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Abstract

We establish existence of weighted Hardy and Rellich inequalities on the spaces Lp(Ω), where Ω = Rd\K
with K a closed convex subset of Rd . Let Γ = ∂Ω denote the boundary of Ω and dΓ the Euclidean distance
to Γ. We consider weighting functions cΩ = c ◦ dΓ with c(s) = sδ(1 + s)δ

′−δ and δ, δ′ ≥ 0. Then the Hardy
inequalities take the form ∫

Ω

cΩ|∇ϕ|
p ≥ bp

∫
Ω

cΩ d−p
Γ
|ϕ|p

and the Rellich inequalities are given by∫
Ω

|Hϕ|p ≥ dp

∫
Ω

|cΩ d−2
Γ ϕ|p

with H = −div(cΩ∇). The constants bp,dp depend on the weighting parameters δ, δ′ ≥ 0 and the Hausdorff
dimension of the boundary. We compute the optimal constants in a broad range of situations.
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1. Introduction

The classical Hardy and Rellich inequalities are estimates for second-order elliptic
operators on the spaces Lp(Rd\{0}), p ∈ 〈1,∞〉. These operators describe diffusion
around a point obstacle at the origin and the existence of the inequalities is related
to uniqueness properties of the diffusion. Both inequalities have been studied for
operators with coefficients proportional to |x|δ, where x ∈ Rd\{0} and δ ≥ 0. Our
intention is to derive similar estimates on Ω = Rd\K where K is a closed, nonempty,
convex subset of Rd with K , Rd and for operators with coefficients exhibiting
different power behaviours at the boundary of Ω and at infinity. This dichotomy is
natural in applications to diffusion and in a recent paper [Rob18] we derived existence
results for strong forms of both inequalities on L2(Rd\{0}). Background information
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on the classical inequalities and references to the extensive literature can be found in
the recent monograph [BEL15].

The existence of both types of inequality depends on conditions involving the
Hausdorff dimension dH of the boundary Γ(= ∂Ω) of Ω. If the dimension dim(K)
of K, that is, the dimension of the affine closure AK of K, takes one of the values
0, 1, . . . , d − 1, then dH = dim(K) but if dim(K) = d, then dH = d − 1. Moreover,
the general inequalities depend on the Euclidean distance dΓ to the boundary, that
is, dΓ(x) = infy∈Ωc |x − y| for x ∈ Ω. We begin by establishing the existence of weighted
Hardy inequalities.

Theorem 1.1. Let Ω = Rd\K, where K is a closed, nonempty, convex subset of Rd with
K , Rd. Denote the Hausdorff dimension of the boundary Γ of Ω by dH . Further, let
cΩ = c ◦ dΓ, where c(s) = sδ(1 + s)δ

′−δ with δ, δ′ ≥ 0. If d − dH + (δ ∧ δ′) − p > 0 with
p ∈ [1,∞〉, then ∫

Ω

cΩ|∇ϕ|
p ≥

∫
Ω

cΩ|(∇dΓ) · (∇ϕ)|p ≥ ap
p

∫
Ω

cΩ d−p
Γ
|ϕ|p (1.1)

for all ϕ ∈ C1
c (Ω), where ap = (d − dH + (δ ∧ δ′) − p)/p.

Here and in the sequel all functions are real valued. Moreover, we use the standard
notation |∇ϕ| = (

∑d
k=1 |∂kϕ|

2)1/2. Then the left-hand inequality in (1.1) follows since dΓ

is a Lipschitz function with |∇dΓ| ≤ 1. The choice of the weight c is governed by the
asymptotic properties c(s)/sδ → 1 as s→ 0 and c(s)/sδ

′

→ 1 as s→∞. Although this
theorem and the subsequent one are stated for the particular coefficient c, the general
conclusions are valid for a large class of c with similar asymptotic properties. Note
that if δ = δ′, then c(s) = sδ, which is the conventional weight function used in the
discussion of Hardy and Rellich inequalities.

The original Rellich inequality for the Laplacian ∆ = −
∑d

k=1 ∂
2
k = −∇2 was

established on L2(Rd\{0}) but was subsequently extended by Davies and Hinz [DH98]
to the spaces Lp(Rd\{0}) with p ∈ 〈1,∞〉 and to weighted operators cΩ∆. In particular,
optimal estimates were derived for the weights c(s) = sδ. These developments
are described in [BEL15, Sections 6.1–6.3] or in greater detail in [MSS15]. In
Section 3 we establish the existence of Rellich inequalities for weighted operators
H = −

∑d
k=1 ∂kcΩ∂k = −div(cΩ∇) on the spaces Lp(Rd\K) by extension of the method

of Davies and Hinz. These operators are defined on the universal domain C2
c (Ω) and

all estimates are on this domain.

Theorem 1.2. Let Ω = Rd\K, where K is a closed, nonempty, convex subset of Rd with
K , Rd. Denote the Hausdorff dimension of the boundary Γ of Ω by dH . Further, let
cΩ = c ◦ dΓ, where c(s) = sδ(1 + s)δ

′−δ with δ, δ′ ∈ [0, 2〉. If d − dH + p(δ ∧ δ′) − 2p ≥
2p|δ − δ′|(2 − δ ∨ δ′)−1 with p ∈ 〈1,∞〉, then there is a cp ∈ 〈0,Cp], where Cp =

(p − 1)(d − dH)(d − dH + p(δ ∧ δ′) − 2p)p−2, such that∫
Ω

|Hϕ|p ≥ cp
p

∫
Ω

|cΩ d−2
Γ ϕ|p (1.2)

for all ϕ ∈ C2
c (Ω). Moreover, if δ = δ′, then cp = Cp.
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The proof of the theorem allows one to identify cp as a function of dH , δ and δ′ but
the result is significantly more complicated than the expression for Cp.

Theorems 1.1 and 1.2 establish criteria for existence of the Hardy and Rellich
inequalities (1.1) and (1.2), respectively, but they give no information about optimality
of the constants ap

p and cp
p. This problem is addressed in Section 4. It is straightforward

to prove by local estimates that ap
p is optimal for the Hardy inequality if K = {0} but the

situation is more complicated if k = dim(K) ≥ 1. Then the geometry plays a significant
role. If k ∈ {1, . . . , d − 1} and δ ≤ δ′, then ap

p is still optimal because local properties
are the most significant in the corresponding variational problem. If, however, δ′ < δ,
then global properties are important. Nevertheless, we establish that ap

p is still optimal
if k ∈ {1, . . . , d − 1} and the ‘dimension at infinity’ k∞ of K is equal to k. The latter
dimension, which is defined in Section 4, is a measure of the size of K at infinity;
for example, if K is bounded, then k∞ = 0 and, if K is affine, then k∞ = k. Our
optimality results for the Rellich inequality are limited to the case that δ = δ′ ∈ [0, 2〉.
Then cp = Cp and cp

p is the optimal constant for the Rellich inequality if K = {0} or if
k ∈ {1, . . . , d − 1} and k∞ = k. But these results leave open room for improvement. In
particular, if p = 2 and K = {0}, then it follows from [Rob18] that C2

2 is the optimal
constant for all δ, δ′ ≥ 0 such that δ + δ′ ≤ 4 with the sole restriction C2 > 0.

The inequality (1.2) is a natural ‘weighted operator’ generalization of the original
Rellich inequality for the Laplacian, which differs from the weighted Rellich inequality
that is usually studied, that is, the inequality similar to (1.2) but with H replaced
by cΩ∆. The latter can be viewed as a ‘weighted measure’ version of the original
inequality for the Laplacian, since the replacement of ∆ by cΩ∆ corresponds to
replacing Lebesgue measure dx by cp

Ω
dx. We briefly discuss weighted measure

inequalities at the end of the paper.

2. Hardy inequalities

In this section we prove Theorem 1.1. As a preliminary to the proof, we need
to establish local convexity of the distance function dΓ. Since K is a closed convex
subset, it follows from Motzkin’s theorem (see, for example, [Hör94, Theorem 2.1.20]
or [BEL15, Theorem 2.2.9]) that each point x ∈ Ω has a unique nearest point n(x) ∈ K,
that is, there is a unique n(x) ∈ K such that dΓ(x) = |x − n(x)|. Moreover, dΓ is
differentiable at each point x ∈ Ω and (∇dΓ)(x) = (x − n(x))/|x − n(x)|. Thus, |∇dΓ| = 1
and (∇d2

Γ
)(x) = 2(x − n(x)). Note that in the degenerate case K = {0} one has dΓ(x) = |x|

and consequently ∇2d2
Γ

= 2d. In the nondegenerate case it is not, however, clear that
dΓ is even twice differentiable. But this follows from local convexity.

Proposition 2.1. The distance function dΓ is convex on all open convex subsets of Ω.
In particular, it is twice differentiable almost everywhere in Ω and the corresponding
Hessian (∂k∂ldΓ)(x) is positive definite for almost all x ∈ Ω.

Proof. First, we prove the convexity in an open neighbourhood of an arbitrarily chosen
point x ∈ Ω.
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Let n(x) ∈ Γ be the unique near point of x ∈ Ω. Then there is a unique tangent
hyperplane Tx at the point n(x) which is orthogonal to x − n(x). The hyperplane
separates Rd into two open half spaces, Γ

(+)
x ⊂ Ω and Γ

(−)
x ⊃ Int(Ωc). Moreover,

Ω =
⋃

x∈Ω Γ
(+)
x and Int(Ωc) =

⋂
x∈Ω Γ

(−)
x . Now fix a point x0 ∈ Ω and an r > 0 such

that the open Euclidean ball Bx0 (r) with centre x0 and radius r is contained in Ω.
Next, choose r sufficiently small that Bx0 (r) ⊂

⋂
x∈Bx0 (r) Γ

(+)
x . This is possible since if

xk ∈ Ω converges pointwise to x ∈ Ω, then n(xk)→ n(x) (see [BEL15, Lemma 2.2.1]).
Therefore, the family of open subsets s > 0 7→ Λx0 (s) =

⋂
x∈Bx0 (s) Γ

(+)
x increases to

Γ
(+)
x0 ⊃ Bx0 (r) as s decreases to zero. But the balls Bx0 (s) decrease as s→ 0. Therefore,

there is an r0 such that Bx0 (r) ⊂
⋂

x∈Bx0 (r0) Γ
(+)
x for all r ∈ 〈0, r0〉.

Secondly, we argue that if r < r0, then dΓ is convex on Bx0 (r). To this end, choose
three points x, y, z ∈ Bx0 (r) such that x = λy + (1 − λ)z with λ ∈ 〈0, 1〉. Since r < r0, it
follows that Bx0 (r) ⊂ Γ

(+)
x . Thus, the tangent plane Tx separates Bx0 (r) and Ωc. Next, let

x̃, ỹ, z̃ denote the orthogonal projections of x, y, z onto Tx. Then x̃ = n(x), by definition,
and dΓ(x) = |x − x̃|. But

|y − ỹ| = inf
y0∈Γ

(−)
x

|y − y0| ≤ inf
y0∈Ωc

|y − y0| = dΓ(y).

Similarly, |z − z̃| ≤ dΓ(z). Moreover, x̃ = λỹ + (1 − λ)z̃ and

|x − x̃| = λ|y − ỹ| + (1 − λ)|z − z̃|.

Therefore, dΓ(x) ≤ λ dΓ(y) + (1 − λ) dΓ(z). Since this is valid for all choices of x, y, z ∈
Bx0 (r) and λ ∈ 〈0, 1〉 with x = λy + (1 − λ)z, it follows that dΓ is convex on Bx0 (r).

Thirdly, it follows from Motzkin’s theorem that dΓ is once differentiable at each
x ∈ Ω. But since dΓ is convex on Bx0 (r), it follows from Alexandrov’s theorem (see
[EG92, Section 6.4]) that dΓ is twice differentiable almost everywhere on Bx0 (r). Since
this is valid for each x0 ∈ Ω for some r > 0, it then follows that dΓ is twice differentiable
almost everywhere on Ω. The Hessian of a convex function is automatically positive
definite. Hence, the Hessian of dΓ is positive definite almost everywhere on Ω.

Finally, let d(ε)
Γ

, ε > 0, denote a family of local mollifications/regularizations of dΓ

(see [EG92, Section 4.2.1]). Then the d(ε)
Γ

are C2-functions and their Hessians are
positive definite. In fact, the proof of Alexandrov’s theorem relies on proving the
positive definiteness of the regularizations. Next, it follows by a standard consequence
of convexity (see [Sim11, Theorem 1.5]) that d(ε)

Γ
is convex on all open convex subsets

suitably distant from the boundary. But d(ε)
Γ
→ dΓ as ε→ 0. Therefore, in the limit dΓ

is convex on all open convex subsets of Ω. �

The subsequent proof of the Hardy inequalities of Theorem 1.1 depends on control
of the second derivatives of dΓ.

Corollary 2.2. If Ω = Rd\K, where K is a closed convex subset, then ∇2d2
Γ
≥

2(d − dH), where dH is the Hausdorff (Minkowski) dimension of Γ.
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Proof. First, if K is a singleton, then one can assume that K = {0}. Hence, d2
Γ
(x) = |x|2

and ∇2d2
Γ

= 2d.
Secondly, if dim(K) = k with k ∈ {1, . . . ,d − 1}, one can factor Rd as a direct product

Rk ×Rd−k, where Rk is identified with AK , the affine hull of K. Thus, if x = (y, z) ∈ Rd

with y ∈ Rk and z ∈ Rd−k, one has d2
Γ
(x) = d2

K(y) + |z|2, where dK(y) = infy′∈K |y − y′|. In
particular, if y ∈ K, then d2

Γ
(x) = |z|2 and ∇2d2

Γ
= ∇2

z d2
Γ

= 2(d − k) = 2(d − dH) because
dH = dim(K). But if y < K, then (∇2

xd2
Γ
)(x) = (∇2

yd2
K)(y) + ∇2

z |z|
2 > 2(d − k). Hence, one

now has ∇2d2
Γ
≥ 2(d − dH) for all k ∈ {1, . . . , d − 1}.

Thirdly, if dim(K) = d and K , Rd, then Γ = ∂K and the Hausdorff dimension dH of
Γ is d − 1. Then one can argue as in [BEL15, Sections 3.4.2 and 3.4.3] that ∇2d2

Γ
≥ 2.

Specifically, if x ∈ Ω, one can choose coordinates x = (y1, z) with y1 > 0, z ∈ Rd−1 and
such that the near point of (y1, 0) is the origin. Then

(∇2
xd2

Γ)(x) = ∂2
y1

y2
1 + (∇2

z d2
Γ)(x) ≥ 2

since (∇2
z d2

Γ
)(x) ≥ 0 by Proposition 2.1. In fact, the lower bound is attained if K has a

proper face with dimension d − 1. �

At this point we are prepared to establish the weighted Hardy inequalities (1.1) of
Theorem 1.1.

Proof. Let χp = cΩd−p
Γ

(∇d2
Γ
). Further, let c′

Ω
= c′ ◦ dΓ. Then

divχp = 2(c′ΩdΓ/cΩ − p)cΩd−p
Γ
|∇dΓ|

2 + cΩd−p
Γ

(∇2d2
Γ)

≥ 2bpcΩd−p
Γ

with bp = (d − dH + δ ∧ δ′ − p), where we have used |∇dΓ|
2 = 1, the estimate ∇2d2

Γ
≥

2(d − dH) of Corollary 2.2 and the observation that c′
Ω

dΓ/cΩ ≥ δ ∧ δ
′. (The last

estimate follows since sc′(s)/c(s) = (δ + sδ′)/(1 + s).)
Next, for ε > 0, set ϕε = (ϕ2 + ε2)1/2 − ε. Then ϕε ≥ 0 is a regularized

approximation to |ϕ| with the same support as ϕ. But ϕ2 + ε2 = (ϕε + ε)2 ≥ ϕ2
ε + ε2,

so ϕε ≤ |ϕ|. In addition, ∇ϕε = (ϕ/(ϕ2 + ε2)1/2)∇ϕ. Now assume that p ∈ 〈1,∞〉 and
bp > 0. Then

0 < 2bp

∫
Ω

cΩ d−p
Γ
ϕ

p
ε ≤

∫
Ω

(divχp)ϕp
ε

= −2p
∫

Ω

cΩ d−p+1
Γ

(∇dΓ) · (∇ϕε)ϕ
p−1
ε

≤ 2p
(∫

Ω

(cΩ d−p+1
Γ

)p|(∇dΓ) · (∇ϕ)|pψp
)1/p
·

(∫
Ω

ϕ
p
εψ
−q

)1/q
,

where q is the conjugate of p and ψ is a strictly positive function. The last step uses
the Hölder inequality. Choosing ψ = c−1/q

Ω
dp−1

Γ
,

0 < bp

∫
Ω

cΩ d−p
Γ
ϕ

p
ε ≤ p

(∫
Ω

cΩ|(∇dΓ) · (∇ϕ)|p
)1/p
·

(∫
Ω

cΩ d−p
Γ
ϕ

p
ε

)1/q
.
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Dividing by the last factor and raising the inequality to the power p,∫
Ω

cΩ|∇ϕ|
p ≥

∫
Ω

cΩ|(∇dΓ) · (∇ϕ)|p ≥ ap
p

∫
Ω

cΩ d−p
Γ
ϕ

p
ε

for all ϕ ∈ C1
c (Ω). Then the Hardy inequality of the theorem follows in the limit ε→ 0

by dominated convergence.
The proof for p = 1 is similar but simpler. The Hölder inequality is not necessary. �

The existence of a weighted Hardy inequality of the form (1.1) in the situation
where δ = δ′ and with dH < d − 1 follows from [LV16, Theorem 4.2]. This paper also
indicates a number of interesting directions to extend the current results.

Remark 2.3. The foregoing proof only uses some general features of the weight
function c. The estimates (1.1) follow for any strictly positive differentiable c on 〈0,∞〉
with c′(s)s/c(s) ≥ δ ∧ δ′. If one makes the replacement c(s)→ c(s) = sδ(a + bs)δ

′−δ

with a, b > 0, then c′(s)s/c(s) = (aδ + bδ′s)/(a + bs) ≥ δ ∧ δ′ and the theorem remains
valid. Moreover, the constant ap in the Hardy inequality (1.1) is unchanged but now
c(s)/sδ → aδ

′−δ as s→ 0 and c(s)/sδ
′

→ bδ
′−δ as s→∞.

Remark 2.4. The condition d − dH + δ ∧ δ′ − p > 0 in Theorem 1.1 restricts the
result to sets whose boundaries have small codimension. For example, if p = 2 and
δ = 0 = δ′, then it requires dH < d − 2. In fact, Davies’ analysis of sectors in R2

with angle β ∈ 〈π, 2π] (see [Dav95, Section 4]) shows that the optimal Hardy constant
depends on the angle, that is, it is dependent on the more detailed geometry of the
boundary. In particular, there is a critical angle βc ∈ 〈π, 2π〉 such that the optimal
constant in the Hardy inequality is given by a2 = 1/2 if β ∈ 〈π, βc] but a2 < 1/2 if
β ∈ 〈 βc, 2π] and the value decreases as β increases. The Hardy inequality (1.1) is,
however, valid for these sectors if p = 2 and δ ∧ δ′ > 1. The latter condition implies
that δ > 1 and this is sufficient to ensure that the corresponding diffusion process does
not reach the boundary [LR16]. Moreover, if dH is small, the result of Theorem 1.1 is
useful since it allows one to deduce Rellich inequalities on L2(Ω) for a large range of
δ, δ′ ≥ 0 (see [Rob18] or Section 5).

The foregoing arguments may also be used to obtain Hardy inequalities on convex Ω

but there are some significant differences. First, the distance dΓ is a concave function,
which is a help. Secondly, the set G of points in Ω at which dΓ is differentiable can be
small. This is a hindrance since dΓ is differentiable at x if and only if x has a unique
near point (see [BEL15, Section 2.2]). Nevertheless, one can obtain an analogue of
Theorem 1.1 for convex Ω as a corollary of well-known results for the unweighted
Hardy inequality.

Proposition 2.5. Assume that Ω is convex. Again let cΩ = c ◦ dΓ with c(s) =

sδ(1 + s)δ
′−δ, where δ, δ′ ∈ R. If p − 1 − |δ| ∨ |δ′| > 0, then∫

Ω

cΩ|∇ϕ|
p ≥ ap

p

∫
Ω

cΩ d−p
Γ
|ϕ|p
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for all ϕ ∈ C1
c (Ω) with ap = (p − 1 − |δ| ∨ |δ′|)/p. Moreover, if δ ≥ |δ′|, then the constant

((p − 1 − δ)/p)p is optimal.

Proof. First, one has the well-known Hardy inequality

‖∇ϕ‖p ≥ (1 − 1/p)‖d−1
Ω ϕ‖p

for all ϕ ∈ C1
c (Ω) if p > 1 (see [BEL15, Theorem 3.3.4]). Therefore,

(1 − 1/p)‖c1/p
Ω

d−1
Ω ϕ‖p ≤ ‖∇(c1/p

Ω
ϕ)‖p.

Then, however,

‖∇(c1/p
Ω
ϕ)‖p ≤ ‖c

1/p
Ω

(∇ϕ)‖p + (1/p)‖c′Ωc−1
Ω c1/p

Ω
ϕ‖p

≤ ‖c1/p
Ω

(∇ϕ)‖p + ((|δ| ∨ |δ′|)/p)‖d−1
Ω c1/p

Ω
ϕ‖p

since s|c′(s)|/c(s) ≤ |δ| ∨ |δ′| and |∇dΩ| ≤ 1. Combining these estimates gives the Hardy
inequality of the proposition.

The proof of the optimality statement will be indicated in Section 4 as part of the
general discussion of sharp estimates. �

Recent results on the weighted Hardy inequality on convex sets with δ = δ′ ∈ R can
be found in [Avk15a, Avk15b] and references therein.

3. Rellich inequalities

In this section we establish the Rellich inequalities (1.2) of Theorem 1.2. Our
proof is based on an extension of Theorem 4 in the paper of Davies and Hinz [DH98]
(see [BEL15, Theorem 6.3.3]) from the Laplacian ∆ = −∇2 to the weighted operator
H = −div(cΩ∇).

Proposition 3.1. Let Ω be a general domain in Rd and fix p ∈ 〈1,∞〉. Define the
closeable operator H = −

∑d
k=1 ∂kcΩ∂k on D(H) = C∞c (Ω). If there is a χ in the domain

of the Lp-closure H of H such that χ > 0, Hχ > 0 and Hχ1+γ ≥ 0 for some γ > 0, then∫
Ω

|Hχ||ϕ|p ≤ p2p(p + γ(p − 1))−p
∫

Ω

χp|Hχ|−p+1|Hϕ|p (3.1)

for all ϕ ∈ C∞c (Ω).

The proof of Proposition 3.1 is a direct repetition of the proof of [DH98,
Theorem 4]. The latter proof only involves quadratic form arguments, for example,
partial integration and Cauchy–Schwarz estimates, on the form associated with the
Laplacian, and these are unchanged by replacement with the quadratic form of H.
In fact, since the estimates are on C∞c (Ω), it suffices that cΩ is the operator of
multiplication by a locally C1-function. The proposition differs superficially from that
of Davies–Hinz since we define the Laplacian as ∆ = −∇2 instead of ∇2. Similarly,
we have introduced a minus sign in the definition of H. Moreover, the parameter δ in
[DH98] is replaced by 1 + γ and this changes slightly the form of the constant in (3.1).
For brevity we omit further details.
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Proof of Theorem 1.2. Define χ on the open right half line by χ(s) = s−α(1 + s)−α
′+α

with α, α′ ≥ 0. Then set χΩ = χ ◦ dΓ and adopt the notation χ′
Ω

= χ′ ◦ dΓ etc. Our
aim is to derive conditions on α and α′ such that HχΩ > 0 with H (the closure of) the
weighted operator of Theorem 1.2. In fact, one can obtain quite precise lower bounds
on HχΩ. �

Lemma 3.2. Let bα = (d − dH + (δ ∧ δ′))(α ∧ α′) − (α ∨ α′)(α ∨ α′ + 2).
It follows that HχΩ ≥ bαd−2

Γ
cΩχΩ. Hence, if bα > 0, then HχΩ > 0.

Proof. First, one has χ′(s) = −s−1χ(s)(α + α′s)(1 + s)−1. Therefore,

−s−1χ(s)(α ∨ α′) ≤ χ′(s) ≤ −s−1χ(s)(α ∧ α′).

In addition,

χ′′(s) = s−2χ(s)(1 + s)−2(α(α + 1) + 2α(α′ + 1)s + α′(α′ + 1)s2)
≤ s−2χ(s)(α ∨ α′)(α ∨ α′ + 1).

Secondly, one calculates that

HχΩ = −d−1
Γ cΩχ

′
Ω(∇2d2

Γ)/2 − (c′Ωχ
′
Ω − d−1

Γ cΩχ
′
Ω + cΩχ

′′
Ω)|∇dΓ|

2. (3.2)

But |∇dΓ| = 1 by the discussion at the beginning of Section 2 and (∇2d2
Γ
)/2 ≥ d − dH

by Corollary 2.2. Then we use the bounds on χ′ and χ′′ together with the lower bound
c′(s) ≥ (δ ∧ δ′)s−1c(s) to estimate the four terms on the right-hand side of (3.2). The
first two terms give positive contributions but the other terms are negative. One finds
that

HχΩ ≥ ((d − dH) + (δ ∧ δ′))(α ∧ α′)(d−2
Γ cΩχΩ)

− ((α ∨ α′) + (α ∨ α′)(α ∨ α′ + 1))(d−2
Γ cΩχΩ)

= bαd−2
Γ cΩχΩ.

Clearly, HχΩ > 0 if the δ, α etc are such that bα > 0. �

Now, assuming that α and α′ are chosen to ensure that bα > 0, one can bound the
product χp

Ω
|HχΩ|

−p+1 occurring on the right-hand side of (3.1). Explicitly, one obtains

χ
p
Ω
|HχΩ|

−p+1 ≤ b−p+1
α d−σΓ (1 + dΓ)−τ

with σ = α − (2 − δ)(p − 1) and τ = (α′ − α) + (δ′ − δ)(p − 1). Hence, if one chooses
α = αp = (2 − δ)(p − 1) and α′ = α′p = (2 − δ′)(p − 1), one obtains the uniform bound

χ
p
Ω
|HχΩ|

−p+1 ≤ b−p+1
αp

as long as

bαp = (d − dH + (δ ∧ δ′))(αp ∧ α
′
p) − (αp ∨ α

′
p)(αp ∨ α

′
p + 2) > 0.

But this is a condition on p, δ and δ′.
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Lemma 3.3. If (d − dH + p(δ ∧ δ′) − 2p) ≥ 2p|δ − δ′|(2 − δ ∨ δ′)−1, then bαp > 0.

Proof. Substituting the values of αp and α′p in the definition of bα,

bαp = (d − dH + (δ ∧ δ′) − (αp ∨ α
′
p + 2))(αp ∧ α

′
p)

− |αp − α
′
p|((αp ∨ α

′
p) + 2)

≥ (p − 1)((d − dH + p(δ ∧ δ′) − 2p)(2 − δ ∨ δ′) − 2p|δ − δ′|).

Since p > 1, the statement of the lemma follows immediately. �

Note that the condition of the lemma is the condition posited in Theorem 1.2 for
validity of the Rellich inequality.

The next lemma provides the last estimates necessary for the application of
Proposition 3.1 to derive the Rellich inequality.

Lemma 3.4. Let χ̃Ω = d−αp

Γ
(1 + dΓ)−α

′
p+αp . Assume that bαp > 0. Then

χ̃
p
Ω
|Hχ̃Ω|

−p+1 ≤ b−p+1
αp and Hχ̃Ω ≥ bαp (cΩd−1

Γ )p.

Moreover, Hχ̃1+γ
Ω
≥ 0 for all γ ∈ [0, γp], where γp = bαp/(αp ∨ α

′
p)2.

Proof. The first estimate follows from Lemma 3.2 and the choices of αp and α′p as
discussed above. The second estimate follows from another application of Lemma 3.2
by noting that

Hχ̃Ω ≥ bαp d−2
Γ cΩχ̃Ω = bαp d−2

Γ dδΓ(1 + dΓ)δ
′−δd−αp

Γ
(1 + dΓ)−(α′p−αp)

= bαp d−2p
Γ

dδp
Γ

(1 + dΓ)(δ′−δ)p = bαp (cΩd−1
Γ )p,

where the second equality results from substituting the specific values of αp and α′p.
The last statement of the lemma follows by first noting that

χ̃
1+γ
Ω

= d(1+γ)αp

Γ
(1 + dΓ)(1+γ)(−α′p+αp).

Therefore, Hχ̃1+γ
Ω
≥ 0 if b(1+γ)αp ≥ 0 by a third application of Lemma 3.2. But

b(1+γ)αp = (1 + γ)(bαp − γ(αp ∨ α
′
p)2)

by the definition of bα. Therefore, b(1+γ)αp ≥ 0 whenever 0 ≤ γ ≤ γp. �

At this point we have verified the conditions necessary for the application of
Proposition 3.1 to H and χ̃Ω to obtain the Rellich inequalities of Theorem 1.2. We
now evaluate (3.1) with the foregoing estimates. First, we observe that bαp > 0 by
Lemma 3.3 and the assumption of the theorem. Then it follows from the estimates of
Lemma 3.4 that

bαp

∫
Ω

|cΩ d−2
Γ ϕ|p ≤

∫
Ω

|HχΩ||ϕ|
p

≤ p2p(p + γp(p − 1))−p
∫

Ω

χ
p
Ω
|Hχ|−p+1|Hϕ|p

≤ p2p(p + γp(p − 1))−pb−p+1
αp

∫
Ω

|Hϕ|p.
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Thus, by rearrangement one obtains the Rellich inequality (1.2) with

cp = (p + γp(p − 1))bαp p−2.

It follows from bαp , γp > 0 that cp > 0. We next argue that cp ≤ Cp.
First,

bα = (d − dH + (δ ∧ δ′) − (α ∨ α′ + 2))(α ∧ α′) − aα

with

aα = (α ∨ α′)(α ∨ α′ + 2) − (α ∧ α′)(α ∨ α′ + 2)
= |α − α′|((α ∨ α′) + 2) ≥ 0.

Now set
b̃α = (d − dH + (δ ∧ δ′) − (α ∨ α′ + 2)).

Then
bα = (α ∧ α′)b̃α − aα ≤ (α ∧ α′)b̃α.

Hence, bαp ≤ (αp ∧ α
′
p)b̃αp with equality if and only if αp = α′p or, equivalently, δ = δ′.

Moreover, γp = bαp/(αp ∨ α
′
p)2 ≤ γ̃p, where γ̃p = b̃αp/(αp ∨ α

′
p), with equality if and

only if δ = δ′. Now

cp ≤ (p + γ̃p(p − 1))(αp ∧ α
′
p)b̃αp p−2

≤ ((αp ∨ α
′
p)p + b̃αp (p − 1))b̃αp p−2.

But

b̃αp = (d − dH + (δ ∧ δ′) − ((2 − δ ∧ δ′)(p − 1) + 2)
= (d − dH + p(δ ∧ δ′) − 2p)

and

(αp ∨ α
′
p)p + b̃αp (p − 1) = (2 − (δ ∧ δ′))p(p − 1) + b̃αp (p − 1)

= (p − 1)(d − dH).

Combining these estimates, one has cp ≤ Cp, where Cp is defined in Theorem 1.2.
We have avoided calculating cp explicitly since the resulting expression is

complicated and is not necessarily optimal. It is, however, straightforward to identify it
from the value of bαp given prior to Lemma 3.4 and the definition of γp. Nevertheless,
cp does have some simple properties as a function of the degeneracy parameters δ
and δ′.

Set cp = cp(δ, δ′) to denote the dependence on δ and δ′. Then cp is a positive
symmetric function and δ ∈ [0, 2〉 7→ cp(δ, δ) is strictly increasing. Moreover, if
cp(δ0, 0) ≥ 0, then δ ∈ [0, δ0] 7→ cp(δ, 0) is strictly decreasing. In particular,

cp(0, 0) ≥ cp(δ, 0) ≥ cp(δ0, 0)

for all δ ∈ [0, δ0].
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These inequalities follow because

cp(δ, δ) = (p − 1)(d − dH)(d − dH + pδ − 2p)/p2

and

cp(δ, 0) = cp(0, δ) = (p − 1)(d − dH)((d − dH)(1 − δ/2) − 2p)(1 − δ/2)/p2,

which are special cases of the general formula for cp.

4. Optimal constants
In this section we consider the problem of deriving optimal constants in the Hardy

and Rellich inequalities of Theorems 1.1 and 1.2. First, we discuss whether the
constant ap

p in Theorem 1.1 is the largest possible for the Hardy inequality. The
maximal constant µp(Ω) for which (1.1) is valid is given by µp(Ω) = ap(Ω)p, where

ap(Ω) = inf{‖c1/p
Ω

(∇ϕ)‖p/‖c
1/p
Ω

d−1
Γ ϕ‖p : ϕ ∈ C1

c (Ω)}. (4.1)

Clearly, ap(Ω) ≥ ap by Theorem 1.1. Therefore, optimality follows if ap(Ω) ≤ ap.
Since cΩ has a different asymptotic behaviour at the boundary Γ to that at infinity, this
variational problem has two distinct elements, a local and a global. In the classical
case K = {0} a local estimate of the infimum in (4.1) can be made with a sequence
of functions ϕα(x) = |x|−αξ(|x|), where ξ has support in a small neighbourhood of the
origin. The leading term gives a bound proportional to αp if α < (d + δ − p)/p (see,
for example, [BEL15, Ch. I]). Then, by a suitable choice of localization functions ξ
and a limiting argument, one concludes that ap(Ω) ≤ (d + δ − p)/p. The estimate at
infinity is similar. One now chooses ξ with support in the complement of a large ball
centred at the origin and by another approximation and limiting argument one obtains
the upper bound ap(Ω) ≤ (d + δ′ − p)/p. Then ap(Ω) ≤ ap by taking the minimum of
these bounds.

We begin the general discussion by considering comparable local estimates by the
methods of Barbatis et al. [BFT04] as developed in Section 5 of Ward’s thesis [War14].
The following theorem covers the cases with dim(K) < d.

Theorem 4.1. Adopt the assumptions of Theorem 1.1. Further, assume that dim(K) <
d. Then the optimal constant µp(Ω) in (1.1) satisfies

µp(Ω) ≤ ((d − dH + δ − p)/p)p.

Moreover, if δ ≤ δ′, then µp(Ω) = ((d − dH + δ − p)/p)p.

Proof. The theorem follows by the proof of [War14, Theorem 5.2.1] but with some
modification to take into account the weighting factor cΩ. We outline a variation of
Ward’s argument which is subsequently extended to give a local bound on the optimal
constant in the Rellich inequality (1.2). First, we give the proof for the special case
δ = δ′ or, equivalently, c(s) = sδ. Since the argument only involves functions with
support in an arbitrarily small ball centred at a point of the boundary, the result can
then be extended to the general weighting factor cΩ.

The starting point of the proof is a modification of Ward’s Lemma 5.1.1.
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Lemma 4.2. Assume that c(s) = sδ with δ ≥ 0. Then

ap(Ω) ≤ |(β + δ − p)/p| + ‖d1−β/p
Γ

(∇ϕ)‖p/‖d
−β/p
Γ

ϕ‖p (4.2)

for all ϕ ∈ W1,p
0 (Ω), β ≥ 0 and p > 1.

Proof. The proof follows that of Ward with ϕ in (4.1) replaced by ψϕ, where ψ =

d−(β+δ−p)/p
Γ

. Then one uses the Leibniz rule and the triangle inequality to deduce that

‖dδ/p
Γ

(∇(ψϕ))‖p ≤ ‖d
δ/p
Γ

(∇ψ)ϕ‖p + ‖dδ/p
Γ
ψ(∇ϕ)‖p

= |(β + δ − p)/p| ‖d−β/p
Γ

ϕ‖p + ‖d1−β/p
Γ

(∇ϕ)‖p,

where we have used the explicit form of ψ. Similarly, ‖d−1+δ/p
Γ

ψϕ‖p = ‖d−β/p
Γ

ϕ‖p. The
statement of the lemma follows immediately. �

The estimate for µp(Ω) given in Theorem 4.1 now follows by Ward’s reasoning
in the proof of his Theorem 5.2.1. The idea is to construct a sequence of ϕn such
that the numerator in the last term in (4.2) is bounded uniformly in n if β = d − k,
with k = dim(∂K) = dim(Γ) = dH , but the denominator diverges as n→∞. This is
particularly easy in the current context since we are assuming that k = dim(K) ≤ d − 1.

First, let Rd = Rk ×Rd−k, where Rk is identified with the affine hull of K. Therefore,
if one sets x = (y, z) ∈ Ω with y ∈ Rk and z ∈ Rd−k, then dΩ(x) = (dK(y)2 + |z|2)1/2,
where dK(y) = infy′∈K |y − y′|. Since dK(y) = 0 if y ∈ K, it follows that dΓ(y, z) = |z| if
y ∈ K. Secondly, define ϕ ∈ C∞c (Ω) by setting ϕ(y, z) = η(y)χ(z), where η ∈ C∞c (K) and
χ ∈ C∞c (Rd−k\{0}). Further, assume that χ is a radial function. Then, with β = d − k,∫

Ω

d−β
Γ
|ϕ|p =

∫
K

dy|η(y)|p
∫

Rd−k
dz|z|−(d−k)| χ(z)|p

= a1

∫ ∞

0
dr r−1| χ(r)|p. (4.3)

But ∫
Ω

d−β+p
Γ
|∇ϕ|p =

∫
K

dy
∫

Rd−k
dz|z|−(d−k−p)(|(∇η)(y)|| χ(z)| + |η(y)||(∇χ)(z)|)p

≤ a2

∫ ∞

0
dr rp−1| χ(r)|p + a3

∫ ∞

0
dr rp−1| χ′(r)|p (4.4)

with a1, a2, a3 > 0.
Next, consider the sequence of functions ξn defined on 〈0,∞〉 by ξn(r) = 0 if r ≤ n−1,

ξn(r) = log rn/log n if n−1 ≤ r ≤ 1 and ξn = 1 if r ≥ 1. Then 0 ≤ ξn ≤ 1 and the ξn

converge monotonically upward to the identity function. Further, let ζ be a C∞-
function with ζ(r) = 1 if r ≤ 1, ζ(r) = 0 if r ≥ 2 and 0 ≤ ζ ≤ 1. Then set χn = ξnζ.

It follows immediately that

lim
n→∞

∫ ∞

0
dr r−1| χn(r)|p =∞.
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Moreover, ∫ ∞

0
dr rp−1| χn(r)|p ≤

∫ 2

0
dr rp−1|ξn(r)|p ≤

∫ 2

0
dr rp−1 ≤ 2p p−1

for all n > 1. But suppχn ⊆ [0, 2], χ′n = ξ′n on 〈0, 1] and χ′n = ζ′ on [1, 2]. Therefore,∫ ∞

0
dr rp−1| χ′n(r)|p =

∫ 1

0
dr rp−1|ξ′n(r)|p +

∫ 2

1
dr rp−1|ζ′(r)|p

= (log n)−(p−1) + a,

where a > 0 is the contribution of the second integral. Since p > 1, the bound is
uniform for all n > 1. Hence, if one sets ϕn = ηχn, one deduces from (4.3) and (4.4),
with χ replaced by χn, that

lim sup
n→∞

∫
Ω

d−β+p
Γ
|∇ϕn|

p
/∫

Ω

d−β
Γ
|ϕn|

p = 0.

Therefore, replacing ϕ with ϕn in (4.2) and setting β = d − k,

ap(Ω) ≤ (d − k + δ − p)/p = ap.

This completes the proof of the upper bound for c(s) = sδ, that is, for δ = δ′.
Next, it follows by construction that

suppϕn ⊆ {(y, z) : y ∈ supp η, |z| ≤ 2}.

The choice of the value 2 is, however, arbitrary and by rescaling the ξn it can
be replaced by any r > 0 without materially affecting the argument. Then, since
|z|δ(1 + r)−|δ−δ

′ | ≤ c(z) ≤ |z|δ(1 + r)|δ−δ
′ | for |z| < r, the case of general cΩ is reduced

to the special case δ = δ′.
Finally, if δ ≤ δ′, it follows from Theorem 1.1 that µp(Ω) ≥ ap

p. Consequently, one
must have equality. �

Remark 4.3. The local estimates of Theorem 4.1 remain valid in the case that
dim(K) = d but K , Rd. The proof is, however, rather different. It depends on the
Ahlfors regularity of the boundary Γ and specifically on the estimates established in
[LR16, Section 2]. The same argument also applies if Ω is convex and δ ≥ |δ′| (see
Proposition 2.5).

Next, we investigate the derivation of the bounds µp(Ω) ≤ ((d − dH + δ′ − p)/p)p in
the setting of Theorem 4.1. These bounds require information on the global properties
of K.

The dimension k of the convex set K, that is, the dimension of the affine hull AK of
K, is essentially a local concept. It carries little information about the global character
of the set. For example, in two dimensions K could be a disc, an infinitely extended
strip or a quadrant. But, viewed from afar, these sets would appear to have dimensions
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zero, one and two, respectively. This aspect of the sets is captured by the ‘dimension
at infinity’ k∞, which is defined by

k∞ = lim inf
r→∞

(log |K ∩ Br |/log r),

where Br = {y ∈ Rk : |y| < r} and |S | indicates the k-dimensional Lebesgue measure of
the set S . The parameter k∞ of the convex set is integer valued with 0 ≤ k∞ ≤ k. In the
two-dimensional examples just cited it takes the values 0, 1 and 2, as expected. The
equality k∞ = k of the global and local dimensions will be the key property in deriving
the upper bounds on µp(Ω). It is clearly valid if K is affine but this is not necessary.

Lemma 4.4. Assume that k∞ = k. Then

inf
η∈C∞c (K)

∫
K
|∇η|p

/∫
K
|η|p = 0.

Proof. First, let ξ be a C∞-function with 0 ≤ ξ ≤ 1 such that supp ξ ⊆ K and ξ(y) = 1
if dK(y) ≥ 1, with dK the Euclidean distance to the boundary ∂K. Secondly, let ζn be
a sequence of C∞-functions with 0 ≤ ζn ≤ 1, ζn(y) if y ∈ Br and ζn = 0 if y ∈ Bc

r+1. We
may assume that supn |∇ζn| < ∞. Now set ηn = ζnξ. Then ηn ∈ C∞c (K) and supp|∇ηn|

has measure at most brk−1 for all r ≥ 1 with b > 0 independent of r. But ηn = 1 on a
set of measure crk with c > 0. Therefore,∫

K
|∇ηn|

p
/∫

K
|ηn|

p < ar−1

with a > 0 independent of r. The lemma follows immediately. �

The following theorem establishes that k∞ = k is a sufficient condition for the
expected global bounds.

Theorem 4.5. Let K be a closed convex subset of Rd with k = dim(K) ∈ {1, . . . , d − 1}
and with k∞ = k. Then the optimal constant µp(Ω) in the Hardy inequality (1.1) on
Ω = Rd\K is given by µp(Ω) = ((d − k + δ ∧ δ′ − p)/p)p.

Proof. First, µp(Ω) ≥ ap
p with ap = (d − k + δ ∧ δ′ − p)/p by Theorem 1.1. Therefore,

it suffices to establish a matching upper bound. But the local estimates of Theorem 4.1
give the bound µp(Ω) ≤ ((d − k + δ − p)/p)p. Thus, it remains to prove that µp(Ω) ≤
((d − k + δ′ − p)/p)p, that is, to prove that ap(Ω) ≤ (d − k + δ′ − p)/p.

Secondly, we again consider the decomposition Rd = Rk × Rd−k with K ⊆ Rk and
Rk = AK . Then, since dΓ(y, z) = |z| if y ∈ K, the weighted Hardy inequality (1.1) implies
that

ap(Ω) ≤
(
∫

Rk dy
∫

Rd−k dz c(|z|)|(∇ϕ)(y, z)|p)1/p

(
∫

Rk dy
∫

Rd−k dz c(|z|)|z|−p|ϕ(y, z)|p)1/p

for all ϕ ∈ C1
c (Ω) with supp ϕ ⊆ K × Rd−k. Again let ϕ be a product ϕ(y, z) = η(y)χ(z)

with η ∈ C∞c (K) but χ ∈ C∞c (OR), where OR = {z ∈ Rd−k : |z| > R}. Then, by the Leibniz
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rule and the triangle inequality,

ap(Ω) ≤

(∫
OR

dz c(|z|)|(∇χ)(z)|p
∫

K dy|η(y)|p
)1/p(∫

OR
dz c(|z|)|z|−p| χ(z)|p

∫
K dy|η(y)|p

)1/p

+

(∫
OR

dz c(|z|)| χ(z)|p
∫

K dy|(∇η)(y)|p
)1/p(∫

OR
dz c(|z|)|z|−p| χ(z)|p

∫
K dy|η(y)|p

)1/p .

Therefore,

ap(Ω) ≤

(∫
OR

dz c(|z|)|(∇χ)(z)|p
)1/p(∫

OR
dz c(|z|)|z|−p| χ(z)|p

)1/p

+

(∫
OR

dz c(|z|)| χ(z)|p
)1/p(∫

OR
dz c(|z|)|z|−p| χ(z)|p

)1/p

(∫
K dy|(∇η)(y)|p

)1/p(∫
K dy|η(y)|p

)1/p . (4.5)

Then, taking the infimum over η ∈ C∞c (K), one deduces from Lemma 4.4 that

ap(Ω) ≤

(∫
OR

dz c(|z|)|(∇χ)(z)|p
)1/p(∫

OR
dz c(|z|)|z|−p| χ(z)|p

)1/p (4.6)

for all χ ∈ C∞c (OR) and all large R.
Finally, the infimum of the right-hand side of (4.6) over χ followed by the limit R→

∞ gives ap(Ω) ≤ (d − k + δ′ − p)/p by the global estimates for the Hardy inequality
on Rd−k\{0}. The proof of the theorem now follows from this estimate combined with
the observations in the first paragraph of the proof. �

Theorem 4.5 applies to the special case that K is an affine set, since the assumption
k∞ = k is automatically fulfilled. The corresponding statement is an extension of a
result of [SSW03]. Moreover, if K is a general closed convex set and AK its affine hull,
then the theorem identifies the constant ap

p of Theorem 1.1 as the optimal constant
µp(Rd\AK) of the Hardy inequality (1.1) on Lp(Rd\AK). Therefore, one has the
general conclusion that µp(Rd\AK) ≤ µp(Rd\K) for convex sets with dim(K) = k ∈
{1, . . . , d − 1}. Moreover, µp(Rd\AK) = µp(Rd\K) if δ ≤ δ′ because the proof only
requires a local estimate.

Next, we address the question of calculating the optimal constant in the Rellich
inequality (1.2), that is, the value of νp(Ω) = bp(Ω)p, where

bp(Ω) = inf{‖Hϕ‖p/‖cΩd−2
Γ ϕ‖p : ϕ ∈ C2

c (Ω)}. (4.7)

Theorem 1.2 gives the lower bound bp(Ω) ≥ cp but this is rather complicated and not
likely to be an efficient bound in general. Therefore, we consider the special case δ = δ′

with weighting factor dδ
Γ
. Then Theorem 1.2 gives the simpler bound bp(Ω) ≥ Cp with

Cp = (p − 1)(d − dH)(d − dH + pδ − 2p)p−2. Now we establish that Cp is the optimal
constant for δ = δ′ and dim K < d. First, we consider the degenerate case K = {0}.
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Proposition 4.6. If K = {0} and δ = δ′ ∈ [0, 2〉, then the optimal constant in the Rellich
inequality (1.2) is given by

νp(Ω) = Cp
p = ((p − 1) d(d + pδ − 2p)p−2)p

for all p > 1 for which d + pδ − 2p > 0.

Proof. It follows from Theorem 1.2, with δ = δ′, that the lower bound νp(Ω) ≥ Cp
p is

valid. Therefore, it suffices to establish a matching upper bound. This is well known if
δ = 0 but the proof is almost identical for δ , 0. First, since K = {0}, one has dΓ(x) = |x|.
Then, as δ = δ′, one can deduce an upper bound from (4.7) by a local estimate (see, for
example, [BEL15, Corollary 6.3.5] for the case of the Laplacian). This is achieved by
the elementary procedure used to estimate the upper bound on the Rellich constant in
the one-dimensional case. One estimates with radial functions ϕ(x) = |x|−αχ(|x|), where
α > 0 and χ is a C2-function with compact support near the origin. The integrability
of |Hϕ|p at the origin imposes the restriction d + pδ − 2p > 0. Therefore, one chooses
α = (d + pδ − 2p + ε)/p, with ε > 0, and estimates as in the one-dimensional case
(see [BEL15, Section 1.2]). This leads to the upper bound νp(Ω) ≤ Cp

p. We omit the
details. �

Remark 4.7. If K = {0} and δ , δ′, then one can establish the upper bound νp(Ω) ≤
((p − 1) d(d + p(δ ∧ δ′) − 2p)p−2)p. This follows by a local estimate, which gives
the bound ((p − 1) d(d + pδ − 2p)p−2)p, followed by a similar estimate at ‘infinity’
giving the bound ((p − 1) d(d + pδ′ − 2p)p−2)p. Then one takes the minimum of
the two bounds. Unfortunately Theorem 1.2 only gives a matching lower bound
if δ = δ′. If, for example, δ′ = 0, then the upper bound is equal to cp(0, 0)p =

((p − 1) d(d − 2p)p−2)p, where we have used the notation introduced at the end of
Section 3. But Theorem 1.2 gives the lower bound cp(δ, 0)p under the assumption that
cp(δ, 0) > 0. It follows, however, that cp(δ, 0) < cp(0, 0) if δ > 0 by the discussion in
Section 3.

Now we establish a similar conclusion for dim(K) ∈ {1, . . . , d − 1}. The following
result corresponds to the Rellich analogue of Theorems 4.1 and 4.5.

Theorem 4.8. Let K be a closed convex subset of Rd with k = dim(K) ∈ {1, . . . , d − 1}.
Then the optimal constant in the Rellich inequality (1.2) satisfies the upper bound

νp(Ω) ≤ ((p − 1)(d − k)(d − k + pδ − 2p)p−2)p.

If, in addition, k∞ = k, then

νp(Ω) ≤ ((p − 1)(d − k)(d − k + p(δ ∧ δ′) − 2p)p−2)p

and, for δ = δ′, one has equality.

Proof. The proof follows the earlier two-step process of obtaining a local bound,
dependent on δ, followed by a global bound, dependent on δ′. The local bound is
independent of the assumption k∞ = k.
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Step 1. The first statement of the theorem is established by a generalization of the local
estimates used to prove Theorem 4.1. Since all the estimates in this first step are local,
we again assume initially that c(s) = sδ.

Following the earlier proof, we choose coordinates x = (y, z) ∈ Ω with y ∈ Rk and
z ∈ Rd−k, where Rk is identified with the affine hull of K. Then dΓ(y, z) = |z| if
y ∈ K. Again we define ϕ ∈ C∞c (Ω) by setting ϕ(y, z) = η(y)χ(z), where η ∈ C∞c (K)
and χ ∈ C∞c (Rd−k\{0}) is a radial function. Next, for α ≥ 0, we set ϕα = d−α

Γ
ϕ = ηχα,

where χα(z) = |z|−αχ(z). Thus, ϕα = d−α0 ϕ, where d0 is the operator of multiplication
by |z|. Then

Hϕα = (Hd−α0 )ϕ + d−α0 (Hϕ) + 2dδ0(∇d−α0 ) · (∇ϕ).

Therefore, one calculates that

|Hϕα| ≤ α(d − k + δ − α − 2) d−α−2+δ
0 |ϕ| + Rα

if d − k + δ − 2 > α, where

Rα = d−α0 |Hϕ| + 2αd−α−1+δ
0 |∇ϕ|.

Hence, it follows as in the proof of Lemma 4.2 that bp(Ω), defined by (4.7), satisfies

bp(Ω) ≤ α(d − k + δ − α − 2) + ‖Rα‖p/‖d
(δ−2)
0 ϕα‖p. (4.8)

Now we choose α = (d − k + pδ − 2p)/p and assume that α > 0. Then the constant in
the first term on the right is ((p − 1)(d − k)(d − k + pδ − 2p)p−2)p. So, it remains to
prove that the second term, with the specific choice of α, can be made insignificant by
a suitable choice of a sequence of χ. First,∫

Ω

dp(δ−2)
0 |ϕα|

p =

∫
K

dy|η(y)|p
∫

Rd−k
dz|z|−p(α−δ+2)| χ(z)|p

= a1

∫ ∞

0
dr r−1| χ(r)|p (4.9)

with a1 > 0. Secondly,

|Rα|
p ≤ a(d−pα

0 |Hϕ|p + d−p(α−δ+1)
0 |∇ϕ|p)

≤ a′(d−p(α−δ)
0 |∆χ|p|η|p + d−p(α−δ+1)

0 (|∇χ|p|η|p + | χ|p|∇η|p))

with a, a′ > 0. Therefore, one obtains a bound∫
Ω

|Rα|
p ≤ a2

∫ ∞

0
dr rp−1| χ(r)|p + a3

∫ ∞

0
dr rp−1| χ′(r)|p

+ a4

∫ ∞

0
dr r2p−1| χ′′(r)|p (4.10)

with a2, a3, a4 > 0. This is very similar to the bounds occurring in the proof of
Theorem 4.1 with the exception of the last term, which depends on χ′′. If this term
were absent, one could then replace χ by the sequence of functions χn used in the proof

https://doi.org/10.1017/S1446788718000356 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000356


[18] Hardy and Rellich inequalities on the complement of convex sets 115

of the earlier proposition to complete the argument that bp(Ω) ≤ (p − 1)(d − k)(d − k +

pδ − 2p)p−2. But the extra term complicates things. In fact, the χn used earlier are
not even twice differentiable. Therefore, it is necessary to make a more sophisticated
choice. We now use an argument given in [RS10, Section 4].

Let χn be the sequence of functions on 〈0,∞〉 used in the proof of Theorem 4.1. The
derivatives χ′n are discontinuous at n−1 and at 1. The functions ξn = χ2

n have similar
characteristics to the χn except that their derivatives ξ′n are only discontinuous at 1.
Therefore, we now consider the ξn and modify the derivative ξ′n by the addition of a
linear function to remove the discontinuity. The modifications ηn of the derivatives are
defined by ηn(s) = 0 if s ≤ n−1 or s ≥ 1 and

ηn(s) = ξ′n(s) − ξ′n(1)(s − n−1)/(1 − n−1)

if s ∈ [n−1,1]. Now ηn is continuous and we set ζn(s) =
∫ s

0 ηn for s ≤ 1 and ζn(s) = ζn(1)
if s ≥ 1. The resulting function ζn is twice differentiable. Finally, setting ρn = ζn/ζn(1),
one verifies that 0 ≤ ρn ≤ 1, ρn(s) = 0 if s ≤ n−1 and ρn(s) = 1 if s ≥ 1. Moreover,
limn→∞ ρn(s) = 1 for all s > 0. Finally, set σn = ρnζ, where ζ is the cutoff function
used in the proof of Theorem 4.1. Now we consider the estimates (4.9) and (4.10)
with χ replaced by the sequence σn.

First, sinceσn→ 1 on 〈0,1] as n→∞, it follows that
∫ ∞

0 dr r−1|σn(r)|p→∞ as n→
∞ but

∫ ∞
0 dr rp−1|σn(r)|p is uniformly bounded in n. Moreover, σ′n = ζn(1)−1ηnζ + ζ′

and it follows by the earlier calculation that
∫ ∞

0 dr rp−1|σ′n(r)|p is also uniformly
bounded in n. Therefore, it remains to consider the term in (4.10) dependent on σ′′n .
But σ′′n = ζn(1)−1(η′nζ + ζ′) + ζ′′. Therefore, it follows from the definition of ηn and
the cutoff ζ that ∫ ∞

0
dr r2p−1|σ′′n |

p ≤ a + b
∫ 1

n−1
dr r2p−1|ξ′′n (r)|p

with a, b > 0 independent of n. Now, on [n−1, 1],

ξ′′n (r) = 2(χ′n(r))2 + 2χn(r)χ′′n (r) = 2r−2(1 − log rn)/(log n)2.

Therefore,∫ 1

n−1
dr r2p−1|ξ′′n (r)|p = 2p(log n)−2p

∫ 1

n−1
dr r−1|1 − log rn|p ≤ 2p−1(log n)−(p−1)

and this gives a bound uniform for n > 1.
One now deduces that if ϕα in the bound (4.8) is replaced by ϕα,n = d−α0 ησn, then

in the limit n→ ∞ the second term tends to zero since the numerator is bounded
uniformly for n > 1 and the denominator converges to infinity. Therefore, one
concludes that

bp(Ω) ≤ (p − 1)(d − k)(d − k + pδ − 2p)p−2,

that is, one obtains the first bound of the theorem. This was, however, obtained with the
assumption c(s) = sδ. But again by rescaling one can arrange that the σn are supported
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in a small interval [0, r] and this allows one to reduce the general case to the special
case. There is one extra small complication which did not occur in the Hardy case and
that arises since the weighting factor cΩ is positioned centrally in the operator H and
is not a direct weighting of the measure. But this causes no difficulty. For example, if
ϕ has support within distance r of the boundary, then

|(Hd−α0 )ϕ| ≤ cΩ|∆d−α0 ||ϕ| + |c
′
Ω||(∇d0) · (∇d−α0 )||ϕ|

≤ (dδ0|∆d−α0 | + dδ−1
0 |∇d−α0 |)|ϕ|(1 + r|δ−δ

′ |).

Making these modifications, one obtains the first bound of the theorem modulo an
additional factor (1 + r|δ−δ

′ |) but, since this is valid uniformly for all small r > 0, one
can then take the limit r→ 0.

Step 2. Next, we assume that k∞ = k and establish the second bound in Theorem 4.8.
The proof is similar to that of Theorem 4.5.

We continue to use the factorization Rd = Rk × Rd−k and to set x = (y, z) ∈ Ω with
y ∈ Rk and z ∈ Rd−k. Then dΓ(y, z) = |z| if y ∈ K and the Rellich inequality (1.2) on
Lp(Ω) takes the form∫

K
dy

∫
Rd−k

dz|(Hϕ)(y, z)|p ≥ cp
p

∫
K

dy
∫

Rd−k
dz c(|z|)p|z|−2p|ϕ(y, z)|p

for all ϕ ∈ C2
c (K × Rd−k). Therefore,

bp(Ω) ≤

(∫
K dy

∫
Rd−k dz|(Hϕ)(y, z)|p

)1/p(∫
K dy

∫
Rd−k dz c(|z|)p|z|−2p|ϕ(y, z)|p

)1/p

for all ϕ ∈ C2
c (K × Rd−k).

Again we set ϕ = ηχ with χ ∈ C∞c (OR), where OR = {z ∈ Rd−k : |z| > R}, and η ∈
C∞c (K). But the action of H on the product χη takes the Grushin form

(Hϕ)(y, z) = −

k∑
j=1

c(|z|)χ(z)(∂2
jη)(y) −

d∑
j=k+1

(∂ jc(|z|)∂ jχ)(z)η(y)

= c(|z|)χ(z)(∆η)(y) + (Hχ)(z)η(y),

where the second line is a slight abuse of notation. This identity replaces the Leibniz
rule used in the proof of Theorem 4.5.

Then, arguing as in the former proof, one obtains the estimates

bp(Ω) ≤

(∫
OR

dz|(Hχ)(z)|p
)1/p(∫

OR
dz c(|z|)p|z|−2p| χ(z)|p

)1/p

+

(∫
OR

dz c(|z|)p| χ(z)|p
)1/p(∫

OR
dz c(|z|)p|z|−2p| χ(z)|p

)1/p

(∫
K dy|(∆η)(y)|p

)1/p(∫
K dy|η(y)|p

)1/p
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as a replacement for (4.5). But, since k∞ = k, the infimum over η of the second term
on the right-hand side is zero. This is no longer a consequence of Lemma 4.4 but it
follows by identical reasoning. Hence,

bp(Ω) ≤ ‖Hχ‖p/‖cd−2χ‖p

for all χ ∈ C∞c (OR). Thus, the problem of estimating νp(Ω) is reduced to a ‘large-
distance’ estimate on the Rellich constant νp(Rd−k\{0}). This follows from the standard
argument sketched in the proof of Proposition 4.6. One obtains the bound

νp(Ω) ≤ ((p − 1)(d − k)(d − k + pδ′ − 2p)p−2)p.

The second statement of the theorem then follows by minimizing this bound and the
local bound obtained in Step 1 of the proof.

The proof of Theorem 4.8 is completed by noting that if δ = δ′, the upper bound
on νp(Ω) coincides with the lower bound given by Theorem 1.2. Therefore, one has
equality between νp(Ω) and the bound. �

5. Conclusion

We conclude with three loosely related remarks on the weighted Rellich
inequalities.

First, the inequality (1.2) for the ‘weighted operator’ H = −div(cΩ∇) was
established by an extension of a result of Davies–Hinz [DH98, Theorem 4] from the
Laplacian to the operator H. One can, however, also derive a ‘weighted measure’
inequality similar to (1.2) by applying the Davies–Hinz theorem to the Laplacian
but with the Lebesgue measure weighted by cp

Ω
. Specifically, one calculates as

in Section 3 setting H = ∆ in (3.1) but choosing αp = (2 − δ)(p − 1) − δ and α′p =

(2 − δ′)(p − 1) − δ. This gives a weighted measure Rellich inequality for a slightly
different range of p. One deduces, for example, that if δ = δ′ ∈ [0, 2〉, then, for
p ∈ 〈2(2 − δ)−1, (d − dH)(2 − δ)−1〉, there is a Bp > 0 such that∫

Ω

|dδΓ∆ϕ|p ≥ Bp

∫
Ω

|d−2+δ
Γ ϕ|p (5.1)

for all ϕ ∈ C2
c (Ω) (see [DH98, Section 4]). Note that the weighted operator inequality

(1.2), with δ = δ′ ∈ [0, 2〉, is valid for all p ∈ 〈1, (d − dH)(2 − δ)−1〉. It is not clear
whether (5.1) extends to all p close to one except in the case K = {0}. The latter case
is thoroughly understood [MSS15].

Secondly, Theorem 1.2 establishes that the Rellich inequality is valid with a
constant cp ≤ Cp with equality if δ = δ′ ∈ [0, 2〉. But the arguments of [Rob18]
establish a more general result on L2(Ω).

Proposition 5.1. Adopt the assumptions of Theorem 1.2 but with p = 2 and δ, δ′ ≥ 0
satisfying δ + δ′ < 4. It follows that the Rellich inequality (1.2) is valid with a constant
c2 = C2 = (d − dH)(d − dH + 2(δ ∧ δ′) − 4)/4 whenever C2 > 0.
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Proof. The proposition is essentially a corollary of [Rob18, Theorem 1.2].
First, the Hardy inequality (1.1) of Theorem 1.1 on L2(Ω) can be expressed as∫

Ω

cΩ|∇ϕ|
2 ≥

∫
Ω

|ηϕ|2

with η = a2c1/2
Ω

d−1
Γ

, where a2 = (d − dH + (δ ∧ δ′) − 2)/2 and δ, δ′ ≥ 0. Secondly,

cΩ|∇η|
2 = a2

2c2
Ωd−4

Γ |1 − c′ΩdΓ/2cΩ| ≤ (ν/a2
2)η4,

where ν = sup{|1 − t/2|2 : δ ∧ δ′ ≤ t ≤ δ ∨ δ′}. In particular, ν = (1 − (δ ∧ δ′)/2)2 if
δ + δ′ < 4. Robinson [Rob18, Theorem 1.2] asserts, however, that if ν/a2

2 < 1, then the
Rellich inequality (1.2) is satisfied with constant ν2(Ω) = a4

2(1 − ν/a2
2)2 = (a2

2 − ν)
2.

But the condition ν < a2
2 is equivalent to d − dH + 2(δ ∧ δ′) − 4 > 0 or to C2 > 0. Then

one calculates straightforwardly that ν2(Ω) = C2
2. �

In this proof the convexity of K is necessary for the existence of the Hardy
inequality (1.1) but the remaining arguments are independent of this assumption.
Moreover, the Rellich inequality (1.2) extends to a much larger class ϕ ∈ D(H) by
our final remark.

The L2-Rellich inequalities established in [Rob18] are much stronger than the
corresponding L2-statement of Theorem 1.2. If p = 2, the Hardy inequality (1.2)
gives a lower bound on the quadratic form h(ϕ) =

∫
Ω

cΩ|∇ϕ|
2 for all ϕ ∈ C1

c (Ω) and
this bound extends to the closure h. The latter is, however, a local Dirichlet form
and it determines in a canonical manner a submarkovian operator HF , the Friedrichs’
extension of H = −div(cΩ∇) defined on C2

c (Ω). Therefore, the L2-Hardy inequality of
Theorem 1.1 can be rephrased as

HF ≥ a2
2cΩd−2

Ω ,

where the inequality is in the sense of ordering of positive self-adjoint operators.
Theorem 1.2 of [Rob18] then establishes the Rellich inequality in the operator form

H2
F ≥ c2

2c2
Ωd−4

Ω .

In comparison, the Rellich inequality (1.2), after closure, gives the operator statement

H∗H ≥ c2
2c2

Ωd−4
Ω .

Since HF ⊇ H, it follows that (HF)2 ≤ H∗H with equality if and only if H is essentially
self-adjoint, that is, if and only if H∗ = H = HF . It would be interesting to have a better
understanding of the relationships between self-adjointness and validity of the Rellich
inequality.
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