞].

Remark that Q is a ûnite sum of monomials, say

W = ρt1 , i1(x1) ⋅ ⋅ ⋅ ρtm , im(xm)

with xℓ ∈ Aiℓ . Since the unital ∗-subalgebraAi ,0 algebraically generated by (X i j)r(i)

j=1

is norm-dense in Ai , we can choose norm-bounded sequences x(p)
ℓ

in Aiℓ ,0 in such
a way that x(p)

ℓ
→ xℓ in norm as p → ∞ for every 1 ≤ ℓ ≤ m. Since Ψ(x i j(t)) =

ρt , i(X i j) and ρt , i is a unital ∗-homomorphism, Wp ∶= ρt1 , i1(x
(p)

1 ) ⋅ ⋅ ⋅ ρtm , im(x
(p)
m )

falls into Ψ(C⟨x●◇(⋅)⟩) and converges to W in norm as p → ∞. Moreover, us-
ing expression (6.2), we can easily see that both Λs(∇(k)

s Wp) → Λs(∇(k)
s W) and

Λs(∇(k)
s W∗

p ) → Λs(∇(k)
s W∗) in norm and uniformly in s as p → ∞. Since all the

maps involved are linear, we have proved the desired assertion (♢) by taking, if nec-
essary, the (operator-theoretic) real part of the approaching sequence that we have
obtained. Hence, we complete the proof of the ûrst part of the proposition.

Wewill thenprove the secondpart of the proposition. Chooseψ ∈TSc(C∗
R
⟨x●◇(⋅)⟩)

with I libΦ∗(σ0),∞(ψ) < +∞. By (the proof of) [29, Proposition 5.7] we have π∗t (ψ) =
Φ∗(σ0) on C∗

R
⟨x i◇⟩, the unital C∗-subalgebra generated by the x i j , j ≥ 1, with ûxing

i, for each 1 ≤ i ≤ n + 1. Denote by Φ i the restriction of Φ∶C∗
R
⟨x●◇⟩ → A to each

C∗
R
⟨x i◇⟩. Since Φ i ∶C∗R⟨x i◇⟩ → λ i(Ai) is a surjective ∗-homomorphism, we obtain

a bijective unital ∗-homomorphism λ i(Ai) ≅ C∗
R
⟨x i◇⟩/Ker(Φ i) sending λ i(X i j)

to x i j + Ker(Φ i) for j ≥ 1. Consider the GNS representation πψ ∶C∗R⟨x●◇(⋅)⟩ ↷ Hψ .
For any y ∈ Ker(Φ i), we have

ψ(πt(y)∗πt(y)) = π
∗
t (ψ)(y∗y) = Φ∗(σ0)(y∗y) = σ0(Φ i(y)∗Φ i(y)) = 0,

and hence πψ(πt(y)) = 0 thanks to the trace property of ψ. herefore, by the
C∗-algebraic freeness among the ρt , i(Ai) (≅ λ i(Ai) ≅ C∗R⟨x i◇⟩/Ker(Φ i)by ρt , i(X i j)
↔ λ i(X i j) ↔ x i j +Ker(Φ i) as remarked before), we obtain a unique unital ∗-homo-
morphism fromA(R+) toB(Hτ′) sending each ρt , i(X i j) to πψ(πt(x i j))= πψ(x i j(t)).
hen the pull-back of ψ by this ∗-homomorphism deûnes a tracial state φ onA(R+),
under which the ρt , i(X i j) have the same joint distribution as that of the x i j(t) under
ψ. his means that Ψ∗(φ) = ψ and the continuity of φ follows thanks to Lemma 6.1.
Hence, we are done. ∎

Corollary 6.6 In the same setting as in Proposition 6.5, we have

(6.3) J
lib
Φ∗(σ0)(Φ

∗(σ)) = Jlib
σ0
(σ), J

lib
Φ∗(σ0),∞(Φ∗(σ)) = Jlib

σ0 ,∞(σ)
for any σ ∈ TS(A). In particular, the following are equivalent:

(i) Ai , 1 ≤ i ≤ n + 1, are freely independent.

(ii) Jlib
σ0
(A1; . . . ;An ∶ An+1) = 0.

(iii) Jlib
σ0 ,∞(A1; . . . ;An ∶ An+1) = 0.
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Moreover,

χorb(X1 , . . . ,Xn+1) ≤ −Jlib
σ0
(A1; . . . ;An ∶ An+1)(6.4)

≤ −Jlib
σ0 ,∞(A1; . . . ;An ∶ An+1),

at least when σ0 is either Υ∗(τ) or☀n+1
i=1 (λ−1

i )∗(τ).

Proof We will ûrst prove two identities (6.3), which enable us to derive the equiv-
alence of (i)–(iii) from heorem 5.3 immediately. In the current setting, an open
neighborhood basis at σ in TS(A) should be given as a collection of Om ,δ(σ), where
Om ,δ(σ) is all the σ ′ ∈ TS(A) such that

∣σ ′(λ i1(X i1 j1) ⋅ ⋅ ⋅ λ ip(X ip jp)) − σ(λ i1(X i1 j1) ⋅ ⋅ ⋅ λ ip(X ip jp))∣ < δ
whenever 1 ≤ ik ≤ n + 1, 1 ≤ jk ≤ m, 1 ≤ k ≤ p, and 1 ≤ p ≤ m. hus, sup

O∈O(σ) and
ρ∗
T
(φ) ∈ O can/should be replaced with limm ,δ and ρ∗

T
(φ) ∈ Om ,δ(σ), respectively.

By deûnition, we observe that

∣π∗T(Ψ∗(φ))(x i1 j1 ⋅ ⋅ ⋅ x ip jp) −Φ∗(σ)(x i1 j1 ⋅ ⋅ ⋅ x ip jp)∣ =
∣ρ∗T(φ)(λ i1(X i1 j1) ⋅ ⋅ ⋅ λ ip(X ip jp)) − σ(λ i1(X i1 j1) ⋅ ⋅ ⋅ λ ip(X ip jp))∣.

Hence, π∗
T
(Ψ(τ)) ∈ Om ,δ(Φ∗(σ)) if and only if ρ∗

T
(φ) ∈ Om ,δ(σ). Moreover,

Ψ∗(TSc(C∗
R
⟨x●◇⟩) is an essential domain for the functionals by Proposition 6.5.

herefore, the main identities in Proposition 6.5 imply two identities (6.3).
Since

Φ∗(Υ∗(τ))(x i1 j1 ⋅ ⋅ ⋅ x im jm) = τ(X i1 j1 ⋅ ⋅ ⋅X im jm),
Φ∗(☀n+1

i=1 (λ−1
i )∗(τ))(x i1 j1 ⋅ ⋅ ⋅ x im jm)

=☀n+1
i=1 (λ−1

i )∗(τ)(λ i1(X i1 j1) ⋅ ⋅ ⋅ λ im(X im jm)),
Corollary 4.3 together with Propositions 3.1 and 3.2 imply inequality (6.4). ∎

Remarks 6.7 (i) he part characterizing free independence with Jlib
σ0
as well as

Jlib
σ0 ,∞ in the above corollary can directly be proved by using the same argument as in

Section 5 without appealing to generators of each Ai .
(ii) he last two assertions of the above corollary suggests that Jlib

σ0
(A1; ⋅ ⋅ ⋅ ;An ∶

An+1) may be independent of σ0, at least under some constraint. However, this ques-
tion is as yet untouched due to the lack of techniques to discuss “minimal paths” of
tracial states under the functionals.

6.6 Invariance Under Weak Closure

Corollary 6.6 suggests that Jlib
σ0
(A1; . . . ;An ∶An+1) as well as Jlib

σ0 ,∞(A1; . . . ;An ∶
An+1) are W∗-invariants; that is, they are unchanged if each Ai is replaced with its
σ-weak closureAi

w

. his is indeed the case, as we will see below. he proof is rather
technical, but the idea behind it is simple.

Let us denote by M and M(R+) ⊂ M̃(R+) the C∗-algebras corresponding to
A and A(R+) ⊂ Ã(R+) when each Ai is replaced with Mi ∶= Ai

w

. Observe that
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the original A and A(R+) ⊂ Ã(R+) are naturally embedded into M andM(R+) ⊂
M̃(R+). See Proposition A.3. he notations λ i , ρt , i , ρt of morphisms are used si-
multaneously in what follows. To this end, we need several technical, purely operator
algebraic facts (Lemmas 6.8–6.10).

he ûrst lemma is considered folklore among operator algebraists, but we do give
its proof, because it plays a key role in the discussion below.

Lemma 6.8 Let A be a σ-weakly dense, unital C∗-subalgebra of a W∗-algebraM

and φ be a normal state on M. Let π∶A ↷ H be a unital ∗-representation with a dis-

tinguished vector ξ0 ∈H such that ξ0 is separating for π(A) and that (π(a)ξ0∣ξ0)H =
φ(a) holds for every a ∈ A. hen there is a unique normal unital ∗-representation
π∶M↷H extending π such that π(M) = π(A)

w

.

Proof Let (Hφ , πφ , ξφ) be the GNS triple of (M, φ). Set K ∶= π(A)ξ0, a reducing
subspace for π(A). Observe, by the uniqueness of GNS representations, that the re-
striction of π toKwith ξ0 is a realization of (Hφ , πφ ↾A , ξφ). Since ξ0 is separating for
π(A), π is quasi-equivalent to πφ by [19, heorem 10.3.3(ii)]. his means that there
exists a normal unital, bijective ∗-homomorphism ρ∶ πφ(M) = πφ(A)

w

→ π(A)
w

sending πφ(a) to π(a) for every a ∈ A. hus, π ∶= ρ ○πφ ∶M→ π(A)
w

is the desired
∗-homomorphism. ∎

We need the next two state extension properties. he proofs crucially use the pre-
vious lemma with the universality of universal free products.

Lemma 6.9 Any σ0 ∈ TS(A)with λ∗i (σ0) = τ onAi for all 1 ≤ i ≤ n+1 has a unique

extension σ 0 ∈ TS(M) with λ∗i (σ 0) = τ on Mi for all 1 ≤ i ≤ n + 1.

Proof Let (Hσ0 , πσ0 , ξσ0) be the GNS triple of (A, σ0). Since σ0 is tracial, ξσ0 must
be separating for πσ0(A). In particular, ξσ0 is separating for each πσ0(λ i(Ai)) too.
Set πσ0 , i ∶= πσ0 ○ λ i ∶Ai ↷ Hσ0 . hen we have (πσ0 , i(a)ξσ0 ∣ξσ0)Hσ0

= σ0 ○ λ i(a) =
λ∗i (σ0)(a) = τ(a) for every a ∈ Ai . hus, the previous lemma shows that there
exists a unique normal extension πσ0 , i ∶Mi ∶= Ai

w ↷ Hσ0 such that πσ0 , i(Mi) =
πσ0(λ i(Ai))

w

and πσ0 , i ↾Ai= πσ0 , i . By the universality of universal free products,
there exists a unique ∗-homomorphism πσ0 ∶M → B(Hσ0) such that πσ0 ○ λ i =
πσ0 , i ∶Mi ↷ Hσ0 is normal for every 1 ≤ i ≤ n + 1. By construction, it is clear that
πσ0 ↾A= πσ0 . Set σ 0 ∶= (πσ0(⋅)ξσ0 ∣ξσ0)Hσ0

∈ TS(M). Trivially, σ 0 ↾A= σ0. For each
xk ∈ Mik , 1 ≤ k ≤ m, by the Kaplansky density theorem, one can choose a net
a
(κ)

k
∈ Ai (with a common index set) such that ∥a(κ)

k
∥∞ ≤ ∥xk∥∞ and a(κ)

k
→ xk

in the σ-strong∗ topology onMik . Since each πσ0 , i is normal onMi , we observe that

πσ0(λ i1(a
(κ)

1 ) ⋅ ⋅ ⋅ λ im(a
(κ)
m )) = πσ0 , i1(a

(κ)

1 ) ⋅ ⋅ ⋅ πσ0 , im(a
(κ)
m )

= πσ0 , i1(a
(κ)

1 ) ⋅ ⋅ ⋅ πσ0 , im(a
(κ)
m )

→ πσ0 , i1(x1) ⋅ ⋅ ⋅ πσ0 , im(xm)
= πσ0(λ i1(x1) ⋅ ⋅ ⋅ λ im(xm)).
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Hence, σ 0(λ i1(x1) ⋅ ⋅ ⋅ λ im(xm)) = limκ σ0(λ i1(a
(κ)

1 ) ⋅ ⋅ ⋅ λ im(a
(κ)
m )). Since the λ i(Mi)

generateM as a C∗-algebra, we conclude that σ 0 is a unique extension of σ0. More-
over, λ∗i (σ 0)(x) = σ 0(λ i(x)) = limκ σ0(λ i(aκ)) = limκ λ∗i (σ0)(aκ) = limκ τ(aκ) =
τ(x) for every x ∈Mi with approximation aκ → x as above. ∎

Lemma 6.10 Any φ ∈ TSc(A(R+)) with ρ∗t , i(φ) = τ on Ai for all t ≥ 0 and 1 ≤ i ≤
n + 1 has a unique extension φ ∈ TSc(M(R+)) with ρ∗t , i(φ) = τ on Mi for all t ≥ 0
and 1 ≤ i ≤ n + 1.

Proof Let (Hφ , πφ , ξφ) be the GNS triple of (A(R+), φ). he same argument as in
the previous lemma shows that there is a ∗-representation πφ ∶M(R+) ↷ Hφ such
that πφ ○ ρt , i ∶ Mi → B(Hφ) is normal as well as that πφ ○ ρt , i ↾Ai= πφ ○ ρt , i holds
for every t ≥ 0 and 1 ≤ i ≤ n + 1. Deûne φ ∶= (πφ(⋅)ξφ ∣ξφ)Hφ ∈ TS(M(R+)).
Remark that ρ∗t , i(φ) = τ on Mi holds for every t ≥ 0 and 1 ≤ i ≤ n + 1. By the
uniqueness of GNS representations, the triple (Hφ , πφ , ξφ) is identiûed with the
GNS triple of (M(R+), φ). Namely, we may and do assume that πφ = πφ ,Hφ = Hφ

and ξφ = ξφ .
Since the given φ is continuous, the mapping t ↦ πφ(ρt , i(a)) = πφ(ρt , i(a))

is strongly continuous for every a ∈ Ai . We claim that this is the case even when
a ∈ Ai is replaced with an arbitrary x ∈ Mi . By the Kaplansky density theorem,
we can choose a net aκ ∈ Ai in such a way that ∥aκ∥∞ ≤ ∥x∥∞ and ∥aκ − x∥τ ,2 ∶=√

τ((aκ − x)∗(aκ − x)) → 0. We have

∥πφ(ρt , i(aκ − x))ξφ∥Hφ =
√

ρ∗
t , i(φ)((aκ − x)∗(aκ − x))

=
√

τ((aκ − x)∗(aκ − x)) = ∥aκ − x∥τ ,2 .

For any η ∈Hφ and any ε > 0, there is a Y ′ ∈ πφ(M(R+))′ such that ∥η−Y ′ξφ∥Hφ < ε
(n.b., ξφ is separating for πφ(M(R+)), and the existence of such a Y ′ is guaranteed).
hen

∥πφ(ρt , i(aκ − x))η∥Hφ ≤ 2∥x∥∞∥η − Y
′
ξφ∥Hφ

+ ∥Y ′∥∞∥πφ(ρt , i(aκ − x))ξφ∥Hφ

≤ 2∥x∥∞ε + ∥Y ′∥∞∥aκ − x∥τ ,2 ,

and hence
lim
κ

(sup
t≥0

∥πφ(ρt , i(aκ − x))η∥Hφ) = 0.

hen we can see that t ↦ πφ(ρt , i(x)) is strongly continuous for every x ∈ Mi . It
follows thanks to Lemma 6.1(iii) that φ is continuous. ∎

Here is an important remark obtained from the above proof.

Remark 6.11 We keep the notation φ, φ, etc., of the previous lemma. If a bounded
net a(κ) inAi converges to x ∈Mi in ∥⋅∥τ ,2 or equivalently, in the σ-strong∗ topology
on Mi , then

lim
κ

(sup
t≥0

∥πφ(ρt , i(a(κ) − x))ξ∥Hφ) = 0
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for every ξ ∈Hφ ; that is, the convergence πφ(ρt , i(a(κ))) → πφ(ρt , i(x)) in the strong
operator topology is uniform for t ≥ 0.

Lemma 6.12 For any φ ∈ TSc(A(R+) with ρ∗t , i(φ) = τ on Ai for all t ≥ 0 as
well as λ∗i (σ0) = τ on Ai for all 1 ≤ i ≤ n + 1, we have Ilibσ0 (φ) = Ilib

σ0
(φ) as well as

Ilibσ0 ,∞(φ) = Ilib
σ0 ,∞(φ) with the notations in the previous lemmas.

Proof he same pattern as in the proof of Proposition 6.5 (and Lemma 6.4) works
well by replacing the norm convergence x(p)

ℓ
→ xℓ with a bounded net convergence

a
(κ)

ℓ
→ xℓ in the σ-strong∗ topology with the help of Remark 6.11. ∎

Here is the desired statement. Namely, the next proposition tells us that taking
the σ-weak closure does not aòect Jlib

σ0
as well as Jlib

σ0 ,∞. his is analogous to [30, Re-
marks 10.2].

Proposition 6.13 With the notation as in the previous lemmas, we have

Jlib
σ0
(A1; . . . ;An ∶ An+1) = Jlib

σ0
(M1; ⋅ ⋅ ⋅ ;Mn ∶Mn+1),

Jlib
σ0 ,∞(A1; . . . ;An ∶ An+1) = Jlib

σ0 ,∞(M1; ⋅ ⋅ ⋅ ;Mn ∶Mn+1)

as long as λ∗i (σ0) = τ on Ai for all 1 ≤ i ≤ n + 1.

Proof For the ease of notation, we will write σ ∶= Υ∗(τ) ∈ TS(A) and σ ∶= Υ
∗(τ) ∈

TS(M), where Υ ∶ A → M and Υ∶M → M the unital ∗-homomorphisms sending
each λ i(a) with a ∈ Ai to a and λ i(x) with x ∈Mi to x, respectively. In particular, Υ
is an extension of Υ, and hence σ is an extension of σ too.

We denote by W a word whose letters from the λ i(Ai) and also by W a word
whose letters from the λ i(Mi). According to this notation, we will also denote byW
a ûnite collection of words W and by W a ûnite collection of words W . hese play
parts of parameters to deûne neighborhood base of the weak∗ topologies on TS(A)
and TS(M), respectively.

Let T ≥ 0, δ > 0, and ψ ∈ TSc(M(R+)) be arbitrarily chosen. Denote by ψ the
restriction of ψ toA(R+), which clearly falls into TSc(A(R+)). By construction, it is
easy to see that Ilibσ0 (ψ) ≤ Ilib

σ0
(ψ) holds in general. Hence,

inf{Ilibσ0 (φ) ∣ φ ∈ TS
c(A(R+)), ρ∗T(φ) ∈ OW,δ(σ)}

≤ inf{Ilibσ0 (ψ) ∣ ψ ∈ TS
c(M(R+)), ρ∗T(ψ) ∈ OW,δ(σ)}

≤ inf{Ilib
σ0
(ψ) ∣ ψ ∈ TS

c(M(R+)), ρ∗T(ψ) ∈ OW,δ(σ)},

where we use that ρ∗
T
(ψ) ∈ OW,δ(σ) ⇔ ρ∗

T
(ψ) ∈ OW,δ(σ), since everyW ∈ W falls

into A (and hence σ(W) = σ(W) and ψ(ρt(W)) = ψ(ρt(W))). Taking the limT→∞
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of the above inequality, we get

lim
T→∞

inf{Ilibσ0 (φ) ∣ φ ∈ TS
c(A(R+)), ρ∗T(φ) ∈ OW,δ(σ)}

≤ lim
T→∞

inf{Ilib
σ0
(ψ) ∣ ψ ∈ TS

c(M(R+)), ρ∗T(ψ) ∈ OW,δ(σ)}

≤ sup
W,δ

lim
T→∞

inf{Ilib
σ0
(ψ) ∣ ψ ∈ TS

c(M(R+)), ρ∗T(ψ) ∈ O
W,δ(σ)}

= Jlib
σ0
(σ).

Since (W, δ) is arbitrary,

Jlib
σ0
(A1; . . . ;An ∶ An+1) = Jlib

σ0
(σ) ≤ Jlib

σ0
(σ)

= Jlib
σ0
(M1; ⋅ ⋅ ⋅ ;Mn ∶Mn+1).

he same assertion holds with the same proof even if Jlib
σ0
and Jlib

σ0
are replaced with

Jlib
σ0 ,∞ and Jlib

σ0 ,∞, respectively. We remark that the discussion in this paragraph uses
only inclusion relation Ai ⊂ Mi , 1 ≤ i ≤ n + 1. his remark will be summarized into
the corollary following this proposition.

We will then prove the reverse inequality. To this end, we can assume that
Jlib
σ0
(A1; . . . ;An ∶ An+1) = Jlib

σ0
(σ) < +∞; otherwise, the reverse inequality trivially

holds as −∞ = −∞ by the ûrst part of this proof. Let (W, δ) be arbitrarily given. For
each W ∈W, we can choose a wordW in such a way that

∣σ(W) − σ(W)∣ < δ
3
, sup

T≥0
∣ρ∗T(φ)(W) − ρ

∗
T(φ)(W)∣ < δ

3
whenever φ ∈ TSc(A(R+)) satisûes that ρ∗t , i(φ) = τ on Ai for all t ≥ 0 and 1 ≤ i ≤
n+1, where φ is in the sense of Lemma 6.12. his fact can be conûrmed by the iterative
use of the following observation:

Let X ,Y ∈M be given. For any x ∈Mi and a ∈ Ai , we have
∣φ(ρt(X)ρt , i(x − a)ρt(Y))∣
≤ ∣(πφ(ρt(X))πφ(ρt , i(x − a))πφ(ρt(Y))ξφ ∣ξφ)Hφ

≤ ∥X∥∞∥πφ(ρt , i(x − a))Jφπφ(ρt(Y∗))Jφ ξφ∥Hφ

≤ ∥X∥∞∥Jφπφ(ρt(Y∗))Jφπφ(ρt , i(x − a))ξφ∥Hφ

≤ ∥X∥∞∥Y∥∞∥πφ(ρt , i(x − a))ξφ∥Hφ

= ∥X∥∞∥Y∥∞∥x − a∥τ ,2

for every t ≥ 0, where (Hφ , πφ , ξφ) is the GNS triple of (M(R+), φ), and Jφ is the the
so-called modular conjugation, that is, a conjugate-linear isometric map deûned by
JφZξφ = Z∗ξφ for every Z ∈ πφ(M(R+))′′, the double commutant is taken on Hφ .
Similarly, we have

∣σ(Xλ i(x − a)Y)∣ ≤ ∥X∥∞∥Y∥∞∥x − a∥τ ,2 .

We denote by W the collection of W with W ∈ W obtained in this way. Let φ ∈
TSc(A(R+)) be arbitrarily chosen in such a way that ρ∗

T
(φ) ∈ OW,δ/3(σ) as well

as Ilibσ0 (φ) < +∞. he latter requirement guarantees, by the same proof as in [29,
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Proposition 5.7], that ρ∗t , i(φ) = τ on Ai for all t ≥ 0 and 1 ≤ i ≤ n + 1. By the above
consideration, we observe that φ ∈ O

W,δ(σ). herefore, we conclude that

inf {Ilib
σ0
(ψ) ∣ ψ ∈ TS

c(M(R+)), ρ∗T(ψ) ∈ O
W ,δ(σ)}

≤ inf {Ilib
σ0
(φ) = Ilibσ0 (φ) ∣ φ ∈ TS

c(A(R+)),
Ilibσ0 (φ) < +∞, ρ∗T(φ) ∈ OW ,δ/3(σ)}

= inf {Ilibσ0 (φ) ∣ φ ∈ TS
c(A(R+)), ρ∗T(φ) ∈ OW ,δ/3(σ)}.

Taking limT→∞ of this inequality, we obtain that

lim
T→∞

inf{Ilib
σ0
(ψ) ∣ ψ ∈ TS

c(M(R+)), ρ∗T(ψ) ∈ O
W ,δ(σ)} ≤ Jlib

σ0
(σ),

which implies the desired inequality since (W, δ) is arbitrary. he discussion so far
in this paragraph also works when Jlib

σ0
and Jlib

σ0
are replaced with Jlib

σ0 ,∞ and Jlib
σ0 ,∞,

respectively. Hence, we are done. ∎

As remarked in the above proof, we have essentially proved the next monotonicity
fact as well.

Corollary 6.14 If Bi ⊆ Ai is a unital C∗-subalgebra (possibly W∗-subalgebra) for

each 1 ≤ i ≤ n + 1, then

Jlib
σ0
(B1; ⋅ ⋅ ⋅ ;Bn ∶ Bn+1) ≤ Jlib

σ0
(A1; ⋅ ⋅ ⋅ ;An ∶ An+1),

where σ0 on the le�-hand side should be understood as the restriction of σ0 to the uni-

versal C∗-algebra obtained from the Bi .

6.7 Summary of Basic Properties

We have established the next properties of i∗∗ so far.
● We have

i
∗∗(A1; ⋅ ⋅ ⋅ ;An ∶ An+1) = i

∗∗(W∗(A1); ⋅ ⋅ ⋅ ;W∗(An) ∶W∗(An+1)).

● IfBi ⊂ Ai , then we have

i
∗∗(B1; ⋅ ⋅ ⋅ ;Bn ∶ Bn+1) ≤ i

∗∗(A1; ⋅ ⋅ ⋅ ;An ∶ An+1).

● i∗∗(A1; ⋅ ⋅ ⋅ ;An ∶ An+1) = 0 if and only ifA1 , . . . ,An+1 are freely independent.
● We have

χorb(X1 , . . . ,Xn+1) ≤ −i∗∗(W∗(X1); . . . ;W∗(Xn) ∶W∗(Xn+1)).

Here,W∗(Ai) andW∗(Xi) denote the von Neumann subalgebras generated by Ai

and Xi , respectively. An important question is whether or not i∗ = i∗∗. It is also an
interesting question whether or not Jlib

σ0
and Jlib

σ0 ,∞ are independent of the choice of σ0.
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7 Unitary Brownian Motions

Let Ξ(N) and U
(i)

N
(t), 1 ≤ i ≤ n, be as in Subsection 4.7; that is, Ξ(N) is a countable

family of deterministic N ×N self-adjoint matrices and the U(i)

N
(t) are independent,

le�-increment unitary Brownian motions on U(N). For ease of notation, we number
the elements of Ξ(N) as ξ j(N) rather than ξ i j(N). In this section, we will explain
how the proofs in [29] work well for the U

(i)

N
(t) together with Ξ(N) and compare

their consequences on the matrix liberation process Ξlib(N) with the corresponding
results on the U(i)

N
(t) together with Ξ(N).

7.1 Malliavin Derivatives of Unitary Brownian Motions

We begin with the SDE representation ofU(k)

N
(t). Let B(i)

αβ
(t), 1 ≤ α, β ≤ N , 1 ≤ i ≤ n,

be the nN2 independent Brownian motions on the real line with natural ûltration Ft .
Consider the system of SDEs in the 2nN2-dimensional Euclidean space (MN)n :

(7.1) dX(i)(t) =
√
−1√
N
∑

1≤α ,β≤N

Cαβ X
(i)(t)dB(i)

αβ
(t) − 1

2
X

(i)(t)dt

(1 ≤ i ≤ n), where Cαβ , 1 ≤ α, β ≤ N , form an orthonormal basis of the Euclidean
spaceM sa

N
. his system of SDEs is linear, and thus each system admits a unique strong

solution a�er ûxing initial X(i)(0). he unitary Brownian motions U
(i)

N
(t), 1 ≤ i ≤

n, are constructed as a unique strong solution X(i)(t) of system (7.1) under initial
condition X(i)(0) = I.

Lemma 7.1 LetD(k ;α ,β)
s be theMalliavin derivative along the Brownianmotion B

(k)

αβ
.

hen

D(k ;α ,β)
s U

(i)

N
(t) = δk , i 1[0,t](s)(

√
−1U(k)

N
(t)U(k)

N
(s)∗( 1√

N
Cαβ)U(k)

N
(s)),

D(k ;α ,β)
s U

(i)

N
(t)∗ = δk , i 1[0,t](s)( −

√
−1U(k)

N
(s)∗( 1√

N
Cαβ)U(k)

N
(s)U(k)

N
(t)∗)

for almost every t ≥ 0.

Proof We also consider the system of SDEs

(7.2) dY(i)(t) = −
√
−1√
N

∑
1≤α ,β≤N

Y
(i)(t)Cαβ dB(i)

αβ
(t) − 1

2
Y

(i)(t)dt

(1 ≤ i ≤ n). For a given X ∈ MN , it is easy to see that X(i)(t) ∶= U
(i)

N
(t)X and

Y(i)(t) ∶= XU
(i)

N
(t)∗ satisfy systems (7.1) (7.2) of SDEs, respectively. hus, the unique

strong solutions of the system of SDEs (7.1), (7.2) with initial condition X(i)(0) = X,
Y(i)(0) = X must be U

(i)

N
(t)X, XU

(i)

N
(t)∗. hus, U(i)

N
(t)X, XU

(i)

N
(t)∗ are both

linear in the variable X, and hence their gradients (or “Jacobian matrix”) in X be-
come the linear transformations L

U
(i)
N (t)

and R
U
(i)
N (t)∗ on MN , respectively, where
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LAX ∶= AX, RBX ∶= XB for A, B, X ∈ MN . By a standard fact onMalliavin derivatives
for strong solutions of SDEs [24, heorem 2.2.1; Eq.(2.59)], it follows that

D(k ;α ,β)
s U

(i)

N
(t)

= δk , i 1[0,t](s) L
U
(k)
N (t)

(L
U
(k)
N (s)

)−1(
√
−1√
N
CαβU

(k)

N
(s))

= δk , i 1[0,t](s)(
√
−1U(k)

N
(t)U(k)

N
(s)∗( 1√

N
Cαβ)U(k)

N
(s)),

D(k ;α ,β)
s U

(i)

N
(t)∗

= δk , i 1[0,t](s)R
U
(k)
N (t)∗(RU

(k)
N (s)∗)

−1(−
√
−1√
N

U
(k)

N
(s)∗Cαβ)

= δk , i 1[0,t](s)( −
√
−1U(k)

N
(s)∗( 1√

N
Cαβ)U(k)

N
(s)U(k)

N
(t)∗).

Hence, we are done. ∎

By the linearity and the Leibniz rule of D(k ;α ,β)
s , we have, for a monomial W in

U
(i)

N
(t),U(i)

N
(t)∗ and ξ j(N),

D(k ;α ,β)
s trN(W) =(7.3)

∑
W=W1U

(k)
N (t)W2

s≤t

trN (W1(
√
−1U(k)

N
(t)U(k)

N
(s)∗

× ( 1√
N
Cαβ)U(k)

N
(s))W2)

+ ∑
W=W3U

(k)
N (t)

∗
W4

s≤t

trN (W3( −
√
−1U(k)

N
(s)∗

× ( 1√
N
Cαβ)U(k)

N
(s)U(k)

N
(t)∗)W4).

Using these remarks, it is a straightforward task to modify the proof of the large de-
viation upper bound for the matrix liberation process in [29] to the case of unitary
Brownian motions with deterministic matrices. he consequence is as follows.

7.2 Non-commutative Derivations

Assume the norm constraint ∥ξ j(N)∥∞ ≤ R for all j ≥ 1, and moreover that Ξ(N)
has a limit distribution as N →∞. hus, we consider the universal C∗-algebras

C
∗
R⟨x◇⟩ ⊂ C∗R⟨x◇ , u●(⋅)⟩ ⊂ C∗R⟨x◇ , u●(⋅), v●(⋅)⟩

generated by x j = x∗
j
, j ≥ 1, and u i(t), v i(t), 1 ≤ i ≤ n, t ≥ 0, subject to ∥x j∥∞ ≤ R

and u i(t)∗u i(t) = u i(t)u i(t)∗ = v i(t)∗v i(t) = v i(t)v i(t)∗ = u i(0) = v i(0) = 1,
1 ≤ i ≤ n, t ≥ 0. Remark that the universal ∗-algebra C⟨x◇ , u●(⋅)⟩ generated by
the same indeterminates with the same algebraic constraints (and without the norm
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constraint) is naturally embedded into C∗
R
⟨x◇ , u●(⋅)⟩ as a norm-dense ∗-subalgebra.

By formula (7.3), we introduce derivations

δ
(k)
s ∶ C⟨x◇ , u●(⋅)⟩ → C⟨x◇ , u●(⋅)⟩ ⊗alg C⟨x◇ , u●(⋅)⟩

determined by

δ
(k)
s u i(t) ∶= δk , i1[0,t](s) (

√
−1uk(t)uk(s)∗ ⊗ uk(s)),

δ
(k)
s u i(t)∗ ∶= δk , i1[0,t](s)(−

√
−1uk(s)∗ ⊗ uk(s)uk(t)∗),

δ
(k)
s x j ∶= 0.

(In fact, one can easily check (uδ(k)s uk(t)) ⋅ uk(t)∗ − uk(t) ⋅ (uδ(k)s uk(t)∗) = 0 for
example, and hence the above deûnition works well.) With the linear mapping θ∶ a⊗
b ↦ ba, we deûne cyclic derivatives

D
(k)
s ∶= θ ○ δ(k)s ∶ C⟨x◇ , u●(⋅)⟩ → C⟨x◇ , u●(⋅)⟩.

If we denote by P(ξ◇(N),U(i)
● (⋅)) the specialization of a given P ∈ C⟨x◇ , u●(⋅)⟩with

x j = ξ j(N) and u i(t) = U
(i)

N
(t), then formula (7.3) admits a “compact” expression

D(k ;α ,β)
s trN(P(ξ◇(N),U(●)

N
(⋅)))

= trN ((D(k)
s P)(ξ◇(N),U(●)

N
(⋅)) ( 1√

N
Cαβ))

for any P ∈ C⟨x◇ , v●(⋅)⟩. hus, the Clark–Ocone formula (see e.g., [18, Proposition
6.11] for any dimension and [24, subsection 1.3.4] for 1 dimension) shows that

E[trN(P(ξ◇(N),U(●)

N
(⋅))) ∣ Ft]

= E[trN(P(ξ◇(N),U(●)

N
(⋅)))] +

n

∑
k=1

N

∑
α ,β=1

∫
t

0
E[ trN ((D(k)

s P)(ξ◇(N),U(●)

N
(⋅))( 1√

N
Cαβ)) ∣ Fs]dB(k)

αβ
(s).

7.3 Continuous Tracial States

A tracial state φ on C∗
R
⟨x◇ , u●(⋅)⟩ (or C∗

R
⟨x◇ , u●(⋅), v●(⋅)⟩) is said to be continuous if

t ↦ u
φ

i
(t) ∶= πφ(u i(t)) is strongly continuous (resp. t ↦ πφ(u i(t)), πφ(v i(t)) are

strongly continuous) for every 1 ≤ i ≤ n, where

πφ ∶C∗R⟨x◇ , u●(⋅)⟩ ↷Hφ (resp. πφ ∶C∗R⟨x◇ , u●(⋅), v●(⋅)⟩ ↷Hφ)
is the GNS representation associated with φ. We then denote by TSc(C∗

R
⟨x◇ , u●(⋅)⟩)

and TSc(C∗
R
⟨x◇ , u●(⋅), v●(⋅)⟩) all the continuous tracial states on C∗

R
⟨x◇ , u●(⋅)⟩, and

C∗
R
⟨x◇ , u●(⋅), v●(⋅)⟩, respectively. Set x j(t) ∶= x j , t ≥ 0, for each j for ease of no-

tation below. hen the same facts as [29, Lemmas 2.1,2.2] hold, and the metric d on
TSc(C∗

R
⟨x◇ , u●(⋅)⟩) can be deûned in the exactly samemanner as (1.1) by considering

words in x j(t) and u i(t), u i(t)∗ in place of words of the form x i1 j1(t1) ⋅ ⋅ ⋅ x im jm(tm)
to deûne w(t1 , . . . , tm). We remark that τ((x i j(s) − x i j(t))2) in [29, Lemma 2.2(2)]
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should be replacedwithφ((u i(s)−u i(t))∗(u i(s)−u i(t)))= 2(1−Reφ(u i(s)∗u i(t)))
in this context.

7.4 Rate Function

By universality, we have the ∗-homomorphism

Πs ∶C∗R⟨x◇ , u●(⋅)⟩ Ð→ C∗R⟨x◇ , u●(⋅), v●(⋅)⟩
for each s ≥ 0, which sends each u i(t) to us

i(t), and keeping each x j as it is, where

u
s
i(t) ∶= v i((t − s) ∨ 0)u i(s ∧ t), 1 ≤ i ≤ n, t ≥ 0.

hen, eachφ ∈TSc(C∗
R
⟨x◇ , u●(⋅)⟩) can be extended to a unique φ̃ ∈TSc(C∗

R
⟨x◇ , u●(⋅),

v●(⋅)⟩) in such away that the v i(t) are freely independent ofC∗
R
⟨x◇ , u●(⋅)⟩ and form a

freely independent family of le�-multiplicative free unitary Brownian motions under
φ̃. For each φ ∈ TSc(C∗

R
⟨x◇ , u●(⋅)⟩), we deûne φs ∶= φ̃ ○ Πs ∈ TSc(C∗

R
⟨x◇ , u●(⋅)⟩),

s ≥ 0, and also write

(N(φ) ⊂M(φ)) ∶= (πφ̃(C∗R⟨x◇ , u●(⋅)⟩)′′ ⊂ πφ̃(C∗R⟨x◇ , u●(⋅), v●(⋅)⟩)′′)
on Hφ̃ , where πφ̃ ∶C∗R⟨x◇ , u●(⋅), v●(⋅)⟩ ↷ Hφ̃ is the GNS representation associated
with φ̃. We ûx a distribution of the x j , say σ0 ∈ TS(C∗

R
⟨x◇⟩). Let σ frBM0 be φ0 with

φ ∈ TSc(C∗
R
⟨x◇ , u●⟩) such that the restriction of φ to C∗

R
⟨x◇⟩ is σ0. Such a continuous

tracial state φ0 is uniquely determined; in fact, it is the joint distribution of the x j ’s and
the v i(t)’s such that the v i(t) form a freely independent family of le�-multiplicative
free unitary Brownian motions and are freely independent of the x j ’s, and more-
over, that the distribution of the x j ’s is σ0. For any φ ∈ TSc(C∗

R
⟨x◇ , u●(⋅)⟩), P = P∗ ∈

C⟨x◇ , u●(⋅)⟩ and t ∈ [0,∞], we deûne

I
uBM
σ0 ,t (φ, P) ∶= φ

t(P) − σ
frBM
0 (P) − 1

2

n

∑
k=1
∫

t

0
∥EN(τ)(πφ̃(Πs(D(k)

s P)))∥2
φ̃ ,2 ds

regarding φ as φ∞. hen we introduce two functionals

I
uBM
σ0

(φ) ∶= sup
P=P

∗
∈C⟨x◇ ,u●(⋅)⟩

t>0

I
uBM
σ0 ,t (φ, P),

I
uBM
σ0 ,∞(φ) ∶= sup

P=P∗∈C⟨x◇ ,u●(⋅)⟩
I
uBM
σ0 ,∞(φ, P)

for φ ∈ TSc(C∗
R
⟨x◇ , u●(⋅)⟩).

7.5 Consequences

Here is the main consequence of this section.

heorem 7.2 Assume that σ0 ∈ TS(C∗
R
⟨x◇⟩) is the limit distribution of Ξ(N) as

N→∞. We denote by P ∈ C∗
R
⟨x◇ , u●(⋅, )⟩ ↦ P(ξ◇(N),U(●)

N
(⋅)) ∈ MN the ∗-homo-

morphism sending u i(t) and x j to U
(i)

N
(t) and ξ j(N), respectively. Let φuBM

Ξ(N)
∈

TSc(C∗
R
⟨x◇ , u●(⋅)⟩) be the random tracial state

P ∈ C∗R⟨x◇ , u●(⋅, )⟩ z→ trN(P(ξ◇(N),U(●)

N
(⋅))) ∈ C.
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hen we have the following large deviation upper bound:

lim
N→∞

1
N2 logP(φuBM

Ξ(N) ∈ Λ) ≤ − inf{IuBMσ0
(φ) ∣ φ ∈ Λ}

for every closed Λ ⊂ TSc(C∗
R
⟨x◇ , u●(⋅)⟩). Moreover, both IuBMσ0

≥ IuBMσ0 ,∞ are good rate

functions and admit the same unique minimizer σ frBM0 .

Proving that the rate functions are good along the line of the proof of [29, Propo-
sition 5.6] needs the formula

EN(φ)(Πs(D(k)
s ((u i(t1) − u i(t2))∗(u i(t1) − u i(t2)))

= δk , i
√
−1e− 1

2 (t1∨t2−s)1(t1∧t2 ,t1∨t2](s)
× (uk(t1 ∧ t2)uk(s)∗ − uk(s)uk(t1 ∧ t2)∗).

Similarly to [29, Corollary 5.9], the standard Borel–Cantelli argument shows the
next corollary.

Corollary 7.3 Keep the same setting as inheorem 7.2. Let σ frBM0 ∈TSc(C∗
R
⟨x◇ , u●(⋅)⟩)

be constructed in such a way that the distribution of the x j is σ0 under σ frBM0 and also

that the u i(t) form a freely independent family of le�-multiplicative free unitary Brow-

nian motions and are freely independent of the x j under σ frBM0 . hen d(φuBM
Ξ(N)

, σ frBM0 )
→ 0 almost surely as N →∞.

his is a precise statement about the almost sure convergence as continuous pro-
cess for an independent family of unitary Brownian motions together with determin-
istic matrices and seems to have been missing so far, even though the almost sure
strong convergence for its time marginals was established by Collins, Dahlqvist, and
Kemp [11].

7.6 Haar-distributed Unitary Random Matrices

As in Section 4, using Lemma 2.1 we can derive a large deviation upper bound for
an independent family of N × N Haar-distributed unitary random matrices U

(i)

N
,

1 ≤ i ≤ n, with deterministic matrices Ξ(N) from heorem 7.2. he resulting rate
function is given as in Lemma 4.1. Let C∗

R
⟨x◇ , u●⟩ be the universal C∗-algebra gener-

ated by x j , j ≥ 1, and u i , 1 ≤ i ≤ n, with subject to ∥x j∥∞ ≤ R and u∗i u i = u iu
∗
i = 1.

We denote by P ∈ C∗
R
⟨x◇ , u●⟩ ↦ P(ξ◇(N),U(●)

N
) ∈ MN the ∗-homomorphism send-

ing x j and u i to ξ j(N) and U
(i)

N
, respectively. hen we have the random tracial state

φuHaar
Ξ(N)

∈ TS(C∗
R
⟨x◇ , u●⟩) → C deûned by φuHaar

Ξ(N)
(P) ∶= trN(P(ξ◇(N),U(●)

N
)) for P ∈

C∗
R
⟨x◇ , u●⟩. Namely, let πT ∶C∗R⟨x◇ , u●⟩ → C∗

R
⟨x◇ , u●(⋅)⟩ be the ∗-homomorphism

sending x j and u i to x j and u i(T), respectively, as before. hen we have the large
deviation upper bound for the probability measures P(φuHaar

Ξ(N)
∈ ⋅) with speed N2 and

the rate function
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ψ ∈ TS(C∗R⟨x◇ , u●⟩) ↦
lim

m→∞
δ↘0

lim
T→∞

inf{IuBMσ0
(φ) ∣ φ ∈ TS

c(C∗R⟨u●(⋅), x◇⟩), π∗T(φ) ∈ Om ,δ(ψ)} ∈ [0,+∞],

where, as before, the inûmum over the empty set is taken as +∞ and Om ,δ(ψ) is the
open neighborhood consisting of all χ ∈ TS(C∗

R
⟨x◇ , u●⟩) such that ∣χ(w)−ψ(w)∣ < δ

for all words w in x j , u i , u∗i ( j ≤ m, 1 ≤ i ≤ n) of length not greater than m.
We remark that Cabanal-Duvillard and Guionnet [9, Corollary 4.2] have also ob-

tained a large deviation upper bound for the U(i)

N
with seemingly diòerent rate func-

tion based on self-adjoint matrix Brownian motions.

7.7 Relation to the Matrix Liberation Process

Wewill compareheorem7.2with [29,heorem5.8]. To this end, we renumber ξ j(N)
and x j as ξ i j(N) and x i j , respectively. Let πlib∶C∗R⟨x●◇(⋅)⟩ → C∗

R
⟨x●◇ , u●(⋅)⟩ be the

∗-homomorphism sending x i j(t) to u i(t)x i ju i(t)∗. his induces a continuous map

π
∗
lib∶TS

c(C∗R⟨x●◇ , u●(⋅)⟩) → TS
c(C∗R⟨x●◇(⋅)⟩)

deûned by π∗lib(φ) ∶= φ ○ πlib. We observe that π∗lib(φuBM
Ξ(N)

) = τΞlib(N). herefore,
the contraction principle in large deviation theory implies the large deviation upper
bound for P(τΞlib(N) ∈ ⋅) in the same scale with the good rate function:

I
ulib
σ0

(τ) ∶= inf{IuBMσ0
(φ) ∣ φ ∈ TS

c(C∗R⟨u●(⋅), x◇⟩), π∗lib(φ) = τ}

for any τ ∈ TSc(C∗
R
⟨x●◇(⋅)⟩), where the inûmum over the empty set is taken as +∞.

herefore, we have two large deviation upper bounds with (seemingly diòerent) rate
functions for P(τΞlib(N) ∈ ⋅).

Let τ ∈ TSc(C∗
R
⟨x●◇(⋅)⟩) be given. Consider an arbitrary φ ∈ TSc(C∗

R
⟨x●◇ , u●(⋅)⟩)

with π∗lib(φ) = τ. It is not diõcult to show that

φ
s(πlib(P)) = τ

s(P), EN(φ)(Πs(D(k)
s πlib(P))) = EN(τ)(Πs(D(k)

s P))

for every P ∈ C⟨x●◇(⋅)⟩ and every s ≥ 0. herefore, I libσ0 ,t(τ, P) = IuBMσ0 ,t (φ, πlib(P)) for
every P ∈ C⟨x●◇(⋅)⟩ and every t ≥ 0, and hence

I
lib
σ0

(τ) ≤ I
ulib
σ0

(τ), I
lib
σ0 ,∞(τ) ≤ I

ulib
σ0 ,∞(τ),

where

I
ulib
σ0 ,∞(τ) ∶= inf{IuBMσ0 ,∞(φ) ∣ φ ∈ TS

c(C∗R⟨u●(⋅).x◇⟩), π∗lib(φ) = τ}.

herefore, the current approach using unitary Brownian motions directly gives an
improved large deviation upper bound for the matrix liberation process, though the
description of the resulting rate function is “indirect”. Remark that the above in-
equalities between two kinds of rate functions guarantee that Iulibσ0

≥ Iulibσ0 ,∞ also have a
unique minimizer, which is given by σ lib

0 . Remark that this fact on the rate functions
Iulibσ0

≥ Iulibσ0 ,∞ holds even when σ0 does not fall into TSfda(C∗⟨x●◇⟩).
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8 Conditional Expectations of Liberation Cyclic Derivatives

We will give a technical result on liberation cyclic derivatives D(k)
s , 1 ≤ k ≤ n, for

future work. he most non-trivial component of the rate functions I libσ0 , I
lib
σ0 ,∞ is

EN(τ)(π τ̃(Πs(D(k)
s P))), which will be described in terms of free cumulants when

P is a monomial. In what follows, we use the notations in Section 4.
Here is some terminology. Let (A, φ) be a non-commutative probability space,

and let a1 , . . . , an ∈ A be arbitrarily chosen. For a block V = (i1 < ⋅ ⋅ ⋅ < is) of
[n] = {1, . . . , n}, we deûne id(V)[a1 , . . . , an] to be the word a i1 ⋅ ⋅ ⋅ a is (i.e., the word
obtained by arranging a i1 , . . . , a is in order). For a partition π = {V1 , . . . ,Vm} of [n],
we deûne

C(φ; π)[a1 , . . . , an] ∶=
m

∑
k=1

( ∏
1≤ℓ≤m
ℓ≠k

φ(Vℓ)[a1 , . . . , an])id(Vk)[a1 , . . . , an],

where φ(Vℓ)[a1 , . . . , an] is deûned as in [23, Lecture 11]; namely, we have
φ(Vℓ)[a1 , . . . , an] = φ(id(Vℓ)[a1 , . . . , an]).

Proposition 8.1 Write

wℓ ∶= v iℓ−1((tℓ−1 − s)+)∗v iℓ((tℓ − s)+), 1 ≤ ℓ ≤ n,
with i0 ∶= in and (t − s)+ ∶= 0 ∨ (t − s). hen we have

EN(τ)(π τ̃(Πs(D(k)
s x i1 j1(t1) ⋅ ⋅ ⋅ x in jn(tn))))

= ∑
π∈NC(n)

κπ[w1 , . . . ,wn]

× π τ̃(D(k)
s C(τ;K(π))[x i1 j1(s ∧ t1), . . . , x in jn(s ∧ tn)]),

where NC(n) denotes the non-crossing partitions of [n], κπ the free cumulant associ-

ated with π, and K∶NC(n) → NC(n) the Kreweras complementation map; see [23,

Lecture 11].

Proof Write P = x i1 j1(t1) ⋅ ⋅ ⋅ x in jn(tn) for simplicity. Choose an arbitrary y ∈
C∗

R
⟨x●◇(⋅)⟩. hen we compute

τ̃(EN(τ)(π τ̃(Πs(D(k)
s P)))π τ̃(y)) = τ̃(Πs(D(k)

s P)y),
where we use the same symbol τ̃ with a diòerent meaning on each side; see Subsec-
tion 4.4. By a direct computation using the trace property, we have

τ̃(Πs(D(k)
s P)y)

= ∑
iℓ=k
s≤tℓ

τ̃([wℓ+1x iℓ+1 jℓ+1(s ∧ tℓ+1)wℓ+1 ⋅ ⋅ ⋅ x iℓ−1 jℓ−1(s ∧ tℓ−1)wℓ , x iℓ jℓ(s ∧ tℓ)]y)

= ∑
iℓ=k
s≤tℓ

τ̃(w1x i1 j1(s ∧ t1)

⋅ ⋅ ⋅wℓ[x iℓ jℓ(s ∧ tℓ), y]wℓ+1x iℓ+1 jℓ+1(s ∧ tℓ+1) ⋅ ⋅ ⋅wnx in jn(s ∧ tn)),
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each of whose terms is the τ̃-value of themonomial obtained fromΠs(P) by replacing
x iℓ jℓ(s ∧ tℓ) with [x iℓ jℓ(s ∧ tℓ), y]. By [23, heorem 14.4], we obtain that

∑
iℓ=k
s≤tℓ

τ̃(w1x i1 j1(s ∧ t1) ⋅ ⋅ ⋅wℓ[x iℓ jℓ(s ∧ tℓ), y]wℓ+1x iℓ+1 jℓ+1(s ∧ tℓ+1)

⋅ ⋅ ⋅wnx in jn(s ∧ tn))
= ∑

iℓ=k
s≤tℓ

∑
π∈NC(n)

κπ[w1 , . . . ,wn] τ̃K(π)[x i1 j1(s ∧ t1),

. . . , [x iℓ jℓ(s ∧ tℓ), y], . . . , x in jn(s ∧ tn)]

= ∑
π∈NC(n)

κπ[w1 , . . . ,wn]( ∑
iℓ=k
s≤tℓ

τK(π)[x i1 j1(s ∧ t1), . . . , [x iℓ jℓ(s ∧ tℓ), y],

. . . , x in jn(s ∧ tn)])

When K(π) = {V1 , . . . ,Vm} with ℓ ∈ Vp (1 ≤ p ≤ m), we have

∑
iℓ=k
s≤tℓ

τ(w1x i1 j1(s ∧ t1) ⋅ ⋅ ⋅w l [x iℓ jℓ(s ∧ tℓ), y]wℓ+1x iℓ+1 jℓ+1(s ∧ tℓ+1)

⋅ ⋅ ⋅wnx in jn(s ∧ tn))

= ∑
iℓ=k
s≤tℓ

( ∏
1≤q≤m
q≠p

τ(Vq)[x i1 j1(s ∧ t1), . . . , [x iℓ jℓ(s ∧ tℓ), y],

. . . , x in jn(s ∧ tn)])
× τ(Vp)[x i1 j1(s ∧ t1), . . . , [x iℓ jℓ(s ∧ tℓ), y], . . . , x in jn(s ∧ tn)]

= ∑
iℓ=k
s≤tℓ

( ∏
1≤q≤m
q≠p

τ(Vq)[x i1 j1(s ∧ t1), . . . , x iℓ jℓ(s ∧ tℓ), . . . , x in jn(s ∧ tn)])

× τ(Vp)[x i1 j1(s ∧ t1), . . . , [x iℓ jℓ(s ∧ tℓ), y], . . . , x in jn(s ∧ tn)].

If Vp = (s1 < ⋅ ⋅ ⋅ < s f ) with sg = ℓ, then

τ(Vp)[x i1 j1(s ∧ t1), . . . , [x iℓ jℓ(s ∧ tℓ), y], . . . , x in jn(s ∧ tn)]
= τ([x isg+1 jsg+1

(s ∧ tsg+1) ⋅ ⋅ ⋅ x isg−1 jsg−1
(s ∧ tsg−1), x iℓ jℓ(s ∧ tℓ)]y),

which together with the deûnition ofD(k)
s implies that

∑
iℓ=k
s≤tℓ

( ∏
1≤q≤m
q≠p

τ(Vq)[x i1 j1(s ∧ t1), . . . , x iℓ jℓ(s ∧ tℓ), . . . , x in jn(s ∧ tn)])

× τ([x isg+1 jsg+1
(s ∧ tsg+1) ⋅ ⋅ ⋅ x isg−1 jsg−1

(s ∧ tsg−1), x iℓ jℓ(s ∧ tℓ)]y)

= τ̃((D(k)
s C(τ;K(π))[x i1 j1(s ∧ t1), . . . , x iℓ jℓ(s ∧ tℓ), . . . , x in jn(s ∧ tn)])y)

= τ̃(π τ̃(D(k)
s C(τ;K(π))[x i1 j1(s ∧ t1), . . . , x iℓ jℓ(s ∧ tℓ), . . . , x in jn(s ∧ tn)])π τ̃(y)).
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We conclude that

τ̃(EN(τ)(π τ̃(Πs(D(k)
s P)))π τ̃(y))

= ∑
π∈NC(n)

κπ[w1 , . . . ,wn]

× τ̃(π τ̃(D(k)
s C(τ;K(π))[x i1 j1(s ∧ t1), . . . , x in jn(s ∧ tn)])π τ̃(y)).

Hence, we are done. ∎

It is interesting to compute κπ[w1 , . . . ,wn] in the above explicitly.

A Universal Free products of Unital C∗-algebras

he concept of universal free products in the category of unital C∗-algebras has been
studied in detail by several hands, including Blackadar [6], Pedersen [25], and others.
However, almost all existingworks deal with only universal free products of two unital
C∗-algebras. We have used universal free products of uncountably many unital
C∗-algebras crucially (even in [29] without any references). Hence, we will collect a
few facts on universal free products of arbitrary number of unitalC∗-algebras with ex-
plicit explanations for the reader’s convenience. However, we do not claim any credit
to thematerials in this appendix, because they all seem to be known among specialists.

Let Ai , i ∈ I, be unital C∗-algebras. Consider their universal free product
☀i∈IAi with canonical unital ∗-homomorphisms λ i ∶Ai → ☀i∈IAi , i ∈ I, which is
characterized by the universality asserting that for any family π i ∶Ai → B of unital
∗-homomorphisms into a common unital C∗-algebra, there exists a unital ∗-homo-
morphism π∶☀i∈IAi → B such that π ○ λ i = π i for all i ∈ I. Note that the injectivity
of each λ i was established in [6, heorem 3.1] (or [25, heorem 4.2]).

Lemma A.1 For any disjoint decomposition I = ⊔ j∈J I j of I into non-empty subsets,

we consider the universal free product C∗-algebras ☀i∈I jAi , j ∈ J. hen ☀i∈IAi ≅
☀ j∈J(☀i∈I jAi) naturally; that is, each λ i(a) with a ∈ Ai is sent to the corresponding

element in the j-th free product component☀i∈I jAi on the right-hand side when i ∈ I j .

Proof his follows from the universality of the involved universal free product
C∗-algebras. ∎

Lemma A.2 For each ûnite subset F ⋐ I, we consider the universal free product

C∗-algebra AF ∶= ☀i∈FAi with setting A∅ ∶= C1. hen the following hold true:

(i) If F1 ⊂ F2, then the canonical unital∗-homomorphismAF1 → AF1☀AF2/F2 = AF2

via Lemma A.1 is injective.
(ii) ☀i∈IAi ≅ limÐ→F

AF naturally (see i.e., [19, Proposition 11.4.1(i)] for the latter); that

is, the isomorphism sends each λ i(a) with a ∈ Ai to the corresponding one in AF
with i ∈ F.

Proof (i) follows from Blackadar’s result [6, heorem 3.1]. (ii) follows from [6, he-
orem 3.1] and [19, Proposition 11.4.1(ii)], for example. ∎
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Proposition A.3 LetBi ⊆ Ai , i ∈ I, be unital C∗-subalgebras. hen the universal free

product C∗-algebra☀i∈IBi is naturally embedded into☀i∈IAi . Namely,☀i∈IBi can

be identiûed with the C∗-subalgebra generated by the λ i(Bi) and the canonical unital

∗-homomorphisms from Bi into☀i∈IBi is given by the restriction of λ i to Bi .

Proof Write BF ∶= ☀i∈FBi for each ûnite subset F ⋐ I with B∅ ∶= C1. By the
iterative use of Pedersen’s result [25, heorem 4.2] with the help of Lemma A.1, we
can see that BF ↪ AF naturally. hen, by i.e., [19, Proposition 11.4.1(ii)], we have a
natural unital injective ∗-homomorphism from limÐ→F

BF into limÐ→F
AF by means of

inductive limits. hus, the desired assertion follows thanks to Lemma A.2(ii). ∎

Proposition A.4 Let☀alg
i∈I
Ai be the free product of theAi , i ∈ I, in the category of uni-

tal ∗-algebras, in which we regard each Ai as a unital ∗-subalgebra. Let λ∶☀alg
i∈I
Ai →

☀i∈IAi be the unique∗-homomorphism sending a ∈ Ai ⊂☀alg
i∈I
Ai to λ i(a) ∈ ☀i∈IAi ,

whose existence is guaranteed by universality. hen λ must be injective. Namely, the

∗-subalgebra algebraically generated by the λ i(Ai) in ☀i∈IAi can be identiûed with

☀alg
i∈I
Ai .

Proof Wehave to show that if a ∈ ☀alg
i∈I
Ai satisûes λ(a) = 0, then a = 0. To this end,

we will use the reduced free product construction; see, i.e., [32], following Avitzour’s
idea [2, Proposition 2.3].

Let a ∈ ☀alg
i∈I
Ai be given. hen a is nothing but a linear combination of words

whose letters are from the Ai . For each i ∈ I, we let Ai0 be the unital C∗-subalgebra
of Ai generated by the letters from Ai (with ûxed i) appearing in the words in the
linear combination description of a. Since there are only ûnitely many letters for each
i ∈ I,Ai0 must be separable. By Proposition A.3, we can and do regard☀i∈IAi0 as a
unital C∗-algebra of☀i∈IAi naturally, and λ(a) falls into ☀i∈IAi0. Hence, we can
and do regard each Ai as a separable unital C∗-algebra.

We claim that for each i ∈ I, there exists a faithful state ω i on Ai . Since Ai is
separable, it faithfully acts on a separable Hilbert space, say π∶Ai ↷ K. See [12,
heorem I.9.12]. hen we choose a dense sequence of non-zero vectors ξn ∈K and
set ω i(a) ∶= ∑∞n=1 1

2n∥ξn∥K
(π(a)ξn ∣ξn)K for a ∈ Ai . his clearly deûnes a faithful

state.
Consider the reduced C∗-free product (A,ω) =☀i∈I(Ai ,ω i) with canonical

∗-homomorphisms γ i ∶Ai → A. See i.e., [32]. By universality, we have a unique
∗-homomorphism γ∶☀i∈IAi → A such that γ ○ λ i = γ i for every i ∈ I. Write

☀alg
i∈I
Ai = C1 + ∑

m≥1
∑

ik≠ik+1
(1≤k≤m−1)

A○
i1
⋅ ⋅ ⋅A○

im

with A○
i ∶= Ker(ω i), where A○

i1
⋅ ⋅ ⋅A○

im
denotes all the linear combinations of words

a○1 ⋅ ⋅ ⋅ a○m with a○
k
∈ A○

ik
. According to this representation, we write

a = α1 + ∑
m≥1

∑
ik≠ik+1

(1≤k≤m−1)

a(i1 , . . . , im),
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where a○(i1 , . . . , im) is an element in A○
i1
⋅ ⋅ ⋅A○

im
. We observe that a(i1 , . . . , im) = 0

for all but ûnitely many (i1 , . . . , im). We denote by a○(i1 , . . . , im)⊗ in the spacial
(or minimal) C∗-tensor productA1⊗ ⋅ ⋅ ⋅⊗Aim the corresponding elements obtained
by changing each word a○1 ⋅ ⋅ ⋅ a○m appearing in a○(i1 , . . . , im) to a simple tensor
a○1 ⊗⋅ ⋅ ⋅⊗a○m ∈ A1⊗⋅ ⋅ ⋅⊗Aim . By universality of algebraic tensor products sitting inside
A1 ⊗ ⋅ ⋅ ⋅ ⊗Aim (which is simply conûrmed by the iterative use of a well-known fact,
see i.e., [19, Proposition 11.18], or for a more direct statement, see [7, Corollary 3.1]),
we observe that a○(i1 , . . . , im)⊗ = 0 implies a○(i1 , . . . , im) = 0.
Assume that λ(a) = 0. Since

πω(γ(λ(a)))ξω = αξω + ∑
m≥1

∑
ik≠ik+1

(1≤k≤m−1)

πω(γ(λ(a○(i1 , . . . , im))))ξω ,

where (Hω , πω , ξω) is the GNS triple of (A,ω). By the free independence among
the λ i(Ai), we see that αξω , and the πω(γ(λ(a○(i1 , . . . , im))))ξω are mutually or-
thogonal in Hω . In particular, α as well as all the πω(γ(λ(a○(i1 , . . . , im))))ξω must
be 0. Let (Hω i , πω i , ξω i ) be the GNS triple of (Ai ,ω i). hen, the norm of each
πω(γ(λ(a○(i1 , . . . , im))))ξω is the same as that of

(πω i1
⊗ ⋅ ⋅ ⋅ ⊗ πω im

)(a○(i1 , . . . , im)⊗)(ξω i1
⊗ ⋅ ⋅ ⋅ ⊗ ξω im

),
which must also be 0. Since ω i is faithful, so is πω i , and hence the tensor product
representation πω i1

⊗ ⋅ ⋅ ⋅ ⊗ πω im
∶Ai1 ⊗ ⋅ ⋅ ⋅ ⊗Aim ↷Hω i1

⊗ ⋅ ⋅ ⋅ ⊗Him is as well (see i.e.,
[19,heorem 11.1.3]). We conclude that a○(i1 , . . . , im)⊗ = 0 so that a○(i1 , . . . , im) = 0.
Consequently, a must be 0. ∎
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