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We show that the category of coalgebras of a wide-pullback preserving endofunctor on a

category of presheaves is itself a category of presheaves. This illustrates a connection

between Jacobs’ temporal logic of coalgebras and Ghilardi and Meloni’s presheaf

semantics for temporal modalities.

1. Introduction

Recall that a presheaf category is one that is equivalent to a functor category SetC
op

for some small category C. We show that the category of coalgebras of a wide-pullback

preserving endofunctor T on a presheaf category is itself a presheaf category. In fact, we

construct a freely generated path category C from the functor T such that T -coalgebras

correspond to presheaves on C. This construction is an adaptation of one used by Carboni

and Johnstone (Carboni and Johnstone 1995) in showing that the category obtained by

Artin gluing along a limit preserving functor between presheaf categories is also a presheaf

category.

Coalgebras and presheaves have both been shown to yield Galois algebras – the

algebraic structures required to model Computation Tree Logic. We show that the Galois

algebra generated by a given coalgebra is isomorphic to the Galois algebra generated by

the corresponding presheaf.

2. Wide pullbacks

Definition 2.1. (Carboni and Johnstone 1995) A wide pullback is the limit of a diagram

indexed by a poset P , where P arises by adjoining a greatest element to an anti-chain.

· · · •

�������������� •

��
��

��
��

· · · •

��
��

��
��

· · ·

•

The class of wide-pullback preserving endofunctors on Set is the smallest class containing

the constant functors which is closed under arbitrary products and coproducts of functors

(Carboni and Johnstone 1995). The free monad and the cofree comonad generated by a
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wide-pullback preserving set functor also preserve wide pullbacks (Johnstone et al. 2001).

As a running example, we consider the finite list functor

T (X) = X∗ =
∐

n∈�

Xn.

Example 2.1. Let T : Set→ Set be the subfunctor of the exponential (−)� consisting of

the functions with finite range. Since T preserves the final object, preservation of wide

pullbacks amounts to the preservation of all products. However, T does not preserve the

countably infinite product

P = �×�× · · · ×�× · · · ,

since there is no map f : �→ P in TP that corresponds to the tuple 〈fn : �→ �〉n∈�,

where fn(x) = min(x, n). On the other hand, T preserves ordinary pullbacks.

Proposition 2.1. If E is a complete category, every wide-pullback preserving endofunctor

T : E → E has a final coalgebra.

Proof. A wide-pullback preserving functor whose domain is a complete category

preserves all connected limits (Carboni and Johnstone 1995, Lemma 2.1). It follows

that T preserves limits indexed by the chain ωop. Thus the final coalgebra of T may be

constructed as the limit of the ωop-chain

1← T1← T 21← . . .

in the standard manner (Rutten 2000).

Let E be a complete category, suppose T : E → E preserves wide pullbacks, and let

α : A→ TA be given. We define a reduction of T to a limit preserving endofunctor on the

slice category E/A as follows. T has an obvious lifting to a functor TA : E/A → E/TA,

and, composing this with the pullback functor α∗ : E/TA→ E/A, we obtain an endo-

functor Tα : E/A→ E/A. Thus, for an object f : B → A of E/A, Tαf is defined by the

pullback

•
Tαf

��

�� TB

Tf

��

A α
�� TA

(1)

Proposition 2.2.

(i) Tα preserves all (small) limits.

(ii) CoalgTα is isomorphic to the slice category CoalgT/(A, α).

Proof.

(i) Observing that wide pullbacks in a slice category E/A are created by the domain

functor E/A → E, it is easy to see that they are preserved by TA. Furthermore, TA

clearly preserves final objects. Thus TA preserves all limits, since any limit can be

constructed from final objects and wide pullbacks. The functor α∗ is a right adjoint,

and thus preserves all limits. It follows that Tα = α∗ · TA is continuous.
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(ii) If f : B → A is a map in E, then a coalgebra structure f → Tαf clearly corresponds to

a map β : B → TB such that f is a coalgebra map (B, β)→ (A, α). This extends to an

isomorphism of categories, acting as the identity on homsets.

Example 2.2. Consider the finite list functor T (X) = X∗. The final T -coalgebra (A, α) is

obtained by setting A to be the set of rooted, finitely branching trees, such that the set

of children of each node is equipped with a total ordering. The structure map α : A→ A∗

maps each tree t ∈ A to the list of the subtrees originating from the children of the root

of t.

Regarding objects of Set/A as A-indexed sets, the functor Tα : Set/A→ Set/A is given

by

Tα(X)t = Xt1 × · · · ×Xtn , where α(t) = 〈t1, . . . , tn〉.

3. Bimodules and continuous functors

In this short section we recall an equivalence between continuous functors on presheaf

categories and bimodules (Carboni and Johnstone 1995).

Definition 3.1. (Carboni and Johnstone 1995; Street 1980) A bimodule (also called a

profunctor or distributor) from a category A to a category B, written φ : A � B, is a

functor

φ : Bop ×A→ Set.

When A and B are small, there is a category of bimodules A � B and natural

transformations, which we denote Mod(A,B).

There is an equivalence

Mod(A,B) � Cocont(SetA
op

,SetB
op

) (2)

between the category of bimodules between two small categories and the category of

cocontinuous functors between the respective categories of presheaves. To see this, first

observe that a bimodule φ :A� B may be regarded as a functor A→ SetB
op

. Then the

two components of the equivalence (2) are given, respectively, by restriction and left Kan

extension along the Yoneda embedding yA :A→ SetA
op

.

From the Adjoint Functor Theorem, each continuous functor between presheaf cat-

egories has a left adjoint, and each cocontinuous functor between presheaf categories has

a right adjoint. This yields an equivalence:

Cocont(SetA
op

, SetB
op

)op � Cont(SetB
op

, SetA
op

). (3)

Composing (2) and (3), we get the desired equivalence:

Mod(A,B)op � Cont(SetB
op

, SetA
op

). (4)

Next we give an explicit calculation of the image of the bimodule φ under the above

equivalence, which we denote [φ,−]B. This notation is explained in Lawvere (1973) and

Street (1980).
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Given a bimodule φ : A � B, let the functor λa λb φ(b, a) : A → SetB
op

be denoted

φ, and consider LanyAφ, the left Kan extension of φ along the Yoneda embedding

yA :A→ SetA
op

. This is a cocontinuous functor and is given by the formula

LanyAφ(P ) = Colim(Elts(P )
U→A

φ
→ SetB

op

)

for a presheaf P :Aop → Set, where Elts(P ) is the comma category (1 ↓ P ).

Fixing a presheaf Q : Bop → Set, a morphism LanyAφ(P )⇒ Q corresponds to a cocone

from the diagram φ ◦U to Q. The data for such a cocone is, for each pair (a, x) ∈ Elts(P ),

a choice of a natural transformation α(a,x) : φ(a)⇒ Q – this choice being natural in (a, x).

This amounts to a natural transformation P ⇒ [φ,Q]B, where the functor

[φ,−]B : SetB
op → SetA

op

is defined by

[φ,Q]B(a) = SetB
op

(φ(−, a), Q),

and is, by this definition, right adjoint to LanyAφ.

Example 3.1. The slice category Set/A in Example 2.2 is a presheaf category (over A

regarded as a discrete category). Here we calculate the bimodule corresponding to the

continuous functor Tα : Set/A→ Set/A occurring in that example.

Given s, t ∈ A, write t
n
� s if s occurs exactly n times in the list α(t). Now the left adjoint

L to Tα is given by

L(X)s =
∐

t
n
�s

n ·Xt.

Identifying t ∈ A with the object t : 1→ A of the slice category Set/A, the bimodule

φ : A× A→ Set corresponding to L is given by

φ(s, t) = L(t)s = {1, . . . , n}, where t
n
� s.

4. A path category construction

Suppose A is a small category and φ :A�A. We construct a category C(φ) such that

the category of presheaves SetC(φ)op

is equivalent to the category of T -coalgebras, where

T = [φ,−]A : SetA
op → SetA

op

is the continuous endofunctor corresponding to φ.

Let G(φ) be the graph with:

(i) Nodes: the set of objects of A;

(ii) Edges: for each arrow f : a→ b of A an edge f : a→ b of G(φ), and, for each pair of

objects a, b of A and each e ∈ φ(b, a), an edge e : b→ a of G(φ).

From the graph G(φ) we freely generate a category, which we denote C(φ), subject to

the following equations on composition in C(φ) (written as ·C(φ)).

(a) For composable morphisms f, g of A, f ·C(φ) g = f · g (that is, we include all the

indentities holding in A).

(b) If e ∈ φ(b, a) and f : b′ → b is an arrow of A, then e ·C(φ) f = φ(f, a)e.
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(c) If e ∈ φ(b, a) and f : a→ a′ is an arrow of A, then f ·C(φ) e = φ(b, f)e.

A graph homomorphism P : G(φ)op → Set is a graph homomorphism P0 :Aop → Set

together with a family of mappings, indexed over pairs of objects a, b ∈ A,

α(b, a) : φ(b, a)→ P0(b)
P0(a).

By exponential transposition, this last datum amounts to a family of mappings,

α(b, a) : P0(a)→ P0(b)
φ(b,a).

The graph homomorphism P will be a functor if it preserves identities in C(φ) and the

three types of composition (a)–(c) above. The preservation of identities and composites

of type (a) is equivalent to P0 being a functor Aop → Set. Given this, P preserves

composites of type (b) precisely when, for each x ∈ P0(a), it holds that α(−, a)x is a

natural transformation φ(−, a)⇒ P0, that is,

α(−, a) : P0(a)→ [φ, P0]
A(a). (5)

In addition, preservation of composites of type (c) is the same as requiring that the above

family of maps is natural in a ∈ A. Thus we have shown that a presheaf P on C(φ)

amounts to a pair (P0, α), where P0 is a presheaf on A and

α : P0 → [φ, P0]
A (6)

is a natural transformation.

Let us suppose we have another presheaf Q on C(φ), consisting of a presheaf Q0 on

A, and a family of maps β(b, a) : φ(b, a)→ Q0(b)
Q0(a) indexed over b, a ∈ A. A natural

transformation Ξ : P ⇒ Q is precisely a natural transformation Ξ0 : P0 ⇒ Q0 such

that the left-hand diagram below commutes for each pair of objects a, b ∈ A. But, by

exponential transposition (and the naturality properties of the transposes, expressed in

(5) and (6)), this is just the same as requiring that the right-hand diagram commutes.

φ(b, a)
α(b,a)

��

β(b,a)

��

P0(b)
P0(a)

Ξ0,b
P0(a)

��

P0
α ��

Ξ0

��

[φ, P0]
A

[φ,Ξ0]
A

��

Q0(b)
Q0(a)

Q0(b)
Ξ0,a

�� Q0(b)
P0(a) Q0

β

�� [φ,Q0]
A

It follows that there is an isomorphism of categories between SetC(φ)op

and the category

of coalgebras of [φ,−]A. Since any continuous endofunctor on SetA
op

is isomorphic to

[φ,−]A, for some φ, we obtain the following result.

Theorem 4.1. If T is a continuous endofunctor on a presheaf category, CoalgT is itself

a presheaf category.

Using the reduction of wide-pullback preserving functors to continuous functors from

Section 2, we can weaken the hypothesis ‘T is continuous’ to ‘T preserves wide pullbacks’.

https://doi.org/10.1017/S0960129505004767 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004767


J. Worrell 480

Corollary 4.1. If T is a wide-pullback preserving endofunctor on a presheaf category, then

CoalgT is itself a presheaf category.

Proof. Proposition 2.1 tells us that there is a final T -coalgebra (A, α). From Proposi-

tion 2.2 it follows that CoalgT � CoalgT/(A, α) � CoalgTα. Since Tα is continuous, and

the property of being a presheaf category is preserved by taking slices (Johnstone 1977,

Corollary 2.18), the result follows.

Example 4.1. Recall our running example: the finite list functor T : Set→ Set. Then

CoalgT � SetC
op

, where C is the free category over a certain graph G. The set of nodes

of G is the carrier of the final T -coalgebra (A, α), that is, the set of trees described in

Example 2.2. The number of edges t→ s in G is the number of times t occurs in the list

α(s).

The proof of Theorem 4.1 followed an idea in Carboni and Johnstone (1995). They

showed that, for a continuous functor T : E → F between presheaf categories, the comma

category (F ↓ T ) is again a presheaf category. The precise relationship is best understood

from a bicategorical perspective (Street 1980), as we now explain.

Given an endofunctor T : E → E, CoalgT has a universal property in the 2-category

CAT of large categories, functors and natural transformations: it is the oplax limit of a

diagram with shape

• �� (7)

where the node is labelled E and the edge T (Adámek and Rosický 1994, Definition 2.69).

Given a bimodule φ :A�A, C(φ) has the same universal property in the bicategory

Mod of small categories, bimodules and natural transformations: it is the oplax limit of

a diagram whose shape is given by (7), but where the node is labelled A and the edge

φ. On the other hand, for T : E → F, the comma category (F ↓ T ) is the oplax limit

in CAT of a diagram of shape • → •. Now, Carboni and Johnstone (1995) shows that

(F ↓ T ) is a category of presheaves over a small category obtained as the oplax limit in

Mod of a diagram of the same shape.

5. Galois algebras from presheaves and coalgebras

Coalgebras and presheaves have both been used to model temporal logic. For coalgebras

this is described by Jacobs (Jacobs 2002), and for presheaves by Ghilardi and Meloni

(Ghilardi and Meloni 1988). Given that coalgebras can be seen as presheaves, a natural

question arises as to how these different semantics are related.

Definition 5.1. (Karger 1998) A Galois algebra is a complete Boolean algebra B, together

with a ‘henceforth’ operator [F]: B → B preserving all meets. A morphism of Galois

algebras f : (B, [F])→ (B′, [F]′) is a map f : B → B′ preserving all meets and joins, such

that f ◦ [F] = [F]′ ◦ f. This yields a category, which we denote GA.
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Galois algebras provide an algebraic semantics for Computation Tree Logic (CTL)

in that all the axioms and rules of CTL are valid in an arbitrary Galois algebra (see

Karger (1998)). We read [F]S as ‘in all future states S ’. Furthermore, we denote the

left adjoint of [F] by 〈P〉, and read 〈P〉S as ‘in some past state S ’. Next we recall from

Jacobs (2002) and Rutten (2000) how coalgebras give rise to Galois algebras.

Assume that T : Set→ Set preserves wide pullbacks. Then the forgetful functor from

CoalgT to Set also preserves wide pullbacks, and hence preserves monos. Thus, given

a T -coalgebra (B, β), the carrier of a subcoalgebra may be assumed to be a subset of

B. On the other hand, given S ⊆ B, there is at most one coalgebra structure S → TS

making the inclusion S ⊆ B a subcoalgebra. So the class Sub((B, β)) of subcoalgebras of

(B, β) may be identified with a certain class of subsets of B. Moreover, this class is closed

under all unions and intersections in Sub(B); see Rutten (2000, Section 6). Thus we get

an embedding of complete lattices

Sub((B, β)) ↪→ Sub(B).

This map has a right adjoint, sending S ⊆ B to the largest subcoalgebra of (B, β)

whose carrier is contained in S: the subcoalgebra cogenerated by S . The interior operator

corresponding to this adjunction is denoted

[F]: Sub(B)→ Sub(B).

Thus [F]S is the largest subset of S that carries a subcoalgebra structure. The left adjoint

to [F] is 〈P〉, where 〈P〉S is the carrier of the smallest subcoalgebra containing S: the

subcoalgebra generated by S .

In this way the coalgebra (B, β) yields a Galois algebra (Sub(B), [F]). In fact, we get an

indexed Galois algebra, that is, a functor

Coalg (T ) −→ GAop , (8)

where the coalgebra map f : (B, β)→ (B′, β′) is sent to the pullback map f∗ : Sub(B′) →
Sub(B).

There is also a natural way to obtain a Galois algebra from a presheaf. The idea, due

to Ghilardi and Meloni (1988), is to interpret the temporal modalities [F] and 〈P〉 as

cogenerated subpresheaf and generated subpresheaf, respectively.

Suppose A is a small category with obj(A) = A. Then we have a forgetful functor

SetA
op → Set/A sending a presheaf Q :Aop → Set to the A-indexed set Q0, where

(Q0)a = Q(a) for a ∈ A. Since meets and joins in Sub(Q) are computed pointwise, we get

an embedding of complete lattices

Sub(Q) ↪→ Sub(Q0).

This map has a right adjoint, sending an A-indexed subset S of Q0 to the cogenerated

subpresheaf – the largest subfunctor of Q contained in S . The corresponding interior

operator

[F] : Sub(Q0)→ Sub(Q0)
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is given by the formula

([F]S)a = {x ∈ Q(a) | (∀b ∈ A)(∀f : b→ a) Q(f)(x) ∈ Sb}.

We also have the generated subpresheaf 〈P〉S , that is, the least subset of Q containing S

that is also a subpresheaf of Q. This is given by the formula

(〈P〉S)a = {y ∈ Q(a) | (∃b ∈ A)(∃g : a→ b)(∃x ∈ Q(b)) y = Q(g)(x)}.

The map sending a presheaf Q to the Galois algebra (Sub(Q0), [F]) yields an indexed

Galois algebra (that is, a functor)

SetA
op −→ GAop. (9)

5.1. An isomorphism of Galois algebras

Let T be a wide-pullback preserving set functor, and suppose (A, α) is the final T -

coalgebra. Then Theorem 4.1 constructs an equivalence between CoalgT and SetA
op

for

some category A with obj(A) = A.

Theorem 5.1. The indexed Galois algebra SetA
op −→ GAop in (9) is naturally isomorphic

to the composition of the indexed Galois algebra CoalgT → GAop in (8) with the

equivalence SetA
op

� CoalgT .

Proof. Suppose that the presheaf Q :Aop → Set is mapped to the T -coalgebra (B, β)

under the equivalence SetA
op

� CoalgT . We show that the associated Galois algebras are

isomorphic. (We omit the straightforward verification that this isomorphism in natural

in Q.)

Observe that the following diagram commutes:

SetA
op

������������
� �� CoalgTα

��

� �� CoalgT

��

Set/A ∑
A

�� Set

(10)

The functor
∑

A : Set/A→ Set sends an object of the slice category to its domain. The two

horizontal arrows represent the equivalences constructed in Proposition 2.2 and Theorem

4.1. The three remaining arrows are the relevant ‘forgetful functors’ described above.

Diagram (10) cuts down to the following commuting diagram of complete lattices and

maps preserving all meets and joins:

Sub(Q)� �

��

� �� Sub((B, β))� �

��

Sub(Q0)
� �� Sub(B)

(11)

The bottom leg in (11) is an isomorphism of complete lattices. Moreover, it is readily

verified from the commutativity of (11) and the corresponding diagram of right adjoints
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that this isomorphism respects the Galois algebra structures on Sub(B) and Sub(Q0),

respectively.

Jacobs (2002) presents a result closely related to Theorem 5.1: under the representation

of a given category of presheaves as a category of coalgebras for a comonad, generated

and cogenerated subpresheaves agree with generated and cogenerated subcoalgebras.

6. Future work

It is possible to generalise the ideas of Ghilardi and Meloni to sheaves on a site. That

is, for a predicate S on a sheaf Q we have a generated subsheaf 〈P〉S and a cogenerated

subsheaf [F]S . We would like to see if these correspond to generated and cogenerated

subcoalgebras under the coalgebras-as-sheaves correspondence presented in Johnstone

et al. (2001) for coalgebras of weak-pullback preserving functors. In general, a Grothen-

dieck topos is equivalent to a category of sheaves on many different sites, and it seems to

us that the key to solving this problem is to find the ‘right’ sites for the toposes considered

in Johnstone et al. (2001).
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