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ESTIMATION OF INTEGRATED
COVARIANCES IN THE

SIMULTANEOUS PRESENCE OF
NONSYNCHRONICITY,

MICROSTRUCTURE NOISE AND
JUMPS

YUTA KOIKE
The Institute of Statistical Mathematics

We propose a new estimator for the integrated covariance of two Itô semimartin-
gales observed at a high frequency. This new estimator, which we call the pre-
averaged truncated Hayashi–Yoshida estimator, enables us to separate the sum of
the co-jumps from the total quadratic covariation even in the case that the sampling
schemes of two processes are nonsynchronous and the observation data are polluted
by some noise. We also show the asymptotic mixed normality of this estimator under
some mild conditions allowing infinite activity jump processes with finite variations,
some dependency between the sampling times and the observed processes as well as
a kind of endogenous observation error. We examine the finite sample performance
of this estimator using a Monte Carlo study and we apply our estimators to empiri-
cal data, highlighting the importance of accounting for jumps even in an ultra-high
frequency framework.

1. INTRODUCTION

In the past years there has been a considerable development in statistical in-
ferences for the quadratic covariations of semimartingales observed at a high
frequency. This was mainly motivated by financial application because price
processes need to follow a semimartingale under the no-arbitrage assumption (see
Delbaen and Schachermayer,1994 for instance) and technological developments
made high frequency data commonly available. In general the quadratic covari-
ation of two semimartingales consists of two sources; the continuous martingale
parts and the co-jumps of the semimartingales. Recently many authors have indi-
cated that separating these two sources benefits various areas of finance such as
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volatility forecasting (Andersen, Bollerslev, and Diebold, 2007), credit risk man-
agement (Cont and Kan, 2011), the construction of a hedging portfolio (Todorov
and Bollerslev, 2010), and so on. Motivated by these reasons, this paper will fo-
cus on disentangling these two components of the quadratic covariations of two
semimartingales by using high-frequency observation data.

Let Z1 and Z2 be two Itô semimartingales and let (Si )i∈Z+ be a sequence of
stopping times that is increasing a.s., Si ↑ ∞, and S0 = 0. Then it is well known
in the classic stochastic calculus that∑
i :Si≤t

(
Z1

Si − Z1
Si−1

)(
Z2

Si − Z2
Si−1

)
→p

[
Z1, Z2

]
t

(1)

for any t > 0, provided supi∈N(Si ∧ t − Si−1 ∧ t)→p 0. Therefore, if we observe
Z1 and Z2 at the time Si for every i , we can use the statistic on the left side of the
equation (1) (which is called the realized covariance) as a consistent estimator of
the quadratic covariation [Z1, Z2]t of Z1 and Z2. Given that[

Z1, Z2
]

t
= 〈Z1,c, Z2,c〉

t +
∑

0≤s≤t

�Z1
s�Z2

s , (2)

our aim will be achieved by constructing an estimator for the quantity
〈Z1,c, Z2,c〉t which we call the integrated covariance of Z1 and Z2. In the present
situation we have the observation data (Z1

Si + Z2
Si )i∈Z+ and (Z1

Si − Z2
Si )i∈Z+ , so

that the problem results in the univariate case due to the polarization identity
〈Z1,c, Z2,c〉 = (〈Z1,c + Z2,c〉−〈Z1,c − Z2,c〉)/4. As a consequence, we can ben-
efit from vast numbers of studies on jump detection in financial high-frequency
data for a single asset. For example, Barndorff-Nielsen and Shephard (2004a)
used such a method based on the bipower technique introduced in Barndorff-
Nielsen and Shephard (2004b) and proposed an estimator called the realized
bipower covariation. On the other hand, there are several approaches which di-
rectly treat the multivariate data; see Mancini and Gobbi (2012) and Boudt, Croux,
and Laurent (2011) for examples.

In real financial markets, however, some difficulties caused by the so-called
market microstructure confront us. In the present context there are two major
topics related to them: one is the nonsynchronicity of observation times and the
other is a kind of observation error called microstructure noise. In recent years the
simultaneous treatment of these two problems, which is based on the combination
of methods for dealing with each individual one, has been established by many
authors in the case that jumps are absent. See Aı̈t-Sahalia, Fan, and Xiu (2010),
Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011), Bibinger (2011),
Christensen, Kinnebrock, and Podolskij (2010), Shephard and Xiu (2012), and
Zhang (2011) for examples.

Since the main concern of the present article is estimating integrated co-
variances separately from jumps under the influence of the market microstruc-
ture, it is necessary to focus on the simultaneous treatments of jumps and the
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market microstructure problems. Regarding this issue, there are two important
contributions which we will benefit from. First, in the case that observation
times are nonsynchronous and observed processes are not contaminated with mi-
crostructure noise, but may contain jumps. Mancini and Gobbi (2012) combined
the Hayashi–Yoshida method proposed in Hayashi and Yoshida (2005) (to deal
with nonsynchonicity) with the thresholding jump-detection technique (proposed
independently in Mancini, 2001 and Shimizu, 2003) to construct a consistent
estimator for the integrated covariance. Second, in the univariate case Podolskij
and Vetter (2009b) proposed a new method for dealing with microstructure noise
called the pre–averaging method. Combining this method with the bipower tech-
nique, they introduced a class of consistent estimators for the integrated volatil-
ity which can withstand both jumps and microstructure noise (their method has
been further investigated in Jacod, Li, Mykland, Podolskij, and Vetter, 2009 and
Podolskij and Vetter, 2009 for example).

In the present article we investigate the methodology accommodated to a sit-
uation where all of the above problems are present simultaneously. That is, we
consider two Itô semimartingales which are observed at stopping times in a non-
synchronous manner and contaminated by noise. Then we develop a method for
estimating their integrated covariance separately from the sum of their co-jumps.
For this purpose, we combine the Hayashi–Yoshida method (to deal with the non-
synchronicity of the observation times) and the preaveraging method (to remove
the noise) with the thresholding technique (to separate the jumps) and consider
a class of statistics called the preaveraged truncated Hayashi–Yoshida estimator.
We prove the consistency and the asymptotic mixed normality of the preaveraged
truncated Hayashi–Yoshida estimator under a very general situation allowing the
presence of infinite activity jumps, some dependency between the observation
times and the observed processes as well as a kind of endogenous noise.

Our new estimator is closely related to the one proposed in Wang, Liu, and
Liu (2013) recently. In fact, based on the above idea, they constructed a consis-
tent estimator for the integrated covariance in the simultaneous presence of the
above three elements. The difference between their estimator and ours is that we
use an additional synchronization step based on refresh times for the construc-
tion of the estimator. This type of synchronization is often used in the literature,
e.g. Aı̈t-Sahalia et al. (2010), Barndorff-Nielsen et al. (2011), Bibinger (2011),
and Zhang (2011). This additional step enables us to develop fully an asymptotic
theory for the estimator in a general setting, which is the main contribution of the
present article. In particular, in contrast to Wang et al. (2013), we have a feasible
central limit theorem for the estimator, which enables us to construct confidence
intervals of the estimator.

Recent empirical studies suggest that most jumps at a relatively low frequency
(e.g., 5-minute) consist of consecutive small returns if sampled at an ultra high fre-
quency (see Christensen, Oomen, and Podolskij, 2011a for instance). However,
such consecutive small returns still involve relatively large ones in some cases.
We cannot capture such large returns precisely at relatively low frequencies
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because they are “contaminated” by many small returns. This suggests the poten-
tial usefulness of our estimator. We will give a simple empirical study to reinforce
this conjecture.

This paper is organized as follows: In Section 2 we briefly review on the results
about the asymptotic properties of the preaveraged Hayashi–Yoshida estimator in
the continuous Itô semimartingale setting. In Section 3 we present the construc-
tion of our estimator and the main results in this paper. We discuss some topics for
the statistical application to finance of our estimator in Section 4, while Section 5
provides some numerical experiments to illustrate the finite sample properties of
our estimator. Section 6 presents an empirical application to high frequency stock
returns data. The Appendix contains the remaining proofs of the results as well as
the list of the assumptions introduced in this paper.

2. A BRIEF REVIEW OF THE CONTINUOUS CASE

We start by introducing an appropriate stochastic basis on which our observation
data are defined. Let B(0) = (

�(0),F (0),F(0) = (F (0)
t )t∈R+ , P(0)

)
be a stochas-

tic basis. Namely, (�,F, P) denotes a probability space and F denotes a filtra-
tion of F . For any t ∈ R+ we have a transition probability Qt

(
ω(0),dz

)
from(

�(0),F (0)
t
)

into R2, which satisfies
∫

zQt (ω
(0),dz) = 0. We endow the space

�(1) = (R2)[0,∞) with the product Borel σ -field F (1) and with the probability
Q
(
ω(0),dω(1)

)
which is the product ⊗t∈R+ Qt (ω

(0), ·). We also call (ζt )t∈R+ the

“canonical process” on (�(1),F (1)) and the filtaration F (1)
t = σ(ζs ; s ≤ t). Then

we consider the stochastic basis B= (�,F,F = (Ft )t∈R+ , P) defined as follows:

�=�(0)×�(1), F = F (0)⊗F (1), Ft = ∩s>tF (0)
s ⊗F (1)

s ,

P
(

dω(0),dω(1)
)
= P(0)

(
dω(0)

)
Q
(
ω(0),dω(1)

)
.

Any variable or process which is defined on either �(0) or �(1) can be considered
in the usual way as a variable or a process on �. In terms of financial applications,
the space �(0) stands for latent log-price processes, while the space �(1) stands
for microstructure noise. In particular, the process (ζt )t∈R+ corresponds to the
microstructure noise which is centered and mutually independent conditionally
on the latent processes.

Next we introduce our observation data. There are two continuous semimartin-
gales X1 = (X1

t

)
t∈R+ and X2 = (X2

t

)
t∈R+ on B(0) with canonical decompositions

Xl = Al + Ml , l = 1,2, (3)

where A1 and A2 are continuous F(0)-adapted processes with locally finite varia-
tions, while M1 and M2 are continuous F(0)-local martingales. In financial appli-
cations X1 and X2 represent latent log-price processes of two assets. Furthermore,
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observation times are modeled as two sequences of F(0)-stopping times (Si )i∈Z+
and (T j )j∈Z+ that are increasing a.s.,

Si ↑∞ and T j ↑∞. (4)

As a matter of convenience we set S−1 = T−1 = 0. These stopping times implic-
itly depend on a parameter n ∈N, which represents the observation frequency. Let
ξ ′ be a constant satisfying 0 < ξ ′ < 1. In this paper, we will always assume that

rn(t) : = sup
i∈Z+

[(Si ∧ t)− (Si−1 ∧ t)]∨ sup
j∈Z+

[(T j ∧ t)− (T j−1 ∧ t)]

= op

(
n−ξ ′) (5)

as n → ∞ for any t ∈ R+. Note that rn(t) represents the maximum duration of
the sampling times up to the time t . The condition (5) is equivalent to assuming
that

sup
i≥0:Si≤t

(
Si − Si−1

)
∨ sup

j≥0:T j≤t

(
T j −T j−1

)
= op

(
n−ξ ′)

as n →∞ for any t ∈ R+.

Remark 2.1. Condition (5) implies that rn(t) tends to zero. In real applications,
this corresponds to the situation that rn(t) is sufficiently small i.e., data frequently
observed in the fixed interval [0, t]. Such situations appear in the analysis of high
frequency financial data. More concretely, let us consider a data set of intraday
transactions for some stocks traded on the New York Stock Exchange (NYSE).
Such stocks are often traded in seconds. We model this data as discrete observa-
tions of continuous-time stochastic processes in a fixed interval, say, [0,1]. Since
the NYSE is open for 6.5 hours, in this situation 1 second corresponds to 1/23400
of a trading day. 1/23400 seems to be sufficiently small, so we can make it valid
to assume that rn(t) tends to zero. In fact, it is standard in the literature to as-
sume that rn(t) tends to zero; see Barndorff-Nielsen et al. (2011) and Christensen,
Kinnebrock, and Podolskij (2010).

In order to derive central limit theorems for the estimators introduced in the
following, we will impose the following additional assumption regarding the de-
pendency between the sampling times and the observed processes, which is an
analog to the condition [A2] in Hayashi and Yoshida (2011) (known as the strong
predictability condition). Let ξ be a positive constant satisfying 1

2 < ξ < 1.

[A1] For any n, i ∈ N, Si and T i are G(n)-stopping times, where G(n) =(G(n)t
)

t∈R+ is the filtration given by G(n)t = F (0)
(t−n−ξ+1/2)+

for t ∈ R+.

Remark 2.2. When Si and T i are independent of X1, X2, X1, and X2 we
may assume Si and T i are F (0)

0 -measurable without loss of generality. This is
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because X1, X2, X1, and X2 are still continuous semimartingales with the canon-
ical decompositions (3) and (8) with respect to the filtration generated by F(0) and
S0,T 0, S1,T 1, . . . (for all n). Note that the condition [A2], which is a regularity
condition on the sampling times introduced below, uses the filtration Hn different
from F(0), so that expansions of the filtration F(0) causes no problem on [A2].
This implies that we can always assume that sampling times independent of X1,
X2, X1, and X2 satisfy the condition [A1].

Another example of sampling times satisfying [A1] (and [A2]) is given as fol-
lows. Let (Si ) and (T j ) be arbitrary sequences of F(0)-stopping times satisfying
[A2]. Then the sequences

(
Si + n−ξ+1/2

)
and

(
T j + n−ξ+1/2

)
obviously satisfy

[A1] and [A2]. This example implies that [A1] intuitively means that sampling
times are determined the short time

(= n−ξ+1/2) later than changes of latent pro-
cesses. In application, this type of delay will occur while a trader is asking the
broker to trade in a financial market.

On the other hand, [A1] rules out the presence of the instantaneous causality be-
tween the latent process and the durations of the observation times. For example,
if X1 is a martingale, then [A1] implies that the covariance between the simultane-
ous latent return and duration is zero, i.e. E

[(
Si − Si−1

)(
X1

Si − X1
Si−1

)]= 0. The
recent work of Li, Mykland, Renault, Zhang, and Zheng (2013) pointed out that
the non–zero relation of this covariance plays an important role in the volatility
inference as well as provided evidence that such a relation exists in financial data.
Renault and Werker (2011) also discussed the effect of the instantaneous causality
between the volatility and the durations on the volatility inference. See also Fuka-
sawa (2010), Fukasawa and Rosenbaum (2012), Li, Zhang, and Zheng (2013),
and Robert and Rosenbaum (2012) for other related works. In view of these
works, the condition [A1] is still restrictive in practice and needs to be weakened.
This topic, however, exceeds the scope of this paper and is left to future research.

The processes X1 and X2 are observed at the sampling times (Si ) and (T j )
with observation errors (U 1

Si )i∈Z+ and (U 2
T j )j∈Z+ respectively. In this paper, we

assume that the observation errors have the following representations:

U 1
Si =

√
n
(

X1
Si − X1

Si−1

)
+ ζ 1

Si , U 2
T j =

√
n
(

X2
T j − X2

T j−1

)
+ ζ 2

T j . (6)

Here, ζ k
t denotes the k-th component of the noise process ζt introduced in the

above, while X1 and X2 are two continuous semimartingales on B(0). After all,
we have the observation data X1 = (X1

Si

)
i∈Z+ and X2 = (X2

T j

)
j∈Z+ of the form

X1
Si = X1

Si +U 1
Si , X2

T j = X2
T j +U 2

T j .

Remark 2.3. Model (6) contains the usual additive noise model of the white
noise type. In fact, such a model can be realized by taking X1 = X2 = 0 and Qt =
Q for all t , where Q is the distribution of the noise i.e, a probability distribution
on R2 satisfying

∫
zQ(dz) = 0. Unlike this type of model, our model allows the
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noise to depend on both time and latent processes, which is empirically important;
see Hansen and Lunde (2006) and Kalnina and Linton (2008). In fact, model
(6) has a structure similar to that of the noise model proposed by Kalnina and
Linton (2008). However, there are some differences between them, as explained
in the following.

First, Kalnina and Linton (2008) allow the noise ζ l
t to have a nonzero mean

ml(t), where ml is a differentiable deterministic function. However, this differ-
ence is mathematically nonsense because we can always assume ml(t) ≡ 0 by
replacing Xl with Xl +ml as long as m is of finite variation (this is always true if
m is absolutely continuous).

Second, they also allow the variance of the noise to shrink to zero as the obser-
vation frequency n increases. Although it seems not to be difficult to incorporate
such a situation into our model, we omit it for simplicity. It is worth mentioning
that Jacod and Protter (2012) consider such a situation for preaveraging estima-
tors in the synchronous and equidistant sampling setting (see Chapter 16 of that
book for details).

Third, they (only) allow the variance of the noise ζ l
t to depend on the

time t , so the noise ζ l
t is a special case of the locally stationary processes of

Dahlhaus (1997) in their model. In our model the distribution of ζ l
t can depend

on t , so it is not encompassed with the locally stationary processes. In fact, our
model even allows the noise ζ l

t to depend on the whole past of X up to the time t
(as long as E[ζ l

t |Xl ]= 0). Especially, this allows us to incorporate noise involving
some rounding into the model; see Example 2 of Jacod et al. (2009) or Model 2
simulated in Section 5 for such ones.

Fourth, they only allow (possibly nonstandard) Wiener processes as the pro-
cess Xl . This induces a limitation of the range of the correlation between the la-
tent returns and the noise (it must be in the interval [−1/

√
2,1/

√
2]). Our model

does not induce such a restriction because we can take e.g., Xl = ψXl for any
constant ψ . Note that the noise ζ l

t cannot produce the correlation between the
latent returns and the microstructure noise, although the noise ζ l

t can depend on
Xl ; this is due to the restriction of E[ζ l

t |X ] = 0. For this reason we sometimes
refer to

√
n
(
X1

Si − X1
Si−1

)
and

√
n
(
X2

T j − X2
T j−1

)
as the endogenous noise, al-

though ζ l
t could be endogenous. The importance of modeling this type of endo-

geneity is discussed by several authors; see e.g. Hansen and Lunde (2006) and
Diebold (2006).

Remark 2.4. The reader might be afraid that the variance of the noise√
n
(
X1

Si − X1
Si−1

)
would blow up because we only assume that (5) is satisfied for

some ξ ′ < 1. However, this is not problematic due to the following reason. First,
we need to note that n−ξ ′ is an upper bound of the maximum duration rn(t). In
fact, since we will assume that the order of the number of observations is at most n
(see the condition [C1] below) and there is a restriction of

∑
Si≤t (S

i − Si−1)≤ t ,

there are few durations attaining the upper bound n−ξ ′ and most durations would
have the same magnitude as 1/n. See also Remark 2.6 for further discussion.
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Our aim is to estimate the integrated covariance [X1, X2]t of X1 and X2 at any
time t ∈R+ from the observation data

(
X1

Si

)
i :Si≤t and

(
X2

T j

)
j :T j≤t . It is necessary

to deal with both observation noise and nonsynchronicity of the observation times
simultaneously. As is mentioned in Section 1, we use the preaveraging technique
to remove the noise, while use the Hayashi–Yoshida method to deal with the non-
synchronicity. For the preaveraging technique we introduce some notation. We
choose a sequence kn of integers and a number θ ∈ (0,∞) satisfying

kn = θ
√

n+o(n1/4) (7)

(for example kn = �θ√n�). We also choose a continuous function g : [0,1] → R

which is piecewise C1 with a piecewise Lipschitz derivative g′ and satisfies
g(0) = g(1) = 0 and ψHY := ∫ 1

0 g(x)dx �= 0 (for example g(x) = x ∧ (1− x)).
We associate the random intervals I i = [Si−1, Si ) and J j = [T j−1,T j ) with the
sampling scheme (Si ) and (T j ) and refer to I = (I i )i∈N and J = (J j )j∈N as the
sampling designs for X1 and X2. We introduce the preaveraged observation data
of X1 and X2 based on the sampling designs I and J respectively as follows:

X
1
(I)i =

kn−1∑
p=1

g

(
p

kn

)(
X1

Si+p −X1
Si+p−1

)
,

X
2
(J ) j =

kn−1∑
q=1

g

(
q

kn

)(
X2

T j+q −X2
T j+q−1

)
, i, j = 0,1, . . . .

The following quantity was introduced in Christensen et al. (2010) :

DEFINITION 2.1 (Preaveraged Hayashi–Yoshida estimator). The preaveraged
Hayashi–Yoshida estimator, or preaveraged HY estimator of X1 and X2 associ-
ated with sampling designs I and J is the process

P HY (X1,X2; I,J )nt = 1

(ψHY kn)2

∞∑
i, j=0

Si+kn∨T j+kn≤t

X
1
(I)iX2

(J ) j 1{[Si ,Si+kn )∩[T j ,T j+kn ) �=∅}, t ∈ R+.

Remark 2.5. It is worth mentioning that even in the univariate case the above
estimator is different from the preaveraging version of the realized volatility pro-
posed in Jacod et al. (2009). In particular, we need no bias-correction term which
is related to noise. To see why this difference occurs, we focus on the univariate
case. Therefore, the above estimator can be rewritten as

P HY (X1,X1; I,I)nt = 1

(ψHY kn)2

m−kn∑
i, j :i, j=0
|i− j |<kn

X
1
(I)iX1

(I) j ,
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where m = max{i : Si ≤ t}. Since it holds that

i+kn−1∑
j=i−kn+1

U
1
(I) j =

i+kn−1∑
j=i−kn+1

kn−1∑
p=0

{
g

(
p

kn

)
− g

(
p+1

kn

)}
U 1

S j+p

=
i+2kn−1∑

p=i−kn+1

p∑
j=p−kn+1

{
g

(
p− j

kn

)
− g

(
p− j +1

kn

)}
U 1

S p

=
i+2kn−1∑

p=i−kn+1

{g (0)− g (1)}U 1
S p = 0

if kn − 1 ≤ i ≤ m − 2kn + 1, the noise has no contribution to the estimator in
asymptotics. See also Remark 3.2 of Christensen, Podolskij, and Vetter (2011b).

Remark 2.6. Regarding the issue discussed in Remark 2.4, the things become
more clear when we focus on the preaveraged data. For simplicity we assume that
both X1 and X1 are standard Brownian motions. Then we have

E

[∣∣∣X1
(I)i

∣∣∣2]= E

⎡⎢⎣
∣∣∣∣∣∣
kn−1∑
p=1

g

(
p

kn

)(
X1

Si+p − X1
Si+p−1

)∣∣∣∣∣∣
2
⎤⎥⎦

= E

⎡⎣kn−1∑
p=1

g

(
p

kn

)2(
Si+p − Si+p−1

)⎤⎦
and

E

[∣∣∣U1
(I)i

∣∣∣2]= E

⎡⎢⎣
∣∣∣∣∣∣
kn−1∑
p=0

�(g)npU1
Si+p

∣∣∣∣∣∣
2
⎤⎥⎦

= nE

⎡⎣kn−1∑
p=0

∣∣∣�(g)np∣∣∣2 (Si+p − Si+p−1
)⎤⎦+E

⎡⎣kn−1∑
p=0

∣∣∣�(g)np∣∣∣2 (ζ 1
S p

)2

⎤⎦ ,
where �(g)np = g((p + 1)/kn)− g(p/kn). Since �(g)np = O(1/

√
n) due to (7),

U
1
(I)i has the same magnitude as that of X

1
(I)i .

The main subject of the present article is to develop fully an asymptotic theory
for the method in a general setting, which involves the asymptotic mixed normal-
ity of the estimator. The above estimator is, however, not proper to this purpose. In
fact, the associated central limit theorem for the above estimator has been shown
in Christensen et al. (2011b), but it is restricted to the case when observation times
are deterministic (or random but independent of the observed processes) and some
important sampling schemes in practice, like the Poisson sampling schemes, are
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excluded. Moreover, the asymptotic variance given in their theorem has a quite
complex form which depends on the special forms of the sampling times consid-
ered in that paper, so that it seems to be impossible that one extends their result
to more general sampling schemes involving the Poisson sampling schemes. For
this reason, we modify the above estimator as follows. The following notion was
introduced to this area in Barndorff-Nielsen et al. (2011):

DEFINITION 2.2 (Refresh time). The first refresh time of sampling designs I
and J is defined as R0 = S0 ∨T 0, and then subsequent refresh times as

Rk := min
{

Si |Si > Rk−1}∨min
{
T j |T j > Rk−1}, k = 1,2, . . . .

We introduce new sampling schemes by a kind of the next-tick interpolations
to the refresh times. That is, we define Ŝ0 := S0, T̂ 0 := T 0, and

Ŝk := min{Si |Si > Rk−1}, T̂ k := min{T j |T j > Rk−1}, k = 1,2, . . . .

Then, we create new sampling designs as follows:

Î k := [Ŝk−1, Ŝk), Ĵ k := [T̂ k−1, T̂ k), Î := ( Î i )i∈N, Ĵ := ( Ĵ j )j∈N.

For the sampling designs Î and Ĵ obtained in such a manner, we will consider
the preaveraged HY estimator P̂ HY

(
X1,X2

)n := P HY
(
X1,X2; Î, Ĵ )n .

Now we review the results related to the consistency and the asymptotic mixed
normality of the estimator P̂ HY

(
X1,X2

)n . We write the canonical decomposi-
tions of X1 and X2 as follows:

Xl = Al + Ml , l = 1,2. (8)

Here, A1 and A2 are continuous F(0)-adapted processes with locally finite vari-
ations, while M1 and M2 are continuous F(0)-local martingales. Next, let N n

t =∑∞
k=1 1{Rk≤t} for each t ∈ R+, and we introduce the following regularity condi-

tions:

[C1] n−1 N n
t = Op(1) as n →∞ for every t .

[C2] A1, A2, A1, A2, and [V,W ] for V,W = X1, X2, X1, X2 are absolutely con-
tinuous with locally bounded derivatives.

Furthermore, for every r ∈ [2,∞) we introduce the following regularity condition
for the noise process:

[N

r ] (

∫ |z|r Qt (dz))t∈R+ is a locally bounded process.

A sequence (Xn) of stochastic processes is said to converge to a process X
uniformly on compacts in probability (abbreviated ucp) if, for each t > 0,

sup0≤s≤t |Xn
s − Xs | →p 0 as n → ∞. We then write Xn ucp−−→ X . We have the

following result about the consistency of the preaveraged HY estimator (shown in
Appendix A.1):
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THEOREM 2.1. Suppose (5), [C1]-[C2] and [N

2] are satisfied. Then

P̂ HY
(
X1,X2)n ucp−−→ [X1, X2]

as n →∞, provided that ξ ′ > 1/2.

The consistency of the preaveraged HY estimator was first shown in
Christensen et al. (2010) in a simpler situation.

Next we review the results related to the asymptotic mixed normality of the
preaveraged HY estimator. As noted in the above, this result was first proven
in Christensen et al. (2011b) for the original one from Definition 2.1 when the
sampling times are deterministic transformation of equidistant ones.

Let N n,1
t =∑∞

k=1 1{̂Sk≤t} and N n,2
t =∑∞

k=1 1{T̂ k≤t} for each t ∈ R+ and

�k = [Rk−1, Rk), Ǐ k := [Šk, Ŝk), J̌ k := [Ť k, T̂ k)

for each k ∈ N. Here, for each t ∈ R+ we write Šk = supSi<Ŝk Si and Ť k =
supT j<T̂ k T j . Note that Šk and Ť k may not be stopping times.

Let Hn = (Hn
t )t∈R+ be a sequence of filtrations of F to which N n , N n,1, and

N n,2 are adapted, and for each n and each ρ ≥ 0 we define the processes χn ,
G(ρ)n , F(ρ)n,1, F(ρ)n,2, and F(1)n,1∗2 by

χn
s = P(Ŝk = T̂ k

∣∣Hn
Rk−1), G(ρ)ns = E

[(
n|�k |

)ρ ∣∣Hn
Rk−1

]
,

F(ρ)n,1s = E
[(

n| Ǐ k |
)ρ ∣∣Hn

Ŝk−1

]
, F(ρ)n,2

s = E
[(

n| J̌ k |
)ρ ∣∣Hn

T̂ k−1

]
,

F(1)n,1∗2
s = nE

[
| Ǐ k ∩ J̌ k |+ | Ǐ k+1 ∩ J̌ k |+ | Ǐ k ∩ J̌ k+1|∣∣Hn

Rk−1

]
when s ∈ �k .

In addition to the crucial measurability condition [A1], we need a number of
regularity conditions on the model, which are more or less commonly used in the
literature. We detailed such conditions used in this paper in the following.

The following condition is necessary to compute the asymptotic variance of
the estimation error of our estimator explicitly. In fact, this condition ensures that
quantities appearing in the asymptotic variance indeed converge. For a sequence

(Xn) of càdlàg processes and a càdlàg process X , we write Xn Sk.p.−−→ X if (Xn)
converges to X in probability for the Skorokhod topology.

[A2] (i) For each n, we have a càdlàg Hn-adapted process Gn and a random
subset N 0

n of N such that (#N 0
n )n∈N is tight, G(1)n

Rk−1 = Gn
Rk−1 for

any k ∈N−N 0
n , and there exists a càdlàg F(0)-adapted process G sat-

isfying that G and G− do not vanish and that Gn Sk.p.−−→ G as n → ∞.

(ii) There exists a constant ρ ≥ 1/ξ ′ such that
(
sup0≤s≤t G(ρ)n

s

)
n∈N is

tight for all t > 0.
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(iii) For each n, we have a càdlàg Hn-adapted process χ ′n and a random
subset N ′

n of N such that (#N ′
n)n∈N is tight, χn

Rk−1 = χ ′n
Rk−1 for any

k ∈ N−N ′
n , and there exists a càdlàg F(0)-adapted process χ such

that χ ′n Sk.p.−−→ χ as n →∞.

(iv) For each n and l = 1,2,1 ∗ 2, we have a càdlàg Hn-adapted pro-
cess Fn,l and a random subset N l

n of N such that (#N l
n)n∈N is tight,

F(1)n,l
Rk−1 = Fn,l

Rk−1 for any k ∈N−N l
n , and there exists a càdlàg F(0)-

adapted processes Fl satisfying Fn,l Sk.p.−−→ Fl as n →∞.

(v) There exists a constant ρ′ ≥ 1/ξ ′ such that
(

sup0≤s≤t F(ρ′)n,ls

)
n∈N

is tight for all t > 0 and l = 1,2.

The following condition is a sufficient one for the condition [A2]:

[A2�] (i) For every ρ ∈ [0,1/ξ ′] there exists a càdlàg F(0)-adapted process

G(ρ) such that G(ρ)n
Sk.p.−−→ G(ρ) as n →∞. Furthermore, G and

G− do not vanish, where G = G(1).

(ii) There exists a càdlàg F(0)-adapted process χ such that χn Sk.p.−−→ χ
as n →∞.

(iii) For every l = 1,2 and every ρ′ ∈ [0,1/ξ ′], there exists a càdlàg F(0)-

adapted process F(ρ)l such that F(ρ)n,l
Sk.p.−−→ F(ρ)l as n →∞.

(iv) There exists a càdlàg F(0)-adapted process F(1)1∗2 such that

F(1)n,1∗2 Sk.p.−−→ F(1)1∗2 as n →∞.

Remark 2.7.

(i) Under [A2](i)–(ii) it can be shown that

1

n
N n

t →p
∫ t

0

1

Gs
ds (9)

as n →∞ for any t ∈ R+ in a similar manner to the proof of Lemma 2.2
of Hayashi, Jacod, and Yoshida (2011). In particular, [A2] implies that
the parameter n corresponds to the magnitude of the number N n

t of the
(synchronized) observation times.

(ii) An [A2�] type condition appears in Barndorff-Nielsen et al. (2011) and
Hayashi et al. (2011), for example. The reason why we introduce a kind
of exceptional setsN l

n (l = 0,1,2,1∗2,′ ) is that the condition [A2] with-
out them is too local. To explain this, we focus on the univariate case.
Note that in this case we have Rk = Sk (k = 0,1,2, . . . ). Let τ be a posi-
tive number and suppose that (Si ) be a sequence of Poisson arrival times
whose intensity is λ before the time τ and λ after τ . Then the structure of
the process G(1)n becomes very complex around the time τ (of course if
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λ �= λ), so that it will be difficult to verify the convergence G(1)n
Sk.p.−−→ G

because it requires a kind of uniformity.

Since we consider sampling times which are possibly nonequidistant and non-
synchronous, it is necessary to impose a kind of continuity condition on the
density processes of A1, [X1], etc., as Hayashi and Yoshida (2011) did. Accord-
ingly, we introduce the following conditions, which are analogs to the conditions
[A3] and [A4] in Hayashi and Yoshida (2011):

[A3] For each V,W = X1, X2, X1, X2, [V,W ] is absolutely continuous with
a càdlàg derivative, and for the density process f = [V,W ]′ there is a
sequence (σk) of F(0)-stopping times such that σk ↑ ∞ as k →∞ and for
every k and any λ > 0, we have a positive constant Ck,λ satisfying

E
[
| f σk
τ1

− f σk
τ2
|2∣∣Fτ1∧τ2

]
≤ Ck,λE

[
|τ1 − τ2|1−λ

∣∣Fτ1∧τ2

]
(10)

for any bounded F(0)-stopping times τ1 and τ2, and f is adapted to Hn .

[A4] ξ ∨ 9
10 < ξ ′ and (5) holds for every t ∈ R+.

Due to the same reason as stated in the above, conditions analogous to [A5]
and [A6] in Hayashi and Yoshida (2011) are necessary to deal with the drift parts.
For a (random) interval I and a time t , we write I (t)= I ∩ [0, t).

[A5] A1, A2, A1, and A2 are absolutely continuous with càdlàg derivatives, and
there is a sequence (σk) of F(0)-stopping times such that σk ↑∞ as k →∞
and for every k we have a positive constant Ck0 and λk ∈ (0,3/4) satisfying

E
[
| f σk

t − f σk
τ |2∣∣Fτ∧t

]
≤ Ck E

[
|t − τ |1−λk

∣∣Fτ∧t

]
(11)

for every t > 0 and any bounded F(0)-stopping time τ , for the density pro-
cesses f = (A1)′, (A2)′, (A1)′, and (A2)′.

[A6] For each t ∈ R+, nHn(t) = Op(1) as n → ∞, where Hn(t) =∑∞
k=1 |�k(t)|2.

Let r ∈ [2,∞). The following condition is a regularity condition for the noise
process:

[Nr ]
(∫ |z|r Qt (dz)

)
t∈R+ is a locally bounded process, and the covariance matrix

process

�t (ω
(0))=

∫
zz∗Qt (ω

(0),dz). (12)

is càdlàg, quasi-left continuous and adapted to Hn for every n. Here, an
asterisk denotes the transpose of a matrix. Furthermore, there is a sequence
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(σ k) of F(0)-stopping times such that σ k ↑ ∞ as k → ∞ and for every k
and any λ > 0, we have a positive constant Ck,λ satisfying

E
[
|� i j

σ k∧t
−�

i j
σ k∧(t−h)+|

2
∣∣F(t−h)+

]
≤ Ck,λh1−λ (13)

for any i, j ∈ {1,2} and any t,h > 0.

[Nr ] is obviously satisfied if the noise is i.i.d. and independent of the latent pro-
cesses with the moment of the r -th order i.e., Qt = Q for all t , where Q is a
probability distribution on R2 satisfying

∫
zQ(dz)= 0 and

∫ |z|r Q(dz) <∞. We
need to assume that [N8] holds true for verifying a Lindeberg-type condition.

Remark 2.8. Inequalities (10), (11), and (13) are satisfied when w( f ; h, t) =
Op
(
h

1
2−λ) as h →∞ for every t ∈ (0,∞) and for every λ ∈ (0,∞), for example.

Here, for a real-valued function x on R+, the modulus of continuity on [0,T ] is
denoted by w(x ; δ,T ) = sup{|x(t)− x(s)|; s, t ∈ [0,T ], |s − t | ≤ δ} for T,δ > 0.
This is the original condition in Hayashi and Yoshida (2011). Another example
where (10), (11), and (13) are satisfied is the case that there exists an F(0)-adapted
process B with a locally integrable variation and a locally square-integrable mar-
tingale L such that f = B + L and both of the predictable compensator of the
variation process of B and the predictable quadratic variation of L are absolutely
continuous with locally bounded derivatives. This type of condition is familiar in
the context of the estimation of volatility-type quantities; see Hayashi et al. (2011)
and Jacod, Podolskij, and Vetter (2010) for example. Furthermore, in both cases
f is càdlàg and quasi-left continuous.

Remark 2.9. Conditions [A1], [A2], [A4], and [A6] are satisfied by sampling
schemes that arise as realizations of two homogeneous Poisson processes which
are mutually independent and independent of the processes X1, X2, X1 and X2.
In fact, suppose that (Si ) and (T j ) are the arrival times of two mutually inde-
pendent Poisson processes with intensities np1 and np2 (p1, p2 > 0) which are
independent of X1, X2, X1, and X2, respectively. Then, [A1] is satisfied due to
the reason stated in Remark 2.2, while [A4] and [A6] can easily be verified by
using the fact that the durations are exponentially distributed. Finally, a simple
computation yields [A2] holds true with

Gs = 1

p1
+ 1

p2
− 1

p1 + p2
, χs = 0, F1

s = 1

p1
, F2

s = 1

p2
, F1∗2

s = 2

p1 + p2
.

This type of sampling scheme is one of the most popular model for observation
times in the literature; see e.g. Bibinger (2012), Hayashi and Yoshida (2005), and
Zhang (2011).

We extend the functions g and g′ to the whole real line by setting g(x) =
g′(x)= 0 for x /∈ [0,1]. Then we put

κ :=
∫ 2

−2
ψg,g(x)

2dx, κ̃ :=
∫ 2

−2
ψg′,g′(x)

2dx, κ :=
∫ 2

−2
ψg,g′(x)

2dx .
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Here, for each f1, f2 ∈ {g,g′} we define the function ψ f1, f2 on R by ψ f1, f2(x)=∫ 1
0

∫ x+u+1
x+u−1 f1(u) f2(v)dvdu.

We denote by D(R+) the space of càdlàg functions on R+ equipped with the
Skorokhod topology. A sequence of random elements Xn defined on a probability
space (�,F, P) is said to converge stably in law to a random element X defined
on an appropriate extension (�̃, F̃, P̃) of (�,F, P) if E[Y g(Xn)] → E[Y g(X)]
for any F-measurable and bounded random variable Y and any bounded and con-
tinuous function g. We then write Xn →ds X .

Now we are ready to state the result related to the asymptotic mixed normality
of the preaveraged HY estimator.

THEOREM 2.2.

(a) Suppose [A1], [A2](i)–(iii), [A3]-[A6] and [N8] are satisfied. Suppose
also X1 = X2 = 0. Then

n1/4{̂P HY (X1,X2)n − [X1, X2]} →ds

∫ ·

0
wsdW̃s in D(R+) (14)

as n → ∞, where W̃ is a one-dimensional standard Wiener process (de-
fined on an extension of B) independent of F and w is given by

w2
s =ψ−4

HY

[
θκ
{[

X1]′
s

[
X2]′

s +
([

X1, X2]′
s

)2}
Gs

+θ−3κ̃

{
�11

s �22
s +

(
�12

s χs

)2
}

G−1
s

+ θ−1κ
{[

X1]′
s�

22
s + [X2]′

s�
11
s +2

[
X1, X2]′

s�
12
s χs

}]
. (15)

(b) Suppose [A1]–[A6] and [N8] are satisfied. Then (14) holds true as n →∞
with W̃ as above and w is given by

w2
s =ψ−4

HY

[
θκ
{[

X1]′
s

[
X2]′

s +
(
[X1, X2]′

s

)2}
Gs

+θ−3κ̃
{
�

11
s �

22
s +

(
�

12
s

)2}
G−1

s

+θ−1κ
{[

X1]′
s�

22
s + [X2]′

s�
11
s +2

[
X1, X2]′

s�
12
s

−
([

X1, X2]′
s F1

s − [X1, X2]′s F2
s

)2
G−1

s

}]
, (16)

where �
ll
s =�ll

s +[Xl
]′

s Fl
s (l = 1,2) and �

12
s =�12

s χs +
[
X1, X2

]′
s F1∗2

s .

The proof is given in Appendix A.2.

Remark 2.10. Our situation contains the following specification as a special
case: X1 and X2 are two correlated standard Wiener processes with constant cor-
relation ρ,

(
U 1

Si

)
, and

(
U 2

T i

)
are mutually independent i.i.d. centered Gaussian
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random variables independent of X1 and X2, and Si = T i = i/n. In this case it
is known that an upper bound of the convergence rate to estimate the parameter
ρ from the observation data

(
X1

Si

)
i :Si≤1 and

(
X2

T j

)
i :T j≤1 is given by n−1/4 (see

Proposition 6 of Bibinger, 2011), so the estimator P̂ HY (X1,X2)n achieves the
optimal rate of convergence.

3. MAIN RESULTS

In this section we investigate the case that the latent processes possibly have
jumps. Let Z1 = (Z1

t

)
t∈R+ and Z2 = (Z2

t

)
t∈R+ be two stochastic processes on(

�(0),F (0), P(0)
)
. From now on Z1 and Z2 will correspond the latent log-price

processes, while X1 and X2 will correspond the continuous components of them.
We have the observation data Z1 = (Z1

Si

)
i∈Z+ and Z2 = (Z2

T j

)
j∈Z+ of Z1 and Z2

contaminated by noise:

Z1
Si = Z1

Si +U 1
Si , Z2

T j = Z2
T j +U 2

T j .

Here, the observation noise
(
U 1

Si

)
i∈Z+ and

(
U 2

T j

)
j∈Z+ are given by (6).

The idea for the construction of our estimator is as follows. The preaveraging
procedure smooths the noise and thus we can expect the preaveraged data Z̄1(Î)i
and Z̄2(Ĵ ) j are small enough if they contain no jumps. This idea has already ap-
peared in Aı̈t-Sahalia, Jacod, and Li (2012) and Podolskij and Ziggel (2010) in the
univariate case and Jing, Li, and Liu (2011) in the synchronous case. Following
this idea, we introduce the following quantity:

DEFINITION 3.1 (Preaveraged truncated Hayashi–Yoshida estimator). The
preaveraged truncated Hayashi–Yoshida estimator, or PTHY estimator of two ob-
servation data Z1 and Z2 is the process

P̂T HY (Z1,Z2)nt = 1

(ψHY kn)2

×
∑

i, j :Ŝi+kn∨T̂ j+kn≤t

Z
1
(Î)iZ2

(Ĵ ) j K̄ i j 1{|Z1
(Î)i |2≤�1

n(Ŝ
i ),|Z2

(Ĵ ) j |2≤�2
n(T̂

j )}, ∈ R+,

where

Z
1
(Î)i =

kn−1∑
p=1

g

(
p

kn

)(
Z1

Ŝi+p −Z1
Ŝi+p−1

)
,

Z
2
(Ĵ ) j =

kn−1∑
q=1

g

(
q

kn

)(
Z2

T̂ j+q −Z2
T̂ j+q−1

)
, i, j = 0,1, . . . ,

K̄ i j = 1{[Ŝi ,Ŝi+kn )∩[T̂ j ,T̂ j+kn )�=∅} and (�l
n(t))n∈N, l = 1,2, are two sequences of

positive-valued stochastic processes.
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Remark 3.1. Wang et al. (2013) proposed a truncated version of P HY (X1,
X2; I,J )nt :

1

(ψHY kn)2

×
∑

i, j :Si+kn ∨T j+kn ≤t

Z
1
(I)iZ2

(J ) j 1{
[Si ,Si+kn )∩[T j ,T j+kn )�=∅,|Z1

(I)i |2≤�1
n (S

i ),|Z2
(J ) j |2≤�2

n (T
j )
}. (17)

They proved the consistency of this estimator under the conditions [K2](i)–(iv)
(see Section 3.2 about this condition) when

(
U 1

Si

)
and

(
U 2

T j

)
are centered

i.i.d. random variables independent of Z1 and Z2. As noted in the previous
section, in order to derive the asymptotic mixed normality in a general sampling
setting, we use the additional synchronization procedure for constructing the
estimator in addition to the approach of Wang et al. (2013). Moreover, there is
another advantage in using the synchronization procedure for the construction:
Suppose that (Si ) is sampled more frequently than (T j ), e.g. Si = i/n and
T j = jm/n for some large integer m. Then, even if [Si , Si+kn )∩ [T j ,T j+kn ) �= ∅
the nonoverlap part between [Si , Si+kn ) and ∩[T j ,T j+kn ) is large. For example,
in the case that Si = i/n and T j = jm/n, [S jm, S jm+kn ) ∩ [T j ,T j+kn ) �= ∅
but the nonoverlap part [( jm + kn)/n, ( jm + kn)/n + (m − 1)kn/n) is large if

m is large. As a consequence, the product Z
1
(I)iZ2

(J ) j 1{[Si ,Si+kn )∩[T j ,T j+kn )}
involves many cross-products of the latent returns over nonoverlap intervals
such as

(
Z1

S p − Z1
S p−1

)(
Z2

T q − Z2
T p−1

)
1{[S p−1,S p)∩[T q−1,T q )�=∅}. This will boost

the root mean squared error of the estimator given by (17). Our synchronization
procedure enables us to avoid this problem. We will check this advantage by a
Monte Carlo experiment in Section 5.

We will write �1
n[i] := �1

n(Ŝ
i ) and �2

n[ j] := �2
n(T̂

j ) for short.

3.1. Finite Activity Jump Case

First we consider the case that the observed processes have at most finite jumps.
We assume the following structural assumption:

[F] For each l = 1,2 we have Zl
t = Xl

t +
∑Nl

t
k=1 γ

l
k , where Xl is a continuous

semimartingale on B(0) given by (3), Nl is a (simple) point process adopted
to F(0), and (γ l

k )k∈N is a sequence of nonzero random variables.

Moreover, we impose the following condition on the threshold processes:

[T] ξ ′ > 1/2, and for each l = 1,2 we have �l
n(t)= αl

n(t)ρn , where

(i) (ρn)n∈N is a sequence of (deterministic) positive numbers satisfying
ρn → 0 and

n−ξ ′+1/2 logn

ρn
→ 0 (18)

as n →∞.
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(ii) (αl
n(t))n∈N is a sequence of (not necessarily adapted) positive-valued

stochastic processes. Moreover, there exists a sequence (Rl
k) of stop-

ping times (with respect to F) such that Rl
k ↑ ∞ and both of the

sequences
(

sup0≤t<Rl
k
αl

n(t)
)

n∈N and
(

sup0≤t<Rl
k
[1/αl

n(t)]
)

n∈N are
tight for all k.

Remark 3.2. Condition [T](ii) implies that the processes α1
n(t) and α2

n(t) have
no impact on the convergence rates of the threshold estimators, so that they are
controlled by the sequence ρn . Condition [T](i) says that ρn converges to zero

slower than n−ξ ′+1/2 logn, which dominates the modulus of continuity of X
1
(Î)i

and X
2
(Ĵ ) j (see Lemma A.3.2). Therefore, [T](i) can be regarded as a counter-

part of Assumption 3 from Mancini and Gobbi (2012). [T](ii) allows the threshold
processes to depend on both time and observation data, which is important for ap-
plications because it is natural to select the threshold processes dependently on
the data; see Section 5.1.

Now we obtain the following theorem.

THEOREM 3.1. Suppose [F], [T], [C1]–[C2] and [N

r ] hold for some r ∈

(2,∞). Then we have

sup
0≤s≤t

|P̂T HY (Z1,Z2)ns − P̂ HY (X1,X2)ns | = op(n
− 1

4 )+ Op

((
n− 1

2 ρ−1
n

) r−2
2
)

as n →∞ for any t > 0.

The proof of this theorem is given in Appendix A.3. Combining this result with
Theorem 2.1 or Theorem 2.2, we obtain the following results:

THEOREM 3.2 (Consistency of the PTHY estimator in finite activity
case). Suppose [F], [T], [C1]-[C2] and [N


r ] hold for some r ∈ (2,∞). Then we
have

P̂T HY (Z1,Z2)n
ucp−−→ [X1, X2] (19)

as n →∞.

THEOREM 3.3 (Asymptotic mixed normality of the PTHY estimator in finite
activity case).

(a) Suppose [A1], [A2](i)–(iii), [A3]-[A6] and [F] are satisfied. Suppose
also X1 = X2 = 0, [Nr ] holds for some r ∈ [8,∞) and [T] holds with
n(r−3)/{2(r−2)}ρn →∞ as n →∞. Then

n1/4
{

P̂T HY
(
Z1,Z2)n − [X1, X2]}→ds

∫ ·

0
wsdW̃s in D(R+) (20)

as n →∞, where W̃ is the same one as in Theorem 2.2 and w is given by
(15).
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(b) Suppose [A1]–[A6] and [F] are satisfied. Suppose also [Nr ] holds for some
r ∈ [8,∞) and [T] holds with n(r−3)/{2(r−2)}ρn →∞ as n →∞. Then (20)
holds with that W̃ is as in the above and w is given by (16).

3.2. Infinite Activity Jump Case

Next we consider the case that the observed processes are two general semimartin-
gales contaminated by noise. We need the following structural assumption. Let
β ∈ [0,2].

[Kβ ] For each l = 1,2, we have

Zl = Xl +κ
(
δl)� (μl −νl)+κ ′

(
δl)�μl ,

where

(i) Xl is a continuous semimartingale given by (3).

(ii) μl is a Poisson random measure on R+ × El with intensity measure
νl(dt,dx) = dt Fl(dx), where

(
El ,E l

)
is a Polish space and Fl is a

σ -finite measure on
(
El ,E l

)
.

(iii) κ(x)= x1{|x |≤1} and κ ′(x)= x −κ(x) for each x ∈ R.

(iv) δl is a predictable map from �(0)×R+× El into R. Moreover, there
are a sequence

(
Rl

k

)
of stopping times increasing to ∞ and a sequence(

ψ l
k

)
of nonnegative measurable functions on El such that

sup
ω(0)∈�(0),t<Rl

k (ω
(0))

|δl(ω, t, x)| ≤ ψ l
k(x) and

∫
El

1∧ψ l
k(x)

β Fl(dx) <∞.

(v) If β < 1, for the process ft =
∫

El κ(δl(t, x))Fl(dx), there is a se-
quence (σk) of F(0)-stopping times such that for every k we have a
positive constant Ck and λk ∈ (0,3/4) satisfying (11) for every t > 0
and any bounded F(0)-stopping time τ .

Here and below � denotes the integral (either stochastic or ordinary) with re-
spect to some (integer-valued) random measure; see Chapter II of Jacod and
Shiryaev (2003) for details. Except for the condition (v), the above type of as-
sumption appears in many articles, for example Jacod (2008). Condition [Kβ ](v)
is necessary because sampling times are possibly nonequidistant and nonsyn-
chronous in our situation. In fact, this condition can be seen as a jump-component
counterpart of [A5] because using the notation in [Kβ ](v)

∫ t
0 fsds is the drift part

of the jump-component. We also note that [Kβ ] implies that for each l = 1,2 the
generalized Blumenthal–Getoor index of Zl is less or equal than β.

THEOREM 3.4. Suppose [Kβ ] and [N

r ] hold for some β ∈ [0,2] and r ∈ (2,

∞). Suppose also [C1]-[C2], [A1], [A4], [A6], and [T] are satisfied. Then we have
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sup
0≤s≤t

|P̂T HY
(
Z1,Z2)n

s − P̂ HY
(
X1,X2)n

s | = op(n
− 1

4 )+ Op

((
n− 1

2 ρ−1
n

) r−2
2
)
+op

(
ρ

1−β/2
n

)
as n →∞ for any t > 0.

The proof of this theorem is given in Appendix A.4. Combining this result with
Theorem 2.1 or Theorem 2.2, we obtain the following results:

THEOREM 3.5 (Consistency of the PTHY estimator in infinite activ-
ity case). Suppose [K2] and [N


r ] hold for some r ∈ (2,∞). Suppose also [C1]–
[C2], [A1], [A4], [A6] and [T] are satisfied. Then we have (19) as n →∞.

THEOREM 3.6 (Asymptotic mixed normality of the PTHY estimator in infinite
activity case).

(a) Suppose [A1], [A2](i)–(iii) and [A3]–[A6] are satisfied. Suppose also [Nr ]
holds for some r ∈ [8,∞), [Kβ ] holds for some β ∈ [0,2− 1

2ξ ′−1 ) and [T]

holds with n(r−3)/{2(r−2)}ρn → ∞ and ρn = O
(
n−1/{2(2−β)}) as n → ∞.

Moreover, suppose X1 = X2 = 0. Then (20) holds true as n →∞ with that
W̃ is the same one as in Theorem 2.2 and w is given by (15).

(b) Suppose [A1]–[A6] are satisfied. Suppose also [Nr ] holds for some
r ∈ [8,∞), [Kβ ] holds for some β ∈ [0,2 − 1

2ξ ′−1 ) and [T] holds with

n(r−3)/{2(r−2)}ρn → ∞ and ρn = O(n−1/{2(2−β)}) as n → ∞. Then (20)
holds true as n →∞ with that W̃ is as in the above and w is given by (16).

Note that the assumptions of Theorem 3.6 require at least β < 1.

Remark 3.3 (Rate of convergence). We shall briefly discuss the best rate of
convergence of our estimator available from Theorem 3.6. For simplicity we as-
sume that the noise processes have moments of all orders i.e., [N


r ] holds true
for all r > 0. We also assume that rn(t) = op

(
n−ξ ′) for any ξ ′ ∈ (0,1) and any

t > 0. In this case, under the assumptions in Theorem 3.6, the best rate of conver-
gence for our estimator is n−1/4 if β < 1. Since the optimal rate of convergence is
given by n−1/4 in the continuous case according to Bibinger (2011), our estimator
achieves the optimal rate if β < 1. On the other hand, if β ≥ 1 the theorem does
not tell us what the best rate is. However, it tells us that the rate of convergence
can be faster than n−(1−β/2)� for any � ∈ (0,1). This result can be seen as an
analog of the one given by Jacod (2008) in the absence of noise. In fact, in the
absence of noise Jacod (2008) showed that the convergence rate of the truncated
realized volatility can be faster than n−(2−β)� for any � ∈ (0,1). In the continu-
ous case the optimal rate changes from n−1/2 in the absence of noise to n−1/4 in
the presence of noise, so that the above result seems to be natural.

Remark 3.4 (Positivity). In the present article we focus on estimating the com-
ponents of the integrated covariance matrix rather than the matrix itself. When the
estimation of the matrix itself is the main interest, it is another important issue for
applications whether the estimator guarantees positivity in finite samples. Indeed,
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as far as the author knows, no existing rate-optimal estimators guarantee positivity
in the current setup without jumps, except for the realized quasi-maximum like-
lihood estimator proposed by Shephard and Xiu (2012) recently. Hence we shall
give a brief discussion on this issue here.

Let us consider the (noncomponent-wise) estimator for the integrated covari-
ance matrix:

PT HY [Z]n
t :=

[
PT HY (Z1,Z1; Î, Î)nt PT HY (Z1,Z2; Î, Ĵ )nt
PT HY (Z1,Z2; Î, Ĵ )nt PT HY (Z2,Z2; Ĵ , Ĵ )nt

]
.

Then, we can show that PT HY [Z]n
t is not always positive-semidefinite in the fol-

lowing way. To simplify the problem, we focus on the synchronous case Si = T i

for every i . Note that in this case we have Ŝi = T̂ i = Ri = Si = T i . Then, in view
of the fact that K̄ i j �= 0 is equivalent to |i − j |< kn (because of the synchronicity),
we can rewrite our estimator as

PT HY [Z]n
t = 1

(ψHY kn)2

N n
t −kn∑

i, j=0

f0

(
i − j

kn

)
Z̃i
(̃
Zj
)∗
.

Here, we define the random vector Z̃i = (̃
Z1

i , Z̃
2
i

)∗
by Z̃1

i = Z1
(Î)i

1{|Z1
(Î)i |2≤�1

n(Ŝ
i )} and Z̃2

j = Z2
(Ĵ ) j 1{|Z2

(Ĵ ) j |2≤�2
n(T̂

j )} (recall that an asterisk

denotes the transpose of a matrix) and the function f0 onR by f0(x)= 1(−1,1)(x).
Since f0 is not a positive-definite function, PT HY [Z]n

t does not guarantee posi-
tivity. Here, a function f on R is said to be positive-definite if

∑m
i, j=1 ai aj f (xi −

xj )≥ 0 for any (finite) sequence a1, . . . ,am, x1, . . . , xm of real numbers.

4. SOME RELATED TOPICS FOR STATISTICAL APPLICATION TO
FINANCE

4.1. Estimation of the Quadratic Covariation of Jump Parts

As stated in Section 1, we are interested in the estimation of the quadratic covari-
ation of the jump parts of two semimartingales Z1 and Z2. This is achieved by
estimating the quadratic variation [Z1, Z2] due to the formula (2) because we can
estimate the integrated covariance 〈Z1,c, Z2,c〉t by the PTHY estimator as inves-
tigated in the previous section. In the literature such estimators are usually given
by consistent estimators for the integrate covariance in the absence of jumps. See
Mancini and Gobbi (2012) and Podolskij and Vetter (2009a) for example. Follow-
ing this approach, we consider the preaveraged HY estimator and we obtain the
following result.

PROPOSITION 4.1. Suppose [C1]–[C2], [A1], [A4], [A6], [K2] and [N

2] are

satisfied. Then

P̂ HY
(
Z1,Z2)n

t = [Z1, Z2]
t + Op

(
n− 1

4
)

as n →∞ for any t ∈ R+.
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See Appendix A.5 for a proof. Consequently, we obtain the following result on
the issue of the estimation of the quadratic covariation of the jump parts:

COROLLARY 4.1. Suppose [C1]–[C2], [A1], [A4], [A6], [K2], and [N

r ] for

some r ∈ (2,∞) are satisfied. Suppose also that [T] holds. Then

P̂ HY
(
Z1,Z2)n

t − P̂T HY
(
Z1,Z2)n

t →p
∑

0≤s≤t

�Z1
s�Z2

s

as n →∞ for any t ∈R+. Furthermore, if [Kβ ] holds for some β ∈ [0,2− 1
2ξ ′−1

)
,

then

P̂ HY
(
Z1,Z2)n

t − P̂T HY
(
Z1,Z2)n

t =
∑

0≤s≤t

�Z1
s�Z2

s + Op(n
− 1

4 )

as n → ∞ for any t ∈ R+, provided that n(r−3)/{2(r−2)}ρn → ∞ and ρn =
O(n−1/{2(2−β)}).

4.2. Autocorrelated Noise

We have so far assumed that the observation noise is not autocorrelated asymptot-
ically, i.e. the sample autocorrelations of the noise at nonzero lags tend to zero as
n → ∞. In empirical studies of financial high-frequency data, however, there is
evidence that microstructure noise is autocorrelated (see Hansen and Lunde, 2006
and Ubukata and Oya, 2009 for instance). In this section we briefly discuss the
case that the observation noise is (asymptotically) autocorrelated as Christensen
et al. (2011b) did in the continuous case.

We focus on the synchronous case. That is, we assume that Si = T i for all i .
Note that in this case it holds that Ŝk = T̂ k = Rk = Sk for all k. Let

(
λl

u

)
u∈Z+ and(

μl
u

)
u∈Z+ (l = 1,2) be four sequences of real numbers such that

∞∑
u=1

u|λl
u |<∞ and

∞∑
u=1

u|μl
u |<∞. (21)

We assume that the observation data
(
Z1

Si

)
and

(
Z2

T j

)
are of the form

Z1
Si = Z1

Si +
i∑

u=0

λ1
uζ

1
Si−u +

√
n

i∑
u=0

μ1
u(X

1
Si−u − X1

Si−u−1),

Z2
T j = Z2

T j +
i∑

u=0

λ2
uζ

2
T j−u +

√
n

i∑
u=0

μ2
u(X

2
T j−u − X2

T j−u−1).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(22)

In other words, the observation noise follows a kind of linear process. Under such
a situation the consistency of our estimators is still valid:
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PROPOSITION 4.2. Suppose (21) and (22) are satisfied. Suppose also [C1]–
[C2], [A1], [A4], [A6], [K2], and [N


2] are satisfied. Then P̂ HY (Z1,Z2)nt →p

[Z1, Z2]t as n →∞ for any t ∈ R+. Furthermore, if [T] and [N

r ] for some r ∈

(2,∞) hold, then P̂T HY (Z1,Z2)nt →p [X1, X2]t as n →∞ for any t ∈ R+.

We give a proof of Proposition 4.2 in Appendix A.6. The proof is based on a
Beveridge–Nelson type decomposition for the noise.

4.3. Estimation of Asymptotic Variance

In this section we shall briefly discuss the estimation of the asymptotic variance of
the PTHY estimator. This is necessary to construct feasible confidence intervals
of this estimator, for example. We focus on the simple case that the endogenous
terms of the microstructure noise are absent, i.e. X1 = X2 = 0. In this case our aim
can be achieved by a kernel-based approach as in Hayashi and Yoshida (2011) and
Koike (2013).

More precisely, let (hn) be a sequence of positive numbers tending to 0 as
n →∞. For any s ∈ R+, put

̂[Xl , Xl ′ ]′s = h−1
n

(
P̂T HY (Zl ,Zl ′)ns − P̂T HY (Zl ,Zl ′)n(s−hn)+

)
,

[̂Xl ]′s = ̂[Xl , Xl ]′s, l, l ′ = 1,2

and

�̂11
s =− 1

hnk2
n

∑
i :s−hn<Ŝi+1≤s

(
Z1

Ŝi −Z1
Ŝi−1

)(
Z1

Ŝi+1 −Z1
Ŝi

)
,

�̂22
s =− 1

hnk2
n

∑
j :s−hn<T̂ j+1≤s

(
Z2

T̂ j −Z2
T̂ j−1

)(
Z2

T̂ j+1 −Z2
T̂ j

)
,

�̂12χ s =− 1

2hnk2
n

×
∑

k:s−hn<Rk+1≤s

{(
Z1

Ŝk −Z1
Ŝk−1

)(
Z2

T̂ k+1 −Z2
T̂ k

)+ (Z1
Ŝk+1 −Z1

Ŝk

)(
Z2

T̂ k −Z2
T̂ k−1

)}
1{̂Sk=T̂ k }.

Then, noting that n−1 N n
t →p

∫ t
0 1/Gsds as n → ∞ for any t ∈ R+ (see

equation (9) in the Appendix), under the assumptions of Theorem 3.6(a) we can

easily show that [̂Xl ]′s →p [Xl ]s− and �̂ll
s →p �ll

s−/θ2Gs− for each l = 1,2

and that ̂[X1, X2]′s →p [Xl , Xl ′ ]s− and �̂12χ s →p �12
s−χs−/θ2Gs− as n →∞

for every s ∈ R+, provided that hnn1/4 →∞ (Recall that Gs and χs are intro-
duced in the condition [A1′]). In the light of these relationships, we set

ŵ2
Rk =√

nknψ
−4
HY

[
κ
{

[̂X1]′Rk [̂X2]′Rk +
(
̂[X1, X2]′Rk

)2}+ κ̃
{
�̂11

Rk �̂22
Rk +

(
�̂12χ Rk

)2}
+κ
{

[̂X1]′Rk �̂22
Rk + [̂X2]′Rk �̂11

Rk +2 ̂[X1, X2]′Rk �̂12χ Rk

}]
|�k+1| (23)
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for every k ∈ N and ̂∫ t
0 w

2
s ds =∑k:Rk+1≤t ŵ

2
Rk |�k | for every t ∈ R+. Then we

obtain the following result:

PROPOSITION 4.3. Under the assumptions of Theorem 3.6(a), we have

̂∫ ·

0
w2

s ds
ucp−−→

∫ ·

0
w2

s ds

as n →∞, provided that hnn1/4 →∞ and sup0≤t≤T (hnn)−1(N n
t − N n

(t−hn)+) is
tight as n →∞ for any T > 0.

Proof. Since
∫ ·

0 w
2
s ds is a continuous nondecreasing process, it is sufficient to

prove the pointwise convergence. First, by [A1′], the Burkholder–Davis–Gundy
inequality and the Lenglart inequality, we have

̂∫ t

0
w2

s ds − θ
∑

k:Rk+1≤t

w̃2
Rk |�k | →p 0

as n → ∞ for every t , where w̃2
Rk is defined by (23) with replacing |�k+1| by

Gn
Rk . Then, we obtain the desired result by the assumptions and the dominated

convergence theorem. n

The above approach has the disadvantage that it depends strongly on the par-
ticular form of the asymptotic variance due to the noise. In fact, it is not proper
in the case that the endogenous terms of the noise are present because we have so

far known no estimator for the statistic
∫ t

0

(
[X1, X2]′s F1

s − [X1, X2]′s F2
s

)2
G−1

s ds
which is the asymptotic variance due to the presence of the endogenous noise.
We will also need to modify it if the noise is autocorrelated since we will need
to replace the covariance matrix � of the noise in the asymptotic variance with
the long-run covariance matrix of the noise (see the proof of Proposition 4.2 in
Appendix A.6). To avoid this problem, we might rely on the approach used in
Section 4 of Christensen et al. (2011b) or the subsampling approach developed
by Kalnina (2011) recently though it remains for further research to verify the
theoretical validity of them.

5. SIMULATION STUDY

In this section, we examine the finite sample performance of our estimators by
using Monte Carlo experiments.

5.1. Choice of the Threshold Processes

As is well known, the thresholding method is often sensitive to the selection of
thresholds in finite samples; see Shimizu (2010) or the Web Appendix of Mancini
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and Gobbi (2012) for instance. Therefore, it is important to determine a reason-
able rule of selecting thresholds. Here we present an easy but effective way to
determine thresholds. Formal study of methods for optimal threshold selection in
a given model is an important issue for the future.

We will determine the thresholds for individual processes so that we focus on
the univariate case. First we compute an auxiliary estimator �̂n

t for the spot vari-
ance process �t = θψ2[X1]′t + 1

θ ψ1�
11
t for each sampling time t , where ψ1 =∫ 1

0 g′(s)2ds and ψ2 =
∫ 1

0 g(s)2ds. In this paper we will use a numerical derivative
of the preaveraged bipower variation, i.e.

�̂Ŝi = μ−2
1

K −2kn +1

i−2kn∑
p=i−K

|Z1
(Î)p||Z1

(Î)p+kn |, i = K ,K +1, . . . ,N

and �̂Ŝi = �̂ŜK if i < K . Here, μ1 is the absolute moment of the standard normal

distribution, N is the number of the available preaveraged data
(
Z

1
(Î)i ) and K is

a bandwidth parameter such that K = O(nα) as n →∞ for some α ∈ (0.5,1). We
will set K = �N 3/4� below. Such a kind of spot variance estimator was studied in
Bos, Janus, and Koopman (2012). Then we choose

�1
n(Ŝ

i )= 2log(N )1+ε�̂Ŝi , i = 0,1, . . . ,N (24)

for some ε > 0. We will set ε = 0.2 below.
The heuristic idea behind the above choice of thresholds is as follows. First we

recall the following classic result:

THEOREM 5.1 (Pickands, 1967, Thm. 3.4). Let (Xi )i∈N be a stationary
Gaussian process such that E[Xi ] = 0, E[X2

i ] = 1 and E[Xi Xi+k] = γ (k). If
limk→∞ γ (k)= 0, then max1≤i≤n Xi/

√
2logn → 1, almost surely, as n →∞.

The most important point of the above theorem is that the random variables Xi ,
i = 1,2, . . . , in the theorem can have a kind of dependence structure. This fact

is crucial for the present situation because the preaveraged data
(
Z

1
(Î)i ) is kn-

dependent. As a result, Theorem 5.1 has the following implication: Suppose that
the observation data is given by a scaled Brownian motion with i.i.d. Gaussian
noise. That is, suppose that ZSi = σWSi +ui , i = 0,1, . . . , where σ > 0, Wt is a
standard Wiener process and (ui ) is an i.i.d. random variables independent of W
with ui ∼ N (0,ω2). Suppose also that (Si ) is an equidistant sampling scheme.

Then the preaveraged data (Z
1
(Î)i ) is a centered stationary Gaussian process

with the autocovariance function vanishing at infinity, so that Theorem 5.1 yields

max0≤i≤N−1Z
1
(Î)i/√� ·2log N → 1 a.s. as n →∞, where � = θψ2σ

2 + 1
θ ω

2

is the variance of Z
1
(Î)i . This result suggests that we may use � · 2log N as

thresholds. This idea has already been introduced as the universal threshold by
Donoho and Johnstone (1994) in the context of wavelet shrinkage. Donoho and
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Johnstone (1994) estimated the unknown parameter� by the square of the median

absolute deviation (MAD) of (Z
1
(Î)i ) divided by 0.6745, the 0.75-quantile of the

standard normal distribution. In the present situation (Z
1
(Î)i ) is heteroscedastic

in general, hence we need to replace � with the spot variance process �t and
estimate �t by �̂n

t . Consequently, we have arrived at the threshold process given
by (24), where we multiply the usual universal threshold by (log N )ε to ensure
the condition (18).

5.2. Simulation Design

We simulate over the interval t ∈ [0,1]. We normalize one second to be 1/23400,
so that the interval [0,1] contains 6.5 hours. In generating the observation data,
we discretize [0,1] into a number n = 23400 of intervals.

In order to extract irregular, nonsynchronous observation times from n equi-
spaced division points, we generate random observation times (Si ) and (T j )
using two independent Poisson processes with intensity n/λ1 and n/λ2. Here
λl denotes the average waiting time for new data from process Zl , so that
a typical simulation will have n/λl observations of Zl , l = 1,2. Following
Barndorff-Nielsen et al. (2011), we vary λ := (λ1,λ2) through the following con-
figurations (3, 6), (10, 20), and (30, 60). In addition, we also consider the case
that λ = (3, 30), where (Si ) are much more frequently sampled than (T j ). This
case will be useful for confirming the advantage of our estimator explained in
Remark 3.1. Note that because we are simulating in discrete time, it is possible to
see common points to the observation times (Si ) and (T j ).

We consider two types of bivariate Lévy processes Jt with no Brownian compo-
nents to introduce jumps within the considered models. The specifics of the jump
processes are as follows:

SCP1 Let L be a stratified normal inverse Gaussian compound Poisson process
with a single jump per unit time (i.e., the jump time is uniformly dis-
tributed over [0,1] and the jump size follows a normal inverse Gaussian
distribution). The jump size is drawn from ε

√
S, where ε⊥⊥ S, ε ∼

N (0,1) and S ∼ I G(c,c2/γ ), so that Var[ε
√

S]= E[S]= c and Var[S]=
c3/(c2/γ )= cγ . Then, we set J 1 = J 2 = L .

VG Let L1 and L2 be mutually independent variance Gamma processes such
that Ll

1 ∼ ε
√

S, where ε⊥⊥ S, ε ∼ N (0,1), and S ∼ �(c/γ,1/γ ), so that
Var[εl

√
S]= E[S]= c for each l = 1,2 and Var[S]= (c/γ )/(1/γ )2 = cγ .

Then, we set J 1 = L1 and J 2 = RL1 +√
1− R2L2.

In the simulation we set c = 0.1 and γ = 0.25. The value of R is given for each
model below. Note that each component of the above models coincides with the
model simulated in Veraart (2010).

The observation data
(
Z1

Si

)
and (Z2

T j ) are generated from the models below.
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Model 1 (Barndorff-Nielsen et al., 2011) — the case of stochastic volatility &
noise. The following bivariate factor stochastic volatility model is used to generate
the continuous semimartingales X1 and X2:

dXl
t =μldt +ρlσ l

t Bk
t +

√
1− (ρl)2σ l

t Wt , σ l
t = exp

(
βl

0 +βl
1�

l
t

)
,

d�l
t = αl�l

t dt +dBl
t , l = 1,2,

where (B1, B2,W ) is a 3-dimensional standard Wiener processes. The initial
values for the �l

t processes at each simulation run are drawn randomly from

their stationary distribution, which is �l
t ∼ N

(
0,
(− 2αl

)−1). We carry out our
numerical experiments by using the following parametrization, assumed to be
identical across the two volatility factors: (μl ,βl

0,β
l
1,α

l ,ρl) = (0.03,−5/16,

1/8,−1/40,−0.3), so that βl
0 = (

βl
1

)2
/2αl . This choice of parameters implies

that integrated volatility has been normalized, in the sense that E[
∫ 1

0 (σ
l
s )

2ds] = 1.
At each simulation run we add noise

(
Ul

k/n

)n
k=0 simulated as

Ul
k/n|{σ, X, J } i.i.d.∼ N (0,ω2),

ω2 = η2

√√√√1

n

n∑
i=1

(
σ l

i/n

)4
, and Corr(U 1

t ,U
2
s )=

{
R if t = s,
0 if t �= s,

where R =√1− (ρ1)2
√

1− (ρ2)2 and the noise-to-signal ratio, η2 takes the value
0.001. Finally, Z1

Si and Z2
T j are given by Z1

Si = Z1
Si +U 1

Si and Z2
T j = Z2

T j +U 2
T j ,

where Zl = Xl + J l , l = 1,2.

Remark.

(i) The form of ω2 is realistic in the following sense: it is known in some
empirical studies that the variance of the microstructure noise is propor-
tionate to the volatility; see Aı̈t-Sahalia and Yu (2009) and Bandi and
Russell (2006) for example. The value 0.001 given to the noise-signal ratio
η2 reflects the empirical finding of Hansen and Lunde (2006) (they found
that η2 is typically smaller than 0.001).

(ii) There are two reasons why we gave the correlation between U 1
t and

U 2
t . The first one is due to empirical evidence. Namely, some empirical

studies indicate the presence of such a correlation (see e.g. Ubukata and
Oya, 2009 and Voev and Lunde, 2007). The second reason is due to a
mathematical motivation. If U 1

t and U 2
t are uncorrelated, most integrated

covariance estimators are automatically unbiased because the cross prod-
uct of the noise terms has zero mean. For example, the realized covariance
estimator is unbiased in such a situation although it is an inconsistent es-
timator for the integrated covariance in the presence of noise. This fact
might make the simulation results for the sample bias good because of an
unexpected reason. We would like to avoid such a phenomenon.
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(iii) The choice of the value R for the correlation between U 1
t and U 2

t came
from the following consideration. The first Brownian components of X1

and X2 are mutually independent, so the correlation between the second
ones only contributes the correlation between X1 and X2. Therefore, the
choice means that the correlation between U 1

t and U 2
t is proportionate

to that between X1 and X2. Namely, we mimic the relation between the
variance of the microstructure noise and the volatility of the latent process.
Unfortunately, to the author’s knowledge there is no stylized fact about the
relation between the correlation of microstructure noise and that of latent
processes, so here we assume that a kind of similarity is present between
the variance and the correlation.

Model 2 (Jacod et al., 2009) — the case of constant volatility & rounding plus
error.

Zl
t = Xl

t +σ l J l
t , Xl

t = Xl
0 +σ l W l

t ,

Zl
k/n = log

(
αl

⌊
exp(Zl

k/n +ul
k/n)

αl

⌋)
, ul

k/n = ηl
k/n log

αl� exp(Zl
k/n)

αl �
exp

(
Zl

k/n

) ,

where W 1 and W 2 are correlated standard Winer processes independent of J with
d
[
W 1,W 2

]
t = Rdt and

(
ηl

k/n

)
is a sequence of independent Bernoulli variables

(probabilities pl
k/n and 1− pl

k/n of taking values 1 and 0), with

pl
k/n = log

⎛⎜⎝ exp
(
Zl

k/n

)
αl� exp

(
Zl

k/n

)
αl �

⎞⎟⎠/log

⎛⎜⎝αl� exp(Zl
k/n)

αl �
αl� exp(Zl

k/n)

αl �

⎞⎟⎠ .

We assume that the sequences
(
η1

k/n

)
and

(
η2

k/n

)
are mutually independent as well

as independent of W and J . Parameters used: σ l = 0.2/
√

252, Xl
0 = log(8), αl =

0.01, and R = 0.5. Figure 1 shows typical observed paths generated by this model.
Model 3 — the case of stochastic volatility & endogenous noise . The model

of the continuous semimartingales X1 and X2 is the same one as in Model 1, but
the noise processes U 1

Si and U 2
T j are given by

U 1
Si = δ1

√
n/λ1

(
X1

Si − X1
Si−1

)
, U 2T j = δ2

√
n/λ2

(
X2

T j − X2
T j−1

)
.

Here we set δ1 = δ2 = −0.01, so that the microstructure noise is negatively cor-
related with the returns of the latent continuous semimartingale processes X1 and
X2. This choice reflects the empirical findings reported in Hansen and
Lunde (2006). The factors

√
n/λ1 and

√
n/λ2 are necessary to adjust the effect

of the observation frequency: roughly speaking, the variance of
(
X1

Si − X1
Si−1

)
is

proportionate to (λ1/n), so it decreases as the observation frequency increases.
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FIGURE 1. Typical observed paths generated by Model 2. The sampling frequency λ is set
as λ = (3,30). The jumps of the paths in the left two panels are generated by the SCP1
specification, whereas those in the right two panels are generated by the VG specification.
The paths in the top two panels are for Z1, while those in the bottom two panels are for Z2.

However, this is opposite to real data. Note that the magnitude of the noise pro-
cesses in this model is smaller than the one in Model 1. Finally, as in Model 1 we
set Z1

Si = Z1
Si +U 1

Si and Z2
T j = Z2

T j +U 2
T j , where Zl = Xl + J l , l = 1,2.

1000 iterations were run for each model. The simulation of the model paths of
X1 and X2 has been made using the Euler–Maruyama scheme with n equi–spaced
division points.

The tuning parameters for preaveraging are selected as follows. We use θ =
0.15 and g(x) = x ∧ (1− x) following Christensen et al. (2011b), and set kn =
�θ√m�. Here, m represents the number of refresh times minus 1 i.e., m = N n

1 .

5.3. Simulation Results

Table 1 presents the results of estimating the integrated covariance. We report the
bias and the root mean squared error (rmse) for our PTHY estimator. As a compar-
ison, we also computed the Wang-Liu-Liu (WLL) estimator defined by (17) and
the subsampled realized bipower covariation (BPV) based on 5-minute returns.
The threshold processes and the tuning parameters for the WLL estimator are
the same as those for the PTHY estimator, except for setting kn = �θ√n1 +n2�
following Wang et al. (2013) as well as Christensen et al. (2011b). Here, n1 and
n2 represent the numbers of the observed returns for Z1 and Z2, respectively.
Note that the reported numbers for Model 2 are divided by (0.2/

√
252)2 for

normalization.
It is clear from the rmse reported here that the PTHY, the WLL, and the BPV

perform well from the simulation studies. Moreover, the bias is very modest when
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TABLE 1. Simulation results of estimating the integrated covariance

SCP1 VG

Estimator PTHY WLL BPV PTHY WLL BPV

Model 1
λ= (3,6) .003 (.104) .003 (.106) .012 (.148) .005 (.103) .004 (.106) .017 (.150)
λ= (10,20) −.006 (.137) −.008 (.143) −.028 (.166) −.003 (.137) −.005 (.143) −.022 (.165)
λ= (30,60) −.033 (.203) −.029 (.198) −.116 (.236) −.030 (.200) −.024 (.199) −.111 (.235)
λ= (3,30) −.009 (.150) −.014 (182) −.056 (.175) −.007 (.150) −.012 (.181) −.155 (.259)

Model 2
λ= (3,6) .011 (.085) .011 (.090) .013 (.122) .002 (.086) .001 (.091) .000 (.118)
λ= (10,20) .005 (.115) .008 (.121) −.011 (.124) −.003 (.118) −.000 (.122) −.019 (.121)
λ= (30,60) −.025 (.161) −.003 (.171) −.076 (.145) −.038 (.159) −.020 (.168) −.086 (.152)
λ= (3,30) −.008 (.127) −.008 (141) −.033 (.128) −.010 (.130) −.012 (.142) −.041 (.127)

Model 3
λ= (3,6) .000 (.101) .001 (.105) −.016 (.149) .002 (.100) .003 (.105) .003 (.156)
λ= (10,20) −.014 (.138) −.013 (.144) −.037 (.139) −.013 (.139) −.010 (.144) −.031 (.171)
λ= (30,60) −.053 (.199) −.039 (.202) −.141 (.253) −.051 (.196) −.036 (.202) −.013 (.247)
λ= (3,30) −.020 (.150) −.021 (182) −.066 (.193) −.018 (.148) −.017 (.181) −.155 (.259)

Note: We report the bias and rmse of the estimators for the integrated covariance included in the simulation study. The number reported in parenthesis is rmse. The reported numbers for
Model 2 are divided by (0.2/

√
252)2.
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the observation frequency is relatively large. When the observation frequency is
small, they are downward biased due to the nonsynchronicity of the observation
times and the loss of summands induced by the pre–averaging (for the PTHY and
the WLL). The PTHY tends to behave better than the WLL as the observation
frequency increases, but the differences seem to be insignificant, except for the
case that λ = (3,30). In this case the rmse of the PTHY is significantly smaller
than that of the WLL, which is what we would expect due to the argument from
Remark 3.1. Besides, the PTHY is superior to the BPV in most of the scenarios.

Table 2 provides the results of estimating the sum of co–jumps
∑

0≤s≤1�Z1
s

�Z2
s (i.e., the quadratic covariation of the jump processes). We report the bias and

the root mean squared error for the PTHY-based estimator developed in Section
4.1 and compare it to the WLL and BPV-based estimator. The reported numbers
for Model 2 are divided by (0.2/

√
252)2 for normalization as shown previously.

Similarly to the case that estimating the integrated covariance, the PTHY-based
estimator tends to perform slightly better than the others in the higher frequencies,
while the WLL-based estimator tends to behave the best in the lower frequencies.

Finally, we turn to the finite sample performance of our feasible central limit
theorem. We compute the feasible standardized statistic

n
1
4

P̂T HY (Z1,Z2)n1 − [X1, X2]1√
̂∫ 1
0 w

2
s ds

, (25)

where the asymptotic variance estimator
̂∫ 1
0 w

2
s ds is given in Section 4.3. In the

current choice of g, it holds that κ = 7585/1161216, κ = 151/20160, and κ̃ =
1/24. We use hn = 0.4(N n

1 )
−0.24 as a bandwidth parameter to calculate

̂∫ 1
0 w

2
s ds.

Table 3 reports the sample mean, standard deviation (SD), and the 95% coverage
of (25). Generally speaking, the results are in line with the theory developed in the
present article. In terms of the standard deviation, the central limit theorem starts
to work for relatively large sample sizes, i.e. it does not work for λ = (30,60).
We also observe that the results for Model 3 are worse than those for Model 1. It
is not surprising because the estimator of the asymptotic variance used in Model
3 is wrong. In the light of the theoretical asymptotic variance given in (16), the
misspecification that (23) does not contain the terms involving the endogenous
error becomes important as the difference between λ1 and λ2 increases, which is
consistent with the simulation results.

Overall, our new method promises to work well at sufficiently high frequencies
and it provides a useful tool for analyzing high frequency financial data.

6. EMPIRICAL STUDY

In this section we apply our new method to a set of market data consisting of
high-frequency transactions of 5 assets. The 5 assets we will focus on are Amer-
ican Express Company (AXP), Bank of America Corporation (BAC), JPMorgan
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TABLE 2. Simulation results of estimating the sum of co-jumps

SCP1 VG

Estimator PTHY WLL BPV PTHY WLL BPV

Model 1
λ= (3,6) −.003 (.037) −.003 (.041) −.022 (.077) −.007 (.041) −.008 (.044) −.030 (.097)
λ= (10,20) .002 (.055) −.000 (.056) −.020 (.130) −.003 (.053) −.005 (.057) −.028 (.100)
λ= (30,60) .021 (.089) .012 (.084) −.016 (.096) .014 (.092) .004 (.087) −.026 (.121)
λ= (3,30) .005 (.065) .002 (066) −.022 (.084) .001 (.063) −.004 (.069) −.031 (.109)

Model 2
λ= (3,6) −.009 (.037) −.009 (.041) −.025 (.082) −.009 (.034) −.008 (.036) −.021 (.071)
λ= (10,20) −.005 (.054) .007 (.051) −.024 (.087) −.004 (.046) −.007 (.049) −.021 (.072)
λ= (30,60) .023 (.086) −.001 (.070) −.022 (.104) .024 (.085) .002 (.072) −.013 (.084)
λ= (3,30) .001 (.057) −.005 (.055) −.028 (.087) .001 (.060) −.003 (.057) −.020 (.076)

Model 3
λ= (3,6) −.001 (.027) −.001 (.041) −.010 (.065) −.004 (.041) −.006 (.045) −.032 (.098)
λ= (10,20) .009 (.059) .004 (.059) −.024 (.083) .005 (.058) −.001 (.059) −.033 (.100)
λ= (30,60) .038 (.093) .020 (.089) −.005 (.069) .003 (.103) −.014 (.097) −.033 (.118)
λ= (3,30) .010 (.069) .002 (.063) −.032 (.104) .010 (.069) −.001 (.069) −.035 (.111)

Note: We report the bias and rmse of the estimators for the sum of co-jumps included in the simulation study. The number reported in parenthesis is rmse. The reported numbers for Model
2 are divided by (0.2/

√
252)2.
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TABLE 3. Simulation results of the standardized estimates

SCP1 VG

Mean SD Coverage (95%) Mean SD Coverage (95%)

Model 1
λ= (3,6) −.063 1.009 95.2% −.015 1.000 95.2%
λ= (10,20) −.174 1.009 93.5% −.124 .996 94.6%
λ= (30,60) −.328 .936 94.2% −.290 .920 95.5%
λ= (3,30) −.225 1.029 93.3% −.192 1.022 94.4%

Model 2
λ= (3,6) −.042 .988 96.2% −.055 .984 95.7%
λ= (10,20) −.109 .988 95.6% −.122 .983 95.6%
λ= (30,60) −.331 .916 94.2% −.327 .902 94.4%
λ= (3,30) −.168 .977 95.3% −.184 .998 94.3%

Model 3
λ= (3,6) −.097 1.020 94.6% −.055 1.012 94.8%
λ= (10,20) −.256 1.031 93.3% −.217 1.027 93.3%
λ= (30,60) −.489 .979 91.7% −.457 .968 92.9%
λ= (3,30) −.329 1.067 92.2% −.294 1.067 92.6%

Note: We report the sample mean, standard deviation (SD), and the 95% coverage of the standardized estimates (25)
included in the simulation study.

Chase & Co. (JPM), The Travelers Companies, Inc. (TRV), and S&P 500 Depos-
itory Receipts (SPY). The first four stocks are chosen from the financial sector of
the 30 Dow Jones Industrial Average (DJIA) stocks in April, 2010. We involve
the SPY because it is often used as a benchmark for empirical work in this area.
The sample period runs from 1 April 2010 to 28 February 2011, delivering 230
distinct days. The data is the collection of trades recorded on the New York Stock
Exchange (NYSE), taken from the Trades and Quotes (TAQ) database. Prior to
the analysis, we apply the filters presented in Barndorff-Nielsen, Hansen, Lunde,
and Shephard (2009) to remove the obvious outliers from the data. Table 4 re-
ports the numbers of observations per day for each asset (after the data cleaning),
averaged across the 230 day period. It implies the average waiting times for new
observations are between about 3-seconds and 20-seconds. We also note that all
the computations below are based on log prices multiplied by a factor of 100.

The aim of this empirical study is to compare the proposed method with a tra-
ditional one based on moderate frequency data (here we consider the 5-minute
frequency). In particular, we focus on how nonsynchronicity and jumps play

TABLE 4. Average over daily number of high frequency observations

AXP BAC JPM TRV SPY

2332 1078 2939 1295 6957
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different roles at different frequencies and whether the difference of observation
frequencies delivers different economic results. Specifically, we consider the sub-
sampled realized bipower covariation (BPV) based on 5-minute returns as the
traditional one.

First, we estimate the integrated covariances for every pair of the 5 assets each
day. Table 5 contains the integrated covariance estimates averaged across the 230
trading days. They are computed using the PTHY estimator and the BPV estima-
tor. The threshold processes and the tuning parameters for preaveraging are the
same as in the simulation. In Table 5, the numbers above the leading diagonal
are results for the PTHY estimator, the numbers below are for the BPV estimator.
Asterisks indicate the BPV estimates that are outside the 95% or 99% confidence
intervals for the corresponding PTHY estimates, constructed from the asymptotic
variances in Section 4.3 with the bandwidth parameter hn selected in a similar
manner to the simulation. As the table reveals, the estimates of the BPV are sig-
nificantly smaller than those of the PTHY, except for the AXP-SPY pair. This is
consistent with the simulation study in the previous section. This result suggests
that the BPV estimator suffers from the Epps effect, and it is not surprising be-
cause even in the 10 minute frequency Epps (1979) found such a phenomenon.

Next, we turn to the question of whether our new method delivers a different
economic result compared with the traditional one. To accomplish this purpose we
compute the average of the sums of co-jumps between the SPY and the other four
stocks each day. This corresponds to estimating the sum of co-jumps between the
S&P500 index and the equal-weighted portfolio of the financial sector of the DJIA
stocks. Figure 2 depicts PTHY (black solid lines) and BPV (gray crosses)-based
estimates for each day. We find a large variation on May 6, which is presumably
due to the Flash Crash (see the left panel of Figure 3). If the Flash Crash caused
this variation, the asset prices supposedly jumped to the same direction on that
day, so that the sum of co-jumps would be positive. The PTHY-based estimate is
consistent with this intuition, while the BPV-based one is not. Our method is based

TABLE 5. Summary statistics for integrated covariance estimates

PTHY
AXP BAC JPM TRV SPY

AXP 1.61 1.50 0.79 0.96
BAC 1.49∗∗ 1.93 0.82 1.05

BPV JPM 1.39∗∗ 1.74∗∗ 0.77 0.95
TRV 0.72∗∗ 0.73∗∗ 0.70∗∗ 0.52
SPY 0.95 0.97∗∗ 0.92∗ 0.49∗

Note: We report average integrated covariance estimates. The upper diagonal is based on the PTHY estimator,
whereas the lower diagonal is based on the BPV estimator.∗ BPV estimates are outside the 95% confidence intervals for the corresponding PTHY estimates.∗∗ BPV estimates are outside the 99% confidence intervals for the corresponding PTHY estimates.
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FIGURE 2. Daily estimated sum of co-jumps between the S&P500 index and the financial
sector of the DJIA stocks. The black solid lines denote the PTHY-based estimates, whereas
the gray crosses donate the BPV-based estimates. The two vertical dashed lines correspond
to 6 May 2010 and 3 November 2010 respectively.

on the assumption that there is an underlying continuous time stochastic process
driving the dynamics of the data, so the co-jumps are driven by this process and its
sign does not depend on which frequency we observe the data at. To explain this
finding, we zoom in on the relevant sub-period (see the right panel of Figure 3).
Then, we find that the violent fluctuation observed in a relatively large scale turns
out to consist of many consecutive small variations. Indeed, this fact was already
emphasized in Christensen et al. (2011a). Although a few relatively large returns
still seem to remain, the 5-minute frequency is apparently insufficient to cap-
ture them precisely. This might give a reasonable explanation for our finding.

FIGURE 3. Intraday log transaction price returns of SPY on 6 May 2010 (multiplied by a
factor of 100).
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FIGURE 4. Intraday log transaction price returns of SPY on 3 November 2010 (multiplied
by a factor of 100).

Namely, the BPV estimator identifies the signs of the co-jumps wrong due to its
use of the low resolution data (however, note that practically one can also interpret
this finding as the co-jumps tending to have opposite signs at the 5-minute fre-
quency, especially for a market participant who trades at this frequency). A simi-
lar phenomenon is found on November 3, when the PTHY-based estimate has the
second largest value among the period considered here. In fact, the market fluc-
tuated violently on that day due to the Federal Open Market Committee (FOMC)
statement (see Figure 4). Interestingly, from the right panels of Figures 3–4 the
relative contribution of jumps to the total variation on November 3 looks larger
than that on May 6. In fact, when we compute the relative contribution of the sum
of co-jumps to the entire quadratic covariation i.e.,

∑
0≤s≤1�Z1

s�Z2
s /[Z1, Z2]1

using our estimator, we get the values 0.13 on May 6 and 0.19 on November 3,
which supports this observation. We also find some moderate negative co-jumps
in the BPV-based estimates, which are contrary to the economic intuition. These
findings suggest the potential usefulness of our new method for empirical studies.
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cesses with noise: Asymptotic distribution theory. Stochastic Processes and their Applications 122,
2411–2453.

Bos, C.S., P. Janus, & S.J. Koopman (2012) Spot variance path estimation and its application to high-
frequency jump testing. Journal of Financial Econometrics 10, 354–389.

Boudt, K., C. Croux, & S. Laurent (2011) Outlyingness weighted covariation. Journal of Financial
Econometrics 9, 657–684.

Christensen, K., S. Kinnebrock, & M. Podolskij (2010) Pre-averaging estimators of the ex-post co-
variance matrix in noisy diffusion models with non-synchronous data. Jornal of Econometrics 159,
116–133.

Christensen, K., R. Oomen, & M. Podolskij (2011a) Fact or friction: Jumps at ultra high frequency.
CREATES Research Paper 2011–19, Aarhus University.

Christensen, K., M. Podolskij, & M. Vetter (2011b) On covariation estimation for multivariate contin-
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47, 1197–1218.

Hayashi, T. & N. Yoshida (2005) On covariance estimation of non-synchronously observed diffusion
processes. Bernoulli 11, 359–379.

Hayashi, T. & N. Yoshida (2011) Nonsynchronous covariation process and limit theorems. Stochastic
Processes and their Applications 121, 2416–2454.

Jacod, J. (1997) On continuous conditional Gaussian martingales and stable convergence in law. In
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APPENDIX

A.1. Proof of Theorem 2.1

First note that for the proof we can use a localization procedure, and which allows us to

systematically replace the conditions [C1], [C2], and [N

r ] by the following strengthened

version:

[SC1] There is a positive constant K such that n−1 N n
t ≤ K for all n and t .

[SC2] [C2] holds, and (A1)′, (A2)′, (A1)′, (A2)′ and [V,W ]′ for each V,W = X1, X2,
X1, X2 are bounded.

[SN

r ] (

∫ |z|r Qt (dz))t∈R+ is a bounded process.

We need a modification of sampling times as follows. We write r̄n = n−ξ ′ . Next, let
υn = inf{t |rn(t) > r̄n}, and define a sequence (S̃i )i∈Z+ sequentially by S̃i = Si if Si <υn ,
otherwise S̃i = S̃i−1+ r̄n . Then, (S̃i ) is obviously a sequence of F(0)-stopping times satis-
fying (4) and supi∈N(S̃i − S̃i−1)≤ r̄n . Furthermore, for any t > 0 we have P

(⋃
i {̃Si ∧ t �=

Si ∧ t}) ≤ P(υn < t)→ 0 as n → ∞ by (5). By replacing (Si ) with (T j ), we can con-
struct a sequence (T̃ j ) in a similar manner. This argument implies that we may also assume
that

sup
i∈N

(
Si − Si−1)∨ sup

j∈N
(
T j −T j−1)≤ r̄n (A.1)

by an appropriate localization procedure.
Now we start the main body of the proof. Throughout the discussions, for (random)

sequences (xn) and (yn), xn � yn means that there exists a (nonrandom) constant C ∈
[0,∞) such that xn ≤ Cyn for large n. At the beginning, we remark some elementary
properties of refresh times.

PROPOSITION A.1.1. The following statements are true.

(a) Ŝk ∨ T̂ k = Rk for every k.

(b) (Ŝi < T̂ j )⇒ (i ≤ j) and (Ŝi > T̂ j )⇒ (i ≥ j) for all i, j .
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Proof.

(a) Obvious.

(b) Since T̂ j ≤ R j < Ŝ j+1, (Ŝi < T̂ j ) implies Ŝi < Ŝ j+1, hence i ≤ j . Consequently,
we obtain the former statement. By symmetry we also obtain the latter statement.

n

Set Ī i = [Ŝi , Ŝi+kn ) and J̄ j = [T̂ j , T̂ j+kn ). Since ( Ī i ∩ J̄ j �= ∅)⇒ (|i − j | ≤ kn) by
Proposition A.1.1(b), for any i, j ∈ Z+ it holds that

∞∑
j=0

K̄ i j ≤ 2kn +1,
∞∑

i=0

K̄ i j ≤ 2kn +1 (A.2)

Next we introduce some notation. For processes V and W , V •W denotes the integral
(either stochastic or ordinary) of V with respect to W . For any semimartingale V and
any (random) interval I , we define the processes V (I )t and It by V (I )t =

∫ t
0 1I (s−)dVs

and It = 1I (t) respectively. Moreover, for u ∈ {g,g′} define the processes V̄u(Î)i and
V̄v (Ĵ ) j by

V̄u(Î)it =
kn−1∑
p=1

un
pV ( Î i+p)t , V̄u(Ĵ ) j

t =
kn−1∑
q=1

un
q V ( Ĵ j+q )t ,

where un
p = u(p/kn).

Define the processes E1 and E2 by E1
t = − 1

kn

∑∞
p=1 ζ

1
Ŝ p 1{̂S p≤t} and E2

t =
− 1

kn

∑∞
q=1 ζ

2
T̂ q 1{T̂ q≤t} respectively. Then E2 and E2 are obviously purely discontinu-

ous locally square-integrable martingales on B if [C2] holds (note that both (Ŝi ) and
(T̂ j ) are F(0)-stopping times). We also define the processes M1, M2, A1, and A2 by

M1 =−
√

n
kn

(∑∞
p=1 Ǐ p

−
)•M1,M2 =−

√
n

kn
(
∑∞

q=1 J̌ q
−)•M2, A1 =−

√
n

kn
(
∑∞

p=1 Ǐ p
−)• A1

and A2 =−
√

n
kn

(
∑∞

q=1 J̌ q
−)• A2. Then, set Ul = El +Ml +Al for l = 1,2.

For any semimartingales V,W and any u,v ∈ {g,g′}, set

Hu,v (V,W )nt = 1

(ψHY kn)2

∑
i, j≥1,R̄∨(i, j)≤t

V̄u(Î)it W̄v (Ĵ ) j
t K̄ i j

t ,

where R̄∨(i, j) = Ŝi+kn ∨ T̂ j+kn and K̄ i j
t = 1{Ī i (t)∩ J̄ j (t)�=∅} (recall that I (t) denotes

I ∩ [0, t) for a random interval I and a time t). Then we can prove the following lemma:

LEMMA A.1.1. Suppose that [SC1]-[SC2], [SN

2] and (A.1) are satisfied. Then we have

sup
0≤s≤t

∣∣∣P̂ HY (X1,X2)n −H[g]n
∣∣∣= Op(n

−γ )

for any t > 0 as n → ∞, where H[g]n = Hg,g(X1, X2)n + Hg,g′(X1,U2)n +
Hg′,g(U1, X2)n +Hg′,g′(U1,U2)n and γ = ξ ′ −1/2.
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Proof. We decompose the target quantity as

P̂ HY
(
X1,X2

)n

s
−H[g]n

s

= 1

(ψHY kn)2

⎡⎢⎢⎢⎣ ∑
i=0 or j=0
R̄∨(i, j)≤s

X
1 (Î)i X2 (Ĵ ) j

K̄ i j

+
∑

i, j≥1R̄∨(i, j)≤s

X
1 (Î)i

⎧⎨⎩
kn−1∑
q=0

{
kn�(g)

n
q − (g′)nq

}
U2
(

Ĵ j+q
)

s

⎫⎬⎭ K̄ i j
s

+
∑

i, j≥1,R̄∨(i, j)≤s

⎧⎨⎩
kn−1∑
p=0

{
kn�(g)

n
p −

(
g′
)n

p

}
U1
(

Î i+p
)

s

⎫⎬⎭X2 (Ĵ ) j
K̄ i j

s

⎤⎥⎦
=: A1

s +A2
s +A3

s ,

where �(g)np = gn
p+1 −gn

p . First, Proposition A.1.1, the Schwarz inequality, [SC2], [SN

2]

and (A.1) imply that E[sup0≤s≤t |A1
s |]� r̄n = O(n−γ ). Next, the Lipschitz continuity of

g′, [SC2], [SN

2], and (A.1) yield

E

⎡⎢⎣
∣∣∣∣∣∣
kn−1∑
q=0

{
kn�(g)

n
q − (g′)nq}U2

(
Ĵ j+q

)
t

∣∣∣∣∣∣
2

|FT̂ j−1∧t

⎤⎥⎦� k−1
n r̄n

uniformly in j . On the other hand, [SC2],
[
SN


2

]
, and (A.1) imply that E

[|X1
(Î)i |2

|FSi−1
]
� knr̄n uniformly in i . Therefore, by Proposition A.1.1, the Schwarz inequality

and [SC1] we obtain

E

[
sup

0≤s≤t

∣∣∣A2
s

∣∣∣]� k−2
n r̄n

∑
|i− j |≤kn

E
[
1{Ŝi−1∧T̂ j−1≤t

}]� knr̄n = O
(
bγn
)
.

Similarly, it can also be shown that E
[

sup0≤s≤t
∣∣A3

s
∣∣] = O(n−γ ), and thus we complete

the proof. n

According to the above lemma, we need to analyze the asymptotic property of the quan-
tity H[g]n . For this purpose, we define the processes L̄u,v (V,W )n andMu,v (V,W )n by

L̄u,v (V,W )i j = V̄u

(
Îi
)
− • W̄v

(
Ĵ j
)
+ W̄v

(
Ĵ j
)
− • V̄u

(
Îi
)
,

Mu,v (V,W )nt = 1

(ψHY kn)2

∑
i, j≥1,R̄∨(i, j)≤t

K̄ i j
t L̄u,v (V,W )

i j
t ,

and set M(1)n =Mg,g
(
X1, X2)n , M(2)n =Mg′,g′

(
U1,U2)n , M(3)n =Mg,g′

(
X1,U2)n ,

andM(4)n =Mg′,g
(
U1, X2)n . Then we obtain the following result:
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LEMMA A.1.2. Suppose that (A.1) and [SC1]–[SC2], [SN

2] are satisfied. Then

(a) sup
0≤s≤t

∣∣∣Hg,g
(
X1, X2)n

s −M(1)ns −
[
X1, X2]

s

∣∣∣= Op
(
n−γ

)
,

(b) sup
0≤s≤t

∣∣∣Hg′,g′
(
U1,U2)n

s −M(2)ns

∣∣∣= Op
(
n−γ

)
,

(c) sup
0≤s≤t

∣∣∣Hg,g′
(
X1,U2)n

s −M(3)ns

∣∣∣= Op
(
n−γ

)
,

(d) sup
0≤s≤t

∣∣∣Hg′,g
(
U1, X2)n

s −M(4)ns

∣∣∣= Op
(
n−γ

)
for any t > 0 as n →∞.

Proof. Let (V,u) ∈ {(X1,g), (U1,g′)
}

and (W,v) ∈ {(X2,g), (U2,g′)
}
. Since integra-

tion by parts yields V̄u
(Î)i W̄v

(Ĵ ) j = L̄u,v (V,W )i j + [V̄u(Î)i , W̄v (Ĵ ) j ], we have

Hu,v (V,W )ns =Mu,v (V,W )ns +
1

(ψHY kn)2

∑
i, j≥1,R̄∨(i, j)≤s

[V̄u(Î)i , W̄v (Ĵ ) j ]s K̄ i j
s . (A.3)

Since

[V̄u(Î)i , W̄v (Ĵ ) j ]s =
kn−1∑
p,q=0

un
pv

n
q

(
Î i+p
− Ĵ j+q

−
)
• [V,W ]s

=
i+kn−1∑

p=i

j+kn−1∑
q=i

un
p−i v

n
q− j ( Î

p
− Ĵ q

−)• [V,W ]s ,

the second term of the right hand of (A.3) is equal to

Bs := 1

(ψHY kn)2

∞∑
p,q=1

Ŝ p+1∨T̂ q+1≤s

⎛⎝ p∑
i=(p−kn+1)∨1

q∑
j=(q−kn+1)∨1

un
p−iv

n
q− j K̄ i j

s

⎞⎠( Î p
− Ĵ q

−)• [V,W ]s .

Since K̄ i j
s = 1 on {̂I p(s)∩ Ĵ q (s) �= ∅}, we have

1

k2
n

p∑
i=(p−kn+1)∨1

q∑
j=(q−kn+1)∨1

un
p−i v

n
q− j K̄ i j

s =
(∫ 1

0
u(x)dx

)(∫ 1

0
v(x)dx

)
+ O

(
k−1

n
)

on {̂I p(s)∩ Ĵ q (s) �= ∅} uniformly in p,q ≥ kn . Since ( Î p
− Ĵ q

−)• [V,W ] = 1{̂I p(t)∩ Ĵ q (t)�=∅}
( Î p
− Ĵ q

−)• [V,W ] and
∫ 1

0 g′(x)dx = g(1)− g(0)= 0, (A.3) implies that (b)–(d) holds true.

Moreover, by using [C2], (A.1) and the fact that ψHY = ∫ 1
0 g(x)dx , (a) also follows from

(A.3). n

We also remark the following result:

LEMMA A.1.3. Let V,W be two semimartingales and u,v ∈ {g,g′}. Then, K̄ i j
t

L̄u,v (V,W )t = K̄ i j
− • L̄u,v (V,W )t for any i, j ∈ Z+ and any t ∈ R+.
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Proof. By integration by parts we have

K̄ i j
t L̄u,v (V,W )t = K̄ i j

− • L̄u,v (V,W )t + L̄u,v (V,W )− • K̄ i j
t + [K̄ i j , L̄u,v (V,W )]t ,

hence it is sufficient to show that L̄u,v (V,W )− • K̄ i j
t = [K̄ i j , L̄u,v (V,W )]t = 0. K̄ i j

t is a
step function starting from 0 at t = 0 and jumps to +1 at t = R∨(i, j) when Ī i ∩ J̄ j �= ∅,

where R∨(i, j) = Ŝi ∨ T̂ j , for K̄ i j
t can be rewritten as K̄ i j

t = K̄ i j 1(R∨(i, j),∞)(t). So,

L̄u,v (V,W )− • K̄ i j
t = L̄u,v (V,W )R∨(i, j)∧t− K̄ i j

t and [K̄ i j , L̄u,v (V,W )]t = K̄ i j
t �L̄u,v

(V,W )R∨(i, j)∧t . However, L̄u,v (V,W )t = 0 for t ≤ R∨(i, j) by its definition. This
implies that L̄u,v (V,W ) does not jump at R∨(i, j). n

Proof of Theorem 2.1. By a localization procedure, we may assume that [SC1]–[SC2],

[SN

2] and (A.1) hold true.

According to Lemma A.1.1–A.1.2, it suffices to prove M(k)n
ucp−−→ 0 as n → ∞ for

k = 1,2,3,4. Moreover, in the light of Lemma A.1.3 it suffices to show that

sup
0≤s≤t

∣∣∣∣∣∣∣
∑

i, j≥1,R̄∨(i, j)≤s

K̄ i j
− •

{
V̄u(Î)i− • W̄v (Ĵ ) j

}
s

∣∣∣∣∣∣∣= op(k
2
n), (A.4)

sup
0≤s≤t

∣∣∣∣∣∣∣
∑

i, j≥1,R̄∨(i, j)≤s

K̄ i j
− •

{
W̄v (Ĵ ) j

− • V̄u(Î)i
}

s

∣∣∣∣∣∣∣= op(k
2
n) (A.5)

as n → ∞ for any (V,u) ∈ {(M1,g), (E1,g′), (M1,g′), (A1,g), (A1,g′)}, (W,v) ∈
{(M2,g), (E2,g′), (M2,g′), (A2,g), (A2,g′)} and t > 0.

Consider (A.4). First we assume that (W,v) ∈ {(M2,g), (M2,g′), (E2,g′)}. We decom-
pose the target quantity as

∑
i, j≥1,R̄∨(i, j)≤s

K̄ i j
− •

{
V̄u(Î)i− • W̄v (Ĵ ) j

}
s

=

⎧⎪⎨⎪⎩
∞∑

i, j=1

−
∑

i, j≥1,R̄∨(i, j)>s

⎫⎪⎬⎪⎭ K̄ i j
− •

{
V̄u(Î)i− • W̄v (Ĵ ) j

}
s
=: B1

s +B2
s .

First we prove sup0≤s≤t |B1
s | = op(k2

n). Suppose that W ∈ {(M2,g), (M2,g′)}. Then,
W is a locally square-integrable martingale with the predictable quadratic variation [W ].
Therefore, B1 is also a locally square-integrable martingale and thus it suffices to prove
〈B1〉t = op(k4

n). Since 〈W̄v (Ĵ ) j , W̄v (Ĵ ) j ′ 〉t = 0 if | j − j ′|> kn , we have

〈B1〉s =
∑

i, j,i ′, j ′:| j− j ′|≤kn

K̄ i j
− K̄ i ′ j ′

− V̄u(Î)i−V̄u(Î)i ′− • 〈W̄v (Ĵ ) j , W̄v (Ĵ ) j ′ 〉s .
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Therefore, the Kunita–Watanabe inequality, Proposition A.1.1, [SC1]–[SC2], [SN

2], and

(A.1) yield

E
[
〈B1〉t

]
≤

∑
j, j ′:| j− j ′|≤kn

E

⎡⎢⎣ sup
0≤s≤t

⎛⎝∑
i

K̄ i j
s V̄u(Î)is

⎞⎠2

〈W̄v (Ĵ ) j 〉t

⎤⎥⎦
� k2

n · knr̄n
∑

i, j :|i− j |≤kn

E

[
sup

0≤s≤t

∣∣∣V̄u(Î)is
∣∣∣2]� k4

n · knr̄n

and thus 〈B1〉t = op(k4
n) because ξ ′ > 1/2. On the other hand, if W = E2, then for each

ω(0) ∈ �(0) W (ω(0), ·) is a locally square-integrable martingale with respect to the fil-
tration F(1) under the probability measure Q

(
ω(0),dω(1)

)
with the predictable quadratic

variation k−2
n
∑

j :T̂ j (ω(0))≤·�22
T̂ j (ω(0))

(
ω(0)

)
. Therefore, we can adopt an argument similar

to the above and prove 〈B1〉t = op(k4
n).

Next we prove sup0≤s≤t |B2
s | = op

(
k2

n
)
. Since K̄ i j

s = 0 if Ŝi ∨ T̂ j ≥ s or |i − j |>kn , the
Schwarz inequality yields

sup
0≤s≤t

|B2
s |� kn

√√√√∑
i, j

∣∣∣K̄ i j
− •

{
V̄u(Î)i− • W̄v (Ĵ ) j

}
s

∣∣∣2.
Moreover, an argument similar to the above implies that sup0≤s≤t

∑
i, j
∣∣K̄ i j

− • {V̄u(Î)i− •
W̄v (Ĵ ) j}

s

∣∣2 = Op(k2
n · knr̄n), hence we obtain sup0≤s≤t |B2

s | = Op(k2
n · √knr̄n) =

op(k2
n) because ξ ′ > 1/2. Consequently, we have shown (A.4) in the case that (W,v) ∈

{(M2,g), (M2,g′), (E2,g′)}.
Next we assume that (W,v)∈ {(A2,g), (A2,g′)}. Then, [SC1]–[SC2], [SN


2], (A.1), and
the Schwarz inequality yield

E

⎡⎢⎣ sup
0≤s≤t

∣∣∣∣∣∣∣
∑

i, j≥1,R̄∨(i, j)≤s

K̄ i j
− •

{
V̄u(Î)i− • W̄v (Ĵ ) j

}
s

∣∣∣∣∣∣∣
⎤⎥⎦

� kn

⎧⎨⎩E

⎡⎣∑
i

sup
0≤s≤t

∣∣∣V̄u(Î)is
∣∣∣2
⎤⎦⎫⎬⎭

1/2
⎧⎪⎨⎪⎩E

⎡⎢⎣∑
j

⎛⎝kn−1∑
q=0

| Ĵ j+q (t)|
⎞⎠2
⎤⎥⎦
⎫⎪⎬⎪⎭

1/2

� kn ·
√

kn ·
√

k2
nr̄n = k2

n

√
knr̄n,

hence we obtain (A.4) because ξ ′ > 1/2.
By symmetry we can also prove (A.5), and thus we complete the proof. n

A.2. Proof of Theorem 2.2

First, we note that the condition [C2] is implied by [A3] and [A5]. Moreover, [C1] holds
true under the assumptions of Theorem 2.2 (see Remark 2.7(i)). In addition, we may as-
sume (A.1) by the same argument as in the previous section. Consequently, the lemmas
proved in the previous section can be used in this section.
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Then, in the light of Lemma A.1.1–A.1.2 we focus on the process Mu,v (V,W )n . We
replace it by a more tractable one. Define the process Mu,v (V,W )n by

Mu,v (V,W )nt = 1

(ψHY kn)2

∞∑
i, j=1

K̄ i j
− • L̄u,v (V,W )

i j
t .

LEMMA A.2.1. Under the assumptions of Theorem 2.2, n1/4{Mu,v (V,W )n −
Mu,v (V,W )n

} ucp−−→ 0 as n → ∞ for any V ∈ {X1,U1}, W ∈ {X2,U2} and any u,v ∈
{g,g′}.

Proof. Fix a t > 0. Since K̄ i j
s = 0 if Ŝi ∨ T̂ j ≥ s or |i − j |> kn , Lemma A.1.3 and the

Hölder inequality yield

sup
0≤s≤t

∣∣Mu,v (V,W )ns −Mu,v (V,W )ns
∣∣� k−2

n · k3/2
n

⎧⎨⎩ ∑
i, j :|i− j |≤kn

sup
0≤s≤t

∣∣∣L̄u,v (V,W )
i j
s

∣∣∣4
⎫⎬⎭

1/4

.

By [A3], [A5], [N8], and (A.1) we obtain
∑

i, j :|i− j |≤kn
sup0≤s≤t

∣∣∣L̄u,v (V,W )
i j
s

∣∣∣4 =
Op(k2

n(knr̄n)
3), hence

sup
0≤s≤t

∣∣Mu,v (V,W )ns −Mu,v (V,W )ns
∣∣= Op((knr̄n)

3/4)= Op

(
n
− 3

4

(
ξ ′− 1

2

))
.

Since ξ ′ > 9
10 by [A4], the proof is completed. n

Since Mu,v (V,W )n has a similar structure to the estimation error process of the
Hayashi–Yoshida estimator (see equation (3.2) of Hayashi and Yoshida, 2011), we can
apply arguments mimicking those in Hayashi and Yoshida (2011) for the proof. For exam-
ple, the following result can be obtained in such a manner:

LEMMA A.2.2. Let u,v ∈ {g,g′}. Under the assumptions of Theorem 2.2, it holds that

(a) n1/4Mu,v (A,W )n
ucp−−→ 0 as n →∞ for A ∈ {A1,A1} and W ∈ {X2,U2}.

(b) n1/4Mu,v (V, A)n
ucp−−→ 0 as n →∞ for V ∈ {X1,U1} and A ∈ {A2,A2}.

Proof. Since Mu,v (A,W )n and Mu,v (V, A)n have similar structures to the estimation
error process of the Hayashi–Yoshida estimator, we can adopt an argument mimicking the
proof of Lemma 13.1–13.2 in Hayashi and Yoshida (2011). This completes the proof. n

The above lemma tells us that we can replace
∑4

k=1 M(k)n by M̃n :=∑4
k=1 M̃(k)n ,

where M̃(1)n = Mg,g(M1,M2)n , M̃(2)n = Mg′,g′(E1 +M1,E2 +M2)n , M̃(3)n =
Mg,g′(M1,E2 +M2)n , and M̃(4)n = Mg′,g(E1 +M1,M2)n . Since M̃n is a locally
square-integrable martingale, it is more tractable. In fact, we can apply a simplified mar-
tingale version of the stable central limit theorem from Jacod (1997) to it as follows:

Proof of Theorem 2.2.

(a) According to Lemma A.1.1–A.1.2 and A.2.1–A.2.2, it suffices to show that
n1/4M̃n →ds

∫ ·
0wsdW̃s as n →∞.
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We apply Theorem 2–2 from Jacod (1997). The above stable convergence is implied by
the following three conditions:

〈n1/4M̃n〉t →p
∫ t

0
w2

s ds, (A.6)

〈n1/4M̃n,N 〉t →p 0, (A.7)∑
s:0≤s≤t

|n1/4�M̃n
s |4 →p 0 (A.8)

for any t ∈ R+ and any F-square-integrable martingale N .
First we prove (A.6). The bi-linearity of predictable quadratic variations yields

〈n1/4M̃n〉t =√
n

4∑
k,l=1

〈M̃(k)n,M̃(l)n〉t .

Consider 〈M̃(1)n,M̃(1)n〉t . Since M̃(1)n has a similar structure to the estimation error
process of the Hayashi–Yoshida estimator, we can adopt an argument mimicking the proof
of Proposition 5.1 in Hayashi and Yoshida (2011). Consequently, we obtain

〈M̃(1)n,M̃(1)n〉t
= 1

(ψHY kn)4

∑
i, j,i ′, j ′

(K̄ i j
− K̄ i ′ j ′

− )•
{〈

M̄1
g (Î)i , M̄1

g (Î)i
′ 〉t 〈M̄2

g (Ĵ ) j , M̄2
g (Ĵ ) j ′

〉
t

+
〈
M̄1

g (Î)i , M̄2
g (Ĵ ) j ′ 〉t 〈M̄1

g (Î)i
′
, M̄2

g (Ĵ ) j
〉
t

}
+op(n

−1/2).

Moreover, noting that it can be shown that

sup
p,q:p,q≥kn

∣∣∣∣∣∣k−2
n

p∑
i=(p−kn+1)∨1

q∑
j=(q−kn+1)∨1

gn
p−i gn

q− j K̄ i j −ψg,g

(
q − p

kn

)∣∣∣∣∣∣= Op
(
n−1/2)

due to Proposition A.1.1, a simple computation yields

〈M̃(1)n,M̃(1)n〉t = 1

ψ4
HY

∞∑
p,q=1

ψg,g

(
q − p

kn

)2

×
{
〈M1〉( Î p)t 〈M2〉( Ĵ q )t +〈M1,M2〉( Î p)t 〈M1,M2〉( Ĵ q )t

}
+op

(
n−1/2).

Then, by using [A2]–[A4] and (9) it can be shown that

〈M̃(1)n,M̃(1)n〉t
= 1

ψ4
HY

∞∑
p,q=1

ψg,g

(
q − p

kn

)2{
[X1](� p)t [X2](�q )t+[X1, X2](� p)t [X1, X2](�q )t

}
+op(n

−1/2)
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= n−2

ψ4
HY

∞∑
p=1

⎧⎨⎩∑
q
ψg,g

(
q − p

kn

)2
⎫⎬⎭
{

[X1]′
R p−1 [X2]′

R p−1 +
(

[X1, X2]′
R p−1

)2
}

×
(

Gn
R p−1

)2
1{R p−1≤t} +op(n

−1/2)

= n−1/2θκ

∫ t

0

{
[X1]′s [X2]′s +

(
[X1, X2]

)2
}

Gsds +op(n
−1/2),

hence we obtain
√

n〈M̃(1)n,M̃(1)n〉t →p θκ
∫ t

0

{
[X1]′s [X2]′s +

(
[X1, X2]

)2}Gsds. In a

similar manner we can also show that
√

n〈M̃(1)n,M̃(k)n〉t →p 0 (k = 2,3,4),
√

n〈M̃(2)n,
M̃(l)n〉t →p 0 (l = 3,4) and

√
n〈M̃(2)n,M̃(2)n〉t →p θ−3κ̃

∫ t

0

{
�11

s �22
s +

(
�12

s χs

)2
}

1

Gs
ds,

√
n〈M̃(3)n,M̃(3)n〉t →p θ−1κ

∫ t

0
[X1]′s�11

s ds,

√
n〈M̃(4)n,M̃(4)n〉t →p θ−1κ

∫ t

0
�22

s [X2]′sds,

√
n〈M̃(3)n,M̃(4)n〉t →p θ−1κ

∫ t

0
[X1, X2]′s�12

s χsds

as n →∞. Consequently, (A.6) holds true.
Next we prove (A.7). Let N be the set of all F-square-integrable martingales satisfying

(A.7). Then, N is a closed subspace of the Hilbert space M2 of all F-square-integrable
martingales due to (A.6) and the Kunita–Watanabe inequality, hence it suffices to show that
N is total inM2.

Since (11) is satisfied for f = [X1]′, [X2]′ and [X1, X2]′ by [A3], Lemma A.2.2 yields
M1,M2 ∈N . On the other hand, if N is an F(0)-square integrable martingale orthogonal
to (M1,M2), then obviously 〈M̃n,N 〉t = 0, so that N ∈N . Consequently,N includes the
set N 0 of all F(0)-square integrable martingales. Moreover, it can also be shown that N
includes the setN 1 of all F(1)-square integrable martingales by an argument similar to the
Step (5) of the proof of Lemma 5.7 in Jacod et al. (2009). Consequently, N is total inM2
because so isN 0 ∪N 1.

Finally we prove (A.8). Since equation I-4.36 in Jacod and Shiryaev (2003) yields

�M̃n
s = 1

(ψHY kn)2

∑
i, j

{
K̄ i j

s X̄
1(Î)is�Ē2

g′(Ĵ )
j
s + K̄ i j

s X̄
2(Ĵ ) j

s�Ē
1
g′(Î)is

}
,

where X̄1(Î)is = X̄1
g(Î)is +Ē1

g′(Î)is and X̄2(Ĵ ) j
s = X̄2

g(Ĵ ) j
s +Ē2

g′(Ĵ )
j
s , it suffices to prove

that

n

k8
n

∑
0≤s≤t

∣∣∣∣∣∣
∑
i, j

K̄ i j
s X̄

1(Î)is�Ē2
g′(Ĵ )

j
s

∣∣∣∣∣∣
4

→ p0,

n

k8
n

∑
0≤s≤t

∣∣∣∣∣∣
∑
i, j

K̄ i j
s X̄

2(Ĵ ) j
s�Ē

1
g′(Î)is

∣∣∣∣∣∣
4

→ p0 (A.9)
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as n →∞ for any t > 0. Since

∑
i, j

K̄ i j
s X̄

1(Î)is�Ē2
g′(Ĵ )

j
s =− 1

kn

∞∑
q=1

ζ 2
T̂ q 1{T̂ q=s}

∞∑
i=1

q∑
j=(q−kn+1)∨1

(g′)nq− j K̄ i j
T̂ q X̄

1(Î)i
T̂ q ,

we have

n

k8
n

∑
0≤s≤t

∣∣∣∣∣∣
∑
i, j

K̄ i j
s X̄

1(Î)is�Ē2
g′(Ĵ )

j
s

∣∣∣∣∣∣
4

≤ n

k8
n
· 1

k4
n

∞∑
q=1

(
ζ 2

T̂ q

)4

∣∣∣∣∣∣
∞∑

i=1

q∑
j=(q−kn+1)∨1

(g′)nq− j K̄ i j
T̂ q X̄

1(Î)i
T̂ q

∣∣∣∣∣∣
4

1{T̂ q≤t}

= Op(nk−8
n · k−4

n ·nk8
n(knr̄n))= op(1)

by [C1], [C2], [N8], and [A4]. Consequently, we have proved the first equation of (A.9).
By symmetry we also obtain the second equation of (A.9), hence we complete the proof.

(b) Similar to the proof of (a).

n

A.3. Proof of Theorem 3.1

Exactly as in Section A.1, we may assume that [SC1]–[SC2], [SN

r ], and (A.1) are satisfied.

Similarly, we may strengthen the condition [F] as follows:

[SF] We have [F] and there is a positive constant B such that

B−1 < inf
k∈N |γ

l
k |≤ sup

k∈N
|γ l

k |< B (A.10)

for each l = 1,2.

Next we introduce the following strengthened version of the condition [T]:

[ST] For each l = 1,2 we have �l
n(t)= αl

n(t)ρn , where (ρn)n∈N is the same one as in [T]
and (αl

n(t))n∈N is a sequence of (not necessarily adapted) positive-valued stochastic
processes such that there exists a positive constant K0 satisfying

1

K0
< inf

t∈R+
αl

n(t)≤ sup
t∈R+

αl
n(t) < K0, n = 1,2, . . . .

LEMMA A.3.1. Let (cn) be a sequence of positive numbers. If we have

c−1
n {P̂T HY (Z1,Z2)n − P̂ HY (X1,X2)n} ucp−−→ 0 as n →∞ (A.11)

under the condition [ST], then we have also (A.11) under the condition [T].
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Proof. Let t > 0 and k ∈ N. Suppose that [T] holds. Then, for an arbitrary ε > 0, there
exists a positive number K such that

sup
n∈N

P

⎛⎝ sup
0≤s<Rl

k

αl
n(s)≥ K

⎞⎠< ε and sup
n∈N

P

⎛⎝ sup
0≤s<Rl

k

[1/αl
n(s)] ≥ K

⎞⎠< ε, l = 1,2.

Hence for any η > 0 we have

P
(
�n(t) > η

)≤ P(R1
k ∧ R2

k ≤ t)

+4ε+ P

⎛⎝�n(t ∧ R1
k ∧ R2

k ) > η, max
l∈{1,2}

⎡⎣ sup
0≤s<Rl

k

αl
n(s)∨ sup

0≤s<Rl
k

1

αl
n(s)

⎤⎦< K

⎞⎠ ,

where �n(t) := sup0≤s≤t c−1
n |P̂T HY (Z1,Z2)ns − P̂ HY (X1,X2)ns |. Therefore, by the

assumption we obtain

limsup
n→∞

P
(
�n(t) > η

)≤ P(R1
k ∧ R2

k ≤ t)+4ε.

Since ε is arbitrary, we can replace ε in the above inequality with 0. Finally, with k tending
to 0, we obtain the desired result. n

Now we introduce some notation and prove some lemmas which we will also use later.
Set

Ṽ (Î)it =−√
n

kn−1∑
p=0

�(g)npV ( Ǐ i+p)t , Ṽ (Ĵ ) j
t =−√

n
kn−1∑
q=0

�(g)nq V ( J̌ j+q )t

for each t ∈R+ and i, j ∈Z+. The following lemma is an analog to Lemma 2.1 of Mancini
and Gobbi (2012):

LEMMA A.3.2. Suppose that [SC1]–[SC2] and (A.1) are satisfied. Then there exists a
positive constant L such that

limsup
n→∞

sup
i∈N

|X̄1(Î)it |√
2knr̄n log 1

r̄n

≤ L , limsup
n→∞

sup
i∈N

|X̃1(Î)it |√
2knr̄n log 1

r̄n

≤ L , (A.12)

limsup
n→∞

sup
i∈N

|X̄2(Ĵ )it |√
2knr̄n log 1

r̄n

≤ L , limsup
n→∞

sup
i∈N

|X̃2(Ĵ )it |√
2knr̄n log 1

r̄n

≤ L (A.13)

a.s. for any t > 0.

Proof. First, note that by [SC2] there exists a constant c0 > 0 such that sup0≤s≤t

|[X1]′s |+ sup0≤s≤t |[X1]′s | ≤ c0. We also remark that (A.1) implies that | Î p|, | Ǐ p| ≤ 2r̄n .
Next, combining a representation of a continuous local martingale with Brownian

motion and Lévy’s theorem on the uniform modulus of continuity of Brownian motion,
we obtain a.s.

limsup
δ→+0

sup
s,u∈[0,t]
|s−u|≤δ

|M1
s − M1

u |√
2δ log 1

δ

≤ sup
0≤s≤t

|[X1]′s |,
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limsup
δ→+0

sup
s,u∈[0,t]
|s−u|≤δ

|M1
s − M1

u |√
2δ log 1

δ

≤ sup
0≤s≤t

|[X1]′s |.

Since X̄1(Î)it =−∑kn−1
p=0 �(g)np(X

1
Ŝi+p∧t

− X1
Ŝi∧t

), |�(g)np| ≤ 1
kn
‖g‖∞ and |A1

Ŝi+p∧t
−

A1
Ŝi∧t

|� r̄n , we obtain the first inequality in (A.12). Moreover, by the Freedman inequality
(Thm. 1.6 of Freedman, 1975) we have

P
(
|X̃1(Î)it |>

√
12c0‖g‖∞knr̄n logn

)
≤ 2exp

(
− 12c0‖g‖∞knr̄n logn

2(2c0‖g‖∞knr̄n +√
12kn4c0‖g‖∞r̄n logn)

)
� n−2.

Therefore, [SC1] and the Borel–Cantelli lemma as well as |A1( Ǐ p)t | � r̄n imply that the
second inequality in (A.12).

By symmetry we also obtain (A.13). n

We can strengthen Lemma A.3.2 by a localization if we assume that (A.1) and [SC2]
hold, so that in the remainder of this section we always assume that we have a positive
constant K and a positive integer n0 such that

sup
i∈N

|X̄1(Î)it (ω)|+ |X̃1(Î)it (ω)|√
2knr̄n logn

+ sup
j∈N

|X̄2(Ĵ ) j
t (ω)|+ |X̃2(Ĵ ) j

t (ω)|√
2knr̄n logn

≤ K (A.14)

for all t > 0 and ω ∈� if n ≥ n0. Moreover, we only consider sufficiently large n such that
n ≥ n0.

Next, set

ζ
1
(Î)i =

kn−1∑
p=0

�(g)npζ
1
Ŝi+p , ζ

2
(Ĵ ) j =

kn−1∑
q=0

�(g)nqζ
2
T̂ j+q

for each i, j ∈ Z+. We denote by E0 a conditional expectation given F (0), i.e. E0[·] :=
E[·|F (0)].

LEMMA A.3.3. Suppose [SN

r ] hold for some r ∈ [2,∞). Then there exists a some

positive constant Kr independent of n such that

E0[|ζ 1
(Î)i |r ] ≤ Kr k−r/2

n , E0[|ζ 2
(Ĵ ) j |r ] ≤ Kr k−r/2

n (A.15)

for all i, j ∈ Z+.

Proof. The Burkholder–Davis–Gundy inequality, Jensen’s inequality and the Lipschitz
continuity of g yield

E0[|ζ 1
(Î)i |r ]� E0

⎡⎢⎣
⎧⎨⎩

kn−1∑
p=0

|�(g)npζ 1
Ŝi+p |2

⎫⎬⎭
r/2
⎤⎥⎦

≤ kr/2−1
n

kn−1∑
p=0

E0

[
|�(g)npζ 1

Ŝi+p |r
]
� k−r/2

n ,
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hence we obtain the first inequality of (A.15). By symmetry we also obtain the
second one. n

Recall that Ī i = [Ŝi , Ŝi+kn ), J̄ j = [T̂ j , T̂ j+kn ), and R̄∨(i, j)= Ŝi+kn ∨ T̂ j+kn .

LEMMA A.3.4. Let c be a positive number. Suppose [SC2] and [SF] hold. Suppose also

[SN

r ] holds for some r ∈ (2,∞). Then for all t > 0 we have

∞∑
i=1

P
(
|ζ 1

(Î)i | ≥ c,N 1( Ī i )t �= 0, Ŝi+kn ≤ t
)
→ 0,

∞∑
j=1

P
(
|ζ 2

(Ĵ ) j | ≥ c,N 2( J̄ j )t �= 0, T̂ j+kn ≤ t
)
→ 0 (A.16)

as n →∞.

Proof. Lemma A.3.3 yields E0
[|ζ 1

(Î)i |r 1{N 1( Ī i )t �=0}
]
� k−r/2

n 1{N 1( Ī i )t �=0} uniformly

in i . Since N 1 is a point process, we obtain

∞∑
i=1

P
(
|ζ 1

(Î)i | ≥ c,N 1( Ī i )t �= 0, Ŝi+kn ≤ t
∣∣F (0)

)

≤ 1

cr

∞∑
i=1

E0[|ζ 1
(Î)i |r 1{N 1( Ī i )t �=0}]� k1−r/2

n N 1
t ,

and thus we obtain the first equation of (A.16) since r > 2 and kn → ∞ as n → ∞. By
symmetry we also obtain the second equation of (A.16), and thus we complete the proof
of lemma. n

Proof of Theorem 3.1. By a localization procedure, we may replace the conditions [F],

[C1]–[C2], and [N

r ] with [SF], [SC1]–[SC2] and [SN


r ] respectively. Moreover, we can
also replace the condition [T] with [ST] by Lemma A.3.1, while (5) can be replaced with
(A.1) due to the same argument as in Section A.1.

We decompose the target quantity as

PT HY (Z1,Z2)nt − P HY (X1,X2)nt

= 1

(ψHY kn)2

(
−

∑
i, j :R̄∨(i, j)≤t

X
1
(Î)iX2

(Ĵ ) j K̄ i j 1{|Z1
(Î)i |2>�1

n [i]}∪{|Z2
(Ĵ ) j |2>�2

n [ j]}

+
∑

i, j :R̄∨(i, j)≤t

{
D̄1(Î)itX2

(Ĵ ) j +X1
(Î)i D̄2(Ĵ ) j

t + D̄1(Î)it D̄2(Ĵ ) j
t

}

× K̄ i j 1{|Z1
(Î)i |2≤�1

n [i],|Z2
(Ĵ ) j |2≤�2

n [ j]}

)
=: It + IIt + IIIt + IVt ,

where Dl
t :=∑Nl

t
k=1 γ

l
k for each l = 1,2.
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First consider I. By the Schwarz inequality and (A.2), we have

sup
0≤s≤t

|Is | ≤ 1

(ψHY kn)2

⎧⎪⎨⎪⎩
∑

i, j :R̄∨(i, j)≤t

|X1
(Î)i |2 K̄ i j 1{|Z1

(Î)i |2>�1
n [i]}

⎫⎪⎬⎪⎭
1/2

×

⎧⎪⎨⎪⎩
∑

i, j :R̄∨(i, j)≤t

|X2
(Ĵ ) j |2 K̄ i j 1{|Z2

(Ĵ ) j |2>�2
n [ j]}

⎫⎪⎬⎪⎭
1/2

� 1

kn

⎧⎨⎩ ∑
i :Ŝi+kn≤t

|X1
(Î)i |21{|Z1

(Î)i |2>�1
n [i]}

⎫⎬⎭
1/2

×
⎧⎨⎩ ∑

j :T̂ j+kn≤t

|X2
(Ĵ ) j |2 1{|Z2

(Ĵ ) j |2>�2
n [ j]}

⎫⎬⎭
1/2

.

Consider
∑

i :Ŝi+kn≤t |X
1
(Î)i |21{|Z1

(Î)i |2>�1
n [i]}. We decompose it as

∑
i :Ŝi+kn≤t

|X1
(Î)i |21{|Z1

(Î)i |2>�1
n [i]}

=
∑

i :Ŝi+kn≤t

|X1
(Î)i |2

(
1{|X1

(Î)i |2>�1
n [i],N 1( Ī i )t =0} +1{|Z1

(Î)i |2>�1
n [i],N 1( Ī i )t �=0}

)
=: A1,t + A2,t .

On {|X1
(Î)i |2 > �1

n[i], Ŝi+kn ≤ t} we have

|ζ 1
(Î)i | ≥ |X1

(Î)i |− |X̄1(Î)it |− |X̃1(Î)it |>
√
ρn

(
1√
K0

−2K

√
2knr̄n logn

ρn

)

by [ST] and (A.14). Hence by (18) we have

A1,t ≤
∑

i :Ŝi+kn≤t

|X1
(Î)i |21{ζ 1

(Î)i |2>ρn/4K0}

≤ 2

(
4K0

ρn

) r
2 ∑

i :Ŝi+kn≤t

|X̄1(Î)it |2|ζ 1
(Î)i |r +2

(
4K0

ρn

) r−2
2 ∑

i :Ŝi+kn≤t

|ζ 1
(Î)i |r ,

and thus (18) and (A.14) imply that A1,t � (ρn)
− r−2

2
∑

i :Ŝi+kn≤t |ζ
1
(Î)i |r . Hence Lemma

A.3.3 and [SC1] yield

E[A1,t ]� nk−1
n (knρn)

− r−2
2 . (A.17)

On the other hand, since | Ī i (t)| ≤ knr̄n → 0 and N 1 is a point process, pathwise for suffi-
ciently large n there exists a some index k(i) ∈ N for each i such that D̄1(Î)it = γk(i)N

1
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( Ī i )t . Hence by (A.10) we have |D̄1(Î)it | ≥ B−1 on {|Z1
(Î)i |2 ≤ �1

n[i],N 1( Ī i )t �= 0,

Ŝi+kn ≤ t} for each i pathwise for sufficiently large n. Moreover, on {|Z1
(Î)i |2 ≤ �1

n[i],
|D̄1(Î)it | ≥ B−1, Ŝi+kn ≤ t} we have

|ζ 1
(Î)i | ≥ |D̄1(Î)it |− |Z1(Î)i |− |X̄1(Î)it |− |X̃1(Î)it |

≥ B−1 −
√
�1

n[i]−|X̄1(Î)it |− |X̃1(Î)it |,

hence by (A.14) a.s. for sufficiently large n we have A2,t ≤ ∑
i :Ŝi+kn≤t |X

1
(Î)i |2

1{|ζ 1
(Î)i |>1/2B,N 1( Ī i )t �=0}. Therefore Lemma A.3.4 yields

A2,t = op

(
nk−1

n (knρn)
− r−2

2

)
. (A.18)

By (A.17) and (A.18) we obtain
∑

i :Ŝi+kn≤t |X
1
(Î)i |21{|Z1

(Î)i |2>�1
n [i]} = Op

(
nk−1

n

(knρn)
− r−2

2
)
, and by symmetry we also obtain

∑
i :T̂ j+kn≤t |X

2
(Ĵ ) j |21{|Z2

(Ĵ ) j |2>�2
n [ j]}

= Op

(
nk−1

n (knρn)
− r−2

2

)
. Consequently, by (7) we have sup0≤s≤t |Is | = Op

((
n−1/2

ρ−1
n
) r−2

2
)
.

Next consider II. Since D̄1(Î)it = 0 on {N 1( Ī i )t = 0}, we have

IIt = 1

(ψHY kn)2

∑
i, j∈Z+,R̄∨(i, j)≤t

D̄1(Î)itZ
2
(Ĵ ) j K̄ i j 1{|Z1

(Î)i |2≤�1
n [i],|Z2

(Ĵ ) j |2≤�2
n [ j],N 1( Ī i )t �=0},

and thus an argument similar to the proof of (A.18) yield sup0≤s≤t |IIs | = op(n−1/4).

Similarly we can show sup0≤s≤t |IIIs | = op(n−1/4) and sup0≤s≤t |IVs | = op(n−1/4).
Consequently, we complete the proof of Theorem 3.1. n

A.4. Proof of Theorem 3.4

Exactly as in the previous section, we can use a localization procedure for the proof, and
which allows us to systematically replace the conditions [A4], [A6], and [Kβ ] by the fol-
lowing strengthened versions:

[SA4] ξ ∨ 9
10 < ξ ′ and (A.1) holds.

[SA6] There exists a positive constant C such that nHn(t)≤ C for every t .

[SKβ ] We have [Kβ ] with E1 = E2 =: E and (Al )′, [Ml ]′, (Al )′, and [Ml ]′ (l = 1,2) are
bounded. Moreover, there is a nonnegative bounded measurable function ψ on E
such that

sup
ω∈�,t∈R+

|δl (ω, t, x)| ≤ ψ(x) and
∫

E
ψ(x)β Fl (dx) <∞, l = 1,2.

Next, an argument similar to the one in the first part of Section 12 of Hayashi and
Yoshida (2011) allows us to assume that 9

10 < ξ < ξ ′ < 1 under [A1]. Furthermore, in the
following we only consider sufficiently large n such that

knr̄n < n−ξ+1/2. (A.19)
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Now we prove some auxiliary results. Let

Nl := 1{|δl |>1} �μl , Ll := κ(δl ) �
(
μl −νl).

First we need the preaveraged versions of some lemmas in Section 7 of Koike (2013). For
processes V and W , V •W denotes the integral (either stochastic or ordinary) of V with
respect to W .

LEMMA A.4.1. Suppose [A1], [SA4], [SA6], and [SK2] hold. Suppose also that [SN

r ]

holds for some r ∈ (2,∞). Then for any t > 0 and any q ∈ [0,2] we have∑
i :Ŝi+kn≤t

|L̄1(Î)it |q 1{|Z1
(Î)i |2≤�1

n [i],N 1( Ī i )t �=0} = Op(1),

∑
j :T̂ j+kn≤t

|L̄2(Ĵ ) j
t |q 1{|Z2

(Ĵ ) j |2≤�2
n [ j],N 2( J̄ j )t �=0} = Op(1) (A.20)

as n →∞.

Proof. For sufficiently large n we have |D̄(Î)it | ≥ 1 on {N 1( Ī i )t �= 0}, hence

|L̄1(Î)it |+ |ζ 1
(Î)i | ≥ |D̄(Î)it |− |Z1

(Î)i |− |X̄1(Î)it |− |X̃1(Î)it |> 1/2

on {|Z1
(Î)i |2 ≤ �1

n[i],N 1( Ī i )t �= 0}. Therefore, we obtain∑
i :Ŝi+kn≤t

|L̄1(Î)it |q 1{|Z1
(Î)i |2≤�1

n [i],N 1( Ī i )t �=0}

≤
∑

i :Ŝi+kn≤t

|L̄1(Î)it |q 1{|ζ 1
(Î)i |≥1/4,N 1( Ī i )t �=0} +42−q

∞∑
i=0

N 1( Ī i )t |L̄1(Î)it |2

= I+ II.

Lemma A.3.4 yields I = Op(1). On the other hand, since N 1 and L1 have no common
jump, Itô’s formula yields

N 1( Ī i )|L̄1(Î)i |2 = |L̄1(Î)i |2− Ī i− • N 1 +2N 1( Ī i )− L̄1(Î)i− • L̄1(Î)i + N 1( Ī i )− • [L̄1(Î)i ],

and thus we obtain E[N 1( Ī i )t |L̄1(Î)it |2] = E[|L̄1(Î)i |2− Ī i− • �1
t ] + E[N 1( Ī i )− •

〈L̄1(Î)i 〉t ] by the optional sampling theorem, where �1 is the compensator of N 1. Since

�1 = 1{|δ1|>1}�ν1 and 〈L̄1(Î)i 〉=∑kn−1
p=1 gn

p( Î
i+p
− •〈L1〉)=∑kn−1

p=1 gn
p[ Î i+p

− κ(δ1)]�ν1,
by [SK2], [A1] and the optional sampling theorem we have

E[N 1( Ī i )t |L̄1(Î)it |2]�
∫ t

0
E[|L̄1(Î)is |2 Ī i

s ]ds +
kn−1∑
p=1

∫ t

0
E[N 1( Ī i )s Î i+p

s ]ds

=
∫ t

0
E[〈L̄1(Î)i 〉s Ī i

s ]ds +
kn−1∑
p=1

∫ t

0
E[�1( Ī i )s Î i+p

s ]ds,
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and thus again [SK2] and the representations of �1 and 〈L̄1(Î)i 〉 yield

E[N 1( Ī i )t |L̄1(Î)it |2]�
kn−1∑
p=1

∫ t

0
E[ Î i+p

s | Ī i (t)|]ds =
kn−1∑
p=1

E[| Î i+p(t)|| Ī i (t)|],

Since [SA6] implies
∑∞

i=1
∑kn−1

p=1 | Î i+p(t)|| Ī i (t)| � k2
nn−1 � 1, we obtain II = Op(1),

which completes the proof of the first equation of (A.20). Similarly we can prove the
second equation of (A.20). n

Let ϕp(ε) =∑2
l=1

∫
{ψ≤ε}ψ(x)p Fl (dx) for each p ∈ [β,∞). The following lemma is

the same one as Lemma 9 of Koike (2013), and will be useful to prove the lemmas below.

LEMMA A.4.2. Suppose [SKβ ] for some β ∈ [0,2]. Let p be a positive number and
(ρn) be a sequence of positive numbers which tends to 0. Then there exists a sequence of
numbers εn ∈ [0,1] such that

limsup
n→∞

(
ρ−1

n ε2
n
)p
ϕβ(εn)≤ 1 (A.21)

and

ϕβ(εn)→ 0,
√
ρn/εn → 0 (A.22)

as n →∞.

Proof. The strategy of the proof is the same as the one in the proof of Lemma 7.4 of
Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2006). Let

a′n := sup
{

y ∈ (0,∞)|y pϕβ(y
√
ρn)≤ 1

}
, an := 1∨ (a′n −n−1).

Since ϕβ(ε)→ 0 as ε→ 0, for any C > 0 there exists a positive number ε0 such that ε≤ ε0
implies ϕβ(ε)≤C−p . Moreover, since ρn → 0 as n →∞, there exists a positive integer n0

such that n ≥ n0 implies ρn < ε2
0/C2, hence C pϕβ(C

√
ρn)≤ 1. Therefore we have a′n →

∞, hence an →∞. Furthermore, for sufficiently large n an < a′n , hence a p
n ϕβ(an

√
ρn)≤

1. Therefore, if we put εn := an
√
ρn ∧ 1, we obtain (A.21) and

√
ρn/εn → 0. Moreover,

since ϕβ(εn)≤ ϕβ(an
√
ρn)≤ a−p

n → 0, we complete the proof. n

We introduce some auxiliary notation. We introduce an auxiliary sequence (εn) of num-
bers in [0,1] such that

limsup
n→0

√
ρn

εn
<∞, (A.23)

and we set En := {x ∈ E
∣∣ψ(x) > εn

}
. We will more specify the sequence (εn) later. Fur-

thermore, we put

Dl := κ ′(δl ) �μl , Xl := Al + Ml , Y l := Xl + Dl , Ñ l := 1En �μ
l ,

Ll := κ(δl )1Ec
n
� (μl −νl )−κ(δl )1En �ν

l , !l := κ(δl )1Ec
n
� (μl −νl )

"l := κ(δl )1En �ν
l
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for each l = 1,2 and

X1
Si = X1

Si +U1
Si , X2

T j = X2
T j +U2

T j , Y1
Si = Y 1

Si +U1
Si , Y2

T j = Y 2
T j +U2

T j

for each i, j ∈ Z+.

LEMMA A.4.3. Suppose [SKβ ] holds for some β ∈ [0,2]. Then for any t > 0 we have

∞∑
i=1

Ñ 1( Ī i )t = Op(knε
−β
n ),

∞∑
j=1

Ñ 2( J̄ j )t = Op(knε
−β
n ). (A.24)

Proof. Since E
[∑∞

i=1 Ñ 1( Ī i )t
] =∑∞

i=1 E[�̂1( Ī i )t ] � ε
−β
n
∑∞

i=1 E
[| Ī i (t)|] ≤ ε

−β
n

knt, we obtain the first equation of (A.4.3). By symmetry we also obtain the second
one. n

LEMMA A.4.4. Suppose [SKβ ] holds for some β ∈ [0,2]. Then for any t > 0 we have

E

⎡⎣ ∞∑
i=1

|L̄1(Î)it |2
⎤⎦� ε

2−β
n ϕβ(εn)kn, E

⎡⎣ ∞∑
j=1

|L̄2(Ĵ ) j
t |2
⎤⎦� ε

2−β
n ϕβ(εn)kn . (A.25)

Proof. Since E[|!̄(1)(Î)it |2] = E[〈!̄(1)(Î)i 〉t ] � ϕ2(εn)E
[∑kn−1

p=1 | Î i+p(t)|
]

and

E[|"̄(Î)it |2]� ε
−2(β−1)+
n E

[
| Ī i (t)|2

]
, we have

E

⎡⎣ ∞∑
i=1

|L̄1(Î)it |2
⎤⎦� ϕ2(εn)knt + ε

−2(β−1)+
n knr̄n · knt.

Since ϕ2(εn)≤ (εn)
2−βϕβ(εn), (β−1)+ ≤ β/2 and knr̄n = o((εn)

2) by (18) and (A.23),
we obtain the first equation of (A.25). By symmetry we obtain the second equation of
(A.25). n

LEMMA A.4.5. Suppose [ST] and [SKβ ] hold for some β ∈ [0,2]. Then for any t > 0
we have
∞∑

i=1

1{|L̄1(Î)it |2>c�1
n [i]} = op

(
knρ

−β/2
n

)
,

∞∑
j=1

1{|L̄2(Ĵ ) j
t |2>c�(2)n [ j]} = op

(
knρ

−β/2
n

)
. (A.26)

Proof. Combining Lemma A.4.3 with Lemma A.4.4, we obtain

∞∑
i=1

1{|L̄1(Î)it |2>c�1
n [i]} ≤

K0

ρn

∞∑
i=1

|L̄1(Î)it |2 +
∞∑

i=1

Ñ 1( Ī i )t �
ε2

n
ρn

ϕβ(εn)ε
−β
n kn + ε

−β
n kn,

hence Lemma A.4.2 with p = 1 yields the first equation of (A.26). By symmetry we also
obtain the second one. n
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LEMMA A.4.6. Suppose [ST] and [SKβ ] hold for some β ∈ [0,2]. Then for any t > 0
we have

∞∑
i=1

|L̄1(Î)it |21{|L̄1(Î)it |2≤c�1
n [i]} = op

(
knρ

1−β/2
n

)
,

∞∑
j=1

|L̄2(Ĵ ) j
t |21{|L̄2(Ĵ ) j

t |2≤c�2
n [ j]} = op

(
knρ

1−β/2
n

)
. (A.27)

Proof. Since

∞∑
i=1

|L̄1(Î)it |21{|L̄1(Î)it |2≤c�1
n [i]}

≤
∞∑

i=1

|L̄1(Î)it |21{N 1( Ī i )t=0} +
∞∑

i=1

|L̄1(Î)it |21{|L̄1(Î)it |2≤c�1
n [i],N 1( Ī i )t �=0}

�
∞∑

i=1

|L̄1(Î)it |2 +ρn

∞∑
i=1

1{N 1( Ī i )t �=0},

Lemma A.4.3 and Lemma A.4.4 yield
∑∞

i=1 |L̄1(Î)it |21{|L̄1(Î)it |2≤c�1
n [i]} = Op

({(εn)
2ϕβ

(εn)+ ρn}knε
−β
n
)
, hence by Lemma A.4.2 with p = 2 we obtain the first equation of

(A.27). By symmetry we also obtain the second equation of (A.27). n

Next we prove some lemmas which deal with the events that the noise part corrects the
effect of small jumps. Let ηn := (knρn)

−1. Set

Y
1
(Î)i =

kn−1∑
p=1

gn
p

(
Y1

Ŝi+p −Y1
Ŝi+p−1

)
, Y

2
(Ĵ ) j =

kn−1∑
q=1

gn
q

(
Y2

T̂ j+q −Y2
T̂ j+q−1

)

for each i, j ∈ Z+.

LEMMA A.4.7. Let c1 and c2 be two positive numbers. Suppose [ST], [A1], [SA4],

[SA6], and [SKβ ] hold for some β ∈ [0,2]. Suppose also that [SN

r ] holds for some r ∈

(2,∞). Then for any t > 0 we have∑
i :Ŝi+kn≤t

|Y1
(Î)i |21{|Z1

(Î)i |2≤c1�1
n [i],|Y1

(Î)it |2>c2�1
n [i]
}

= Op(1)+op

(
η

r−2
2

n ρ
−β/2
n

)
, (A.28)∑

j :T̂ j+kn≤t

|Y2
(Ĵ ) j |21{|Z2

(Ĵ ) j |2≤c1�2
n [ j],|Y2

(Ĵ ) j
t |2>c2�2

n [ j]
}

= Op(1)+op

(
η

r−2
2

n ρ
−β/2
n

)
. (A.29)
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Proof. Consider (A.28). We decompose the target quantity as∑
i :Ŝi+kn≤t

|Y1
(Î)i |21{|Z1

(Î)i |2≤c1�1
n [i],|Y1

(Î)it |2>c2�1
n [i]
}

=
∑

i :Ŝi+kn≤t

|Y1
(Î)i |21{|Z1

(Î)i |2≤c1�1
n [i],|Y1

(Î)i |2>c2�1
n [i],N 1( Ī i )t �=0

}
+

∑
i :Ŝi+kn≤t

|X1
(Î)i |21{|Z1

(Î)i |2≤c1�1
n [i],|X1

(Î)i |2>c2�1
n [i],N 1( Ī i )t=0

}
=: A1,t + A2,t .

First, since (E0[|Y1
(Î)i |2])∞i=0 is bounded by (A.14), [SKβ ], and [SNr ], Lemma A.4.1

yields A1,t = Op (1) . Next, on {|X1
(Î)i |2 > c1�

1
n[i]} we have

|ζ 1
(Î)i | ≥ |X1

(Î)i |− |X̄1(Î)it |− |X̃1(Î)it |>
√
ρn

(√
c1

K0
−2K

√
2knr̄n logn

ρn

)

by [SA4], [ST], and (A.14). Hence by (18) we have

A2,t ≤
∑

i :Ŝi+kn≤t

|X1
(Î)i |21{|L̄1(Î)it |2>�1

n [i],|ζ 1
(Î)i |2>c1ρn/4K0}

≤ 2

(
2K0

c1ρn

) r
2 ∑

i :Ŝi+kn≤t

|X̄1(Î)it |2|ζ 1
(Î)i |r 1{|L̄1(Î)it |2>c2�1

n [i]}

+2

(
2K0

c1ρn

) r−2
2 ∑

i :Ŝi+kn≤t

|ζ 1
(Î)i |r 1{|L̄1(Î)it |2>c2�1

n [i]},

and thus (18) and (A.14) imply that A2,t � (ρn)
− r−2

2
∑

i :Ŝi+kn≤t |ζ
1
(Î)i |r

1{|L̄1(Î)it |2>c2�1
n [i]}. By Lemma A.3.3 we obtain E0

[
A2,t

]
� η

r−2
2

n k−1
n
∑∞

i=1

1{L̄1(Î)it |2>�1
n [i]}, hence Lemma A.4.5 yield A2,t = op

(
η

r−2
2

n ρ
−β/2
n

)
. Consequently, we

obtain (A.28). By symmetry we also obtain (A.29), and thus we complete the proof. n

LEMMA A.4.8. Under the assumptions of Lemma A.4.7, for any t > 0 we have∑
i :Ŝi+kn≤t

|L̄1(Î)it |1{|Z1
(Î)i |2≤�1

n [i],|L̄1(Î)it |2>4�1
n [i]}

= Op (1)+op

(
knη

r/4
n ρ

−β/4
n

)
, (A.30)∑

j :T̂ j+kn≤t

|L̄2(Ĵ ) j
t |1{|Z2

(Ĵ ) j |2≤�2
n [ j],|L̄2(Ĵ ) j

t |2>4�2
n [ j]}

= Op (1)+op

(
knη

r/4
n ρ

−β/4
n

)
. (A.31)
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Proof. Consider (A.30). We decompose the target quantity as∑
i :Ŝi+kn≤t

|L̄1(Î)it |1{|Z1
(Î)i |2≤�1

n [i],|L̄1(Î)it |2>4�1
n [i]}

=
∑

i :Ŝi+kn≤t

|L̄1(Î)it |
(

1{|ζ 1
(Î)i |2>�1

n [i]/4,|Z1
(Î)i |2≤�1

n [i],|L̄1(Î)it |2>4�1
n [i]

}

+1{|ζ 1
(Î)i |2≤�1

n [i]/4,|Z1
(Î)i |2≤�1

n [i],|L̄1(Î)it |2>4�1
n [i]

})
=: B1,t +B2,t .

By the Schwarz inequality we have

B1,t ≤
∑

i :Ŝi+kn≤t

|L̄1(Î)it |1{|ζ 1
(Î)i |2>�1

n [i]/4,|L̄1(Î)it |2>4�1
n [i]

}

≤
⎧⎨⎩ ∑

i :Ŝi+kn≤t

|L̄1(Î)it |21{|ζ 1
(Î)i |2>�1

n [i]/4}

⎫⎬⎭
1/2⎧⎨⎩ ∑

i :Ŝi+kn≤t

1{|L̄1(Î)it |2>4�1
n [i]}

⎫⎬⎭
1/2

.

[ST] and Lemma A.3.3 yield

E

⎡⎣ ∑
i :Ŝi+kn≤t

|L̄1(Î)it |21{|ζ 1
(Î)i |2>�1

n [i]/4}

⎤⎦� ρ
−r/2
n

∞∑
i=1

E
[
|L̄1(Î)it |2 E0[|ζ 1

(Î)i |r ]
]

� η
r/2
n

∞∑
i=1

E[| Ī i (t)|] ≤ η
r/2
n kn .

Combining this with Lemma A.4.5, we obtain B1,t = op
(
knη

r/4
n ρ

−β/4
n

)
. On the other

hand, on {|Z1
(Î)i |2 ≤ �1

n[i], |L̄1(Î)it |2 > 4�1
n[i]} we have |Y1

(Î)i | ≥ |L̄1(Î)it | −
|Z1

(Î)i |>
√
�1

n[i]. Moreover, by (A.14) we have

|D̄1(Î)it | ≥ |Y1
(Î)i |− |X̄1(Î)it |− |ζ 1

(Î)i |− |X̃1(Î)it |>
√
ρn

(
1

2
√

K0
−2

√
2knr̄n logn

ρn

)
,

on {|ζ 1
(Î)i |2 ≤ �1

n[i]/4, |Y1
(Î)i |2 >�1

n[i], Ŝi+kn ≤ t}, and thus (18) yields |D̄1(Î)it |> 0,
hence N 1( Ī i ) �= 0. Therefore, we obtain

B2,t ≤
∑

i :Ŝi+kn≤t

|L̄1(Î)it |1{|Z1
(Î)i |2≤�1

n [i],N 1( Ī i )t �=0}, (A.32)

and thus Lemma A.4.1 yields B2,t = Op (1) . Consequently, we obtain (A.30). By symme-
try we also obtain (A.31), and thus we complete the proof. n
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LEMMA A.4.9. Under the assumptions of Lemma A.4.7, for any t > 0 we have∑
i :Ŝi+kn ≤t

|L̄1(Î)it |21{|Z1
(Î)i |2≤�1

n [i],|L̄1(Î)it |2>4�1
n [i]} = Op (1)+ Op

(
knη

r/2
n

)
, (A.33)

∑
j :T̂ j+kn ≤t

|L̄2(Ĵ ) j
t |21{|Z2

(Ĵ ) j |2≤�2
n [ j],|L̄2(Ĵ )

j
t |2>4�2

n [ j]} = Op (1)+ Op

(
knη

r/2
n

)
. (A.34)

Proof. Consider (A.33). We decompose the target quantity as∑
i :Ŝi+kn≤t

|L̄1(Î)it |21{|Z1
(Î)i |2≤�1

n [i],|L̄1(Î)it |2>4�1
n [i]}

=
∑

i :Ŝi+kn≤t

|L̄1(Î)it |2
(

1{|ζ 1
(Î)i |2>�1

n [i]/4,|Z1
(Î)i |2≤�1

n [i],|L̄1(Î)it |2>4�1
n [i]}

+1{|ζ 1
(Î)i |2≤�1

n [i]/4,|Z1
(Î)i |2≤�1

n [i],|L̄1(Î)it |2>4�1
n [i]}

)
=: �1,t +�2,t .

An argument similar to that in the proof of (A.32) yields �2,t = Op (1) . On the other hand,
Lemma A.3.3 yields

E[�1,t ]� ρ
−r/2
n

∞∑
i=1

E
[
|L̄1(Î)it |2 E0[|ζ 1

(Î)i |r ]
]

� η
r/2
n

∞∑
i=1

E
[
| Ī i (t)|

]
≤ η

r/2
n knt,

hence we obtain (A.33). By symmetry we also obtain (A.34), and thus we complete the
proof. n

Let K̄ i j
t = 1{Ī i (t)∩ J̄ j (t) �=∅} for each i, j ∈ Z+ and t ∈ R+.

LEMMA A.4.10. Suppose that [A1] and [SA4] are satisfied. Let τ be a G(n)-stopping

time. Then H K̄ i j
τ is FŜi∧T̂ j -measurable for any i, j ∈ Z+, provided that H is a G(n)

R̄∨(i, j)
-

measurable random variable.

Proof. Let B = { Ī i (τ )∩ J̄ j (τ ) �= ∅}. It is sufficient to show that A∩ B∩C ∈Fu for any

u ∈R+, where A ∈ G(n)
R̄∨(i, j)

and C = {̂Si ∧ T̂ j ≤ u}. On B we have R̄∨(i, j)− Ŝi ∧ T̂ j ≤
| Ī i | ∨ | J̄ j | ∨ (Ŝi+kn − T̂ j )∨ (T̂ j+kn − Ŝi ) ≤ knr̄n, hence R̄∨(i, j) = {R̄∨(i, j)− Ŝi ∧
T̂ j } + Ŝi ∧ T̂ j ≤ Ŝi ∧ T̂ j + knr̄n, and thus we have B ∩C = B ∩C ∩ {R̄∨(i, j) ≤ u +
knr̄n}. Since A, B ∈ G(n)

R̄∨(i, j)
, we have A∩ B∩{R̄∨(i, j)≤ u+knr̄n} ∈ G(n)u+knr̄n

, however,

G(n)u+knr̄n
= F

(u+knr̄n−n−ξ+
1
2 )+

⊂ Fu by (A.19). This together with the fact that C ∈ Fu

implies A∩ B ∩C ∈ Fu . n
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LEMMA A.4.11. Suppose [SC1]–[SC2], [A1], [SA4], [SA6], [SK2], and [SN

2] hold.

Then for any t > 0, there exists a positive constant K independent of both n and (εn)
such that

E

⎡⎢⎣ sup
0≤s≤t

∣∣∣∣∣∣∣
∑

i, j :R̄∨(i, j)≤s

!̄1(Î)is M̄2(Ĵ ) j
s K̄ i j

∣∣∣∣∣∣∣
⎤⎥⎦≤ K k2

n

√
ϕ2(εn)n

− 1
4 , (A.35)

E

⎡⎢⎣ sup
0≤s≤t

∣∣∣∣∣∣∣
∑

i, j :R̄∨(i, j)≤s

!̄1(Î)is M̃2(Ĵ ) j
s K̄ i j

∣∣∣∣∣∣∣
⎤⎥⎦≤ K k2

n

√
ϕ2(εn)n

− 1
4 , (A.36)

E

⎡⎢⎣ sup
0≤s≤t

∣∣∣∣∣∣∣
∑

i, j :R̄∨(i, j)≤s

!̄1(Î)isζ 2(Ĵ ) j K̄ i j

∣∣∣∣∣∣∣
⎤⎥⎦≤ K k2

n

√
ϕ2(εn)n

− 1
4 . (A.37)

Proof. First consider (A.35). Since integration by parts and Lemma A.1.3 yield

!̄1(Î)it M̄2(Ĵ ) j
t K̄ i j

s =
{

K̄ i j
− !̄1(Î)i−

}
• M̄2(Ĵ ) j

s +
{

K̄ i j
− M̄2(Ĵ ) j

−
}
• !̄1(Î)is , (A.38)

we can decompose the target quantity as∑
i, j :R̄∨(i, j)≤s

!̄1(Î)is M̄2(Ĵ ) j
s K̄ i j

=
∞∑

i, j=0

[{
K̄ i j
− !̄1(Î)i−

}
• M̄2(Ĵ ) j

s +
{

K̄ i j
− M̄2(Ĵ ) j

−
}
• !̄1(Î)is

]
+

∑
i, j :R̄∨(i, j)>s

!̄1(Î)is M̄2(Ĵ ) j
s K̄ i j

s

=: �1,s +�2,s +�3,s .

First we estimate �1,s . Since !̄1(Î)is =
∑kn−1

p=1 gn
p!

1( Î i+p)s and M̄2(Ĵ ) j
s =∑kn−1

q=1 gn
q

M2( Ĵ j+q )s , we have

�1,s =
∞∑

i, j=0

kn−1∑
p,q=1

gn
pgn

q K̄ i j
−!1( Î i+p)− Ĵ j+q

− • M2
s

=
∞∑

i, j=0

i+kn−1∑
p=i+1

j+kn−1∑
q= j+1

gn
p−i gn

q− j K̄ i j
−!1( Î i+p)− Ĵ j+q

− • M2
s

=
∞∑

p,q=1

υ(p,q)−!1( Î p)− Ĵ q
− • M2

s ,

where υ(p,q)s =∑p−1
i=(p−kn+1)+

∑q−1
j=(q−kn+1)+ gn

p−i gn
q− j K̄ i j

s . Hence we have

〈�1,·〉s =
∞∑

q=1

⎡⎣ ∞∑
p=1

υ(p,q)−!1( Î p)−

⎤⎦2

Ĵ q
− •〈M2〉s ,

https://doi.org/10.1017/S0266466614000954 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466614000954


594 YUTA KOIKE

and thus we obtain

E[〈�1,·〉t ]�
∞∑

q=1

∫ t

0
E

⎡⎢⎣
⎧⎨⎩

∞∑
p=1

υ(p,q)s!
1( Î p)s

⎫⎬⎭
2

Ĵ q
s

⎤⎥⎦ds

=
∞∑

q=1

∫ t

0

∞∑
p=1

E
[
υ(p,q)2s Ĵ q

s E
[
|!1( Î p)s |2|F (0)

Ŝ p−1

]]
ds

� k2
nϕ2(εn)

∞∑
p,q=1

p−1∑
i=(p−kn+1)+

q−1∑
j=(q−kn+1)+

E
[

K̄ i j
t | Î p(t)|| Ĵ q (t)|

]
� k4

nϕ2(εn)knn−1 � k4
nϕ2(εn)n

−1/2

by the representation of 〈M2〉 and 〈!1〉, [A1], (A.2), [SA6], and (7). Combining this with
the Schwarz and Doob inequalities, we conclude that

E

[
sup

0≤s≤t
|�1,s |

]
� k2

n

√
ϕ2(εn)n

−1/4. (A.39)

Similarly we can also show that E
[
sup0≤s≤t |�2,s |

]
� k2

n
√
ϕ2(εn)n−1/4. Now we esti-

mate �3,s . (A.38), the Doob inequality, [A1] and the optional sampling theorem, (A.2) and
[SA6] imply that

E

⎡⎣ sup
0≤s≤t

∞∑
i, j=0

|!̄1(Î)is M̄2(Ĵ ) j
s K̄ i j

s |2
⎤⎦� ϕ2(εn)E

⎡⎣ ∞∑
i, j=1

K̄ i j | Ī i (t)|| J̄ j (t)|
⎤⎦

� ϕ2(εn)kn . (A.40)

On the other hand, (A.2) also implies

∑
i, j :R̄∨(i, j)>s

K̄ i j
s ≤ (2kn +1)

⎡⎣ ∑
i :Ŝi+kn>s

1+
∑

j :T̂ j+kn>s

1

⎤⎦≤ (2kn +1)kn . (A.41)

Therefore, the Schwarz inequality and (7) yield E
[
sup0≤s≤t |�3,s |

]
�

√
ϕ2(εn)kn · kn �

k2
n
√
ϕ2(εn)n−1/4. Consequently, we conclude that (A.35) holds. (A.36) can be shown in a

similar manner.
Finally consider (A.37). Define the process Z2

t by Z2
t = n−1/2∑∞

j=1 ζ
2
T̂ j 1{T̂ j≤t}. Then

obviously Z2
t is a purely discontinuous locally square-integrable martingale B(0) and

ζ
2
(Ĵ ) j = Z̃2(Ĵ ) j on {T̂ j+kn ≤ t}. On the other hand, since !1 is quasi-left continu-

ous by Theorem I-4.2 of Jacod and Shiryaev (2003) and for every j T̂ j is F(0)-predictable
time by [A1], we have �!1

T̂ j = 0 for every j . Therefore, we have [!1,Z2] = 0, and thus
we can decompose the target quantity as

∑
i, j :R̄∨(i, j)≤s

!̄1(Î)isζ 2
(Ĵ ) j

s K̄ i j =
∞∑

i, j=0

[{
K̄ i j
− !̄1(Î)i−

}
• Z̃2(Ĵ ) j

s +
{

K̄ i j
− Z̃2(Ĵ ) j

−
}
• !̄1(Î)is

]
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+
∑

i, j :R̄∨(i, j)>s

!̄1(Î)is Z̃2(Ĵ ) j
s K̄ i j

s

=: ϒ1,s +ϒ2,s +ϒ3,s

due to integration by parts and Lemma A.1.3. First we estimate ϒ1,s . Since

ϒ1,s =
√

n
∞∑

i, j=0

kn−1∑
p=1

kn−1∑
q=0

gn
p�(g)

n
q K̄ i j

−!1( Î i+p)− Ĵ j+q
− •Z2

s

=√
n

∞∑
i, j=0

i+kn−1∑
p=i+1

j+kn−1∑
q= j

gn
p−i�(g)

n
q− j K̄ i j

−!1( Î i+p)− Ĵ j+q
− •Z2

s

=√
n

∞∑
p=1

∞∑
q=0

υ′(p,q)−!1( Î p)− Ĵ q
− •Z2

s ,

where υ′(p,q)s =∑p−1
i=(p−kn+1)+

∑q
j=(q−kn+1)+ gn

p−i�(g)
n
q− j K̄ i j

s . We have

[ϒ1,·]s =
∞∑

q=0

⎡⎣ ∞∑
p=1

υ′(p,q)T̂ q!
1( Î p)T̂ q

⎤⎦2 (
ζ 2

T̂ q

)2
1{T̂ q≤s},

hence we obtain

E
[[
ϒ1,·

]
t

]
�

∞∑
q=0

E

⎡⎢⎣
⎧⎨⎩

∞∑
p=1

υ′(p,q)T̂ q!
1( Î p)T̂ q

⎫⎬⎭
2

1{T̂ q≤t}

⎤⎥⎦
=

∞∑
q=0

∞∑
p=1

E
[
υ′(p,q)2

T̂ q∧t
E
[
|!1( Î p)T̂ q∧t |2|F (0)

Ŝ p−1∧T̂ q∧t

]]

� ϕ2(εn)

∞∑
q=0

∞∑
p=1

p−1∑
i=(p−kn+1)+

q∑
j=(q−kn+1)+

E
[

K̄ i j
t | Î p(t)|

]
� ϕ2(εn)k

3
n � k4

nϕ2(εn)n
−1/2

by the optional sampling theorem, the representation of 〈!1〉, Lemma A.4.10, the Lips-
chitz continuity of g, (A.2) and (7). Since 〈ϒ1,·〉 is the predictable compensator of

[
ϒ1,·

]
,

the above result and the Schwarz and Doob inequalities yield E
[
sup0≤s≤t |ϒ1,s |

]
�

k2
n
√
ϕ2(εn)n−1/4. On the other hand, we can show that E

[
sup0≤s≤t |ϒ2,s |

]
�

k2
n
√
ϕ2(εn)n−1/4 in a similar manner to the proof of (A.39). Finally, since

E

⎡⎣ sup
0≤s≤t

∞∑
i, j=0

|!̄1(Î)isζ 2
(Ĵ ) j

s K̄ i j
s |2

⎤⎦� ∞∑
i=0

E

[
sup

0≤s≤t
|!̄1(Î)is |2

]

� ϕ2(εn)E

⎡⎣ ∞∑
i=0

| Ī i (t)|
⎤⎦� ϕ2(εn)kn
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by (A.2) and the Doob inequality, the Schwarz inequality and (A.41) yield
E
[
sup0≤s≤t |ϒ3,s |

]
� k2

n
√
ϕ2(εn)n−1/4. Consequently, we obtain (A.37). n

LEMMA A.4.12. Suppose [ST], [A1], [SA4], and [SKβ ] hold for some β ∈ [0,2]. Sup-

pose also that [SN

r ] holds for some r ∈ (2,∞). Then for any t > 0 we have

k−2
n sup

0≤s≤t

∣∣∣∣∣∣∣
∑

i, j :R̄∨(i, j)≤s

"̄1(Î)is M̄2(Ĵ ) j
s K̄ i j

∣∣∣∣∣∣∣= op

(
n−1/4

)
+op

(
ρ

1−β/2
n

)
, (A.42)

k−2
n sup

0≤s≤t

∣∣∣∣∣∣∣
∑

i, j :R̄∨(i, j)≤s

"̄1(Î)is M̃2(Ĵ ) j
s K̄ i j

∣∣∣∣∣∣∣= op

(
n−1/4

)
+op

(
ρ

1−β/2
n

)
, (A.43)

k−2
n sup

0≤s≤t

∣∣∣∣∣∣∣
∑

i, j :R̄∨(i, j)≤s

"̄1(Î)isζ 2
(Ĵ ) j K̄ i j

∣∣∣∣∣∣∣= op

(
n−1/4

)
+op

(
ρ

1−β/2
n

)
. (A.44)

Proof. Define the process ϒs by ϒs =∑i, j :R̄∨(i, j)≤s "̄
1(Î)is M̄2(Ĵ ) j

s K̄ i j . If β ≥ 1,
the Schwarz inequality, [SKβ ], and [SA4] yield

E

[
sup

0≤s≤t
|ϒs |

]
≤ E

⎡⎣ ∞∑
i, j=1

K̄ i j |"̄1(Î)it M̄2(Ĵ ) j
t |
⎤⎦

≤
⎧⎨⎩E

⎡⎣ ∞∑
i, j=1

K̄ i j |"̄1(Î)it |2
⎤⎦⎫⎬⎭

1/2⎧⎨⎩E

⎡⎣ ∞∑
i, j=1

K̄ i j |M̄2(Ĵ ) j
t |2
⎤⎦⎫⎬⎭

1/2

= o
(
(knr̄n)

1/2ρ
−(β−1)/2
n

)
,

hence we obtain sup0≤s≤t |ϒs | = op
(
ρ

1−β/2
n

)
. If β < 1, we decompose the target quantity

as

ϒs =
∑

i, j :R̄∨(i, j)≤s

{ ¯̂"1(Î)is − ¯̌"1(Î)is
}

M̄2(Ĵ ) j K̄ i j = ϒ1,s +ϒ2,s ,

where "̂1 = κ(δ1)�ν1 and "̌1 = κ(δ1)1(E1
n )

c �ν1. Then, by [SA6] and an argument similar

to the above, we can show sup0≤s≤t |ϒ2,s | = Op

(
k2

nρ
(1−β)/2
n knn−1/2

)
= op(k2

nn−1/4).

On the other hand, note that | ¯̂"1(Î)is | � knr̄n because β < 1, an argument similar to the
proof of Lemma A.2.1 yields

sup
0≤s≤t

∣∣∣∣∣∣ϒ1,s −
∞∑

i, j=1

¯̂"1(Î)is M̄2(Ĵ ) j
s K̄ i j

s

∣∣∣∣∣∣= op

(
k2

nn−1/4
)
,

hence Lemma A.2.2 yields sup0≤s≤t |ϒ1,s | = op
(
k2

nn−1/4) since we have the conditions
[A1], [Kβ ](v), and [SA6]. Consequently, we conclude that (A.42). Similarly we can also
show (A.43) and (A.44). n
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Proof of Theorem 3.4. By a localization procedure, we may replace the conditions

[Kβ ], [C1]–[C2], and [N

r ] with [SF], [SC1]–[SC2], and [SN


r ] respectively. Moreover, we
can also replace the condition [T] with [ST] by Lemma A.3.1, while (5) can be replaced
with (A.1) due to the above argument.

We decompose the target quantity as

PT HY (Z1,Z2)nt − P HY (X1,X2)nt

= 1

(ψHY kn)2

[ ∑
i, j :R̄∨(i, j)≤t

{
Y

1
(Îi )Y

2
(Ĵ j )1{|Y1

(Î)i |2≤4�n [i],|Y2
(Ĵ ) j |2≤4�n [ j]}

−X1
(Î)iX2

(Ĵ ) j
}

K̄ i j +
∑

i, j :R̄∨(i, j)≤t

Y
1
(Î)iY2

(Ĵ ) j K̄ i j

×
(

1{|Z1
(Î)i |2≤�1

n [i],|Z2
(Ĵ ) j |2≤�2

n [ j]} −1{|Y1
(Î)i |2≤4�1

n [i],|Y2
(Ĵ ) j |2≤4�2

n [ j]}

)
+

∑
i, j :R̄∨(i, j)≤t

{
L̄1(Î)itY2

(Ĵ ) j +Y1
(Î)i L̄2(Ĵ ) j

t + L̄1(Î)it L̄2(Ĵ ) j
t

}

×K̄ i j 1{|Z1
(Î)i |2≤�1

n [i],|Z2
(Ĵ ) j |2≤�2

n [ j]}

]
=: It + IIt + IIIt + IVt +Vt . (A.45)

(a) By Theorem 3.1, we have

sup
0≤s≤t

|Is | = op(n
−1/4)+ Op

(
η

r−2
2

n

)
. (A.46)

(b) Next consider II. We decompose it as

IIt = 1

(ψHY kn)2

∑
i, j :R̄∨(i, j)≤t

Y
1
(Î)iY2

(Ĵ ) j K̄ i j

×
(

1{|Z1
(Î)i |2≤�1

n [i],|Z2
(Ĵ ) j |2≤�2

n [ j]
}1{|Y1

(Î)i |2>4�1
n [i]
}
∪
{
|Y2

(Ĵ ) j |2>4�2
n [ j]
}

−1{|Z1
(Î)i |2>�1

n [i]
}
∪
{
|Z2

(Ĵ ) j |2>�2
n [ j]
}1{
Y

1
(Î)i |2≤4�1

n [i],Y
2
(Ĵ ) j |2≤4�2

n [ j]
})

=: II1,t + II2,t .
First estimate II1,t . We decompose it as

II1,t = 1

(ψHY kn)2

∑
i, j :R̄∨(i, j)≤t

Y
(1)
(Î)iY(2)(Ĵ ) j K̄ i j 1{|Z(1)(Î)i |2≤�(1)n [i],|Z(2)(Ĵ ) j |2≤�(2)n [ j]

}
×
(

1{|Y(1)(Î)i |2>4�(1)n [i],|Y(2)(Ĵ ) j |2≤4�(2)n [ j]
}+1{|Y(1)(Î)i |2≤4�(1)n [i],|Y(2)(Ĵ ) j |2>4�(2)n [ j]

}
+1{|Y(1)(Î)i |2>4�(1)n [i],|Y(2)(Ĵ ) j |2>4�(2)n [ j]

})
=: II(1)1,t + II(2)1,t + II(3)1,t .
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Consider II(1)1,t . Since (A.2) yields

sup
0≤s≤t

|II(1)1,s |�
1

kn

∑
i :Ŝi+kn≤t

|Y1
(Î)i |21{|Z1

(Î)i |2≤�1
n [i],|Y1

(Î)i |2>4�1
n [i]
},

Lemma A.4.7 implies that sup0≤s≤t |II(1)1,s | = Op(k
−1
n ) + op(k

−1
n η

r−2
2

n ρ
−β/2
n ). Since

k−1
n = o(n−1/4) and k−1

n ρ
−β/2
n = o(1), we conclude that

sup
0≤s≤t

|II(1)1,s | = op(n
−1/4)+op

(
η

r−2
2

n

)
. (A.47)

By symmetry we also obtain

sup
0≤s≤t

|II(2)1,s | = op(n
−1/4)+op

(
η

r−2
2

n

)
. (A.48)

On the other hand, the Schwarz inequality and (A.2) yield

sup
0≤s≤t

|II(3)1,s | ≤
1

ψ2
HY kn

⎧⎨⎩ ∑
i :Ŝi+kn≤t

|Y1
(Î)i |21{|Z1

(Î)i |2≤�1
n [i],|Y1

(Î)i |2>4�1
n [i]}

⎫⎬⎭
1/2

×
⎧⎨⎩ ∑

j :T̂ j+kn≤t

|Y2
(Ĵ ) j |21{|Y2

(Ĵ ) j |2>4�2
n [ j],|Z2

(Ĵ ) j |2≤�2
n [ j]}

⎫⎬⎭
1/2

,

hence Lemma A.4.7 yields sup0≤s≤t |II(3)1,s | = Op(k
−1
n ) + Op

(
k−1

n η
r−2

2
n ρ

−β/2
n

)
=

op(n−1/4)+op

(
η

r−2
2

n

)
, and thus, we obtain

sup
0≤s≤t

|II(3)1,s | = op(n
−1/4)+op

(
η

r−2
2

n

)
. (A.49)

(A.47), (A.48) and (A.49) yield

sup
0≤s≤t

|II1,s | = op(n
−1/4)+op

(
η

r−2
2

n

)
+op

(
ρ

1−β/2
n

)
. (A.50)

Next estimate II2,t . Note that (A.2), we obtain

sup
0≤s≤t

|II2,t |� ρn

kn

⎧⎨⎩ ∑
i :Ŝi+kn≤t

1{|Z1
(Î)i |2>�1

n [i],|Y1
(Î)i |2≤4�1

n [i]
}

+
∑

j :T̂ j+kn≤t

1{|Z2
(Ĵ ) j |2>�2

n [ j],|Y2
(Ĵ ) j |2≤4�2

n [ j]
}
⎫⎬⎭

≤ ρn

kn

⎧⎨⎩ ∑
i :Ŝi+kn≤t

1{|ζ 1
(Î)i |2>�1

n [i]/4
}+ ∑

j :T̂ j+kn≤t

1{|ζ 2
(Ĵ ) j |2>�2

n [ j]/4
}
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+
∑

i :Ŝi+kn≤t

1{|Z1
(Î)i |2>�1

n [i],|Y1
(Î)i |2≤4�1

n [i],|ζ 1
(Î)i |2≤�1

n [i]/4
}

+
∑

j :T̂ j+kn≤t

1{|Z2
(Ĵ ) j |2>�2

n [ j],|Y2
(Ĵ ) j |2≤4�2

n [ j],|ζ 2
(Ĵ ) j |2≤�2

n [ j]/4
}
⎫⎬⎭ .

[SC1] and Lemma A.3.3 yield∑
i :Ŝi+kn≤t

1{|ζ 1
(Î)i |2>�1

n [i]/4
}� nηr/2

n ,
∑

j :T̂ j+kn≤t

1{|ζ 2
(Ĵ ) j |2>�2

n [ j]/4
}� nηr/2

n . (A.51)

On the other hand, on
{|Y1

(Î)i |2 ≤ 4�(1)n [i], |ζ 1
(Î)i |2 ≤ �1

n[i]/4, Ŝi+kn ≤ t
}

we have

|D̄1(Î)it | ≤ |Y1
(Î)i |+ |X̄1(Î)it |+ |ζ 1

(Î)i |+ |X̃1(Î)it |
≤ 5
√
�1

n[i]/2+2K
√

2knr̄n logn → 0,

hence a.s. for sufficiently large n we have D̄1(Î)it = 0. Moreover, on {|Z1
(Î)i |2 > �1

n[i],

|ζ 1
(Î)i |2 ≤ �1

n[i]/4, D̄1(Î)it = 0, Ŝi+kn ≤ t}, by (A.14) we have

|L̄1(Î)it | ≥ |Z1
(Î)i |− |X̄1(Î)it |− |ζ 1

(Î)i |− |X̃1(Î)it |

>
√
ρn

(
1

2
√

K0
−2K

√
2knr̄n logn

ρn

)
,

hence (18) yields |L̄1(Î)it |>
√
ρn/9K0. Therefore we obtain

∑
i :Ŝi+kn≤t

1{|Z1
(Î)i |2>�1

n [i],|Y1
(Î)i |2≤4�1

n [i],|ζ 1
(Î)i |2≤�1

n [i]/4} ≤
∞∑

i=1

1{|L̄1(Î)it |2>ρn/9K0}.

By symmetry we also obtain∑
j :T̂ j+kn≤t

1{|Z2
(Ĵ ) j |2>�2

n [ j],|Y2
(Ĵ ) j |2≤4�2

n [ j],|ζ 2
(Ĵ ) j |2≤�2

n [ j]/4}

≤
∞∑

j=1

1{|L̄2(Ĵ ) j
t |2>ρn/9K0}.

Combining these results with Lemma A.4.5 and (7), we obtain

sup
0≤s≤t

|II2,t | = Op

(
η

r−2
2

n

)
+op

(
ρ

1−β/2
n

)
. (A.52)

By (A.50) and (A.52), we conclude

sup
0≤s≤t

|IIt | = op(n
−1/4)+ Op

(
η

r−2
2

n

)
+op

(
ρ

1−β/2
n

)
. (A.53)

https://doi.org/10.1017/S0266466614000954 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466614000954


600 YUTA KOIKE

(c) Next consider III. We decompose it as

IIIt = 1

(ψHY kn)2

∑
i, j :R̄∨(i, j)≤t

L̄1(Î)itY2
(Ĵ ) j K̄ i j 1{|Z1

(Î)i |2≤�1
n [i],|Z2

(Ĵ ) j |2≤�2
n [ j]
}

×
(

1{|L̄1(Î)it |2>4�1
n [i],|L̄2(Ĵ ) j

t |2>4�2
n [ j]
}+1{|L̄1(Î)it |2>4�1

n [i],|L̄2(Ĵ ) j
t |2≤4�2

n [ j]
}

+1{|L̄1(Î)it |2≤4�1
n [i],|L̄2(Ĵ )

j
t |2>4�2

n [ j]
}+1{|L̄1(Î)it |2≤4�1

n [i],|L̄2(Ĵ ) j
t |2≤4�2

n [ j]
})

=: III1,t + III2,t + III3,t + III4,t .
First we estimate III1,t . The Schwarz inequality and (A.2) yield

sup
0≤s≤t

|III1,s | ≤ 1

ψ2
HY kn

⎧⎨⎩ ∑
i :Ŝi+kn≤t

|L̄1(Î)it |21{|Z1
(Î)i |2≤�1

n [i],|L̄1(Î)it |2>4�1
n [i]
}
⎫⎬⎭

1/2

×
⎧⎨⎩ ∑

j :T̂ j+kn≤t

|Y2
(Ĵ ) j |21{|Z2

(Ĵ ) j |2≤�2
n [ j],|L̄2(Ĵ ) j

t |2>4�2
n [ j]
}
⎫⎬⎭

1/2

.

On
{|Z2

(Ĵ ) j |2 ≤ �2
n[ j], |L̄2(Ĵ ) j

t |2 > 4�2
n[ j]

}
we have |Y2

(Ĵ ) j | ≥ |L̄2(Ĵ ) j
t | −

|Z2
(Ĵ ) j |>

√
�2

n[ j], hence Lemma A.4.7 and Lemma A.4.9 imply that

sup
0≤s≤t

|III1,s | = Op
(
k−1

n

)+op

(
k−1

n η
r−2

4
n ρ

−β/4
n

)
+op

(
k−1/2

n η
r/4
n

)
+op

(
k−1/2

n η
r−1

2
n ρ

−β/4
n

)
= op

(
n−1/4

)
+op

(
η

r−2
4

n ρ
1/2−β/4
n

)
. (A.54)

Next we estimate III2,t . On {|Z2
(Ĵ ) j |2 ≤ �2

n[ j], |L̄2(Ĵ ) j
t |2 ≤ 4�2

n[ j]} we have

|Y2
(Ĵ ) j | ≤ |Z2

(Ĵ ) j |+ |L̄2(Ĵ ) j
t | ≤ 3

√
�2

n[ j], hence by (A.2) we obtain

sup
0≤s≤t

|III2,s |�
√
ρn

kn

∑
i :Ŝi+kn≤t

|L̄1(Î)i |1{|Z1
(Î)i |2≤�1

n [i],|L̄1(Î)it |2>4�1
n [i]
},

and thus Lemma A.4.8 yields

sup
0≤s≤t

|III2,s | = op(n
−1/4)+op

(
η

r/4
n ρ

1/2−β/4
n

)
. (A.55)

Next we estimate III3,t . By the Schwarz inequality and (A.2) we have

sup
0≤s≤t

|III3,s |� 1

kn

⎧⎨⎩ ∑
i :Ŝi+kn≤t

|L̄1(Î)it |21{|L̄1(Î)it |2≤4�1
n [i]
}⎫⎬⎭

1/2

×
⎧⎨⎩ ∑

j :T̂ j+kn≤t

|Y2
(Ĵ ) j |21{|Z2

(Ĵ ) j |2≤�2
n [ j],|L̄2(Î)it |2>4�2

n [ j]
}
⎫⎬⎭

1/2

.
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Note that on
{|Z2

(Ĵ ) j |2 ≤ �2
n[ j], |L̄2(Ĵ ) j

t |2 > 4�2
n[ j]

}
we have |Y2

(Ĵ ) j |> |L̄2(Ĵ ) j
t |−

|Z2
(Ĵ ) j |>

√
�2

n[ j], Lemma A.4.6, Lemma A.4.7, knr̄n = o(ρn) and k−1
n = o(ρn) yield

sup
0≤s≤t

|III3,s | = Op

(
k−1/2

n ρ
1/2−β/4
n

)
+op

(
k−1/2

n ρ
1/2−β/2
n η

r−2
4

n

)
= op(n

−1/4)+op

(
ρ

1−β/2
n

)
. (A.56)

Finally we estimate III4,t . First we specify (εn). By Lemma A.4.2 we can choose the se-
quence (εn) satisfying (A.21) for p = 2 and (A.22). Next we decompose the target quantity
as

III4,t = 1

(ψHY kn)2

∑
i, j :R̄∨(i, j)≤t

L̄1(Î)itY2
(Ĵ ) j K̄ i j

×1{|Z1
(Î)i |2≤�1

n [i],|Z2
(Ĵ ) j |2≤�2

n [ j],|L̄1(Î)it |2≤4�1
n [i],|L̄2(Ĵ ) j

t |2≤4�2
n [ j]
}

×
(

1{
N 2( J̄ j )t �=0

}+1{
N 2( J̄ j )t=0,Ñ 1( Ī i )t �=0

}+1{
N 2( J̄ j )t=Ñ 1( Ī i )t=0

})
=:III(1)4,t + III(2)4,t + III(3)4,t .

By Lemma A.3.4, we obtain sup0≤s≤t |III(1)4,s | = op(n−1/4). Moreover, on {|Z2
(Ĵ ) j |2 ≤

�2
n[ j], |L̄2(Ĵ ) j |2 ≤ 4�2

n[ j]} we have |Y2
(Ĵ ) j | ≤ |L̄2(Ĵ ) j |+ |Z2

(Ĵ ) j | ≤ 3
√
�2

n[ j], and
thus by (A.2), Lemma A.4.3, and (A.22) we have

sup
0≤s≤t

|III(2)4,s |� k−1
n ρn

∞∑
i=1

1{Ñ 1( Ī i )�=0} = op

(
ρ

1−β/2
n

)
.

On the other hand, since

III
(3)
4,t =

1

(ψHY kn)2

∑
i, j :R̄∨(i, j)≤t

L̄1(Î)itX2
(Ĵ ) j K̄ i j 1{

N 2( J̄ j )t=Ñ 1( Ī i )t=0
}

×1{|Z1
(Î)i |2≤�1

n [i],|Z2
(Ĵ ) j |2≤�2

n [ j],|L̄1(Î)it |2≤4�1
n [i],|L̄2(Ĵ ) j

t |2≤4�2
n [ j]
},

we can decompose it as

III
(1)
4,t = 1

(ψHY kn)2

∑
i, j :R̄∨(i, j)≤t

L̄1(Î)it

×
[{

Ā2(Ĵ ) j
t + Ã2(Ĵ ) j

t

}
+ M̄2(Ĵ ) j

t + M̃2(Ĵ ) j
t + ζ

2
(Ĵ ) j

]
K̄ i j

×1{
N 2( J̄ j )t=Ñ 1( Ī i )t=0,|Z1

(Î)i |2≤�1
n [i],|Z2

(Ĵ ) j |2≤�2
n [ j],|L̄1(Î)it |2≤4�1

n [i],|L̄2(Ĵ )
j
t |2≤4�2

n [ j]
}

=: �1,t +�2,t +�3,t +�4,t .

https://doi.org/10.1017/S0266466614000954 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466614000954


602 YUTA KOIKE

First consider �1,t . By the Schwarz inequality and (A.2), we have

sup
0≤s≤t

|�1,s |� 1

kn

⎧⎨⎩ ∑
i :Ŝi+kn≤t

|L̄1(Î)i |21{|L̄1(Î)i |2≤4�1
n [i]}

⎫⎬⎭
1/2

×
⎧⎨⎩ ∑

j :T̂ j+kn≤t

| Ā2(Ĵ ) j + Ã2(Ĵ ) j |2
⎫⎬⎭

1/2

,

hence Lemma A.4.6, the boundedness of (A2)′ and (A2)′, the Lipschitz continuity of g
and [SA6] yield

sup
0≤s≤t

|�1,s | = op

(
k−1/2

n ρ
1/2−β/4
n

)
= op

(
n−1/4

)
. (A.57)

Next consider �2,t . Since L̄1(Î)it = L̄1(Î)it = !̄1(Î)it + "̄1(Î)it on {Ñ 2( J̄ j )t = 0}, we
can decompose the target quantity as

�2,t = 1

(ψHY kn)2

∑
i, j :R̄∨(i, j)≤t

{
!̄1(Î)it M̄2(Ĵ ) j

t + "̄1(Î)it M̄2(Ĵ ) j
t

}
K̄ i j

×1{
N 2( J̄ j )t=Ñ 2( J̄ j )t=0,|Z1

(Î)i |2≤�1
n [i],|Z2

(Ĵ ) j |2≤�2
n [ j],|L̄1(Î)it |2≤4�1

n [i],|L̄2(Ĵ )
j
t |2≤4�2

n [ j]
}

=: �(1)
2,t +�

(2)
2,t .

First estimate �(1)2,t . We decompose it further as

�
(1)
2,t =

1

(ψHY kn)2

∑
i, j :R̄∨(i, j)≤t

!̄1(Î)it M̄2(Ĵ ) j
t K̄ i j

×

⎛⎜⎜⎜⎝1−1{
N 2( J̄ j )t �= 0

}∪{Ñ 2( J̄ j )t �= 0
}∪{|Z1

(Î)i |2 > �1
n[i]

}
∪{|L̄1(Î)it |2 > 4�1

n[i]
}∪{|Z2

(Ĵ ) j |2 > �2
n[ j]

}∪{|L̄2(Ĵ ) j
t |2 > 4�2

n[ j]
}}
⎞⎟⎟⎟⎠

=: �(1)′
2,t +�

(1)′′
2,t .

By Lemma A.4.11 we have sup0≤s≤t |�(1)′2,s | = op(n−1/4). On the other hand, (A.40), the
Schwarz inequality, (A.2), Lemma A.4.3, Lemma A.4.5, (A.51), and (A.22) yield

sup
0≤s≤t

|�(1)′′2,s | =op

(
k−1

n ϕ2(εn)
1/2k1/2

n ρ
−β/4
n

)
+ Op

(
k−1

n ϕ2(εn)
1/2n1/2η

r/4
n

)
.

Since we have

ϕ2(εn)≤ ε
−β
n ε2

nϕβ(εn)≤ ρ2
nε

−2−β
n = o

(
ρ

1−β/2
n

)
(A.58)

due to (A.21) for p = 2 and (A.22), note that n−1 = o(ρ2
n ), we obtain sup0≤s≤t |�(1)′′2,s | =

op

(
n−1/4ρ

1/2−β/2
n

)
+ op

(
ρ

1/2−β/4
n η

r/4
n

)
= op

(
ρ

1−β/2
n

)
+ op

(
η

r/2
n

)
. Consequently,

we conclude that

sup
0≤s≤t

|�(1)2,s | = op

(
n−1/4

)
+op

(
ρ

1−β/2
n

)
+op

(
η

r/2
n

)
. (A.59)
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Next estimate �(2)2,t . We decompose it further as

�
(2)
2,t =

1

(ψHY kn)2

∑
i, j :R̄∨(i, j)≤t

"̄1(Î)it M̄2(Ĵ ) j
t K̄ i j

×

⎛⎜⎜⎜⎝1−1{
N 2( J̄ j )t �= 0

}∪{Ñ 2( J̄ j )t �= 0
}∪{|Z1

(Î)i |2 > �1
n[i]

}
∪{|L̄1(Î)it |2 > 4�1

n[i]
}∪{|Z2

(Ĵ ) j |2 > �2
n[ j]

}∪{|L̄2(Ĵ ) j
t |2 > 4�2

n[ j]
}}
⎞⎟⎟⎟⎠

=: �(2)′2,t +�
(2)′′
2,t .

Lemma A.4.12 yields sup0≤s≤t |�(3)′2,s | = op
(
n−1/4)+ op

(
ρ

1−β/2
n

)
. On the other hand,

since "̄1(Î)it M̄2(Ĵ ) j
t K̄ i j

t = K̄ i j
− "̄1(Î)i− • M̄2(Ĵ ) j

t + K̄ i j
− M̄2(Ĵ ) j

− • "̄1(Î)it by integra-
tion by parts and Lemma A.1.3, we have

E
[
|"̄1(Î)it M̄2(Ĵ ) j

t K̄ i j
t |2

]
� k2

nr̄nε
−2(β−1)+
n E

⎡⎣kn−1∑
p=1

| Î i+p(t)|2 K̄ i j
t

⎤⎦
by [A1], the optional sampling theorem and the inequality |"1( Î p)t |2 �
ε
−2(β−1)+
n | Î p(t)|2 and (A.14). Therefore, (A.2) and [SA6] yield

E

⎡⎢⎣ ∑
i, j :R̄∨(i, j)≤t

|"̄1(Î)it M̄2(Ĵ ) j
t K̄ i j |2

⎤⎥⎦� k4
nr̄nε

−2(β−1)+
n n−1 � k2

nr̄nε
−2(β−1)+
n

and thus an argument similar to the above yields

sup
0≤s≤t

|�(2)′′2,s | =op

(
k−1/2

n r̄1/2
n ε

−(β−1)+
n k1/2

n ρ
−β/4
n

)
+Op

(
k−1/2

n r̄1/2
n ε

−(β−1)+
n n1/2η

r/4
n

)
=op

(
ρ

1−β/2
n

)
+op

(
η

r/2
n

)
.

Consequently, we conclude that sup0≤s≤t |�(2)2,s | = op
(
n−1/4)+op

(
η

r/2
n
)+op

(
ρ

1−β/2
n

)
.

Combining this result with (A.59), we conclude

sup
0≤s≤t

|�2,s | = op

(
n−1/4

)
+op

(
η

r/2
n

)
+op

(
ρ

1−β/2
n

)
. (A.60)

Similarly we can also show that

sup
0≤s≤t

|�3,s | = op

(
n−1/4

)
+op

(
η

r/2
n

)
+op

(
ρ

1−β/2
n

)
. (A.61)

Now we deal with �4,t . Since L̄1(Î)it = L̄1(Î)it on {Ñ 2( J̄ j )t = 0}, we can decompose
the target quantity as

�4,t = 1

(ψHY kn)2

∑
i, j :R̄∨(i, j)≤t

L̄1(Î)it ζ 2
(Ĵ ) j K̄ i j
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×

⎛⎜⎜⎜⎝1−1{
N 2( J̄ j )t �= 0

}∪{Ñ 2( J̄ j )t �= 0
}∪{|Z1

(Î)i |2 > �1
n[i]

}
∪{|L̄1(Î)it |2>4�1

n[i]
}∪{|Z2

(Ĵ ) j |2>�2
n[ j]

}∪{|L̄2(Ĵ ) j
t |2>4�2

n[ j]
}}
⎞⎟⎟⎟⎠

=: �(1)4,t +�
(2)
4,t .

By Lemma A.4.11 and Lemma A.4.12 we have sup0≤s≤t |�(1)4,s | = op
(
n−1/4) +

op
(
ρ

1−β/2
n

)
. On the other hand, by the Lipschitz continuity of g, (A.2) and [SN


2], we
have

E0

⎡⎢⎣ ∑
i, j :R̄∨(i, j)≤t

|L̄1(Î)it |2|ζ 2
(Ĵ ) j |2 K̄ i j

⎤⎥⎦� ∞∑
i=1

|L̄(1)(Î)it |2,

hence the Schwarz inequality, (A.2), Lemma A.4.3, Lemma A.4.5, (A.51), and (A.22) yield

sup
0≤s≤t

|�(2)4,s | =op

(
k−1

n ε
1−β/2
n ϕβ(εn)

1/2k1/2
n ρ

−β/4
n

)
+ Op

(
k−1

n ε
1−β/2
n ϕβ(εn)

1/2n1/2η
r/4
n

)
.

Since we have (A.58) due to (A.21) for p = 2 and (A.22), note that n−1 = o(ρ2
n ), we obtain

sup
0≤s≤t

|�(2)4,s | =op

(
n−1/4ρ

1/2−β/2
n

)
+op

(
ρ

1/2−β/4
n η

r/4
n

)
=op

(
ρ

1−β/2
n

)
+op

(
η

r/2
n

)
.

Consequently, we obtain

sup
0≤s≤t

|�4,s | = op

(
n−1/4

)
+op

(
ρ

1−β/2
n

)
+op

(
η

r/2
n

)
. (A.62)

By (A.57), (A.60), and (A.61), we obtain sup0≤s≤t |III(3)4,s | = op
(
n−1/4) +

op
(
ρ

1−β/2
n

)+op
(
η

r/2
n
)
. Consequently, we obtain

sup
0≤s≤t

|III4,s | = op

(
n−1/4

)
+op

(
ρ

1−β/2
n

)
+op

(
η

r/2
n

)
. (A.63)

Note that ηn = o(1) and β ≥ 0, (A.54), (A.55), (A.56), and (A.63) yield

sup
0≤s≤t

|IIIs | = op

(
n−1/4

)
+op

(
η

r−2
2

n

)
+op

(
ρ

1−β/2
n

)
. (A.64)

(d) By symmetry, we obtain

sup
0≤s≤t

|IVs | = op

(
n−1/4

)
+op

(
η

r−2
2

n

)
+op

(
ρ

1−β/2
n

)
. (A.65)
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(e) Finally we consider V. We decompose it as

Vt = 1

(ψHY kn)2

∑
i, j :R̄∨(i, j)≤t

L̄1(Î)it L̄2(Ĵ ) j
t K̄ i j 1{

Z
1
(Î)i |2≤�1

n [i],Z
2
(Ĵ ) j |2≤�2

n [ j]
}

×
(

1{
L̄1(Î)it |2>4�1

n [i],L̄2(Ĵ ) j
t |2>4�2

n [ j]
}+1{

L̄1(Î)it |2>4�1
n [i],L̄2(Ĵ )

j
t |2≤4�2

n [ j]
}

+1{
L̄1(Î)it |2≤4�1

n [i],L̄2(Ĵ ) j
t |2>4�2

n [ j]
}+1{

L̄1(Î)it |2≤4�1
n [i],L̄2(Ĵ ) j

t |2≤4�2
n [ j]
})

=: V1,t +V2,t +V3,t +V4,t .

By the Schwarz inequality, (A.2) and Lemma A.4.9 we have sup0≤s≤t |V1,s | =
op
(
n−1/4)+ Op

(
η

r
2
n

)
. Moreover, by (A.2) and Lemma A.4.8 we have sup0≤s≤t |V2,s | =

op

(
n−1/4

)
+ op

(
η

r/4
n ρ

1/2−β/4
n

)
and sup0≤s≤t |V3,s | = op

(
n−1/4

)
+ op

(
η

r/4
n

ρ
1/2−β/4
n

)
. Furthermore, the Schwarz inequality, (A.2) and Lemma A.4.6 yield

sup0≤s≤t |V4,s | = op

(
ρ

1−β/2
n

)
. Consequently, we obtain

sup
0≤s≤t

|Vs | = op

(
n−1/4

)
+ Op

(
η

r/2
n

)
+op

(
ρ

1−β/2
n

)
. (A.66)

Note that ηn = o(1), (A.45), (A.46), (A.53), (A.64), (A.65), and (A.66) yield

sup
0≤s≤t

|PT HY (Z1,Z2)ns − P HY (X1,X2)ns | = op

(
n−1/4

)
+Op

(
η

r−2
2

n

)
+op

(
ρ

1−β/2
n

)
.

Since ηn = (knρn)
−1 = O(n− 1

2 ρ−1
n ), we complete the proof of Theorem 3.4. n

A.5. Proof of Proposition 4.1

By a localization procedure, we may assume that [SC1]-[SC2], [SA4], [SA6], and [SN

2]

hold. In a similar manner we may also assume that E1 = E2 =: E and that there is a
nonnegative bounded measurable function ψ on E such that

sup
ω∈�,t∈R+

|δl (ω, t, x)| ≤ ψ(x) and
∫

E
ψ(x)2 Fl (dx) <∞, l = 1,2.

Under the above assumption we can define the process L ′l by L ′l = δl � (μl − νl )
for each l = 1,2. Then, for each l = 1,2 we have Zl = X ′l + L ′l , where X ′l

t = Xl
t −∫ t

0
∫

E κ ′(δl (s, x))ds F(dx). Hence we can decompose the target quantity as

P HY (Z1,Z2)nt = 1

(ψHY kn)2

∑
i, j :R̄∨(i, j)≤t

{
X
′1
(Î)iX′2(Ĵ ) j +X′1(Î)i L̄ ′2(Ĵ ) j

t

+ L̄ ′1(Î)itX′2(Ĵ ) j + L̄ ′1(Î)it L̄ ′2(Ĵ ) j
t

}
K̄ i j

=: It + IIt + IIIt + IVt ,
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where X
′1
(Î)i = ∑kn−1

p=1 g
(

p
kn

)(
X′1

Ŝi+p −X′1Ŝi+p−1

)
, X

′2
(Ĵ ) j = ∑kn−1

q=1 g
(

q
kn

)
(
X′2

T̂ j+q −X′2T̂ j+q−1

)
and X′1

Ŝi = X ′1
Ŝi +U1

Ŝi , X′2
T̂ j = X ′2

T̂ j +U2
T̂ j for any i, j .

First, we can adopt an argument similar to the proof of Lemma A.4.11 for the proof
of IIt = Op(n−1/4) and IIIt = Op(n−1/4). Next, combining Lemma A.1.1–A.1.2 with
an argument similar to the proof of Lemma A.4.11 we can show that It = [X ′1, X ′2]t +
Op(n−1/4). Finally we consider IVt . By integration by parts we can decompose it as

IVt = 1

(ψHY kn)2

×
∑

i, j :R̄∨(i, j)≤t

{
L̄ ′1(Î)i− • L̄ ′2(Ĵ ) j

t +•L̄ ′2(Ĵ ) j
− • L̄ ′1(Î)it + [L̄ ′1(Î)i , L̄ ′2(Ĵ ) j ]t

}
K̄ i j

=: IV(1)t + IV(4)t + IV(3)t .

By an argument similar to the proof of Lemma A.4.11 we can show that IV(1)t =
Op(n−1/4) and IV(2)t = Op(n−1/4). On the other hand, an argument similar to the proof
of Lemma A.1.2 yields

IV
(3)
t = 1

(ψHY kn)2

∞∑
p,q=1

⎛⎝ p∑
i=(p−kn+1)∨1

q∑
j=(q−kn+1)∨1

gn
p−i gn

q− j K̄ i j 1{R̄∨(i, j)≤t}

⎞⎠
× ( Î p

− Ĵ q
−
)• [L ′1, L ′2]t .

and

[L ′1, L ′2]t = 1

(ψHY kn)2

∞∑
p,q=1

⎛⎝ p∑
i=(p−kn+1)∨1

q∑
j=(q−kn+1)∨1

gn
p−i gn

q− j K̄ i j
t

⎞⎠
× ( Î p

− Ĵ q
−
)• [L ′1, L ′2]t + Op

(
k−1

n

)
=: IV(3)

t + Op

(
k−1

n

)
.

Since we have

IV
(3)
t − IV(3)

t = 1

(ψHY kn)2

∞∑
p,q=1

⎛⎝ p∑
i=(p−kn+1)∨1

q∑
j=(q−kn+1)∨1

gn
p−i gn

q− j K̄ i j
t 1{R̄∨(i, j)>t}

⎞⎠
× ( Î p

− Ĵ q
−
)• [L ′1, L ′2]t + Op(n

−1/2)

= 1

(ψHY kn)2

∞∑
i, j=0

K̄ i j
t 1{R̄∨(i, j)>t}

kn−1∑
p,q=0

gn
p gn

q

(
Î i+p
− Ĵ j+q

−
)• [L ′1, L ′2]t+Op(n

−1/2),

we obtain
∣∣IV(3)t − IV(3)

t
∣∣ � 1

k2
n

∑∞
i, j=0 K̄ i j

t 1{R̄∨(i, j)>t}( Ī i− J̄ j
−) • ∣∣[L ′1, L ′2]

∣∣
t +

Op(n−1/2), and thus the Kunita–Watanabe inequality and the inequality of arithmetic and
geometric means yield∣∣∣IV(3)t − IV(3)

t

∣∣∣� 1

k2
n

∞∑
i, j=0

K̄ i j
t 1{R̄∨(i, j)>t}

{
[L ′1]( Ī i )t + [L ′2]( J̄ j )t

}
+ Op(n

−1/2).
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Since K̄ i j
t 1{R̄∨(i, j)>t} is FŜi∧T̂ j -measurable by Lemma A.4.10, we obtain

E

⎡⎣∣∣∣∣∣∣
∞∑

i, j=0

K̄ i j
t 1{R̄∨(i, j)>t}

{
[L ′1]( Ī i )t + [L ′2]( J̄ j )t

}∣∣∣∣∣∣
⎤⎦

� E

⎡⎣ ∞∑
i, j=0

K̄ i j
t 1{R̄∨(i, j)>t}

{
〈L ′1〉( Ī i )t +〈L ′2〉( J̄ j )t

}⎤⎦ ,
hence by [SK2], [SA4], and (A.41) we conclude that

∣∣∣IV(3)t − IV(3)
t

∣∣∣ = Op(knr̄n)+
Op(n−1/2) = op(n−1/4). Consequently, we obtain IV

(3)
t = [L ′1, L ′2]t + op(n−1/4),

and thus we complete the proof of the proposition because [Z1, Z2] = [X ′1, X ′2] +
[L ′1, L ′2]. �

A.6. Proof of Proposition 4.2

By a localization procedure, we may systematically replace the conditions [C1]–[C2],

[A4], [A6], [N

2], [T], and [N


r ] with [SC1]–[SC2], [SA4], [SA6], [SN

2], [ST], and [SN


r ]
respectively.

Set λ̃l
u =∑∞

v=u λ
l
v for each u ∈ Z+ and l = 1,2. We define the random variables ζ̃ 1

i and

ζ̃ 2
j by ζ̃ 1

i =∑i
u=0 λ̃

1
u+1ζ

1
Si−u and ζ̃ 2

j =∑i
u=0 λ̃

2
u+1ζ

2
T j−u for any i, j . Then we have

ζ̃ 1
i − ζ̃ 1

i−1 =
i∑

u=0

λ̃1
u+1ζ

1
Si−u −

i∑
u=1

λ̃1
uζ

1
Si−u =

i∑
u=0

(λ̃1
u+1 − λ̃1

u)ζ
1
Si−u + λ̃0ζ

1
Si

=−
i∑

u=0

λuζ
1
Si−u + λ̃0ζ

1
Si ,

hence we obtain

i∑
u=0

λuζ
1
Si−u = λ̃0ζ

1
Si − (ζ̃ 1

i − ζ̃ 1
i−1). (A.67)

In the time series analysis, this relation is known as the Beveridge–Nelson decomposi-
tion. See Beveridge and Nelson (1981) for details. Combining (A.67) with Abel’s partial
summation formula, we obtain

kn−1∑
p=0

�(g)np

⎛⎝i+p∑
u=0

λuζ
1
Si+p−u

⎞⎠= λ̃0ζ
1
(Î)i −

kn−1∑
p=0

�(g)np
(
ζ̃ 1

i+p − ζ̃ 1
i+p−1

)

= λ̃0ζ
1
(Î)i +

kn−1∑
p=0

{
�(g)np+1 −�(g)np

}(
ζ̃ 1

i+p − ζ̃ 1
i−1
)
.

for any i . Similarly we can deduce

kn−1∑
q=0

�(g)nq

⎛⎝ j+q∑
u=0

λ2
uζ

2
T j+q−u

⎞⎠= λ̃2
0ζ

2
(Ĵ ) j +

kn−1∑
q=0

{
�(g)nq+1 −�(g)nq

}(
ζ̃ 2

j+q − ζ̃ 2
j−1
)
,
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kn−1∑
p=0

�(g)np

⎛⎝i+p∑
u=0

μ1
u
√

nX1(I i+p−u)t

⎞⎠
= μ̃1

0 X̃1(Î)it +
√

n
kn−1∑
p=0

{
�(g)np+1 −�(g)np

}(
X1(I i+p)t − X1(I i−1)t

)
,

kn−1∑
q=0

�(g)nq

⎛⎝ j+q∑
u=0

μ2
u
√

nX2(J j+q−u)t

⎞⎠
= μ̃2

0 X̃2(Ĵ ) j
t +

√
n

kn−1∑
q=0

{
�(g)nq+1 −�(g)nq

}(
X2(J j+q )t − X2(J j−1)t

)
for every i, j , where μ̃l

u =∑∞
v=u μ

l
v for each u ∈ Z+ and l = 1,2. Note that

∑∞
u=1 |λ̃l

u |
≤∑∞

u=1
∑∞

v=u |λl
v | =

∑∞
v=1 v|λl

v |<∞ and
∑∞

u=1 |μ̃l
u | ≤

∑∞
u=1

∑∞
v=u |μl

v | =
∑∞

v=1 v

|μl
v |<∞ for l = 1,2, by using the above formulas we can show that

P̂ HY (Z1,Z2)nt − P̂ HY (Z̃1, Z̃2)nt →p 0 and P̂T HY (Z1,Z2)nt − P̂T HY (Z̃1, Z̃2)nt →p 0

as n →∞ for any t ∈ R+, where Z̃1
Si = Z1

Si + λ̃1
0ζ

1
Si + μ̃1

0
√

n(X1
Si − X1

Si−1) and Z̃2
T j =

Z2
T j + λ̃2

0ζ
2
T j + μ̃2

0
√

n(X2
T j − X2

T j−1) for any i, j . Consequently, we complete the proof
of the proposition due to Proposition 4.1 and Corollary 3.5. 2

A.7. List of assumptions

We list below the assumptions used in this paper. They are listed in alphabetical order.
Numbers ξ , ξ ′, β, and r appearing in the following always satisfy 1

2 < ξ < 1, 0 < ξ ′ < 1,
0≤ β ≤ 2, and r > 0, respectively. Also, Hn denotes a filtration ofF to which the processes∑∞

k=1 1{Rk≤t},
∑∞

k=1 1{̂Sk≤t} and
∑∞

k=1 1{T̂ k≤t} are adapted.

[A1] For any n, i ∈ N, Si and T i are G(n)-stopping times, where G(n) = (G(n)t )t∈R+ is

the filtration given by G(n)t = F (0)
(t−n−ξ+1/2)+

for t ∈ R+.

[A2] (i) For each n, we have a càdlàg Hn-adapted process Gn and a random subset
N 0

n of N such that (#N 0
n )n∈N is tight, G(1)n

Rk−1 = Gn
Rk−1 for any k ∈ N−

N 0
n , and there exists a càdlàg F(0)-adapted process G satisfying that G and

G− do not vanish and that Gn Sk.p.−−−→ G as n →∞.
(ii) There exists a constant ρ ≥ 1/ξ ′ such that

(
sup0≤s≤t G(ρ)ns

)
n∈N is tight for

all t > 0.
(iii) For each n, we have a càdlàg Hn-adapted process χ ′n and a random subset
N ′

n of N such that (#N ′
n)n∈N is tight, χn

Rk−1 = χ ′n
Rk−1 for any k ∈ N−N ′

n ,

and there exists a càdlàg F(0)-adapted process χ such that χ ′n Sk.p.−−−→ χ as
n →∞.

(iv) For each n and l = 1,2,1∗2, we have a càdlàg Hn-adapted process Fn,l and
a random subset N l

n of N such that (#N l
n)n∈N is tight, F(1)n,l

Rk−1 = Fn,l
Rk−1
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for any k ∈ N−N l
n , and there exists a càdlàg F(0)-adapted processes Fl

satisfying Fn,l Sk.p.−−−→ Fl as n →∞.
(v) There exists a constant ρ′ ≥ 1/ξ ′ such that

(
sup0≤s≤t F(ρ′)n,ls

)
n∈N is tight

for all t > 0 and l = 1,2.

[A2� ] (i) For every ρ ∈ [0,1/ξ ′] there exists a càdlàg F(0)-adapted process G(ρ) such

that G(ρ)n
Sk.p.−−−→ G(ρ) as n →∞. Furthermore, G and G− do not vanish,

where G = G(1).

(ii) There exists a càdlàg F(0)-adapted process χ such that χn Sk.p.−−−→ χ as
n →∞.

(iii) For every l = 1,2 and every ρ′ ∈ [0,1/ξ ′], there exists a càdlàg F(0)-adapted

process F(ρ)l such that F(ρ)n,l
Sk.p.−−−→ F(ρ)l as n →∞.

(iv) There exists a càdlàg F(0)-adapted process F(1)1∗2 such that

F(1)n,1∗2 Sk.p.−−−→ F(1)1∗2 as n →∞.

[A3] For each V,W = X1, X2, X1, X2, [V,W ] is absolutely continuous with a càdlàg
derivative, and for the density process f = [V,W ]′ there is a sequence (σk) of
F(0)-stopping times such that σk ↑∞ as k →∞ and for every k and any λ> 0, we
have a positive constant Ck,λ satisfying

E
[
| f σk
τ1 − f σk

τ2 |2∣∣Fτ1∧τ2

]
≤ Ck,λE

[
|τ1 − τ2|1−λ

∣∣Fτ1∧τ2

]
for any bounded F(0)-stopping times τ1 and τ2, and f is adapted to Hn .

[A4] ξ ∨ 9
10 < ξ ′ and

sup
i∈Z+

[(Si ∧ t)− (Si−1 ∧ t)]∨ sup
j∈Z+

[(T j ∧ t)− (T j−1 ∧ t)] = op(n
−ξ ′)

as n →∞ for any t ∈ R+.

[A5] A1, A2, A1, and A2 are absolutely continuous with càdlàg derivatives, and there is
a sequence (σk) of F(0)-stopping times such that σk ↑∞ as k →∞ and for every
k we have a positive constant Ck and λk ∈ (0,3/4) satisfying

E
[
| f σk

t − f σk
τ |2∣∣Fτ∧t

]
≤ Ck E

[
|t − τ |1−λk

∣∣Fτ∧t

]
(A.68)

for every t > 0 and any bounded F(0)-stopping time τ , for the density processes
f = (A1)′, (A2)′, (A1)′, and (A2)′.

[A6] For each t ∈ R+, nHn(t)= Op(1) as n →∞, where Hn(t)=∑∞
k=1 |�k(t)|2.

[C1] n−1 N n
t = Op(1) as n →∞ for every t .

[C2] A1, A2, A1, A2, and [V,W ] for V,W = X1, X2, X1, X2 are absolutely continuous
with locally bounded derivatives.

[F] For each l = 1,2 we have Zl
t = Xl

t +
∑Nl

t
k=1 γ

l
k , where Xl is a continuous semi-

martingale on B(0) given by (3), Nl is a (simple) point process adopted to F(0),
and (γ l

k )k∈N is a sequence of nonzero random variables.
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[Kβ ] For each l = 1,2, we have

Zl = Xl +κ(δl ) � (μl −νl )+κ ′(δl ) �μl ,

where

(i) Xl is a continuous semimartingale given by (3).
(ii) μl is a Poisson random measure on R+ × El with intensity measure

νl (dt,dx) = dt Fl (dx), where (El ,E l ) is a Polish space and Fl is a σ -finite
measure on (El ,E l ).

(iii) κ(x)= x1{|x |≤1} and κ ′(x)= x −κ(x) for each x ∈ R.

(iv) δl is a predictable map from �(0)×R+× El into R. Moreover, there are a
sequence (Rl

k) of stopping times increasing to ∞ and a sequence (ψ l
k) of

nonnegative measurable functions on El such that

sup
ω(0)∈�(0),t<Rl

k (ω
(0))

|δl (ω, t, x)| ≤ ψ l
k(x) and

∫
El

1∧ψ l
k(x)

β Fl (dx) <∞.

(v) If β < 1, for the process ft =
∫

El κ(δl (t, x))Fl (dx), there is a sequence (σk)

of F(0)-stopping times such that for every k we have a positive constant Ck
and λk ∈ (0,3/4) satisfying (A.68) for every t > 0 and any bounded F(0)-
stopping time τ .

[N

r ] (

∫ |z|r Qt (dz))t∈R+ is a locally bounded process.

[Nr ] (
∫ |z|r Qt (dz))t∈R+ is a locally bounded process, and the covariance matrix

process

�t (ω
(0))=

∫
zz∗Qt (ω

(0),dz).

is càdlàg, quasi-left continuous and adapted to Hn for every n. Furthermore, there
is a sequence (σ k) of F(0)-stopping times such that σ k ↑ ∞ as k → ∞ and for
every k and any λ > 0, we have a positive constant Ck,λ satisfying

E
[
|�i j

σ k∧t
−�

i j
σ k∧(t−h)+

|2∣∣F(t−h)+
]
≤ Ck,λh1−λ

for any i, j ∈ {1,2} and any t,h > 0.

[SA4] ξ ∨ 9
10 < ξ ′ and

sup
i∈N

(Si − Si−1)∨ sup
j∈N

(T j −T j−1)≤ r̄n

holds true for every n.

[SA6] There exists a positive constant C such that nHn(t)≤ C for every t .

[SC1] There is a positive constant K such that n−1 N n
t ≤ K for all n and t .

[SC2] [C2] holds, and (A1)′, (A2)′, (A1)′, (A2)′, and [V,W ]′ for each V,W =
X1, X2, X1, X2 are bounded.
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[SF] We have [F] and there is a positive constant B such that

B−1 < inf
k∈N |γ

l
k | ≤ sup

k∈N
|γ l

k |< B

for each l = 1,2.

[SKβ ] We have [Kβ ] with E1 = E2 =: E and (Al )′, [Ml ]′, (Al )′, and [Ml ]′ (l = 1,2) are
bounded. Moreover, there is a nonnegative bounded measurable function ψ on E
such that

sup
ω∈�,t∈R+

|δl (ω, t, x)| ≤ ψ(x) and
∫

E
ψ(x)β Fl (dx) <∞, l = 1,2.

[SN

r ] (

∫ |z|r Qt (dz))t∈R+ is a bounded process.

[ST] For each l = 1,2 we have �l
n(t) = αl

n(t)ρn , where (ρn)n∈N is a sequence of (de-
terministic) positive numbers satisfying ρn → 0 and

n−ξ ′+1/2 logn

ρn
→ 0

as n → ∞, and (αl
n(t))n∈N is a sequence of (not necessarily adapted) positive-

valued stochastic processes such that there exists a positive constant K0 satisfying

1

K0
< inf

t∈R+
αl

n(t)≤ sup
t∈R+

αl
n(t) < K0, n = 1,2, . . . .

[T] ξ ′ > 1/2, and for each l = 1,2 we have �l
n(t)= αl

n(t)ρn , where

(i) (ρn)n∈N is a sequence of (deterministic) positive numbers satisfying ρn → 0
and

n−ξ ′+1/2 logn

ρn
→ 0

as n →∞.

(ii) (αl
n(t))n∈N is a sequence of (not necessarily adapted) positive-valued

stochastic processes. Moreover, there exists a sequence (Rl
k) of stopping

times (with respect to F) such that Rl
k ↑ ∞ and both of the sequences(

sup0≤t<Rl
k
αl

n(t)
)

n∈N and
(

sup0≤t<Rl
k
[1/αl

n(t)]
)

n∈N are tight for all k.

https://doi.org/10.1017/S0266466614000954 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466614000954

