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Kinetic ballooning modes in magnetically confined toroidal plasmas are investigated
putting emphasis on specific stellarator features. In particular, we propose a Mercier
criterion which is purposely designed to allow for direct comparison with local flux-
tube gyrokinetics simulations. We investigate the influence on the marginal frequency
of the mode of a magnetic curvature which is inhomogeneous on the magnetic flux
surface due to the fieldline-label dependence. This is a typical (surface) global effect
present in non-axisymmetry. Finally, we propose an artificial equilibrium model that
explicitly retains the fieldline-label dependence in the magnetic drift, and analyse the
stability of the system by introducing a representation of the perturbations similar to
the flux-bundle model of Sugama et al. (Plasma Fusion Res., vol. 7, 2012, 2403094).
The coupling of flux bundles is shown to have a stabilising effect on the most unstable
local flux-tube mode.
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1. Introduction
In recent years, great effort has been devoted to the investigation of gyrokinetic

instabilities that can cause turbulent transport in stellarators. In particular, analytical
and numerical progress has been made for electrostatic instabilities, such as
trapped electron modes (Proll, Xanthopoulos & Helander 2013; Faber et al. 2015),
ion-temperature-gradient-driven modes (Plunk et al. 2014; Helander et al. 2015;
Xanthopoulos et al. 2016; Zocco et al. 2016) and electron-temperature-gradient-driven
modes (Jenko & Kendl 2002). Electromagnetic gyrokinetic instabilities have been
explored much less. At present, our understanding is based on the use of numerical
codes and is limited to a handful of works (Sugama & Watanabe 2004; Baumgaertel
et al. 2012; Ishizawa et al. 2014, 2015; Mishchenko et al. 2015). This status quo
is clearly not satisfactory, especially if we consider our lack of analytical insight.
The state of affairs is different in the sphere of energetic particle physics, especially
in tokamaks, where there is certainly no lack of analytically driven research (see
the review of Chen & Zonca (2016) and references therein). For transport studies,
a first step towards the reconciliation of analytics and numerics, for strongly driven
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kinetic ballooning modes (KBMs), was made in the work of Aleynikova & Zocco
(2017). Here, quantitative agreement between electromagnetic gyrokinetic numerical
simulations and a finite-β (where β is the ratio of kinetic to magnetic plasma pressure)
diamagnetic modification of ideal magnetohydrodynamics (MHD) was found. The
results of Aleynikova & Zocco (2017), however, only apply to a simple geometric
setting, and an extension to more relevant geometries is required. In this article
we complement the numerical work of Aleynikova et al. (2018) on the stellarator
Wendelstein 7-X, and put forward an analytical formulation of the diamagnetic
modification of ideal MHD used by Aleynikova & Zocco (2017) in a surface-global
setting. Our analysis will then be local in the radial direction of the torus, but the
equilibrium magnetic field is allowed to vary on the magnetic flux surface with
respect to the fieldline as is possible in non-axisymmetric geometries. We show how
to properly choose coordinates in such a way that the original derivation of the
Mercier criterion (Mercier 1960; Mercier & Luc 1974) can be performed also in a
stellarator geometry with the use of the ballooning transform of Connor, Hastie &
Taylor (1979). We identify the metric elements that characterise surface-global effects
and study how they impact the real frequency of the diamagnetically modified ideal
MHD mode proposed by Aleynikova & Zocco (2017). Finally, a discrete description
similar to the flux-bundle model of Sugama et al. (2012) is introduced. The effect
of the fieldline-label dependence on the curvature drift is investigated within this
framework and it is found to be stabilising. This stabilisation is related to a possible
violation of the Mercier criterion.

2. Formulation

The equation for the divergence of the plasma current, when each term is ordered to
accommodate linear ballooning modes, results in a second-order differential equation,
in the fieldline-following variable l, for the potential ψ that defines the parallel
component of the magnetic potential −iωA‖ = ∇‖ψ . Here ω is the complex mode
frequency, ∇‖ = b · ∇, with b = B/B, where B is the equilibrium magnetic field,
and B is its modulus. The general form of this equation is equation (2.35) of Tang,
Connor & Hastie (1980). This comes from a sound expansion of the gyrokinetic
equation, k‖vthi� ω� k‖vthe. Here vths =

√
2Ts/ms is the thermal speed for a species

with temperature Ts and mass ms. When a finite β ∼ ε ≡ k2
‖
v2

thi/ω
2
� 1 ordering

is implemented, magnetic compressibility is retained, and the curvature and grad-B
drifts are kept, consistent with the Grad–Shafranov equation, the relevant equation
for kinetic ballooning modes is a simple diamagnetic modification of the ideal MHD
ballooning equation (Roberts & Taylor 1965; Aleynikova & Zocco 2017)

B/B2
a

βi

v2
thi

ω2
∇‖bB∇‖ψ =−b

[
1−

ω∗i

ω
(1+ ηi)

]
ψ − 2

ωκωp

ω2
ψ, (2.1)

where Ba is a reference constant magnetic field, βi=8πpi/B2
a, b=0.5k2

⊥
v2

thi/Ωi(B)2, k⊥
is the wave vector (of perturbations) across the equilibrium magnetic field and Ωi(B)=
mic/(eB) is the ion cyclotron frequency. In a surface-global setting, the k2

⊥
= kiki

=

kjgjiki term becomes the Laplacian operator in curvilinear geometry
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1
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B2
a

B2

1
√

g

2∑
i,j=1

∂

∂xi

√
ggij ∂
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, (2.2)
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where ρi = vthi/Ωi(Ba), and we introduced a triplet of contravariant coordinates
x= (x1, x2, x3). Each xi is a scalar function of the Cartesian spatial coordinates (x, y, z).
We then define the contravariant metric tensor gij

=∇xi · ∇xj where ∇= ex∂x+ ey∂y+

ez∂z is the gradient in Cartesian coordinates,
√

g = (∇x1
× ∇x2 · ∇x3)−1 is the

determinant of the Jacobian matrix Jj
i = ∂ixj and a is a reference length scale. The

functions gij will soon be specified. The diamagnetic frequency is

ω∗s =
1
2
vths

Ln

ρs

a

(
−i

∂

∂x2

)
, (2.3)

where L−1
n = d ln n/dx1. Then ωps = ω∗s(1 + ηs), with ηs = d ln Ts/d ln n, ωp = ωpi −

ωpe and L−1
p,s = L−1

n (1 + ηs), with L−1
p = L−1

p,i + L−1
p,e. Notice that we have corrected a

multiplicative factor 2 on the left-hand side of equation (2.1) of Aleynikova & Zocco
(2017). We will now be more specific with the coordinate system.

We follow Xanthopoulos et al. (2009) and consider a modification of the Boozer
system (Boozer 1982) that respects the field alignment:

(x1, x2, x3)= (s, q(s)(θ − θ0)− ζ , θ − θ0), (2.4)

where s = Φ/Φedge, with Φ the toroidal magnetic flux and Φedge its value at the
last closed flux surface, and θ and ζ are the Boozer poloidal and toroidal angles,
respectively. Thus,

√
gBB2
=BθΨ ′(s)+BζΦ ′(s), where Ψ is the poloidal magnetic flux

and B= Ψ ′(s)∇x1
×∇x2. The prime is a total derivative with respect to the explicit

argument s, q = Φ ′/Ψ ′ ≡ ι−1, and θ0 is the familiar free parameter of ballooning
theory (Connor, Hastie & Taylor 1978; Connor et al. 1979; Hastie & Taylor 1981).
We have

ωκ = −ivd · ∇

= −iv2
thi

Ba

B
b̂× κ

Ωi(Ba)
· ∇

= −ivthiρi
Ba

B

2∑
i=1

b̂× κ · ∇xi ∂

∂xi
, (2.5)

where κ = b̂ · ∇b̂. We now introduce our first assumption: ∂x1 ≡ 0. That is, we are
neglecting the radial structure of the mode under consideration. From this, it also
follows that θ0≡ 0, since in ballooning theory it can be shown that θ0 is proportional
to the radial wavenumber. The effect of k1 must be carefully considered for each
non-axisymmetric machine under consideration, depending on the global shear of
its configurations. For instance, a finite k1 seems to be crucial to capture the most
unstable KBM in Large Helical Device (LHD) (see (Ishizawa et al. 2014, figure 1)).
In the case of W7-X, k1 could have a less prominent role (Aleynikova et al. 2018).

By using equation (23) of Xanthopoulos et al. (2009), and the properties of Boozer
coordinates, after some straightforward algebra, we obtain

ωκωp =−
1
4
ρ2

i

a2

v2
thi

Lpa

[
BsB∇‖

(
1
B2

)
+

P′(s)
B2/2

+
∂sB2

B2
−

a2BaB
2P′(s)

∇‖

(
j‖
B

)
ŝθ
]

∂2

∂(x2)2
, (2.6)

where j‖ = b̂ · j, j is the plasma current and ŝ= 2s0q′(s0)/q(s0) is the global magnetic
shear at a given radial location s0, and we used Ψ ′N = Ψ

′/(a2Ba) =
√

s/q (see also
equation (141) of Xanthopoulos et al. (2009)). This form will be extremely important
in order to derive a Mercier criterion, because of the explicit ∇‖. We finally choose
x3
= θ , so that

√
gNa∇‖ = (Ba/B)∂θ , where

√
gN = 2qa−3√gB is the normalised

Jacobian.
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It is now possible to specify the form of (2.2). The metric elements entering
(2.2) have first been presented by Cooper (1992) and have also been evaluated by
Xanthopoulos et al. (2009). Then, we find it convenient to write

b = −
1
2
ρ2

i

a2

B2
a

B2

1
√

gN

∂

∂x2

√
gNg22

B
∂

∂x2

= −
1
2
ρ2

i

a2

B2
a

B2

1
√

gN

∂

∂x2

√
gN[b0 + b1ŝθ + b2ŝ2θ 2

]
∂

∂x2
, (2.7)

with b0 = (gssB2
− B2

s )/(a
2B2

a), b1 = (BθBs − gsθB2)/(s0a2B2
a) and b2 = gssa2/(4s0)≡ gss

N .
Since we are assuming (for perturbations!) ∂/∂x1

= θ0 ≡ 0, the g22
B term is the only

metric element left in the summation that defines b in (2.2). It is perhaps interesting to
note that, in (2.7), the function b shows the same ŝθ dependence that it would have in
the well-known ŝ−α model: bŝ−α∝ k2

2+ k1k2ŝθ + k2
2 ŝ2θ 2. However now the coefficients

bi are not constant, and we have a linear secular term even if k1 ≡ 0! This is purely
geometric, and comes from the off-diagonal entries of the metric tensor. However, this
term does not play a role in the formulation of the Mercier criterion.

2.1. Local Mercier criterion and its validity

Before analysing the properties of (2.1) when the x2-variation of the eigenfunction is
allowed, it seems reasonable to follow the analysis of Connor, Hastie and Taylor of
the ballooning equation (Connor et al. 1979), and derive a Mercier criterion which is
valid in a local flux-tube gyrokinetic context for stellarators. This is important since,
historically, the derivation of the ballooning equation for stellarators has been based
on a complicated minimisation of the ideal MHD potential (Correa-Restrepo 1978) à
la Mercier (Mercier 1960; Mercier & Luc 1974) and its application to local flux-tube
gyrokinetics is not straightforward. In some works on ideal MHD ballooning modes
in stellarators, Hamada (1962) coordinates are used (Correa-Restrepo 1978). In others
(Hegna & Nakajima 1998), Boozer coordinates are introduced but the field-following
coordinate is not specified and the secular terms are expressed implicitly in terms
of integrals on the local shear. The ‘stellarator expansion’ was used by Sugama &
Watanabe (2004). The most explicit formulation of the Mercier criterion for stellarators
is the one given in a not so very accessible article by Nührenberg & Zille (1987),
where the authors use the toroidal angle as the field-following coordinate and do not
order the global shear with the plasma β, unlike us. Additional instances of the use
of a Mercier criterion in stellarators (Fu et al. 1992; Gardner & Blackwell 1992) lead
to chapter 5 of the book of Bauer, Betancourt & Garabedian (1984), which, in turns,
leads cyclically to the work of Mercier & Luc (1974). Since in this bibliographical
odyssey, lasting more than 38 years (therefore nearly 4 times the original odyssey),
we could not find a derivation of the indicial ballooning equation that: is based on
the poloidal angle being the fieldline-following coordinates, relates to local flux-tube
gyrokinetics and gives an explicit ordering for the global shear, we decided to present
such calculation here. The equation we study is then

1
√

gN

∂

∂θ

b
√

gN

∂

∂θ
ψ =−b

ω(ω−ωpi)

ω2
A

ψ

−
ρ2

i

2a2

k2
2v

2
thi

aLpω
2
A

{
Bs

aBa

1
√

gN

∂

∂θ

B2
a

B2
+ 2

P′(s)
B2
+
∂sB2

B2
−

aB2
a

P′(s)
1
√

gN

∂

∂θ

(
j‖
B

)
ŝθ
}
ψ,(2.8)
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with ω2
A = v

2
thi/(βia2), b= ρ2

i k2
2B2

a/(2a2B2)g22
N and g22

N = b0 + b1ŝθ + b2ŝ2θ 2, where the
bi have been defined in the previous section.

We are now in the position to seek a solution of the type

ψ = zα
(

g0 +
g1

z
+

g2

z2
+ · · ·

)
, (2.9)

where z = ŝθ , and we consider radial locations for which ι = n/m, with m and n
integers. Then, the functions gi have the period of the equilibrium, and

∫
Γ

dgi = 0
if Γ in the path on integration along a closed fieldline. When the fieldline is
chosen to be a high-order rational

∫
Γ
(· · ·) dθ/

∫
Γ

dθ ≈ (2π)−2
∫ 2π

0 dθ
∫ 2π

0 dζ (· · ·).
The index α is a complex quantity which determines a necessary condition for
marginal stability. Rigorously, the diamagnetic correction of (2.1) renders the original
treatment of Connor, Hastie and Taylor extremely difficult. The problem has been
studied by Connor, Tang & Allen (1984) by means of an asymptotic matching
procedure. Here the authors consider the case ω − ωpi � ωA, and solve (2.1) in
two asymptotic regions: one defined by ŝθ ∼ 1, the other ŝθ ∼ ω2

A/ω(ω − ωpi)� 1.
Asymptotic matching of the two solutions then provides a stability criterion that
incorporates some diamagnetic effects. The authors also notice that, for (2.1), a
necessary condition for ω to be imaginary in that Re[ω] = ωpi/2. This implies that,
at marginality, ω(ω − ωpi)=−ω

2
pi/4, and, more importantly, equation (2.1) is solved

in an asymptotic expansion in ω2
pi/4ω

2
A� 1. Explicitly, we have

k2
2
ρ2

i

aLp
βi� 16

Lp

a
, (2.10)

which, for a given βi, determines the range of wavelength for which the ω−ωpi�ωA
analysis of (2.1) is valid √

βik2ρi� 4Lp. (2.11)

We consider this limit to apply and proceed order by order.
Then, to order zα+2, one obtains

d
dθ

gss
N
√

gN

B2
a

B2

dg0

dθ
= 0, (2.12)

and g0 = 1. To order zα+1, we have

d
dθ

[
gss

N
√

gN

B2
a

B2

(
dg1

dθ
+ αŝ

)
−

v2
thi

aLpω
2
A

aB2
a

P′(s)
j‖
B

]
= 0. (2.13)

A constant of integration is chosen so that
∫
Γ

dθdg1/dθ = 0. Then

dg1

dθ
+ αŝ =

v2
thi

aLpω
2
A

aB2
a

P′(s)

√
gN

gss
N

B2

B2
a

j‖
B

+

√
gN

gss
N

B2

B2
a

αŝ−
v2

thi

aLpω
2
A

aB2
a

P′(s)

∫
Γ

dθ
√

gN

gss
N

B2

B2
a

j‖
B∫

Γ

dθ
√

gN

gss
N

B2

B2
a

, (2.14)

where each term is of the form of those of equation (43) of Connor et al. (1979).
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To order zα, after integrating in
∫
Γ

dθ , we obtain

(α + 1)ŝ
∫
Γ

dθ
gss

N
√

gN

B2
a

B2

(
dg1

dθ
+ αŝ

)
+

v2
thi

aLpω
2
A

∫
Γ

dθ
[

Bs

aBa

∂

∂θ

B2
a

B2
+
√

gN

(
2

P′(s)
B2
+
∂sB2

B2

)]
+

v2
thi

aLpω
2
A

aB2
a

P′(s0)

∫
Γ

dθ
j‖
B

dg1

dθ
= 0, (2.15)

and, again, each term of this equation resembles those of equation (44) of Connor
et al. (1979). After using (2.14), one gets the indicial equation α(α + 1) + D = 0,
with

D =
v2

thi

Lpaω2
Aŝ2

{(∫
Γ

dθ
√

gNB2

gss
N B2

a

) ∫
Γ

dθ
[

Bs

aBa

∂

∂θ

B2
a

B2
+
√

gN

(
2

P′(s)
B2
+
∂sB2

B2

)]

+
v2

thi

Lpaω2
A

(
aB2

a

P′(s0)

)2
[(∫

Γ

dθ
√

gNB2

gss
N B2

a

) ∫
Γ

dθ
√

gNB2

gss
N B2

a

(
j‖
B

)2

−

(∫
Γ

dθ
√

gNB2

gss
N B2

a

j‖
B

)2
]}
− 2

v2
thi

aLpω
2
Aŝ

aB2
a

P′(s)

[(∫
Γ

dθ
√

gN

gss
N

B2

B2
a

) ∫
Γ

dθ
j‖
B

−

∫
Γ

dθ
√

gN

gss
N

B2

B2
a

j‖
B

]
. (2.16)

This implies that D=O(1) for

ŝ∼ βi
a
Lp
∼ β ′� 1, (2.17)

which is the condition that determines the ordering of the global shear for which
the asymptotic form (2.9) is acceptable. The Mercier criterion that can be used for
comparisons with flux-tube gyrokinetics in a stellarator, when conditions (2.11) and
(2.17) apply, is then

D< 1/4 (2.18)

for stability, where D is defined by (2.16). This result is not new, as each term of
(2.14) and (2.15) can be identified with the respective terms in equations (43) and (44)
of Connor et al. (1979), where different coordinates were used. In the absence of an
equilibrium parallel current, it is a limiting condition on the gradient of the plasma
β plus a correction due to the covariant component of the equilibrium magnetic
field. The usefulness of our result resides in its possible application to gyrokinetic
numerical studies, which is now viable since we expressed the stability parameter D
in terms of modified Boozer coordinates that commonly interface stellarator equilibria
codes and gyrokinetic codes (Xanthopoulos et al. 2009). As a final remark, we notice
the relation of our result, derived in modified Boozer coordinates, and the common
concept of ‘magnetic well’. Since the plasma volume enclosed in a magnetic surface
is V(s)=

∫ s
0 ds

∫ 2π

0 dθ
∫ 2π

0 dζ
√

gN , we have d2V/ds2
=
∫ 2π

0 dθ
∫ 2π

0 dζ∂s
√

gN . Had we
expressed the curvature drive in (2.6) in terms of equilibrium poloidal and toroidal
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current fluxes, we would have been left with the non-secular component of the
magnetic drift, (ωκωp)NS, proportional to

(ωκωp)NS ∝
√

gB∇‖

(
Bs

B2

)
+
√

g
P′(s)
B2
+

1
B2
[JΨ ′′ − IΦ ′′] − ∂s

√
g, (2.19)

where, indeed, J and I are the toroidal and poloidal current fluxes and Φ and
Ψ are the toroidal and poloidal magnetic fluxes. This expression would replace
the non-secular term at the second line of (2.8), and would result in an explicit
dependence on d2V/ds2 for the Mercier index in (2.16). For negative pressure
gradients, a positive d2V/ds2 then adds to the drive of pressure-driven instabilities,
making them more unstable. Similarly, a negative d2V/ds2 has a stabilising effect
(Johnson & Greene 1967). In the first case, the magnetic configuration is said to
possess a ‘magnetic hill’, while is the second case it has a ‘magnetic well’. Even if
this nomenclature is somewhat intuitive, our expression seems more conclusive for
what concerns the positive–definiteness of the driving terms (the radial derivatives
at the first line of (2.16)):

√
gN(2P′(s) + ∂sB2)/B2. From this it is evident that a

minimisation of the volume-averaged B2 is beneficial. The same conclusion was
drawn by Boozer (1981) (see discussion after (29)). We conclude this section by
noticing that our expression for the Mercier index D in (2.16) agrees with equation
(85) of Cooper (1992), only if the global shear is ordered to be as small as the
equilibrium plasma pressure gradient. It is easy to see that this is imposed by the
smallness of the global shear. The reason why the global shear has to be small, in
our multiple scale asymptotic analysis of the ballooning equation, is explained well in
the Introduction of § II of Connor et al. (1984). While the ballooning equation used
to derive the Mercier index of Cooper (1992) does not agree with our starting point
(however, see also the alternative improved version of Cooper, Singleton & Dewar
(1996)), its application to ideal marginal stability is valid and agrees with our result.

3. Surface-global diamagnetism

Equation (2.8) implies that, in a local flux tube, a necessary condition for instability
is Re[ω] = ωpi/2. This can be seen by multiplying the equation by the complex
conjugate eigenfunction ψ∗ and integrating by parts along the fieldline. The result is
a second-order algebraic equation for the eigenvalue, ω, whose imaginary part is not
zero only if, indeed, Re[ω] =ωpi/2. We now see how this changes in a surface-global
setting. The Laplacian in curvilinear coordinates of (2.2) is more tractable if the
metric elements are slowly varying in x2

: ∂x2 ln gss ∼ ∂x2 ln gsθ ∼ ∂x2 ln gss
� ∂x2 ln ψ ,

then (2.1) becomes

1
√

gB

∂

∂θ

B2
a

B2√gB

∂

∂θ
Ω =−

B2
a

B2

ω(ω−ωpi)

ω2
A

Ω −
v2

thi

Lpaω2
A

B
Ba
[KAS(θ)+ εhKh(θ, x2)]Ω, (3.1)

where Ω = Ωr + iΩi ≡ ∂2
x2ψ and the magnetic drift is formally split into an

axisymmetric, KA, and a non-axisymmetric component Kh, where εh is a constant. If
we multiply by Ω∗, and integrate in dθ , we obtain a quadratic equation for ω:

ω2
+ iζω(0)pi ω+ λ

2
= 0 (3.2)
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with

ζ = ζr + iζi ≡

∮
dx2
∫
∞

−∞

dθ
√

gBB2
a

B2
Ω∗∂x2Ω∮

dx2
∫
∞

−∞

dθ
√

gBB2
a

B2
|Ω|2

,

λ2
=
v2

thi

Lpa

∮
dx2
∫
∞

−∞

dθ
√

gBB2
a

B2
[KAS(θ)+ εhKh(θ, x2)]|Ω|2∮

dx2
∫
∞

−∞

dθ
√

gBB2
a

B2
|Ω|2

−ω2
A

∮
dx2
∫
∞

−∞

dθ
√

gBB2
a

B2

∣∣∣∣∂Ω∂θ
∣∣∣∣2∮

dx2
∫
∞

−∞

dθ
√

gBB2
a

B2
|Ω|2

,



(3.3)

and
ω
(0)
pi =

1
2
ρi

a
vthi

Ln
(1+ ηi). (3.4)

In the strongly driven case, λ�|ζ |ω(0)pi , the ideal MHD growth rate and a small real
correction are found

ω≈ iγMHD +
ω
(0)
pi

2
ζi. (3.5)

The real correction to the ideal MHD growth rate is the frequency ω
(0)
pi /2 times a

surface-global factor. The result is then

ωr =
ω
(0)
pi

2

∮
dx2
∫
∞

−∞

dθ
√

gBB2
a

B2
(Ωr∂x2Ωi −Ωi∂x2Ωr)∮

dx2
∫
∞

−∞

dθ
√

gBB2
a

B2
|Ω|2

. (3.6)

Let us now consider a trial function which is a rotation by an angle k2x2 of a function
Ω̂(θ) defined on a flux tube

Ω(θ, x2)= Ω̂(θ)[cos(k2x2)+ i sin(k2x2)]. (3.7)

Equation (3.6)) then reduces to the local result

ωr =
ωpi

2
≡

1
4
vthi

Ln
(1+ ηi)k2

ρi

a
. (3.8)

A less trivial fieldline-label dependence of the eigenfunction generates an effective
surface-global diamagnetic frequency. Let us consider, for instance, a system with
helical symmetry, thus

Ω(θ, x2)=

M∑
l=−M

Ω̂l(θ){cos[l(qθ + x2)] + i sin[l(qθ + x2)]}. (3.9)

The contribution to the surface-global real frequency of each helical harmonic M is
proportional to

Ωr∂x2Ωi −Ωi∂x2Ωr =M{cos2
[M(qθ + x2)] + sin2

[M(qθ + x2)]} =M, (3.10)
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thus

ω(M)r =
ω
(0)
pi

2
M, (3.11)

and the marginal frequency is affected by the number of poloidal turns it takes the
helix to close onto itself.

We conclude that, in a surface-global setting, for large pressure gradients, the real
frequency of unstable KBMs (as described by diamagnetic MHD, equation (2.1)) can
differ from the value ωpi/2 for purely geometrical reasons.

4. Lattice-drift model for KBMs
A further geometric effect that we expect to observe is associated with the

x2-dependence of the strength of the curvature drive, the term that multiplies ωκ
in (2.1). In (3.1), this term was formally separated into an axisymmetric and a
non-axisymmetric part: ωκ ∝ KAS(θ) + εhKh(θ, x2). The effect of the x2 dependence
in ωκ has been investigated for the case of the ion-temperature-gradient mode. In
the work of Zocco et al. (2016), the authors performed an asymptotic expansion
in εh � 1. For finite εh, the authors introduced a discrete Fourier expansion of the
ion-temperature-gradient driven (ITG) eigenvalue equation (Zocco, Xanthopoulos &
Helander 2018). The non-axisymmetric term εhKh(θ, x2) then generates a side-band
coupling of the Fourier component of the eigenfunction. The eigenvalue equation is
written in a matrix form, and a surface-global eigenvalue equation is given by setting
to zero the determinant of the matrix, which strikingly resembles the equation of
state of quantum electrons in a periodic crystal. The same approach is now possible
for KBMs, however there is now a complication owing to the second-order derivative
on the left-hand side of (2.1), which was neglected in the aforementioned ITG
studies. In practice, we need to introduce an explicit form for ωκ is (2.1), expand
the eigenfunction using as a basis the functions used to construct ωκ and study a
system of coupled ballooning equations, rather than one ballooning equation, which
is sufficient in the axisymmetric case, since ωκ is a function of θ only. The careful
reader might recognise that such approach is similar to the flux-tube-bundle model
introduced by Sugama et al. (2012) and used numerically by Nunami, Watanabe &
Sugama (2010). Thus, we proceed by neglecting the complications related to the x2

dependence of the left-hand side of (2.1), and start with (3.1). We assume B2
≈ B2

a
and take

√
gB = const. We add a small helical correction to the driving term found

in concentric circular geometry

KAS(θ)+ εhKh(θ, x2)= cos θ + ŝθ sin θ + εh{cos[M(qθ + x2)] + sin[M(qθ + x2)]}, (4.1)

where LB is some effective average radius of curvature. The system is artificial
but useful to build up some intuition to be used in the interpretation of either
surface-global or flux-bundle numerical simulations. If we use k2 → −i∂x2 , ψ =∑

m ψm exp[2πx2/a], equation (3.1) becomes

1
βi

∂

∂θ
(1+ ŝ2θ 2)

∂

∂θ
ψm

=−ω̂

[
ω̂−

`c

2Ln
ρ∗m(1+ ηi)

]
(1+ ŝ2θ 2)ψm −

`2
c

LpLB
(cos θ + ŝθ sin θ)ψm

− εh
`2

c

2LpLB

{
eiMqθ

(
1−

M
m

)2

ψm−M + eiMqθ

(
1+

M
m

)2

ψm+M

}
, (4.2)
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where ω̂=ω/(vthi/`c), `c is a connection length and LB an effective radius of curvature.
The first two lines of (4.2) are simply the Fourier series expansion of the axisymmetric
equation studied by Aleynikova & Zocco (2017). Non-axisymmetry is induced by the
helical term. Let us consider a given m0∼ ρ

−1
∗
� 1, m=m0−1m and ω̂= ω̂0+ iγ̂0+

δω̂≡ ω̄+ δω̂, where
1m
m0
∼

δω̂

|ω̂(0)|
∼ εh� 1, (4.3)

with ω̂0 = (`c/4Ln)m0ρ∗(1 + ηi) and γ̂0 = Im[ω̄], where ω̄ is the solution of the
quadratic equation for the axisymmetric problem ω̄(ω̄−ωpi)+ λ̃

2
= 0, and

λ̃2
=

`2
c

LpLB

∫
∞

−∞

dθ(cos θ + ŝθ sin θ)|ψm0 |
2∫

∞

−∞

dθ(1+ ŝ2θ 2)|ψm0 |
2
−

1
βi

∫
∞

−∞

dθ(1+ ŝ2θ 2)

∣∣∣∣∂ψmo

∂θ

∣∣∣∣2∫
∞

−∞

dθ(1+ ŝ2θ 2)|ψm0 |
2
. (4.4)

Notice that in the subsidiary ρ∗m0 � 1 limit, the mode is purely growing and ψm
is real. We now consider this limit. After using the finite-difference formula for the
m-space derivatives, the imaginary part of the first-order correction reads

Im[δω̂] = εh
`2

c

LpLBγ̂0

∫
∞

−∞

dθ cos(qθ)|ψm0 |
2

(
2
ψm0

∂2ψ

∂m2

∣∣∣∣
m0

− 1

)
∫
∞

−∞

dθ(1+ ŝ2θ 2)|ψm0 |
2

, (4.5)

which is finite for ρ∗m0 � 1, and always negative if ψm has a maximum in m0.
This result proves that the helical correction to the axisymmetric ballooning mode
is stabilising. Perhaps, the most important feature of (4.5) is that stabilisation occurs
for any value of q, while the Mercier condition for stability, for concentric circular
cross-sections, shows a strong dependence on q (Glasser, Green & Johnson 1976;
Porcelli & Rosenbluth 1998)

D=
8πr
ŝ2B

∣∣∣∣dp
dr

∣∣∣∣ (1− q2) <
1
4
. (4.6)

Equation (4.5) then implies that a system can be ballooning unstable according to the
Mercier criterion, but the surface-global effect could mitigate the instability.

5. Summary and discussion
In this article we studied several new aspects of kinetic ballooning modes in

magnetically confined toroidal plasmas that stem from purely geometric properties of
the confining magnetic field. This was done for large equilibrium plasma pressure
gradients since, in this limit, analytical progress can be made. The surface-global
formulation of the problem was presented. Here, physical quantities are kept radially
local but variations in the fieldline-label coordinate are allowed for both equilibrium
and perturbed fields. A novel form of the Mercier stability criterion, useful for
quantitative comparison with stellarator flux-tube gyrokinetic codes was given. The
use of modified Boozer coordinates led us to the conclusion that a minimisation of
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the average of the magnetic field magnitude square is beneficial for stability. We
explain the relation between this result and the stabilising effect of magnetic wells on
equilibrium configurations. For surface-global systems, we derived the general form
equivalent to the necessary condition for instability of KBMs which constrains the
frequency of the mode. It is found that purely geometric effects can result in mode
frequencies that differ from the tokamak result Re[ω] = ωpi/2, where ωpi is the total
diamagnetic frequency of the ions. Finally, the effect of the coupling of several flux
tubes covering a flux surface has been studied. This coupling has a stabilising effect
on the local most unstable mode, and can lead to a possible violation of the Mercier
criterion.
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